第11章 压杆稳定
压杆稳定
受压极限应力。这是因为当临界应力达到材料的受压极限应
力时,压杆已因为强度不足而破坏。因此,对于由塑性材料
制成的压杆,其临界应力不允许超过材料的屈服应力 s ,即:
或
cr (aa bs)/ bs
令
s (as)/b
(11-15)
得 式中,
s
s
为临界应力等于材料的屈服点应力时压杆的柔度值。
但应工大力程于超中某过有个比许数 例多值 极压限 s杆的的,压压它杆杆们稳,的定称柔问为度题中往,长往其杆小临。于界这应P类,力压对一杆于般属用于由临实P界
验所得到的经验公式来计算,常用的有直线形经验公式和抛 物线形经验公式。
1.直线形经验公式
直线形经验公式把压杆的临界应力 下列线性关系:
上一页 下一页 返回
第二节压杆的临界力与临界应力
如果将式(11-9)和式(11-13)中的临界应力与柔度之间的函数
关的系曲绘线在图形cr,称直为角临坐界标应系力内总,图将。得如到图临11界-8应所力示随,柔图度中变曲化线
ACB是按欧拉临界应力公式(11-9)制的;曲线EC是按抛物线 形经验公式(11-17)绘制的。两曲线交于C点,C点的坐标可 由式(11-9)和式(11-17)联立解得。例如对Q235钢E = 200 GPa, a = 235 MPa, b= 0. 006 68MPa,此时
cr
与压杆的柔度
表示为
crab
(11-14)
上一页 下一页 返回
第二节压杆的临界力与临界应力
式中,a和b为与材料有关的常数,其单位为MPa。一些常用 材料的a、b值可见表11-2。
图11-7表示厂直线形经验公式与欧拉曲线。应当指出,经验 公式(11-14 )也有其适用范围,它要求临界应力不超过材料的
第十一章压杆的稳定 - 工程力学
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
第11章压杆稳定
材料力学
第29页/共63页
二、折减因数法
s
F A
[s w ]
s cr
nst
scr、nst与压杆柔度有关,[sw]是的 函数。
[sw]=j [s ]
[s ]——强度许用应力 j —— 折减因数 j 1
稳定条件
与柔度有关
s FP j[s ] 工作应力不大于
A
稳定许用应力
注 不必由柔度判断压杆属何种性质的杆,简化计算。 意
强度 条件
sr
[s ]
s0
n
相当应力不大 于许用应力
极限应力
s0
s
{
s
sb
塑性材料 脆性材料
极限应力和安全因数只与材料有关,与实 际应力状态无关,即强度许用应力为常数。
材料力学
第27页/共63页
稳定 条件
s
F A
[s
w
]
s0
nst
s cr
nst
工作应力不大于稳定许用应力。
极限应力(临界应力)和稳定安全因数不仅 与材料有关,而且与实际压杆的长度、约束 条件、横截面尺寸和形状有关,即与实际压 杆的柔度有关,所以稳定许用应力不是常数。
z
ml
iz
1 940 14.43
65.1
第36页/共63页
F A
z
材料力学
l1 z
B l1
y Fx
z
h
b
F x
x-z 面内,两端固定
绕y轴发生失稳
m = 0.5
iy
b 23
20 23
5.77 mm
y
ml
iy
0.5 880 5.77
76.3
静力学11、压杆稳定
Fcr
2 EI l2
μ= 1
2 EI Fcr (0.7l)2
μ= 0.7
2 EI Fcr (0.5 l ) 2
μ= 0.5
2EI Fcr (2l )2
μ= 2
2 EI Fcr l 2
μ= 1
§11.4 欧拉公式的适用范围.经验公式
一、欧拉临界应力公式及使用范围
1.细长压杆的临界应力:临界力除以压杆横截面面积
0
Pcr d EI
k
2d
将边界条件代入统一微分方程的通解得:
式 0
如 图
k 0
1 0 k2
0 1 0
1 0 0
0 0 k
2
C1
C C
2 3
0
sinkL
coskL L 1
k 2 sinkL k 2 coskL 0 0
1 0
Cd4
有非零解的充要条件为:系数行列式值为零;
解得压杆失稳特征方程为:coskL 0
解: (1) 2 E I
Pcr ( l)2
2E d4
64
( l)2
1 16
2E I正
(2)
Pcr 正 Pcr 圆
( l)2 2E I圆
d2 2
a4 4
I正 I圆
12
d4
12
d4
3
( l)2
64
64
例5:五根直径都为 d的细长圆杆铰接构
成平面正方形杆系ABCD,如各杆材料相 同,弹性模量为E。求图 (a)、(b)所示两种 载荷作用下杆系所能承受的最大荷载。
60
2. cr=S时: 强度破坏,采用强度公式。
≤ S—粗短杆(小柔度杆);
表 1 直线公式的系数 a 和 b
第十一章 压杆稳定
使Fcr最小的方向为实际弯曲方向,I为挠曲时横
截面对其中性轴的惯性矩。
如销孔类铰链,即所谓的柱状铰。约束特点为:
在垂直于轴销的平面内,轴销对杆的约束相当于铰支;
而在轴销平面内,轴销对杆的约束则接近于固定端。
第十一章 压杆稳定问题
思考:试判断下列压杆长度系数的取值范围
μ>2
0.7<μ<2
cr
2E 2
P
或
2E p
E
p
P
(10 10)
P值仅与弹性模量E及比例极限P 有关, P仅随材料
性质而异。柔度≥P的压杆称大柔度杆。
当 ≥P(大柔度压杆或细长压杆)时,才能应用欧
拉公式。
当<P时(中、小柔度压杆),不能应用欧拉公式。
第十一章 压杆稳定问题
P 的大小仅取决于压杆材料的 力学性能。例如,对于Q235 钢,E=206GPa, P=200MPa,得
0.7
0.5
欧拉临界压力公式的统一表达式:
Fcr
2EI (l)2
(10 6)
第十一章 压杆稳定问题
Fcr为维持微弯平衡状态最小的压力
各方向约束情况相同时:
Fcr
2EI (l)2
乘积l称为压杆的相当长度或有效长度。 为常数,称长度因素,代表支持方式对临界载荷的
影响。 I=Imin––– 最小形心主惯性矩
第十一章 压杆稳定问题
压杆的稳定(4学时)
教学内容:压杆稳定的概念,细长压杆的临界力和欧 拉公式,欧拉公式的适用范围,中、小柔度杆的临界 应力,压杆的稳定计算,提高压杆稳定性的措施。 教学要求: 1、了解丧失稳定、临界力的概念,中、小柔度杆的临 界应力,压杆的稳定条件,提高压杆稳定性的措施; 2、理解细长压杆的临界力和欧拉公式,临界应力、惯 性半径、柔度的概念,欧拉公式的适用范围。 重点:细长压杆的临界力和欧拉公式。 难点:细长压杆的临界力和欧拉公式。
材料力学-第十一章-压杆稳定
=
π2
×
206 52
×109
×
π
×
160 ×10-3 64
4
= 2.6 ×106 N = 2.60 ×103 kN
材料力学-第11章 压杆稳定
§11-3 两端非铰支细长压杆的临界载荷
2.已知: d =160 mm, Q235钢, E =206 GPa ,确定两根杆的临 界载荷
对于两端固定的压杆,就有
F
d2w + k2w = 0 k2 = F
dx 2
EI
M
F
F
w
微分方程的解: w =Asinkx + Bcoskx
边界条件:=x 0= , w 0 :
B=0
=x l= , w 0 :
Asin kl = 0
系数A,B不能全为0:sin kl = 0
= kl nπ , =n 1, 2,⋅ ⋅ ⋅
k=2
F n2π 2
EI l2
屈曲位移函数: w = Asin nπ x l
弯曲幅值A取决于弯曲程度,与压力F有关。
分叉点 F
Fcr
材料力学-第11章 压杆稳定
§11-2 两端铰支细长压杆的临界载荷
压杆稳定平衡路径
F
平衡路径
F<Fcr 时,直线平衡态为稳定且唯一的
平衡路径
F>Fcr 时,直线平衡态不稳定,一旦有 扰动,杆将转为弯曲平衡态
=
, =n 1, 2,⋅ ⋅ ⋅
EI l2
临界载荷: F=cr
n2π 2EI , =n
l2
1, 2,⋅ ⋅ ⋅
最小临界载荷:
Fcr
=
π 2EI
l2
材料力学09第十一章 压杆稳定问题
Fcr Fcr min
EI
2
l2
理想中心压杆的欧拉临界力
M(x)= Fcr(-w) =-Fcrw
EIw ' ' M ( x) Fcr w
x Fcr
A
Fcr 2 k 令 EI
w' ' k 2 w 0
与前面获得的结果相同。
w
w l 2 x
2)计算许可载荷[P]
1.5 y 0 : [ P ] P 2 0 [ P] 2.82( KN)
BC cr
§11-4 欧拉公式的应用范围 · 临界应力总图
1. 欧拉公式的应用范围
欧拉临界应力
I 2 EI 2 i Fcr 2 ( l ) A 2 2 2 E E EI Fcr cr 2 ( l ) A ( l ) 2 A ( l ) 2 A
约束越弱,μ系数越大, 临界力Fcr越低,稳定性越差。
其他支座条件下细长压杆的临界压力
由于边界条件不同,则:
2 EI Fcr ( l ) 2
I:最小惯性矩
称为长度系数。
一端固定一端自由:
2
1
两端铰支:
一端铰支一端固定:
临界应力
cr
Fcr A
0.7 0.5
压杆失稳的现象:
1. 轴向压力较小时,杆件能保持稳定的直线平衡状态; 2. 轴向压力增大到某一特殊值时,直线不再是杆件唯 一的平衡状态;
稳定:
理想中心压杆能够保持稳定的(唯一的)
直线平衡状态;
失稳(屈曲):理想中心压杆丧失稳定的(唯一的)直 线平衡状态; 临界力 压杆失稳时,两端轴向压力的特殊值
第11章 压杆稳定性问题
相等,则此压杆的临界压力又为多少?
(压杆满足欧拉公式计算条件)
h
动脑又动笔
解: 一端固定,一端自由,长度因数 μ=2 在应用欧拉公式时,截面的惯性
矩应取较小的I 值。
Iy 1 3 1 hb 90 403 mm 4 48 104 mm 4 12 12
b
F
l
1 3 1 I z bh 40 903 mm 4 243 104 mm 4 12 12
理解长细比、临界应力和临界应力总图的概念,熟 悉各类压杆的失效形式。
§11–1 压杆稳定性的基本概念
① 强度 衡量构件承载能力的指标 ② 刚度 ③ 稳定性 工程中有些构件具有足够的强度、刚度,却不一定能安全 可靠地工作。 杆件在各种基本变形下的强度和刚度问题在前述各章节中 已作了较详细的阐述,但均未涉及到稳定性问题。事实上, 杆件只有在受到压力作用时,才可能存在稳定性的问题。
屈曲曲线是偏离原直线轴线不远的微弯状态。
F F EI L
M d2w 2 EI dx
§11–2 细长压杆的临界荷载—欧拉临界力
一、两端铰支压杆的临界力
多大的轴向压力才会使压杆失稳?
d2w EI 2 Fw 0 dx
y
M EI x w L
记
F
k2
F EI
F
F
x
d2w 2 k w0 2 dx
§11–3长细比的概念 三类不同压杆的判断
三、临界应力总图
cr
S
P
cr s
cr a b
2E cr 2
粗短杆 s
s s a
b
中长杆
P
细长杆
第11章压杆稳定
压杆截面如图所示。两端为柱形铰链约束,
若绕 y 轴失稳可视为两端固定,若绕 z 轴失稳可视为 两端铰支。已知,杆长l=1m ,材料的弹性模量
E=200GPa,sp=200MPa。求压杆的临界应力。
解:
iy 1 3 ( 0 . 03 0 . 02 ) Iy 12 0.0058m A 0.03 0.02
3.压杆失稳:
弹性杆件 稳定直线平衡
F Fcr
F Fcr
F Fcr
F Fcr
微小扰动 恢复直线平衡 不稳定直线平衡
F Fcr
弯曲 除去扰动
v
弯曲
微小扰动
新的弯曲平衡 随遇平衡
除去扰动
F Fcr 除直线平衡形式外,无穷小邻域内,可能微弯平衡
压杆从直线平衡形式到弯曲平衡形式的转变,称为失稳
一、两端铰支的细长压杆:
x
Fcr
F M(x)=Fw
l m w B m
m
x
m
B y F
x
y
Fcr
压杆任一 x 截面沿 y 方向的位移 w f ( x ) 该截面的弯矩
M ( x ) Fw
杆的挠曲线近似微分方程
EIw '' M ( x ) Fw
2
( a)
m
F 令k 得 w '' k 2 w 0 (b) EI
16
4.压杆的临界压力: 稳 定 平 衡 临界状态
过 渡
临界压力:Fcr
不 即:使压杆保持在微 稳 弯状态下平衡的最小 定 轴向力。 平 衡
F Fcr —稳定平衡状态 F Fcr —临界平衡状态 F Fcr —不稳定平衡状态
第 11 章 压杆的稳定性问题
直线形状平衡 稳定的
第 11 章 压杆的稳定性问题 2.不稳定性
F F>Fpcr
压杆稳定性的基本概念
直线平衡平衡状态转变为弯曲平 衡状态,扰动除去后,不能够恢 复到直线平衡状态,则称原来的 直线平衡状态是不稳定的。
FP<FPcr :在扰动作用下,
直线形状平衡 不稳定的
第 11 章 压杆的稳定性问题
第 11 章 压杆的稳定性问题
P
A
(a )
三类不同压杆的判断
h
y
b
h
B
y
P 解:正视图平 面弯曲截面绕 z 轴转。 3 P
x
P
z
l
A bh 1.0
iz Iz A
bh Iz 12
h 2 3
z
l
iz
1 2300 2
60
3
132.8 P 100
σp σe σs
压杆稳定性的基本概念
三、三种类型压杆的不同临界状态
σ
σb
ε
第 11 章 压杆的稳定性问题 欧拉临界力 §11-2 细长压杆的临界载荷---欧拉临界力
一、两端铰支的细长杆
F x F x
F
l M w x w w
压杆
微弯下平衡
内力与变形
第 11 章 压杆的稳定性问题
x
欧拉临界力
M =F w EI w〞= - M =-F w
欧拉临界力
二、其他刚性支承细长压杆临界载荷的通用公式
方法1: 同欧拉公式, 微分方程 + 边界条件 方法2: 相当长度法 在压杆中找出长度相当于两端铰支的 一段(即两端曲率为零或弯矩为零),该 段失稳曲线为半波正弦曲线,该段临界力 即压杆的临界力。
山东建筑大学期末工程力学第11章压杆稳定
对于等直杆
F N max [ ] max A
例题:一长为300 mm的钢板尺,横截面尺寸为 20mm 1mm 。钢 的许用应力为[ ]=196 MPa。按强度条件计算得钢板尺所能承受的 轴向压力为
一, 两端为绞支(球形绞支),长为 l 的 细长 压杆。
当 F 达到 FCr 时,压杆的特点是:保持微弯形式的平衡。
x
F cr
x
w
l
l 2
m w m
F cr
M ( x) F cr w
m m
x
o w o
x
w
F cr
FCr
x
w
m
M ( x) F cr w
m
x
o w
FCr
压杆任一 x 截面沿 w 方向的位移为 w = f (x) 该截面的弯矩为
E F cr cr A ( l / i )
l
i
称为压杆的柔度(长细比)。集中地反映了压杆的长度,杆端约
束,截面尺寸和形状对临界应力的影响。
2 E 2
cr
cr
E 2
2
越大,相应的 cr 越小,压杆越容易失稳。
F Cr A Cr
x
y
2 EI F cr 2 ( l )
z
2 EI y ( F Cr ) y ( l )2 y
2 EI z ( F Cr ) z ( l )2 z
F Cr {( F Cr ) y,( F Cr ) z}min
材料力学11_压杆稳定
6
11.2 两端铰支中心受压直杆的欧拉公式
x Pcr
y
本节以两端球形铰支(简称两端铰支)
的细长中心受压杆件(图a)为例,按照对 于理想中心压杆来说临界力就是杆能保
y
m x (a) O
m y y
持微弯状态时的轴向压力这一概念,来 y 导出求临界力的欧拉(L.Euler)公式。
l
7
11.2 两端铰支中心受压直杆的欧拉公式
π 2 EI
式中, 称为压杆的长度因数,它与杆端约束情况有关; l 称为压杆的相当长度(equivalent length),它表示某种杆端约束 情况下几何长度为l的压杆,其临界力相当于长度为 l 的两端 铰支压杆的临界力。上表的图中从几何意义上标出了各种杆端 约束情况下的相当长度 l。
12
(2)抛物线型经验公式 ①sp<s<su 时:
s cr a1b12
2 在钢结构中: s cr s u 1 c c是细长压杆与非细长压杆柔度的分界值。
3 c 0.57s u
②su<s 时:
s cr s u
20
c 的杆为细长压杆,其临界应力用欧拉公式求。
c 的杆为非细长压杆,以抛物线经验公式计算临界应力。
11.5 超过比例极限时压杆的临界应力 临界应力
③临界应力总图
scr
s cr a1b1
su
2
sp
E s cr 2
2
p
O
21
11.6 压杆的稳定校核及提高稳定性的措施 1.压杆的稳定校核
x
设压杆微弯挠曲线的表达式为: y
v x
挠曲线近似微分方程: EIv M ( x) Pcr v Pcr Pcr 2 x 令 k ,则 v k 2 v 0 EI Pcr v A sin kx B cos kx 其通解为: M (x) =Pcrv m m 式中A,B为待定常数。 y y x v x 0 0 杆的边界条件: x y O O v x l 0 y Fcr 代入通解得: (a) (b) B 0 Pcr A sin kl B cos kl 0 sin kl 0 kl L n (n 0, 1,2) EI 临界力为最小压力:
第11章 压杆稳定
(Buckling of Columns)
3、图示矩形截面细长压杆,两端用圆柱铰连接。其约束在纸平 面内可视为两端铰接,在垂直于纸面的平面内可视为两端固定, 从稳定性考虑,截面合理的长、宽比为h/b= `
压杆在纸平面内的工作柔度为λ=μL/i=1.0L/h/(2×1.732); 在垂直于纸面的平面内的工作柔度为λ’=μL/i=0.5L/b/(2×1.732);
(Buckling of Columns) 1、一受压的圆截面杆件,已知材料的机械性质参数σ p, σ s,σ b,E,杆长L,直径D,长度系数u,并设已知压杆临界应 力的线性经验公式常数a、b为已知。欲计算压杆的临界压力, 写明计算过程,列出有关的公式。 (1)计算工作柔度λ =μ L/i,计算第一特征柔度 λ 1=(π 2E/σ P)1/2 σ
(Buckling of Columns) 7、两根细长压杆a与b的长度、横截面面积、约束状态及材料均 相同,若其横截面形状分别为圆形和正方形,则二压杆的临界压 力Pacr和Pbcr的关系为( )。 C A.Pacr=Pbcr;B.Pacr<Pbcr;C.Pacr>Pbcr;D.不确定 8、材料和柔度都相同的两根压杆( A. B. C. D. )。A 临界应力一定相等,临界压力不一定相等; 临界应力不一定相等,临界压力一定相等; 临界应力和压力都一定相等; 临界应力和压力都不一定相等。
(Buckling of Columns)
1、图示中的桁架结构,两细长杆的长为L,与铅垂线的夹角相 等,均为α。但EI1>EI2,则结构的临界载荷为 。
Fcr=2 cosαπ2EI2/L2
2、在一般情况下,稳定安全系数比强度安全系数要大,这是因 为实际压杆总是不可避免地存在 , ,以及 等不利因素。
第十一章 压杆稳定
§ 11—3 不同杆端约束下细长压杆临界轴力的欧拉公式
F
cr
1、两端铰支
F
A
cr
Fcr
EI
2
l2
l
B
2、一端固定另端自由 l 2 EI Fcr ( 2l ) 2
F
cr
A
B
l
F
A
cr
3、一端固定,一端 夹支(两端固定)
0.5l
A
4、一端固定 另端铰支
0 .7 l
l
Fcr
2 EI
Fcr,1 : Fcr,2 : Fcr,3 I min,1 : I min,2 : I min,3 1: 9.34:17.32
例11.2 两端球铰支的中心受压细长压杆,长1m,材料的弹性 模量E=200GPa,考虑采用矩形、等边角钢∟45×6、环形三种 不同截面,如图11.5所示。试比较这三种截面压杆的稳定性。
2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。
一、弹性系统平衡的稳定性 1、若 F 2k l ,即 F 2kl ,则在干扰解除后,杆将自
动恢复至初始位置,说明在该荷载作用下,杆在竖直位置的 平衡是稳定的。 2、若F 2k l ,即 F 2kl,则在干扰解除后,杆不仅不 能自动返回其初始位置,而且将继续偏转。说明在该荷载作 用下,杆在竖直位置的平衡是不稳定的。 δ
F F
3、若F 2k l ,即 F 2kl, 则杆既可在竖直位置保持平衡, 也可在微小偏斜状态保持平衡, 说明在该荷载作用下,杆处于临 界平衡状态或称为随遇平衡状态。 弹性系统在某位置的平衡性质不但 与外荷载的大小有关,而且与系统 的自身构成特性有关。
建筑力学 第11章 压杆稳定
第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。
本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。
11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。
前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。
但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。
杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。
我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。
所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。
为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。
图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。
当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。
因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。
P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。
但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。
因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。
P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。
材料力学第11章 压杆稳定
长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔
柔
度度
度
压压
压
杆杆
杆
可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800
工程力学压杆稳定
第11章 压杆稳定
§11-2 细长压杆的临界压力
实验方法建立临界力的计算公式 1)用材料、截面的形状和尺寸相同 但长度不同的细长压杆实验: 2)用几何尺寸完全相同但材料不同 的细长压杆实验: 3)用材料相同、长度相等但截面尺 寸不同的细长压杆实验: 欧拉 公式
欧拉公式
1 Fcr 2 l
Fcr E Fcr I
解 (1)计算柔度
先计算惯性半径:
F
d 64 d1 I i A 4 d 4 0.032 m 0.008m 4
4 1 2 1
第11章 压杆稳定 为了偏于安全起见,将螺杆看成一端固定,另 一端自由,查表得 = 2。于是柔度为:
2 0.3 75 i 0.008
cr a b
式中a﹑b为与材料有关的常数。对于 b 1.12 MPa 结构钢:a 304 MPa, 铸铁:a 331 .9MPa , b 1.453 MPa
小柔度杆或短杆:对于结构钢,当 60 时,压杆 可以不考虑稳定性,只需进行压缩强度计算。这种 杆称为小柔度杆或短杆。这时其临界应力 cr 等于 屈服点 s 。
cr
2 Fcr EI 2 A ( l ) A
截面惯性矩 I:截面面积 A 与惯性半径 i 平方之积。
引入压杆柔度
l
i
2 E cr 2
第11章 压杆稳定
欧拉公式的适用范围
由于实验时杆内的压应力不超过比例极限p,因此 只有当cr p 时欧拉公式才适用,即
E cr 2 p
2
大柔度杆或细长杆:对于结构钢的 p 2 10 Pa、 11 E 2 10 Pa,则由上式可算得欧拉公式的适用 范围为 100;同理对于铸铁,欧拉公式的适用 范围为 80 。这类杆称为大柔度杆或细长杆。
材料力学(单辉祖)第十一章压杆稳定问题
Pcr
=
π 2EI
l2
若杆端在各个方向的约束情况相同(如球形 铰),I 应取最小的形心主惯矩,得到直杆 的实际临界力
若杆端在不同方向的约束情况不同, I 应取 挠曲时横截面对其中性轴的惯性矩。即此 时要综合分析杆在各个方向发生失稳时的 临界压力,得到直杆的实际临界力(最小值)。
25
欧拉公式
求解上述非线性微分方程,得挠曲线中
点挠度δ 与压力P之间的近似关系
δ = 2 2l π
其图形为
P Pcr
⎡ − 1⎢1 −
⎣
1 2
⎛⎜⎜⎝
P Pcr
−1⎞⎟⎟⎠⎤⎥⎦
P
A
Pcr
可见,只有当P ≥Pcr时,压杆 B 才可能存在非直线的平衡态,
即直杆发生失稳,并且挠度δ
与压力P之间存在一对一关系,
M (x) = Pcrv(x) − Q(l − x)
x Pcr
Q A
M(x)
m
m
l
x
BQ MB y Pcr
39
Example-1
x
代入挠曲线近似微分方程
Pcr
EI
d 2v dx 2
=
−M
(x)
=
− Pcr v( x)
+
Q(l
−
x)
令 k 2 = Pcr
EI
则控制微分方程化简为
d 2v dx 2
+
k 2v
28
欧拉公式
思考题
29
不同约束下压杆临界力的 欧拉公式 • 压杆长度系数
30
长度系数
问题:
考虑下端固定、上端 自由并在上端承受轴 向压力作用等截面细 长杆,几何尺寸见图 确定此压杆临界压力
第11章 稳定分析与稳定性设计
第11章压杆的稳定性分析与稳定性设计工程力学学习指导第11章压杆稳定性分析与稳定设计11.1 教学要求与学习目标1. 掌握有关弹性体稳定的基本概念:1)稳定的平衡构形(位置)与不稳定的平衡构形(位置)。
2) 平衡路径,分叉,分叉点。
3) 屈曲(丧失稳定)。
4)判别压杆平衡稳定性的静力学准则。
5)细长压杆分叉点的平衡稳定性。
特别要掌握弹性体失稳时其直线平衡构形将突然转变为弯曲构形这一物理本质,并用以理解、分析和处理一些理论问题和实际问题。
2. 弄清影响压杆承载能力的因素,正确理解弹性压杆临界力公式推导过程,弄清临界力公式中每一项的意义以及公式的应用条件,正确计算临界力。
3. 正确区分弹性失稳及超过比例极限的失稳问题,区别三类不同长细比杆,分别采用不同的公式进行计算。
11.2 理 论 要 点11.2.1平衡构形的稳定性和不稳定性图11-1 压杆的两种平衡构形结构构件或机器零件在压缩载荷或其他特定载荷作用下发生变形,最终在某一位置保持平衡,这一位置称为平衡位置,又称为平衡构形。
承受轴向压缩载荷的细长压杆,有可能存在两种平衡构形-直线的平衡构形与弯曲的平衡构形,分别如图11-1所示。
当载荷小于一定的数值时,微小外界扰动使其偏离平衡构形,外界扰动除去后,构件仍能回复到初始平衡构形,则称初始的平衡构形是稳定的。
扰动除去后,构件不能回复到原来的平衡构形,则称初始的平衡构形是不稳定的。
此即判别弹性平衡稳定性的静力学准则。
不稳定的平衡构形在任意微小的外界扰动下,将转变为其他平衡构形。
例如,不稳定的细长压杆的直线平衡构形,在外界的微小扰动下,将转变为弯曲的平衡构形。
这一过程称为屈曲或失稳。
通常,屈曲将使构件失效,并导致相关的结构发生坍塌。
由于这种失效具有突发性,常常带来灾难性后果。
11.2.2临界状态与临界载荷介于稳定平衡构形与不稳定平衡构形之间的平衡构形称为临界平衡构形,或称为临界状态。
处于临界状态的平衡构形,有的是稳定的,有时是不稳定的,也有的是中性的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11-2
中心受压细长直杆临界力的欧拉公式
二、欧拉公式的普遍形式
1.压杆临界力的一般解法
1)统一微分方程 y"" k 2 y" 0 ——适用各种约束压杆
y C1 sin kx C 2 coskx C 3 x C 4 y' kC1 coskx kC 2 sin kx C 3 2)微分方程的通解 y'' k 2C1 sin kx k 2C 2 coskx y''' k 3C1 coskx k 3C 2 sin kx
2)抛物线公式
s cr s u k
2
su——材料的极限应力(ss或s b)
k——与材料有关的常数
2.scr=ss时: 强度破坏,采用强度公式
§11-3
欧拉公式的使用范围 临界应力总图
三、临界应力总图
临界应力总图:压杆临界应力随柔度变化的曲线图
scr
ss A scr=ss s =ab cr
§11-2
中心受压细长直杆临界力的欧拉公式
2)挠曲线:y asin( x / l ) ——两端铰支压杆的挠曲 线为半波正弦曲线; a)若欧拉公式推导中n>1,则为多波正弦曲线, 理论 上存在这些临界状态,实际无意义; b)令x=l/2,fl/2=fmax=a,即挠曲线方程中的a等于中点 挠度,但并不确定; 因为推导时使用了近似曲率公式,若采用精确公式 则当压力达到临界值Fcr后,a与F一一对应,所以上 挠曲线方程只在a微小时近似成立。
§11-2
中心受压细长直杆临界力的欧拉公式
F B
系数行列式值为零 3)通解方程有非零解的充要条件: 解得压杆失稳特征方程为: kl 0 cos
kl
F l n ( n 0, , ) 1 2 EI 2
4)取n=1,得一端固定,一端自由压杆临界力 的欧拉公式为
l
Fcr EI ( 2l ) 2
§11-2
中心受压细长直杆临界力的欧拉公式
x
引用记号: 2 F y" k 2 y k 2d k EI 4)微分方程的通解为 y Asinkl Bcoskl d y' Ak coskl Bk sinkl 5)边界条件为 x 0:y 0,y' C k 2d l / 6 A x l:y d 6)将边界条件代入微分方程通解得到 0 A B d 0 Asinkl bcoskl d d Ak 0 B k 2 ld / 6 0 上式非零解的条件为 0 1 1 sinkl coskl 0 0 k 0 k 2l /6
M
0.5l y
l M
F
5)相当于0.5l长两端铰支压杆的临界力。
2 EI Fcr ( 0.5 l ) 2
§11-2
中心受压细长直杆临界力的欧拉公式
3.欧拉公式的统一形式
2 EI ml——相当长度,压杆折算成两端铰支 Fcr ( ml ) 2 杆的长度,m 称为长度系数。
表11-1 压杆的长度系数 压杆约束条件 长度系数m
§11-3
欧拉公式的使用范围 临界应力总图
2.欧拉公式适用范围 1)线弹性状态 2 E s s s
cr p
2
2 E p
sp
2 E p
sp
2)≥ p: 细长杆(大柔度杆),欧拉公式的适用范围。
E=200GPa,s p=200MPa 3)对于Q235钢:
2 20010 9 100 p 20010 6
4)外界干扰力。
§11-1 二、中心受压直杆稳定性分析
压杆稳定的概念
由稳定平衡向微弯平衡过渡的状态 1.临界状态: 2.临界载荷Fcr: 描述压杆稳定的能力,压杆临界状 态所受到的轴向压力。
F<Fcr F=Fcr
F>Fcr
a) 直 1 线 F1FF1 稳 态 干扰力去除后 恢复直线状态
b) 微 F 弯 F1F1 1 平 衡 干扰力去除后 保持微弯
2.稳定计算过程 1)确定压杆受载、约束情况、截面参数、相当长度; 2)计算 ( 、 p、 0); 3)由 判断压杆类型,选择相应公式计算临界力Fcr; Fcr nst 。 4) n F
§11-4
压杆的稳定条件及设计准则
3.注意 1)对于不同方向,压杆的约束条件、长、惯性矩可能 不相同,要分别考虑,一般情况, 越大压杆越易 失稳;
c) 失 1 稳 F1FF1
干扰力去除后继续 变形,直至倒塌
§11-2
中心受压细长直杆临界力的欧拉公式
一、两端铰支压杆的临界力
1.思路 求Fcr →临界状态(微弯)→弯曲变形 →挠曲线微分方程
2.推导 F 1)挠曲线微分方程: " M ( x ) Fy EIy 引用记号: 2 F y" k 2 y 0 k EI x 失 2)该微分方程的通解为 Fcr F 稳 y Asinkx Bcoskx 模 l M(x)=Fy 式中A、B为积分常数 式 y x0 y0 如 3)杆的边界条件 图 x xl y0 y B0 代入通解得 Asinkl 0 sinkl 0
B
y x
0.7l
y FAx
( 0.7 l ) 2
§11-2
中心受压细长直杆临界力的欧拉公式
x F 失 稳 模 式 如 图
例11-3 试导出两端固定压杆的欧拉公式。 解:1)边界条件: 两端M均不为零 x 0:y 0,y' 0 x l:y 0,y' 0 2)将边界条件代入统一微分方程的通解为 1 0 1 C 1 0 k 0 1 0 C 2 0 sinkl coskl l 1 C 3 k coskl k sinkl 1 0 C 4 3)利用系数行列式值为零解得 2(coskl 1) klsinkl 0 F kl cr l 2 EI 4)两端固定压杆临界力的欧拉公式为
y — 挠曲线方程,y'— 转角方程, 3) dM ( x ) EIy " M ( x ),EIy "' dx FQ
4)代入位移与静力边界条件,求出压杆稳定的特征方 程,得到Fcr。
§11-2
2.例题
中心受压细长直杆临界力的欧拉公式
例11-1 一端固定、另一端自由的细长压杆如图所示,试导出其临界力的 欧拉公式。 x F 解:1)边界条件 B d M x 0:y 0,y' 0,y" A Fd k 2d 失 EI EI 稳 M (l ) x l:y d,y" 0 模 EI l 式 2)将边界条件代入统一微分方程的通解为 如 0 1 0 1 0 C 1 图 y k 0 1 0 0 C 2 A 2 2 C3 0 0 k 0 0 k MA=Fd F coskl l 1 1 C 4 sinkl k 2 sinkl k 2 coskl 0 0 0 d
B
scr ss
C
粗 短 杆 中 粗 杆
scr=ssk 2
sp
2 E s cr 2
0.57ss
2 E s cr 2
细长 杆
D
O
0
p
O
0
采用抛物线经验公 式的临界应力总图
采用直线经验公式 的临界应力总图
§11-4
压杆的稳定条件及设计准则
一、稳定校核的安全因数法
1.压杆的稳定条件: 工作安全因数n大于或等于规定的稳 定安全因数nst。 Fcr s cr n nst 1)表达式: F s 2)三类稳定计算问题 确定许可载荷、稳定性校核、截面尺寸设计(逼近法)。
2
A
5)相当于2l长两端铰支压杆的临界力 C
l
§11-2
பைடு நூலகம்
中心受压细长直杆临界力的欧拉公式
x
例11-2 导出一端固定、另一端铰支压杆临界力的欧拉公式。 F 解:1)边界条件: A端FAy、MA及B端FBy不为零。 FBy x 0:y 0,y' 0 M (l ) 失 x l:y 0,y" 0 EI 稳 2)将边界条件代入统一微分方程的通解为 模 l 0 1 0 1 C 1 式 如 k 0 1 0 C 2 C 0 图 coskl l 1 3 sinkl A k 2 sinkl k 2 coskl 0 0 C 4 FAy 3)利用系数行列式值为零解得: kl kl tan MA Fcr kl l 4.49 EI 0.7 2 EI 4)一端固定、一端铰支压杆临界力的欧拉公式为 Fcr 5)相当于0.7l长两端铰支压杆的临界力。
2)压杆临界力取决于整个杆的抗弯刚度,因此对局部 有截面削弱情况按未削弱的截面尺寸计算其惯性矩 I和横截面面积A。但是对受削弱的横截面,还应进 行强度校核; 3)确定稳定安全因数nst,除考虑确定安全因数的一 般原则外,还应考虑压杆初挠度、载荷偏心等因素 影响。所以稳定安全因数nst的值比强度安全因数 大一些。
d
y x C
F D
C
B
7)化简整理得稳定特征方程为 tg kl 6 kl 8)用逼近法求得kl≈0.4294,从 而得到临界力为 2 EI Fcr ( 2.33l ) 2
§11-3
欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及使用范围
临界力除以压杆横截面面积得到的压应 1.临界应力: 力,用scr表示。 Fcr 2 EI 2 E s cr A ( ml ) 2 A ( ml / i ) 2 横截面对微弯中性轴的惯性半径 1)i I / A : ml 2)柔度(长细比): i 综合反应了杆端约束、杆的长度和截面面积等 因素对临界力的影响,是描述压杆稳定性能的重 要参数。 2 E s 3)欧拉临界应力公式: cr 2