最新天津市2018中考数学试卷(word版,含答案)复习进程
2018年天津市中考数学试卷-含答案详解
2018年天津市中考数学试卷1. 计算(−3)2的结果等于( )A. 5B. −5C. 9D. −92. cos30°的值为( )A. 12B. √22C. √32D. √333. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( )A. 0.778×105B. 7.78×104C. 77.8×103D. 778×1024. 下列图形中,可以看作是中心对称图形的是( )A. B. C. D.5. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. 估计√65的值在( )A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间7. 计算2x+3x+1−2xx+1的结果为( )B. 3C. 3x+1 D. x+3x+18. 方程组{x +y =102x +y =16的解是( ) A. {x =6y =4 B. {x =5y =6 C. {x =3y =6 D. {x =2y =89. 若点A(x 1,−6),B(x 2,−2),C(x 3,2)在反比例函数y =12x的图象上,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 2<x 1<x 3C. x 2<x 3<x 1D. x 3<x 2<x 110. 如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A. AD =BDB. AE =ACC. ED +EB =DBD. AE +CB =AB11. 如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP +EP 最小值的是( )A. ABB. DED. AF12. 已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(−1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③−3<a+b<3其中,正确结论的个数为( )A. 0B. 1C. 2D. 313. 计算2x4⋅x3的结果等于______.14. 计算(√6+√3)(√6−√3)的结果等于______.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______.16. 将直线y=x向上平移2个单位长度,平移后直线的解析式为______.17. 如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF 的中点,连接DG,则DG的长为______.18. 如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(Ⅰ)∠ACB的大小为______ (度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明)______ .19. 解不等式组{x+3≥1, ①4x≤1+3x. ②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得______;(Ⅱ)解不等式②,得______;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为______.20. 某养鸡场有2500只鸡准备对外出售,从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为______;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?21. 已知AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,(I)如图①,若D为AB⏜的中点,求∠ABC和∠ABD的大小;(Ⅱ)如图②,过点D作⊙O的切线,与AB的延长线交于点P,若DP//AC,求∠OCD的大小.22. 如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.23. 某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数101520 (x)方式一的总费用(150175______ …______元)方式二的总费用(90135______ …______元)(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.24. 在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证△ADB≌△AOB;②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).25. 在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx−2m(m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.答案和解析1.【答案】C【解析】解:(−3)2=9,故选:C.根据有理数的乘方法则求出即可.本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.【答案】C【解析】解:cos30°=√3.2故选:C.根据特殊角的三角函数值直接解答即可.此题考查了特殊角的三角函数值,是需要识记的内容.3.【答案】B【解析】解:77800=7.78×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【答案】A【解析】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故选:A .根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.【答案】D【解析】解:8<√65<9, 即√65在8到9之间, 故选:D .先估算出√65的范围,再得出选项即可.本题考查了估算无理数的大小,能估算出√65的范围是解此题的关键.7.【答案】C【解析】解:原式=2x+3−2x x+1=3x+1,故选:C .原式利用同分母分式的减法法则计算即可求出值.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.8.【答案】A【解析】解:{x +y =10 ①2x +y =16 ②,②−①得:x =6, 把x =6代入①得:y =4, 则方程组的解为{x =6y =4,故选:A .方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.【答案】B的图象上,【解析】解:∵点A(x1,−6),B(x2,−2),C(x3,2)在反比例函数y=12x∴x1=−2,x2=−6,x3=6;又∵−6<−2<6,∴x2<x1<x3;故选:B.,根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=12x分别求得x1,x2,x3的值,然后再来比较它们的大小.的某点一定在该函数的图象上.本题考查了反比例函数图象上点的坐标特征.经过反比例函数y=kx10.【答案】D【解析】解:∵△BDE由△BDC翻折而成,∴BE=BC.∵AE+BE=AB,∴AE+CB=AB,故D正确,故选:D.先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.11.【答案】D【解析】解:如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:D.连接CP,当点E,P,C在同一直线上时,AP+PE的最小值为CE长,依据△ABF≌△CDE,即可得到AP+EP最小值等于线段AF的长.本题考查的是轴对称,最短路线问题,根据题意作出A关于BD的对称点C是解答此题的关键.12.【答案】C【解析】解:①∵抛物线过点(−1,0),对称轴在y轴右侧,∴当x=1时y>0,结论①错误;②过点(0,2)作x轴的平行线,如图所示.∵该直线与抛物线有两个交点,∴方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③∵当x=1时y=a+b+c>0,∴a+b>−c.∵抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(0,3),∴c=3,∴a+b>−3.∵当x=−1时,y=0,即a−b+c=0,∴b=a+c,∴a+b=2a+c.∵抛物线开口向下,∴a<0,∴a+b<c=3,∴−3<a+b<3,结论③正确.故选:C.①由抛物线的对称性可得出当x=1时y>0,结论①错误;②由直线y=2与抛物线有两个交点,可得出方程ax2+bx+c=2有两个不相等的实数根,结论②正确;③由当x=1时y>0,可得出a+b>−c,由c=3得出a+b>−3,由抛物线过点(−1,0)可得出a+b=2a+c,结合a<0、c=3可得出a+b<3,结论③正确.此题得解.本题考查了抛物线与x轴的交点、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析三条结论的正误是解题的关键.13.【答案】2x7【解析】解:2x4⋅x3=2x7.故答案为:2x7.单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.依此即可求解.考查了单项式乘单项式,注意:①在计算时,应先进行符号运算,积的系数等于各因式系数的积;②注意按顺序运算;③不要丢掉只在一个单项式里含有的字母因式;④此性质对于多个单项式相乘仍然成立.14.【答案】3【解析】解:(√6+√3)(√6−√3)=(√6)2−(√3)2=6−3=3,故答案为:3.利用平方差公式计算即可.本题考查的是二次根式的乘法,掌握平方差公式是解题的关键.15.【答案】611【解析】解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是611,故答案为:611.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn .16.【答案】y=x+2【解析】解:将直线y=2x直线y=x向上平移2个单位长度,平移后直线的解析式为y=x+2.故答案为:y=x+2.直接根据“上加下减,左加右减”的平移规律求解即可.本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17.【答案】√192【解析】【分析】此题主要考查了勾股定理以及等边三角形的性质和三角形中位线定理,正确得出EG的长是解题关键.直接利用三角形中位线定理进而得出DE=2,且DE//AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE//AC,BD=BE=EC=2,∵EF⊥AC于点F,∴EF⊥DE,∵∠C=60°,∴∠FEC=30°,EC=1,∴FC=12故EF=√22−12=√3,∵G为EF的中点,∴EG=√3,2∴DG=√DE2+EG2=√19.2.故答案为√19218.【答案】90如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求【解析】解:(1)由网格图可知,AC=√32+32=3√2,BC=√42+42=4√2,AB=√72+12=5√2,∵AC2+BC2=AB2,∴由勾股定理逆定理,△ABC为直角三角形.∴∠ACB=90°,故答案为:90°.(Ⅱ)作图过程如下:取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG 交TC延长线于点P′,则点P′即为所求.证明:连CF.∵AC,CF为正方形网格对角线,∴A、C、F共线,∴AF=5√2=AB,√2,CF=2√2,由图形可知:GC=32∵AC=√32+32=3√2,BC=√42+42=4√2,∴△ACB∽△GCF,∴∠GFC=∠B,∵AF=5√2=AB,∴当BC边绕点A逆时针旋转∠CAB时,点B与点F重合,点C在射线FG上.由作图可知T为AB中点,∴∠TCA=∠TAC,∴∠F+∠P′CF=∠B+∠TCA=∠B+∠TAC=90°,∴CP′⊥GF,此时,CP′最短,故答案为:如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G:取格点F,连接FG交TC延长线于点P′,则点P′即为所求.(I)根据勾股定理可求AB,AC,BC的长,再根据勾股定理的逆定理可求∠ACB的大小;(Ⅱ)通过将点B以A为中心,取旋转角等于∠BAC旋转,找到线段BC旋转后所得直线FG,只需找到点C到FG的垂足即为P′本题考查了直角三角形的证明、图形的旋转、三角形相似和最短距离的证明.解题的关键在于找到并证明线段BC旋转后所在的位置.19.【答案】解:(Ⅰ)x≥−2;(Ⅱ)x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来为:(Ⅳ)−2≤x≤1.【解析】解:{x+3≥1 ①4x≤1+3x ②(Ⅰ)解不等式①,得x≥−2;(Ⅱ)解不等式②,得x≤1;(Ⅲ)见答案;(Ⅳ)原不等式组的解集为−2≤x≤1.故答案为:(I)x≥−2,(II)x≤1,(IV)−2≤x≤1.先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式组的解集表示在数轴上即可.此题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】(Ⅰ)28;(Ⅱ)这组数据的平均数为1.0×5+1.2×11+1.5×14+1.8×16+2.0×45+11+14+16+4=1.52(kg),众数为1.8kg,中位数为1.5+1.52=1.5(kg);(Ⅲ)2500×45+11+14+16+4=200(只).答:估计这2500只鸡中,质量为2.0kg的约有200只.【解析】【分析】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.(Ⅰ)根据各种质量的百分比之和为1可得m的值;(Ⅱ)根据众数、中位数、平均数的定义计算即可;(Ⅲ)将样本中质量为2.0kg数量所占比例乘以总数量2500即可.【解答】解:(Ⅰ)图①中m的值为100−(32+8+10+22)=28,故答案为:28;(Ⅱ)见答案;(Ⅲ)见答案.21.【答案】解:(Ⅰ)连接OD,∵AB是⊙O的直径,弦CD与AB相交,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB−∠BAC=90°−38°=52°,∵D为AB⏜的中点,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(Ⅱ)连接OD,∵DP切⊙O于点D,∴OD⊥DP,即∠ODP=90°,由DP//AC,又∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一个外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD−∠OCA=64°−38°=26°.【解析】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(Ⅰ)根据圆周角和圆心角的关系和图形可以求得∠ABC和∠ABD的大小;(Ⅱ)根据题意和平行线的性质、切线的性质可以求得∠OCD的大小.22.【答案】解:如图作AE⊥CD交CD的延长线于E,则四边形ABCE是矩形,∴AE=BC=78m,AB=CE,在Rt△ACE中,EC=AE⋅tan58°≈125m,在Rt△AED中,DE=AE⋅tan48°,∴CD=EC−DE=AE⋅tan58°−AE⋅tan48°=78×1.6−78×1.11≈38m,答:甲、乙建筑物的高度AB约为125m,DC约为38m.【解析】本题考查的是解直角三角形的应用,首先构造直角三角形,再借助角边关系、三角函数的定义解题.首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.23.【答案】解:(I)200;100+5x;180;9x;(II)方式一,令100+5x=270,解得:x=34,方式二、令9x=270,解得:x=30;∵34>30,∴选择方式一付费方式,他游泳的次数比较多;(III)令100+5x<9x,得x>25,令100+5x=9x,得x=25,令100+5x>9x,得x<25,∴当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,但x>25时,小明选择方式一的付费方式.【解析】解:(I)当x=20时,方式一的总费用为:100+20×5=200,方式二的费用为:20×9= 180,当游泳次数为x时,方式一费用为:100+5x,方式二的费用为:9x,故答案为:200,100+5x,180,9x;(II)见答案;(III)见答案.(Ⅰ)根据题意可以将表格中空缺的部分补充完整;(Ⅱ)根据题意可以求得当费用为270元时,两种方式下的游泳次数;(Ⅲ)根据题意可以计算出x在什么范围内,哪种付费更合算.本题考查一次函数的应用、列代数式、一元一次方程的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.24.【答案】解:(Ⅰ)如图①中,∵A(5,0),B(0,3),∴OA=5,OB=3,∵四边形AOBC是矩形,∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°,∵矩形ADEF是由矩形AOBC旋转得到,∴AD=AO=5,在Rt△ADC中,CD=√AD2−AC2=4,∴BD=BC−CD=1,∴D(1,3).(Ⅱ)①如图②中,由四边形ADEF是矩形,得到∠ADE=90°,∵点D在线段BE上,∴∠ADB=90°,由(Ⅰ)可知,AD=AO,又AB=AB,∠AOB=90°,∴Rt△ADB≌Rt△AOB(HL).②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA//BC,∴∠CBA =∠OAB ,∴∠BAD =∠CBA ,∴BH =AH ,设AH =BH =m ,则HC =BC −BH =5−m , 在Rt △AHC 中,∵AH 2=HC 2+AC 2,∴m 2=32+(5−m)2,∴m =175, ∴BH =175, ∴H(175,3).(Ⅲ)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,最小值=12⋅DE ⋅DK =12×3×(5−√342)=30−3√344,当点D 在BA 的延长线上时,△D′E′K 的面积最大,最大面积=12×D′E′×KD′=12×3×(5+√342)=30+3√344. 综上所述,30−3√344≤S ≤30+3√344. 【解析】(Ⅰ)如图①,在Rt △ACD 中求出CD 即可解决问题; (Ⅱ)①根据HL 证明即可;②,设AH =BH =m ,则HC =BC −BH =5−m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题;(Ⅲ)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题;本题考查四边形综合题、矩形的性质、勾股定理、全等三角形的判定和性质、旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用参数构建方程解决问题,属于中考压轴题.25.【答案】解:(Ⅰ)∵抛物线y =x 2+mx −2m 经过点A(1,0),∴0=1+m −2m ,解得:m =1,∴抛物线解析式为y =x 2+x −2,∵y =x 2+x −2=(x +12)2−94,∴顶点P 的坐标为(−12,−94);(Ⅱ)抛物线y =x 2+mx −2m 的顶点P 的坐标为(−m 2,−m 2+8m 4), 由点A(1,0)在x 轴的正半轴上,点P 在x 轴的下方,∠AOP =45°知点P 在第四象限,如图1,过点P 作PQ ⊥x 轴于点Q ,则∠POQ =∠OPQ =45°,可知PQ =OQ ,即m 2+8m 4=−m 2, 解得:m 1=0,m 2=−10,当m =0时,点P 不在第四象限,舍去;∴m =−10,∴抛物线的解析式为y =x 2−10x +20;(Ⅲ)由y =x 2+mx −2m =x 2+m(x −2)可知当x =2时,无论m 取何值时y 都等于4,∴点H的坐标为(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,则∠DEA=∠AGH=90°,∵∠DAH=90°,∠AHD=45°,∴∠ADH=45°,∴AH=AD,∵∠DAE+∠HAG=∠AHG+∠HAG=90°,∴∠DAE=∠AHG,∴△ADE≌△HAG,∴DE=AG=1、AE=HG=4,则点D的坐标为(−3,1)或(5,−1);①当点D的坐标为(−3,1)时,可得直线DH的解析式为y=35x+145,∵点P(−m2,−m2+8m4)在直线y=35x+145上,∴−m2+8m4=35×(−m2)+145,解得:m1=−4、m2=−145,当m=−4时,点P与点H重合,不符合题意,∴m=−145;②当点D的坐标为(5,−1)时,可得直线DH的解析式为y=−53x+223,∵点P(−m2,−m2+8m4)在直线y=−53x+223上,∴−m2+8m4=−53×(−m2)+223,解得:m1=−4(舍),m2=−223,综上,m=−145或m=−223,则抛物线的解析式为y=x2−145x+285或y=x2−223x+443.【解析】(Ⅰ)将点A坐标代入解析式求得m的值即可得;(Ⅱ)先求出顶点P的坐标(−m2,−m2+8m4),根据∠AOP=45°知点P在第四象限且PQ=OQ,列出关于m的方程,解之可得;(Ⅲ)由y=x2+mx−2m=x2+m(x−2)知H(2,4),过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,证△ADE≌△HAG得DE=AG=1、AE=HG=4,据此知点D的坐标为(−3,1)或(5,−1),再求出直线DH的解析式,将点P的坐标代入求得m的值即可得出答案.本题主要考查二次函数综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质、全等三角形的判定和性质等知识点.。
(word完整版)天津市2018年中考数学试卷(word版,含答案),推荐文档
2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于( )A .5B .5-C .9D .9- 2. cos30︒的值等于( ) A .2 B .3 C .1 D .3 3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( )A .50.77810⨯ B .47.7810⨯ C .377.810⨯ D . 277810⨯ 4.下列图形中,可以看作是中心对称图形的是( )A .B . C. D .5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B . C. D .6.65 )A .5和6之间B .6和7之间C. 7和8之间 D .8和9之间7.计算23211x xx x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++8.方程组10216x y x y +=⎧⎨+=⎩的解是( )A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x << D .321x x x << 10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AC = C.ED EB DB += D .AE CB AB +=11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .AB B .DE C.BD D .AF12.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(1,0)-,(0,3),其对称轴在y 轴右侧,有下列结论: ①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根; ③33a b -<+<.其中,正确结论的个数为( )A .0B .1 C.2 D .3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x ⋅的结果等于 .14.计算(63)(63)+-的结果等于 .15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 16.将直线y x =向上平移2个单位长度,平移后直线的解析式为 .17.如图,在边长为4的等边ABC △中,D ,E 分别为AB ,BC 的中点,EF AC ⊥于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .18.如图,在每个小正方形的边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度);(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为'P .当'CP 最短时,请用无刻度...的直尺,画出点'P ,并简要说明点'P 的位置是如何找到的(不要求证明) .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式(1),得 . (Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只? 21. 已知AB 是O e 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为»AB 的中点,求ABC ∠和ABD ∠的大小; (Ⅱ)如图②,过点D 作O e 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.22. 如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.23.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (Ⅰ)根据题意,填写下表: 游泳次数1015 20 (x)方式一的总费用(元) 150 175 … 方式二的总费用(元) 90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x >时,小明选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ① 求证ADB AOB △△≌; ② 求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22y x mx m =+-(m 是常数),定点为P .(Ⅰ)当抛物线经过点A 时,求定点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC二、填空题13.72x 14. 3 15.61116.2y x =+ 17.19218. (Ⅰ)90︒;(Ⅱ)如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点'P ,则点'P 即为所求.三、解答题19. 解:(Ⅰ)2x ≥-; (Ⅱ)1x ≤;(Ⅲ)(Ⅳ)21x -≤≤. 20. 解:(Ⅰ)28. (Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.041.5251114164x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
天津市2018年中考数学试题(含解析)-精编
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
天津市2018年中考数学试题(含解析)-精选
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
最新-2018年天津市中招考试数学试题卷及答案【word版】 精品
2018年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1页至第2页,第Ⅱ卷第3页至第10页.试卷满分120分.考试时间100分钟.考试结束后,将试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔填在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.2.答案答在试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点. 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 60cos 的值等于( )A .21B .22C .23D .12.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( ) A .1个B .2个C .3个D .4个3.边长为a 的正六边形的面积等于( ) A .243aB .2aC .2233a D .233a4.纳米是非常小的长度单位,已知1纳米=610 毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( ) A .210个B .410个C .610个D .810个5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( ) A .522+=x yB .522-=x yC .2)5(2+=x yD .2)5(2-=x y6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A .1B .21 C .41 D .07.下面的三视图所对应的物体是( )A .B .C .D . 8.若440-=m ,则估计m 的值所在的范围是( ) A .21<<mB .32<<mC .43<<mD .54<<m9.在平面直角坐标系中,已知点A (0,2),B (32-,0),C (0,2-),D (32,0),则以这四个点为顶点的四边形ABCD 是( ) A .矩形B .菱形C .正方形D .梯形10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( ) A .1个 B .2个 C .3个 D .4个第(14)题2018年天津市初中毕业生学业考试试卷数 学第Ⅱ卷(非选择题 共90分)注意事项:1.答第Ⅱ卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚.2.第Ⅱ卷共8页,用蓝、黑色墨水的钢笔(签字笔)或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .12.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 .13.已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标是 .14.如图,是北京奥运会、残奥会赛会志愿者 申请人来源的统计数据,请你计算:志愿者申 请人的总数为 万;其中“京外省区市” 志愿者申请人数在总人数中所占的百分比约 为 %(精确到0.1%),它所对应的 扇形的圆心角约为 (度)(精确到度). 15.如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC , 则图中相似三角形共有 对.16.如图,在正方形ABCD 中,E 为AB 边的中点,G ,F 分别为AD ,BC 边上的点,若1=AG ,2=BF ,︒=∠90GEF ,则GF 的长为 .17.已知关于x 的函数同时满足下列三个条件: ①函数的图象不经过第二象限; ②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).AG EH FJI BC 第(15)题第(16)题ADC B FG18.如图①,1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(本小题6分) 解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围.第(18)题图① 第(18)题图②如图,在梯形ABCD 中,AB ∥CD ,⊙O 为内切圆,E 为切点, (Ⅰ)求AOD ∠的度数;(Ⅱ)若8=AO cm ,6=DO cm ,求OE 的长.22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1).ABD CE O热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解.C A BC A B EF M N 图① CABE F MN 图②已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=; 思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了.请你完成证明过程:(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.2018年天津市初中毕业生学业考试数学参考答案及评分标准评分说明:1.各题均按参考答案及评分标准评分.2.若考生的非选择题答案与参考答案不完全相同但言之有理,可酌情评分,但不得超过该题所分配的分数.一、选择题:本大题共10小题,每小题3分,共30分. 1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.B9.B10.D二、填空题:本大题共8小题,每小题3分,共24分. 11.34<<-x12.513.(4,5)14.112.6;25.9,︒9315.616.317.2-=x y (提示:答案不惟一,如652-+-=x x y 等)18.1O ,3O ,如图① (提示:答案不惟一,过31O O 与42O O 交点O 的任意直线都能将四个圆分成面积相等的两部分);5O ,O ,如图② (提示:答案不惟一,如4AO ,3DO ,2EO ,1CO 等均可).三、解答题:本大题共8小题,共66分. 19.本小题满分6分.解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ·················································································· 2分将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .∴原方程组的解为11.x y =⎧⎨=⎩,··············································································· 6分20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, ∴22k=.即4=k . ······················································································ 2分第(18)题图②∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . ··············································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ·············································· 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······································ 7分 ∴当31<<x 时,y 的取值范围为434<<y . ······················································· 8分 21.本小题满分8分. 解(Ⅰ)∵AB ∥CD ,∴︒=∠+∠180ADC BAD . ··········································································· 1分 ∵⊙O 内切于梯形ABCD ,∴AO 平分BAD ∠,有BAD DAO ∠=∠21,DO 平分ADC ∠,有ADC ADO ∠=∠21.∴︒=∠+∠=∠+∠90)(21ADC BAD ADO DAO .∴︒=∠+∠-︒=∠90)(180ADO DAO AOD . ·························································· 4分 (Ⅱ)∵在Rt △AOD 中,8=AO cm ,6=DO cm ,∴由勾股定理,得1022=+=DO AO AD cm . ·················································· 5分 ∵E 为切点,∴AD OE ⊥.有︒=∠90AEO . ······················································· 6分 ∴AOD AEO ∠=∠.又OAD ∠为公共角,∴△AEO ∽△AOD . ····················································· 7分 ∴AD AO OD OE =,∴8.4=⋅=ADODAO OE cm . ··························································· 8分 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆, 车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ·························································································· 2分 ∴这些车辆行驶速度的平均数为4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯. ········································ 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,B∴这些车辆行驶速度的中位数是52. ····························································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ····································································· 8分 23.本小题满分8分.解 如图,过点A 作BC AD ⊥,垂足为D ,根据题意,可得︒=∠30BAD ,︒=∠60CAD ,66=AD . ······································ 2分 在Rt △ADB 中,由ADBDBAD =∠tan , 得322336630tan 66tan =⨯=︒⨯=∠⋅=BAD AD BD . 在Rt △ADC 中,由ADCDCAD =∠tan , 得36636660tan 66tan =⨯=︒⨯=∠⋅=CAD AD CD . ········································ 6分 ∴2.152388366322≈=+=+=CD BD BC .答:这栋楼高约为152.2 m . ·································································· 8分 24.本小题满分8分. 解··················································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ························································ 5分 解这个方程,得15=x . ··········································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ···························································· 8分 25.本小题满分10分.(Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . ············································································· 1分CABD有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =. ··································· 2分 由DCM DCM ECF DCN ∠-︒=∠-∠=∠45, ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. ······················································································ 3分 又CN CN =,∴△CDN ≌△CBN . ··············································································· 4分 有BN DN =,B CDN ∠=∠.∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN . ···················································· 5分 ∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=. ················································ 6分 (Ⅱ)关系式222BN AM MN +=仍然成立. ···················································· 7分 证明 将△ACM 沿直线CE 对折,得△GCM ,连GN , 则△GCM ≌△ACM . ············································· 8分 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠.又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. ··················································································· 9分 又CN CN =, ∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴ 9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理,得222GN GM MN +=.即222BN AM MN +=. ················································ 10分 26.本小题满分10分.解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . CABEFDMNCABE FMN G∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ···························· 4分 ②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤. ····································································· 6分 (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ···························································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ························· 8分 又该抛物线的对称轴abx 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2,∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ····································· 10分。
天津市2018年中考数学试题(含答案)-精品
2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)的结果等于()A.5 B.5 C.9 D.92. cos30的值等于()A.22B.32C.1 D.33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A.50.77810 B.47.7810 C.377.810 D.2778104.下列图形中,可以看作是中心对称图形的是()A. B. C. D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.6.估计65的值在()A.5和6之间 B.6和7之间C. 7和8之间 D .8和9之间7.计算23211x x x x 的结果为()A .1B .3 C.31x D .31x x 8.方程组10216x y x y 的解是()A .64x yB .56x yC.36x yD .28x y 9.若点1(,6)A x ,2(,2)B x ,3(,2)C x 在反比例函数12yx的图像上,则1x ,2x ,3x 的大小关系是()A .123x x x B .213x x x C. 231x x x D .321x x x 10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是()A .AD BDB .AE ACC.ED EBDB D.AE CBAB11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP 最小值的是()A .AB B.DE C.BD D.AF12.已知抛物线2y ax bxc (a ,b ,c 为常数,0a)经过点(1,0),(0,3),其对称轴在y 轴右侧,有下列结论:①抛物线经过点(1,0);②方程22ax bx c有两个不相等的实数根;a b.③33其中,正确结论的个数为()A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x的结果等于.14.计算(63)(63)的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y x向上平移2个单位长度,平移后直线的解析式为.△中,D,E分别为AB,BC的中点,EF AC于17.如图,在边长为4的等边ABC点F,G为EF的中点,连接DG,则DG的长为.△的顶点A,B,C均在格点上.18.如图,在每个小正方形的边长为1的网格中,ABC(1)ACB的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点.A为中心,取旋转角等于BAC,把点P逆时针旋转,点P的对应点为'P.当'CP最短时,请用无刻度...的直尺,画出点' P,并简要说明点'P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1) 413(2) xx x请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为 2.0kg的约有多少只?21. 已知AB是O的直径,弦CD与AB相交,38BAC.(Ⅰ)如图①,若D为AB的中点,求ABC和ABD的大小;DP AC,求OCD (Ⅱ)如图②,过点D作O的切线,与AB的延长线交于点P,若//的大小.22. 如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48,测得底部C处的俯角为58,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48 1.11,tan58 1.60.23.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(Ⅰ)根据题意,填写下表:游泳次数10 15 20 (x)方式一的总费用(元)150 175 …方式二的总费用(元)90 135 …(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x 时,小明选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22yxmxm (m 是常数),定点为P .(Ⅰ)当抛物线经过点A 时,求定点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP时,求抛物线的解析式;(Ⅲ)无论m 取何值,该抛物线都经过定点H .当45AHP时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC 二、填空题13.72x 14. 3 15.61116.2y x17. 19 218. (Ⅰ)90;(Ⅱ)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P,则点'P即为所求.三、解答题19. 解:(Ⅰ)2x;(Ⅱ)1x;(Ⅲ)(Ⅳ)21x.20. 解:(Ⅰ)28.(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x,∴这组数据的平均数是 1.52.∵在这组数据中, 1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.51.51.52,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为 2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%.有25008%200.∴这2500只鸡中,质量为 2.0kg 的约有200只。
天津市2018年中考数学试题(含解析)-精品
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B.C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选 A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,,∠ABF=∠AD E′=90°,∴AB=BC=CD=DA∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选 D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选 C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上. (1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】 (1). ; (2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是 1.52. 众数为 1.8. 中位数为 1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中 2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是 1.52.∵在这组数据中, 1.8出现了16次,出现的次数最多,∴这组数据的众数为 1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是 1.5,有,∴这组数据的中位数为 1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
2018年天津市中考数学试卷(答案+解析)
2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)计算(﹣3)2的结果等于( ) A .5B .﹣5C .9D .﹣92.(3分)cos 30°的值等于( ) A .√22B .√32C .1D .√33.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A .0.778×105B .7.78×104C .77.8×103D .778×1024.(3分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√65的值在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.(3分)计算2x+3x+1−2x x+1的结果为( ) A .1B .3C .3x+1D .x+3x+18.(3分)方程组{x +y =102x +y =16的解是( )A .{x =6y =4B .{x =5y =6C .{x =3y =6D .{x =2y =89.(3分)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =12x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 110.(3分)如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD =BDB .AE =AC C .ED +EB =DB D .AE +CB =AB11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP 最小值的是()A.AB B.DE C.BD D.AF12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算2x4•x3的结果等于.14.(3分)计算(√6+√3)(√6﹣√3)的结果等于.15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为.17.(3分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
2018各地中考真题-2018年天津市中考数学试题含答案解析(Word版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ). 【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
天津市2018年中考数学试题(解析版)
2018年天津市初中毕业生学业考试试卷数学一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果等于()A. 5B.C. 9D.【答案】C【解析】分析:根据有理数的乘方运算进行计算.详解:(-3)2=9,故选C.点睛:本题考查了有理数的乘方,比较简单,注意负号.2. 的值等于()A. B. C. 1 D.【答案】B【解析】分析:根据特殊角的三角函数值直接求解即可.详解:cos30°=.故选:B.点睛:本题考查特殊角的三角函数值的记忆情况.特殊角三角函数值计算在中考中经常出现,要熟练掌握.3. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将77800用科学记数法表示为:.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.【答案】A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5. 下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图.详解:这个几何体的主视图为:故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6. 估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题7. 计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8. 方程组的解是()A. B. C. D.【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.9. 若点,,在反比例函数的图像上,则,,的大小关系是()A. B. C. D.【答案】B【解析】分析:先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.详解:∵反比例函数y=中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y随x的增大而减小,∵y1<y2<0<y3,∴.故选:B.点睛:本题比较简单,考查的是反比例函数图象上点的坐标特点,解答此题的关键是熟知反比例函数的增减性.10. 如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11. 如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A. B. C. D.【答案】D【解析】分析:点E关于BD的对称点E′在线段CD上,得E′为CD中点,连接AE′,它与BD的交点即为点P,PA+PE的最小值就是线段AE′的长度;通过证明直角三角形ADE′≌直角三角形ABF即可得解.详解:过点E作关于BD的对称点E′,连接AE′,交BD于点P.∴PA+PE的最小值AE′;∵E为AD的中点,∴E′为CD的中点,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABF=∠AD E′=90°,∴DE′=BF,∴ΔABF≌ΔAD E′,∴AE′=AF.故选D.点睛:本题考查了轴对称--最短路线问题、正方形的性质.此题主要是利用“两点之间线段最短”和“任意两边之和大于第三边”.因此只要作出点A(或点E)关于直线BD的对称点A′(或E′),再连接EA′(或AE′)即可.12. 已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A. 0B. 1C. 2D. 3【答案】C【解析】分析:根据抛物线的对称性可以判断①错误,根据条件得抛物线开口向下,可判断②正确;根据抛物线与x轴的交点及对称轴的位置,可判断③正确,故可得解.详解:抛物线(,,为常数,)经过点,其对称轴在轴右侧,故抛物线不能经过点,因此①错误;抛物线(,,为常数,)经过点,,其对称轴在轴右侧,可知抛物线开口向下,与直线y=2有两个交点,因此方程有两个不相等的实数根,故②正确;∵对称轴在轴右侧,∴>0∵a<0∴b>0∵经过点,∴a-b+c=0∵经过点,∴c=3∴a-b=-3∴b=a+3,a=b-3∴-3<a<0,0<b<3∴-3<a+b<3.故③正确.故选C.点睛:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,不等式的性质等知识,难度适中.二、填空题(本大题共6小题,每小题3分,共18分)13. 计算的结果等于__________.【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.14. 计算的结果等于__________.【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15. 不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.【答案】【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个,∴摸出一个球是红球的概率是,故答案为:.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16. 将直线向上平移2个单位长度,平移后直线的解析式为__________.【答案】【解析】分析:直接根据“上加下减,左加右减”的平移规律求解即可.详解:将直线y=x先向上平移2个单位,所得直线的解析式为y=x+2.故答案为y=x+2.点睛:本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.17. 如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为__________.【答案】【解析】分析:连接DE,根据题意可得ΔDEG是直角三角形,然后根据勾股定理即可求解DG的长.详解:连接DE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC∵ΔABC是等边三角形,且BC=4∴∠DEB=60°,DE=2∵EF⊥AC,∠C=60°,EC=2∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF的中点,∴EG=.在RtΔDEG中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为__________(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度...的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明)__________.【答案】(1). ;(2). 见解析【解析】分析:(1)利用勾股定理即可解决问题;(2)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.详解:(1)∵每个小正方形的边长为1,∴AC=,BC=,AB=,∵∴∴ΔABC是直角三角形,且∠C=90°故答案为90;(2)如图,即为所求.点睛:本题考查作图-应用与设计、勾股定理等知识,解题的关键是利用数形结合的思想解决问题,学会用转化的思想思考问题.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于( )A .5B .5-C .9D .9- 2. cos30︒的值等于( ) A .2B .3C .1D .33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为( )A .50.77810⨯ B .47.7810⨯ C .377.810⨯ D . 277810⨯ 4.下列图形中,可以看作是中心对称图形的是( )A .B . C. D .5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B . C. D .6.65 )A .5和6之间B .6和7之间C. 7和8之间 D .8和9之间7.计算23211x xx x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++8.方程组10216x y x y +=⎧⎨+=⎩的解是( )A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x << D .321x x x << 10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD BD =B .AE AC = C.ED EB DB += D .AE CB AB +=11.如图,在正方形ABCD 中,E ,F 分别为AD ,BC 的中点,P 为对角线BD 上的一个动点,则下列线段的长等于AP EP +最小值的是( )A .AB B .DE C.BD D .AF12.已知抛物线2y ax bx c =++(a ,b ,c 为常数,0a ≠)经过点(1,0)-,(0,3),其对称轴在y 轴右侧,有下列结论: ①抛物线经过点(1,0);②方程22ax bx c ++=有两个不相等的实数根; ③33a b -<+<.其中,正确结论的个数为( )A .0B .1 C.2 D .3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x ⋅的结果等于 .14.计算(63)(63)+-的结果等于 .15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 16.将直线y x =向上平移2个单位长度,平移后直线的解析式为 .17.如图,在边长为4的等边ABC △中,D ,E 分别为AB ,BC 的中点,EF AC ⊥于点F ,G 为EF 的中点,连接DG ,则DG 的长为 .18.如图,在每个小正方形的边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度);(2)在如图所示的网格中,P 是BC 边上任意一点.A 为中心,取旋转角等于BAC ∠,把点P 逆时针旋转,点P 的对应点为'P .当'CP 最短时,请用无刻度...的直尺,画出点'P ,并简要说明点'P 的位置是如何找到的(不要求证明) .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答. (Ⅰ)解不等式(1),得 . (Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只? 21. 已知AB 是O e 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为»AB 的中点,求ABC ∠和ABD ∠的大小; (Ⅱ)如图②,过点D 作O e 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.22. 如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.23.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (Ⅰ)根据题意,填写下表: 游泳次数1015 20 (x)方式一的总费用(元) 150 175 … 方式二的总费用(元) 90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x >时,小明选择哪种付费方式更合算?并说明理由.24.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标; (Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ① 求证ADB AOB △△≌; ② 求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O ,点(1,0)A .已知抛物线22y x mx m =+-(m 是常数),定点为P .(Ⅰ)当抛物线经过点A 时,求定点P 的坐标;(Ⅱ)若点P 在x 轴下方,当45AOP ∠=︒时,求抛物线的解析式;(Ⅲ) 无论m 取何值,该抛物线都经过定点H .当45AHP ∠=︒时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC二、填空题13.72x 14. 3 15.61116.2y x =+ 17.19218. (Ⅰ)90︒;(Ⅱ)如图,取格点D ,E ,连接DE 交AB 于点T ;取格点M ,N ,连接MN 交BC 延长线于点G ;取格点F ,连接FG 交TC 延长线于点'P ,则点'P 即为所求.三、解答题19. 解:(Ⅰ)2x ≥-; (Ⅱ)1x ≤;(Ⅲ)(Ⅳ)21x -≤≤. 20. 解:(Ⅰ)28. (Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.041.5251114164x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
21. 解:(Ⅰ)∵AB 是O e 的直径,∴90ACB ︒∠=. ∴90BAC ABC ︒∠+∠=.又∴38BAC ︒∠=,∴903852ABC ︒︒︒∠=-=.由D 为»AB 的中点,得»»AD BD =. ∴1452ACD BCD ACB ︒∠=∠=∠=. ∴45ABD ACD ︒∠=∠=.(Ⅱ)如图,连接OD .∵DP 切O e 于点D ,∴OD DP ⊥,即90ODP ︒∠=. 由//DP AC ,又38BAC ︒∠=,∴AOD ∠是ODP V 的外角, ∴128AOD ODP P ︒∠=∠+∠=. ∴1642ACD AOD ︒∠=∠=. 又OA OC =,得38ACO A ︒∠=∠=.∴643826OCD ACD ACO ︒︒︒∠=∠-∠=-=.22.解:如图,过点D 作DE AB ⊥,垂足为E . 则90AED BED ∠=∠=︒.由题意可知,78BC =,48ADE ∠=︒,58ACB ∠=︒,90ABC ∠=︒,90DCB ∠=︒. 可得四边形BCDE 为矩形. ∴78ED BC ==,DC EB =. 在Rt ABC △中,tan AB ACB BC ∠=, ∴tan5878 1.60125AB BC =⋅︒≈⨯≈. 在Rt AED △中,tan AEADE ED∠=, ∴tan 48AE ED =⋅︒.∴tan58EB AB AE BC =-=⋅︒78 1.6078 1.1138≈⨯-⨯≈. ∴38DC EB =≈.答:甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .23. 解:(Ⅰ)200,5100x +,180,9x . (Ⅱ)方式一:5100270x +=,解得34x =. 方式二:9270x =,解得30x =. ∵3430>,∴小明选择方式一游泳次数比较多.(Ⅲ)设方式一与方式二的总费用的方差为y 元.则(5100)9y x x =+-,即4100y x =-+. 当0y =时,即41000x -+=,得25x =. ∴当25x =时,小明选择这两种方式一样合算. ∵40-<,∴y 随x 的增大而减小.∴当2025x <<时,有0y >,小明选择方式二更合算; 当25x >时,有0y <,小明选择方式一更合算. 24. 解:(Ⅰ)∵点(5,0)A ,点(0,3)B , ∴5OA =,3OB =. ∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒. ∵矩形ADEF 是由矩形AOBC 旋转得到的, ∴5AD AO ==.在Rt ADC △中,有222AD AC DC =+, ∴22DC AD AC =-22534=-=.∴1BD BC DC =-=. ∴点D 的坐标为(1,3).(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒. 又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒, ∴Rt ADB Rt AOB △△≌.②由ADB AOB △△≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC △中,有222AH AC HC =+,∴2223(5)t t =+-.解得175t =.∴175BH =. ∴点H 的坐标为17(,3)5.3033430334S -+≤≤. 25.解: (Ⅰ)∵抛物线22y x mx m =+-经过点(1,0)A ,∴012m m =+-,解得1m =.∴抛物线的解析式为22y x x =+-. ∵22y x x =+-219()24x =+-, ∴顶点P 的坐标为19(,)24-. (Ⅱ)抛物线22y x mx m =+-的顶点P 的坐标为28(,)24m m m +--. 由点(1,0)A 在x 轴正半轴上,点P 在x 轴下方,45AOP ∠=︒,知点P 在第四象限. 过点P 作PQ x ⊥轴于点Q ,则45POQ OPQ ∠=∠=︒.可知PQ OQ =,即2842m m m +=-,解得10m =,210m =-. 当0m =时,点P 不在第四象限,舍去.∴10m =-.∴抛物线解析式为21020y x x =-+.(Ⅲ)由22y x mx m =+-2(2)x m x =-+可知,当2x =时,无论m 取何值,y 都等于4.得点H 的坐标为(2,4).过点A 作AD AH ⊥,交射线HP 于点D ,分别过点D ,H 作x 轴的垂线,垂足分别为E ,G ,则90DEA AGH ∠=∠=︒.∵90DAH ∠=︒,45AHD ∠=︒,∴45ADH ∠=︒.∴AH AD =.∵DAE HAG ∠+∠=90AHG HAG ∠+∠=︒,∴DAE AHG ∠=∠.∴ADE HAG △△≌.∴1DE AG ==,4AE HG ==.可得点D 的坐标为(3,1)-或(5,1)-.① 当点D 的坐标为(3,1)-时,可得直线DH 的解析式为31455y x =+. ∵点28(,)24m m m P +--在直线31455y x =+上, ∴28314()4525m m m +-=⨯-+.解得14m =-,2145m =-. 当4m =-时,点P 与点H 重合,不符合题意,∴145m =-. ② 当点D 的坐标为(5,1)-时,可得直线DH 的解析式为52233y x =-+. ∵点28(,)24m m m P +--在直线52233y x =-+上, ∴284m m +-=522()323m -⨯-+.解得14m =-(舍),2223m =-. ∴223m =-.综上,145m=-或223m=-.故抛物线解析式为21428 55y x x=-+或22244 33y x x=-+.。