初中所有函数知识点详解及记忆口诀
初三函数全部知识点总结
初三函数全部知识点总结一、函数的概念1. 函数的定义函数是一种对应关系,它把一个自变量的值对应到一个因变量的值上。
一般地,函数f(x)可以表示为y=f(x),其中x为自变量,y为因变量。
2. 自变量与因变量自变量是函数中独立变化的变量,通常用x表示;因变量是根据自变量的取值而定的变量,通常用y表示。
3. 定义域和值域定义域是自变量的所有可能取值的集合;值域是因变量的所有可能取值的集合。
4. 函数的图像函数的图像是函数在平面直角坐标系中的点的集合。
二、函数的表示方法1. 用一个通项公式表示函数函数f(x)有时可以用一个表达式y=f(x)表示。
2. 用函数的图像表示函数函数的图像是函数在平面直角坐标系中的点的集合。
三、常见函数及其性质1. 线性函数线性函数是具有形式y=kx的函数,其中k为常数。
2. 幂函数幂函数是具有形式y=ax^n的函数,其中a和n为常数。
3. 指数函数指数函数是具有形式y=a^x的函数,其中a为正数且不等于1。
4. 对数函数对数函数是指数函数的逆运算。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等。
四、函数的性质1. 奇偶性如果对于函数f(x),有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x),有f(-x)=-f(x),则称f(x)为奇函数。
2. 增减性如果函数f(x)在区间(a,b)上有f'(x)>0,那么f(x)在区间(a,b)上是增函数;如果函数f(x)在区间(a,b)上有f'(x)<0,那么f(x)在区间(a,b)上是减函数。
3. 最值和零点函数在定义域内可能有最大值、最小值和零点。
4. 对称性有关函数的图像可能有关于y轴对称、关于x轴对称、或者关于原点对称的性质。
五、函数的运算1. 基本函数的运算加减乘除四则运算和复合运算。
2. 复合函数复合函数是一个函数作为另一个函数的自变量而得到的函数。
3. 函数的反函数函数的反函数是满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。
初中数学函数口诀
初中数学助记口诀 (函数部分)1、 一元一次不等式解题的一般步骤: 去分母、去括号,移项时候要变号; 同类项、合并好,再把系数来除掉;两边除(以)负数时,不等号改向别忘记。
2、 特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后; X 轴上y 为0,x 为0在Y 轴。
3、 平行某轴的直线:平行某轴的直线,点的坐标有讲究, 直线平行X 轴,纵坐标相等横不同; 直线平行于Y 轴,点的横坐标仍照旧。
4、 对称点坐标:对称点坐标要记牢,相反数位置莫混淆, X 轴对称y 相反, Y 轴对称x 前面添负号; 原点对称最好记,横纵坐标皆变符号。
5、 自变量的取值范围:求自变量有讲究,四项原则须留意。
分式分母不为零,偶次根下负不行; 分数指数底正数,数零没有零次幂。
6、 函数图像的移动规律:若把一次函数解析式写成y=k (x+0)+b , 二次函数的解析式写成()k h x a y +-=2的形式,则用下面的口诀:“左右平移在括号,上下平移在末稍, 左正右负须牢记,上正下负错不了”。
7、 一次函数图像与性质口诀: 一次函数是直线,图像经过仨象限; 正比例函数更简单,经过原点一直线; 两个系数k 与b,作用之大莫小看, k 是斜率定夹角,b 与Y 轴来相见, k 为正来右上斜,x 增减y 增减; k 为负来左下伸,变化规律正相反; k 的绝对值越大,线离横轴就越远。
8、 二次函数图像与性质口诀: 二次函数抛物线,图象对称是关键; 开口、顶点和交点,它们确定图象限; 开口、大小由a 断,c 与Y 轴来相见, b 的符号较特别,符号与a 相关联;顶点位置先找见,Y 轴作为参考线, 左同右异中为0,牢记心中莫混乱; 顶点坐标最重要,一般式配方它就现, 横标即为对称轴,纵标函数最值见。
若求对称轴位置, abx 2-=要牢记, 一般、顶点、交点式,不同表达能互换。
初三数学函数知识点归纳
初三数学函数知识点归纳一、函数的概念1. 定义在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
2. 函数的表示方法解析法:用数学式子表示两个变量之间的函数关系,如。
列表法:通过列出自变量与函数的对应值来表示函数关系,例如,在研究正方形面积与边长的关系时,可列出时,;时,等表格。
图象法:用图象来表示函数关系,如一次函数的图象是一条直线。
二、一次函数1. 定义形如是常数,的函数叫做一次函数。
当时,叫做正比例函数,正比例函数是特殊的一次函数。
2. 一次函数的图象与性质图象:一次函数的图象是一条直线,叫做直线在轴上的截距。
当,时,图象经过一、二、三象限;当,时,图象经过一、三、四象限;当,时,图象经过一、二、四象限;当,时,图象经过二、三、四象限。
性质当时,随的增大而增大;当时,随的增大而减小。
3. 一次函数的解析式的确定通常采用待定系数法,设出函数解析式,根据已知条件列出关于、的方程组,解方程组求出、的值,从而确定函数解析式。
三、反比例函数1. 定义形如为常数,的函数叫做反比例函数。
2. 反比例函数的图象与性质图象:反比例函数的图象是双曲线。
当时,双曲线的两支分别位于第一、三象限,在每一象限内随的增大而减小;当时,双曲线的两支分别位于第二、四象限,在每一象限内随的增大而增大。
反比例函数图象关于原点对称,它的对称轴是直线和。
3. 反比例函数解析式的确定同样采用待定系数法,设,把已知点的坐标代入求出的值即可确定解析式。
四、二次函数1. 定义形如是常数,的函数叫做二次函数。
2. 二次函数的图象与性质图象:二次函数的图象是一条抛物线。
顶点坐标:。
对称轴:直线。
性质当时,抛物线开口向上,在对称轴左侧随的增大而减小,在对称轴右侧随的增大而增大,函数有最小值;当时,抛物线开口向下,在对称轴左侧随的增大而增大,在对称轴右侧随的增大而减小,函数有最大值。
初中函数知识点归纳总结非常全
初中函数知识点归纳总结非常全函数知识点总结非常全知识点一、平面直角坐标系 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。
位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念 1、变量与常量在某一变化过程,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
函数初中知识点总结
函数初中知识点总结一、函数的基本概念1. 函数的定义函数是一个或多个自变量和一个因变量之间的对应关系。
通常用f(x)或者y来表示函数,其中x是自变量,y是因变量。
函数的定义可以用一个简单的公式表示,例如f(x) = x^2,也可以用一个表格来表示。
2. 自变量和因变量自变量是函数中的输入变量,因变量是函数中的输出变量。
自变量通常用x表示,因变量通常用y表示。
3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数的定义域和值域可以通过函数的公式或者图像来确定。
4. 初等函数的分类在初中数学中,我们学习了常见的初等函数,包括一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等。
这些函数在实际问题中都有着重要的应用。
5. 函数的符号表示除了用f(x)或者y来表示函数外,我们还可以用其他字母或者符号来表示函数,例如g(x)、h(x)、p(x)等。
二、函数的性质1. 奇偶性函数的奇偶性是指函数图像关于原点对称还是关于y轴对称。
具体来说,如果对于任意的x,有f(-x) = -f(x),则称函数是奇函数;如果对于任意的x,有f(-x) = f(x),则称函数是偶函数。
2. 增减性函数的增减性是指函数图像在定义域上的变化趋势。
如果对于任意的x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果当x1<x2时有f(x1)>f(x2),则称函数是减函数。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果一个函数在定义域上是增函数或者减函数,则称函数在该定义域上是单调的。
4. 周期性如果对于任意的x,有f(x+T) = f(x),其中T是一个常数,则称函数是周期函数,T称为函数的周期。
5. 有界性如果存在一个常数M,对于函数的定义域上的任意x,有|f(x)|≤M,则称函数是有界的。
三、函数的图像1. 直角坐标系中的函数在直角坐标系中,函数的图像是一个曲线或曲线段。
初中函数知识点快速记忆口诀
初中函数知识点快速记忆口诀求定义域:求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
正比例函数的图象与性质:正比函数图直线,经过和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数:一次函数图直线,经过点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数:反比函数双曲线,经过点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数:二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。
上低下高很显眼。
如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。
解一元一次不等式:先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元二次不等式:首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
初中数学函数知识点归纳
初中数学函数知识点归纳一、函数的定义和性质函数是一个数到数的映射关系,通常用f(x)表示。
函数的定义域是指所有能够使函数有意义的x的取值范围,值域是函数所有可能输出的值的集合。
函数可分为一对一函数、多对一函数和一对多函数。
二、常见函数1. 线性函数线性函数的函数图像为一条直线,表达式为f(x) = ax + b,其中a和b为常数。
a决定了直线的斜率,b决定了直线与y轴的交点。
2. 平方函数平方函数的函数图像为一条抛物线,表达式为f(x) = ax² + bx + c,其中a、b和c为常数。
a的正负决定了抛物线的开口方向,c决定了抛物线与y轴的交点。
3. 根号函数根号函数的函数图像为一条开口向上的抛物线,表达式为f(x) = √x。
函数图像只有非负数的x值对应有效。
4. 反比例函数反比例函数的函数图像为一条非零常数的双曲线,表达式为f(x) = k/x,其中k 为常数。
函数图像不包括x = 0这一点。
三、函数的变换1. 平移变换平移变换可以将函数的图像沿着x轴或y轴上下左右移动。
平移的规律如下:- 向左平移a个单位:f(x) → f(x + a)- 向右平移a个单位:f(x) → f(x - a)- 向上平移b个单位:f(x) → f(x) + b- 向下平移b个单位:f(x) → f(x) - b2. 压缩与拉伸变换压缩与拉伸变换可以改变函数图像在x或y方向的大小。
压缩与拉伸的规律如下:- x方向压缩:f(x) → f(kx),其中k > 1- x方向拉伸:f(x) → f(kx),其中0 < k < 1- y方向压缩:f(x) → kf(x),其中k > 1- y方向拉伸:f(x) → kf(x),其中0 < k < 1四、函数的性质和运算1. 函数的奇偶性- 奇函数:f(-x) = -f(x),即关于原点对称- 偶函数:f(-x) = f(x),即关于y轴对称2. 函数的复合函数的复合是指将一个函数作为另一个函数的输入,即f(g(x))。
中考公式口诀(函数部分)
初中数学助记口诀(函数部分)特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍, 同左上加异右下减一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k 为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。
图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x 增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
函数常用公式及知识点总结
函数常用公式及知识点总结一、基本的函数类型及其表达式1. 线性函数线性函数是最简单的一类函数,其表达式可以写成y = kx + b的形式,其中k和b是常数,k代表斜率,b代表截距。
线性函数的图像通常是一条直线,斜率决定了直线的倾斜程度,截距决定了直线和y轴的交点位置。
2. 二次函数二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别是二次项系数、一次项系数和常数。
二次函数的图像通常是一条开口向上或向下的抛物线,抛物线的开口方向取决于二次项系数a的正负。
3. 指数函数指数函数的一般形式是y = a^x,其中a是底数。
指数函数的特点是以指数形式增长或衰减,当底数a大于1时,函数图像呈现增长趋势;当底数a介于0和1之间时,函数图像呈现衰减趋势。
4. 对数函数对数函数的一般形式是y = log_a(x),其中a是底数。
对数函数和指数函数是互为反函数的关系,对数函数的图像通常是一条斜率逐渐趋近于零的曲线。
5. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示了角的正弦值、余弦值和正切值。
三角函数的图像是周期性的波形,具有很强的周期性和对称性特点。
二、函数的常见性质和变换1. 奇偶性函数的奇偶性是指当x取相反数时,函数值是否相等。
如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。
2. 周期性周期性是指函数在一定范围内具有重复的规律性。
对于三角函数和指数函数等周期函数,周期可以通过函数表达式或图像来确定。
3. 平移、缩放和翻转函数可以通过平移、缩放和翻转等方式进行变换。
平移指的是将函数图像沿着x轴或y轴进行平移,缩放指的是改变函数图像的大小或形状,翻转指的是将函数图像进行对称变换。
4. 复合函数复合函数是指一个函数作为另一个函数的自变量,通过这种方式可以得到新的函数。
复合函数的求导、积分和求极限等运算与单个函数类似,但需要注意变量的替换和链式求导法则。
初中数学函数知识点总结
初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。
2.函数的三要素:定义域、值域和对应关系。
3.函数的表示方法:函数表达式、函数图象和函数关系式。
4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。
5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。
二、函数的运算法则:1.函数的和、差、积、商运算规则。
2.函数的复合运算规则。
3.函数的反函数及其性质。
4.函数的平移、翻折和伸缩等运算。
三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。
(2)函数的图象:直线。
(3)性质:对称性、单调性、与坐标轴的交点。
2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。
(2)函数的图象:抛物线。
(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。
3.反比例函数:(1)函数的定义:y=k/x,k不等于0。
(2)函数的图象:双曲线的一支。
(3)性质:对称性、单调性、与坐标轴的交点。
4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。
(3)性质:单调性、与坐标轴的交点。
5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。
(3)性质:单调性、与坐标轴的交点。
四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。
2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。
3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。
4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。
五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。
初中所有函数知识点归纳
初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。
在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。
一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。
3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。
4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。
二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。
2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。
3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。
4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。
三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。
2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。
3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。
四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。
2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。
3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。
五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。
初中数学函数知识点归纳
初中数学函数知识点归纳一、函数的概念和性质1.函数的定义:函数是一个由一个或多个自变量和一个因变量组成的数学关系。
对于每一个自变量的取值,函数都有一个确定的因变量值与之对应。
2.函数的表示:函数可以用函数表、函数图、函数解析式等形式来表示。
3.函数的自变量和因变量:自变量是输入值,因变量是对应的输出值。
4.定义域:函数可以接受的自变量的取值范围称为函数的定义域。
5.值域:函数所有可能的因变量值的集合称为函数的值域。
二、常见函数的性质和图像1.奇偶性:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
2.单调性:增函数在定义域内满足f(x1)<f(x2)当x1<x2,减函数在定义域内满足f(x1)>f(x2)当x1<x23.分段函数:定义域被分为不同区间,每个区间内可以使用不同的函数关系来表达。
三、常见的数学函数1. 线性函数:f(x)=ax+b,其中a和b为常数,表示一条直线的函数关系。
2. 幂函数:f(x)=ax^n,其中a和n为常数,表示自变量的n次幂关系。
3.反比例函数:f(x)=a/x,其中a为常数,表示自变量和因变量之间的反比例关系。
4.指数函数:f(x)=a^x,其中a为常数且大于0且不等于1,表示指数和对数之间的关系。
5. 对数函数:f(x)=log_a(x),其中a为常数且大于0且不等于1,表示指数和对数之间的关系。
6.三角函数:如正弦函数、余弦函数、正切函数等,主要描述角度和边长之间的关系。
7.复合函数:由多个函数通过代数运算组合而成的函数。
四、函数的性质和运算1.函数的相等:两个函数f(x)和g(x)在其定义域内的每个点上的值都相等时,称这两个函数相等。
2.函数的复合:将一个函数的输出作为另一个函数的输入,得到的新函数称为复合函数。
3.函数的逆函数:若一个函数f(x)的定义域和值域互换,且满足f(f^(-1)(x))=x和f^(-1)(f(x))=x,则f(x)的逆函数为f^(-1)(x)。
初中函数知识点全面总结
初中函数知识点全面总结一、函数的基本概念1.1 函数的引入在日常生活和数学问题中,我们经常遇到一些问题,例如:已知椭圆的长轴、短轴的长度,我们可以求椭圆的面积;已知一个正方体的边长,我们可以求它的体积,这些问题都是函数的具体例子。
函数研究的对象是一对对象之间的依赖关系。
1.2 函数的定义函数是一个变量间的依赖关系。
如果对于每一个自变量x,都有唯一的因变量y和它对应,那么这个变量x和它所对应的y就构成函数。
通常记作y=f(x)。
1.3 自变量、因变量和函数符号在函数f(x)中,x称为自变量,y称为因变量,而f(x)则是函数的符号表示。
1.4 自变量和因变量的关系自变量和因变量之间存在着一一对应的关系。
当自变量x取不同的值时,因变量y也会随之变化。
这种变化规律可以用图象或公式来表示。
1.5 函数的图象对于函数y=f(x),其图象是平面直角坐标系内一条曲线。
曲线上的每一个点(x,y)都满足方程y=f(x)。
1.6 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
例如,对于函数f(x)=x^2,其定义域是实数集R,值域是非负实数集[0,+∞)。
二、函数的表示方法2.1 列表法通过若干对自变量和因变量对照,列出所有自变量和因变量的对应关系,就是列表法表示函数。
2.2 公式法用一个能够表示自变量与因变量之间的对应关系的等式来表示函数。
2.3 函数关系图象法可以通过函数的图象来表达函数。
三、函数的性质3.1 函数的奇偶性当自变量为-x时,若f(x)=-f(-x),则函数f(x)为奇函数;当自变量为-x时,若f(x)=f(-x),则函数f(x)为偶函数。
3.2 增减性与极值若在自变量的某一邻域内,函数值随着自变量的增大而增大,则称此函数在此邻域内是增函数;反之,则是减函数。
当函数在某一点上取得最大值或最小值时,称这个函数在这一点有极值。
3.3 奇偶性与周期性若f(x+T)=f(x)对于一切x都成立,则称T为函数f(x)的周期。
数学初中函数公式总结归纳
数学初中函数公式总结归纳函数作为数学的重要概念,是初中数学课程中的重点内容。
通过学习函数,可以帮助学生提高逻辑思维和问题解决能力。
在函数的学习过程中,熟练掌握基本的函数公式是非常重要的。
本文将对初中数学中常见的函数公式进行总结和归纳,供同学们复习和参考使用。
一、线性函数公式1. 一般形式:y = kx + b其中,k为斜率,b为截距,表示图像为一条直线的函数。
2. 截距式:y = kx + c其中,k为斜率,c为y轴上的截距,表示函数与y轴的交点。
3. 斜率公式:k = (y2 - y1) / (x2 - x1)其中,(x1, y1)和(x2, y2)为直线上的任意两点,表示函数的斜率。
二、二次函数公式1. 一般形式:y = ax^2 + bx + c其中,a、b、c为常数,a不为0,表示图像为开口向上或向下的抛物线。
2. 零点公式:x = (-b ± √(b^2 - 4ac)) / (2a)其中,函数的零点为方程ax^2 + bx + c = 0的解,通过求根公式计算得出。
3. 对称轴公式:x = -b / (2a)其中,函数的对称轴为抛物线的中轴线,通过求对称轴公式计算得出。
三、指数函数公式1. 一般形式:y = a^x其中,a为常数且大于0且不等于1,表示图像为指数曲线。
2. 对数公式:x = loga(y)其中,a为底数,x为对数的真数,y为对数的值。
四、幂函数公式1. 一般形式:y = x^a其中,a为常数,表示图像为幂函数曲线。
2. 对数公式:a = logx(y)其中,x为底数,a为对数的真数,y为对数的值。
五、三角函数公式1. 正弦函数:y = sin(x)其中,x为角度,y为正弦函数值。
2. 余弦函数:y = cos(x)其中,x为角度,y为余弦函数值。
3. 正切函数:y = tan(x)其中,x为角度,y为正切函数值。
六、反比例函数公式1. 一般形式:y = k / x其中,k为常数且不等于0,表示图像为双曲线。
初中函数知识点总结
初中函数知识点总结函数是数学中重要的概念之一,也是初中数学中的重点内容。
本文将对初中函数的相关知识点进行总结,包括函数的定义、函数的性质以及常见的函数类型等。
1. 函数的定义:函数是一个映射关系,将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
记作:y = f(x),其中x是自变量,y是因变量,f表示函数名称。
2. 函数的性质:(1) 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
(2) 单调性:函数可以是递增的(单调递增),也可以是递减的(单调递减)。
(3) 奇偶性:函数可以是奇函数或偶函数。
当满足f(-x) = -f(x)时,函数为奇函数;当满足f(-x) = f(x)时,函数为偶函数。
3. 常见的函数类型:(1) 线性函数:y = kx + b,其中k和b是常数,k表示斜率,b表示截距。
线性函数的图像为一条直线。
(2) 幂函数:y = x^a,其中a是常数。
当a>0时,函数图像是递增的;当0<a<1时,函数图像是递减的。
(3) 指数函数:y = a^x,其中a是常数且大于0且不等于1。
指数函数的图像呈现指数增长或指数衰减的趋势。
(4) 对数函数:y = logₐx,其中a是常数且大于0且不等于1。
对数函数是指数函数的反函数,其图像与指数函数的图像关于y = x对称。
(5) 二次函数:y = ax² + bx + c,其中a、b和c是常数且a不等于0。
二次函数的图像为抛物线,开口方向取决于a的正负。
(6) 反比例函数:y = k/x,其中k是常数且不等于0。
反比例函数的图像为双曲线。
4. 函数的图像与性质:(1) 函数图像的平移:函数的图像可以通过平移原点或沿x轴、y轴的方向来实现。
(2) 函数图像的伸缩:函数的图像可以通过改变函数的系数来实现横向或纵向的伸缩。
(3) 函数图像的对称:函数的图像可能关于x轴、y轴或原点对称。
初中数学函数记忆口诀大全
解析法(公式法)、列表法和图 象法。
函数性质:奇偶性、周期性、单调性
01
02
03
奇偶性
关于原点对称是奇函数, 关于y轴对称是偶函数。
周期性
周期函数图像重复出现, 最小正周期T满足 f(x+T)=f(x)。
单调性
在区间内,函数值随自变 量增大而增大为增函数, 反之为减函数。
常见函数类型及其图像特征
实践应用法
通过做练习题或实际问 题来加深对知识点的理
解和记忆。
THANK YOU
感谢观看
余弦函数在第一、四 象限为正,第二、三 象限为负;
三角函数诱导公式和周期性质
诱导公式
“奇变偶不变,符号看象限。形如 α+k·360°(k∈Z),-α,180°±α, 360°-α的三角函数值,等于α的同名 函数值,前面加上一个把α看成锐角 时原函数值的符号。”
周期性质
正弦、余弦函数的周期为360°,正切 函数的周期为180°。
正比例函数是一次函数的特例,当一 次函数中的截距b为0时,即成为正比 例函数。
区别
应用
在实际问题中,根据函数图像的特点 和性质,可以灵活选择使用一次函数 或正比例函数进行建模和求解。
一次函数图像可以不过原点,而正比 例函数图像必定过原点。
03
二次函数及其图像变换
二次函数一般形式及图像特点
一般形式
解直角三角形相关知识点梳理
1 2
勾股定理
在直角三角形中,两直角边的平方和等于斜边的 平方;
锐角三角函数定义
正弦等于对边比斜边,余弦等于邻边比斜边,正 切等于对边比邻边;
3
互余两角三角函数关系
正弦值相等,余弦值互为相反数,正切值互为倒 数。
初中函数顺口溜
初中函数顺口溜如下:
正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b 向下减,图象经过三个限,两点决定一条线,选定系数是关键。
一次函数是直线,图象经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
反比例函数有特点,双曲线相背离得远;k为正,图在一三(象)限,k为负,图在二四(象)限;图在一、三函数减,两个分支分别减.图在二、四正相反,两个分支分别增;线越长越近轴,永远与轴不沾边。
二次函数的图象与性质
二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象限;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联。
以上是初中函数顺口溜的相关内容,希望对解决您的问题有所帮助。
初三数学函数求解技巧口诀
初三数学函数求解技巧口诀初三数学函数求解技巧口诀:一、函数的定义f(x) = y,x是自变量,y是因变量。
二、函数的性质1. 定义域:所有能够使得函数有意义的自变量值。
2. 值域:所有函数能够取到的因变量值。
3. 奇偶性:奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
4. 单调性:若f'(x) > 0,则函数单调增加;若f'(x) < 0,则函数单调减少。
5. 最值:函数的最大值和最小值。
6. 对称轴:关于此轴对称的点。
三、常用公式1. 一次函数:y = kx + b,k为斜率,b为截距。
2. 二次函数:y = ax^2 + bx + c,a为开口方向和大小,b为对称轴的位置,c为截距。
3. 幂函数:y = ax^p,a为系数,p为指数。
4. 指数函数:y = a^x,a为底数。
5. 对数函数:y = log_a(x),a为底数,x为真数。
四、求解函数1. 函数交点:将两个函数相等,解方程求交点横纵坐标。
2. 函数的零点:令函数等于零,解方程求根。
3. 函数的最值:求导,令导数等于0,解方程求极值点。
4. 函数图像:找到函数的特征点(零点、极值点、最值点等),画出图像。
五、常见问题1. 如何判断一个函数是奇函数还是偶函数?将函数代入f(-x)中,若得到-f(x),则为奇函数;若得到f(x),则为偶函数。
2. 如何求一个函数的最大值和最小值?求导数,找到导数为零的点,比较这些点的y值,得到最大值和最小值。
3. 如何求解函数的零点?将函数等于零,解方程求根。
4. 如何判断一个函数的单调性?求导数,判断导数的正负,正为单调增加,负为单调减少。
5. 如何确定一个函数的定义域和值域?观察函数的表达式,确定自变量的取值范围,得到定义域。
观察函数的图像,找到函数能够取到的所有因变量值,得到值域。
六、思维方法1. 灵活运用函数性质,将已知条件转化为方程,解方程求解。
初中函数归纳总结
初中函数归纳总结函数是数学中的重要概念,也是初中数学中的基础内容。
在初中阶段,我们学习了各种各样的函数,包括一次函数、二次函数、指数函数、对数函数等等。
这些函数不仅在数学中有着重要的地位,也在现实生活中发挥着重要的作用。
在本文中,我将对初中函数进行一次归纳总结,帮助大家更好地掌握和理解函数的特点和应用。
一、一次函数一次函数是最简单的一类函数,其形式为f(x) = kx + b,其中k和b 为常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
一次函数的性质包括:1. 横截距和纵截距:横截距为函数与x轴的交点的横坐标,纵截距为函数与y轴的交点的纵坐标。
2. 变化率:一次函数的变化率就是斜率k,它表示了函数值随自变量的变化速度。
3. 正比例关系:一次函数的图像经过原点,即当x=0时,y=0。
二、二次函数二次函数是由一次函数演化而来的函数,其形式为f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。
二次函数的图像为抛物线,其开口方向、顶点位置以及对称轴等特点与函数的参数有关。
二次函数的性质包括:1. 开口方向:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 顶点位置:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 对称轴:二次函数的对称轴为x=-b/2a。
4. 最值:对于开口向上的二次函数,最小值为f(-b/2a);对于开口向下的二次函数,最大值为f(-b/2a)。
5. 零点:二次函数与x轴的交点称为零点,可以通过求解方程ax^2 + bx + c = 0来确定。
三、指数函数指数函数是以指数为自变量的函数,其形式为f(x) = a^x,其中a为常数且a>0且a≠1。
指数函数的图像为单调递增(当a>1)或单调递减(当0<a<1)的曲线。
指数函数的性质包括:1. 增长率:指数函数的增长率随着x的增大而增大或减小,是指数增长或指数衰减的特点。
初中函数所有公式总结归纳
初中函数所有公式总结归纳函数作为数学中的重要概念,在初中数学学习中占据着重要的位置。
函数通过一组有序配对的数值来描述两个变量之间的关系。
在学习函数时,我们需要掌握一些基本的函数公式和性质。
本文将对初中函数的公式进行总结归纳,以帮助同学们更好地理解和运用函数知识。
一、一次函数一次函数又被称为线性函数,它的函数表达式为:y = kx + b。
其中,k表示斜率,b表示截距。
1. 点斜式公式:点斜式公式是一次函数的一种表达形式,它通过一个点和该点处的斜率来表示一次函数。
公式如下:y - y₁ = k(x - x₁)其中,(x₁, y₁)为一次函数上的已知点,k为斜率。
2. 两点式公式:两点式公式用两个已知点来表示一次函数,公式如下:(y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)其中,(x₁, y₁)、(x₂, y₂)为一次函数上的两个已知点。
3. 斜截式公式:斜截式公式将一次函数表示为截距和斜率的形式,公式如下:y = kx + b其中,k为斜率,b为截距。
二、二次函数二次函数是关于变量的二次多项式函数,它的函数表达式为:y = ax² + bx + c。
其中,a、b、c为常数,且a ≠ 0。
1. 顶点坐标公式:二次函数的顶点坐标可通过以下公式求得:x = -b / (2a),y = -Δ / (4a)其中,Δ = b² - 4ac为判别式,用于判断二次函数的图像与x轴交点的情况。
2. 一般式公式:一般式公式将二次函数表示为标准形式,公式如下:y = ax² + bx + c其中,a为二次系数,决定了函数的开口方向;b为一次系数,决定了函数图像在x方向的平移;c为常数项,决定了函数图像在y方向的平移。
3. 因式分解公式:二次函数的因式分解形式为:y = a(x - x₁)(x - x₂)其中,(x₁, 0)和(x₂, 0)为二次函数的两个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数知识点详解黄冈中学“没有学不好滴数学”知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x,0>⇔y>点P(x,y)在第二象限0⇔yx,0><点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0,0<⇔yx>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
知识点四,正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。
特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。
这时,y 叫做x 的正比例函数。
2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。
k 的符号 b 的符号函数图像图像特征k>0 b>0y0 x图像经过一、二、三象限,y随x的增大而增大。
b<0y0 x图像经过一、三、四象限,y随x的增大而增大。
K<0 b>0y0 x图像经过一、二、四象限,y随x的增大而减小b<0y0 x图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质一般地,正比例函数kxy=有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质一般地,一次函数bkxy+=有下列性质:(1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。
确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。
解这类问题的一般方法是待定系数法知识点五、反比例函数1、反比例函数的概念一般地,函数x ky =(k 是常数,k ≠0)叫做反比例函数。
反比例函数的解析式也可以写成1-=kx y 的形式。
自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。
由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
3反比例函数的性质反比例函数 )0(≠=k xk yk 的符号k>0 k<0图像yO xyO x性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。
在每个象限内,y 随x 的增大而减小。
①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别 在第二、四象限。
在每个象限内,y 随x 的增大而增大。
4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。
由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。
5、反比例函数中反比例系数的几何意义。
如下图,过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。
k S k xy xky ==∴=,, 。
知识点六、二次函数的概念和图像1、二次函数的概念一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。
)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。
2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。
抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。
将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。
当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。
由C 、M 、D 三点可粗略地画出二次函数的草图。
如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。
知识点七、二次函数的解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。
如果没有交点,则不能这样表示。
a 的绝对值越大,抛物线的开口越小。
(3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数,知识点八、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当a b x 2-=时,a b ac y 442-=最值。
如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,ab ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。
知识点九、二次函数的性质1、二次函数的性质函数二次函数)0,,(2≠++=a c b a c bx ax y 是常数,图像 a>0a<0y0 xy0 x性质(1)抛物线开口向上,并向上无限延伸; (2)对称轴是x=a b 2-,顶点坐标是(a b 2-,ab ac 442-); (3)在对称轴的左侧,即当x<a b 2-时,y 随x 的增大而减小;在对称轴的右侧,即当(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=a b 2-,顶点坐标是(ab 2-,ab ac 442-); (3)在对称轴的左侧,即当x<ab 2-时,y 随x 的增大而增大;在对称轴的右侧,即当x>ab2-时,y 随x 的增大而增大,简记左减右增;(4)抛物线有最低点,当x=a b 2-时,y 有最小值,a b ac y 442-=最小值x>ab2-时,y 随x 的增大而减小,简记左增右减;(4)抛物线有最高点,当x=ab 2-时,y 有最大值,ab ac y 442-=最大值2、二次函数)0,,(2≠++=a c b a c bx ax y 是常数,中,c b 、、a 的含义:a 表示开口方向:a >0时,抛物线开口向上 a <0时,抛物线开口向下b 与对称轴有关:对称轴为x=ab2-c 表示抛物线与y 轴的交点坐标:(0,c ) 3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与x 轴的交点坐标。