【习题集含详解】高中数学题库高考专点专练之191排列组合模型
高三数学排列组合20种解题方法汇总(含例题及解析)

高三数学排列组合20种解题方法汇总(含例题及解析)
排列组合是高考必考内容,但却是学生心目中难题,有的学生很难理解,现特附上数学排列组合20种解题方法汇总文档,里面交待了常见的排列组合研究方法,并给以习题练习,希望对于广大考生有帮助。
高中数学专项排列组合题库(带答案)

高中数学专项排列组合题库(带答案)排列组合排列组合问题的解题思路和解题方法解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用的解题方法和策略。
一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有( )A.120种B.96种C.78种D.72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A 44=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
二、特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A) 280种(B)240种(C)180种(D)96种分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有14C种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有35A种不同的选法,所以不同的选派方案共有14C35A=240种,选B。
三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例3、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有A 44=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有C 35=10种方法,这样共有24*10=240种不同排法。
高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。
高中数学《排列组合的常见模型》基础知识与练习题(含答案)

高中数学《排列组合的常见模型》基础知识与练习题(含答案)一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。
例如:在10件产品中,有7件合格品,3件次品。
从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
3310785N C C =−=(种) 3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。
所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。
高中数学排列组合必考知识点经典练习题(完整版)

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学练习题附带解析排列与组合的计算

高中数学练习题附带解析排列与组合的计算高中数学练习题附带解析——排列与组合的计算一、知识点概述排列和组合都是概率统计中的基本算法,它们的计算方法对于各种领域都有着重要的应用,也是高中数学的重点内容。
排列和组合的计算主要有以下几个方面:1. 排列的计算方法2. 组合的计算方法3. 排列与组合的相互转化4. 排列组合的应用二、练习题及解析1、在一堆扑克牌中,从中随机选取4张牌,求其中恰好有2张红桃牌的概率。
解析:从13张红桃牌中选取2张,再从39张非红桃牌中选取2张,即可得到恰好有2张红桃牌的情况数。
由于这是无序选择,所以需要计算组合的方式,即C(13,2)*C(39,2)。
同时,一共从52张牌中选取4张牌的方案数为A(52,4)。
因此,恰好有2张红桃牌的概率为[C(13,2)*C(39,2)]/A(52,4),即19.1%。
2、某小组共有10人,其中有3男7女,从小组中选取5人,问其中至少有2男的选法数是多少?解析:考虑分两种情况,即选定了2男3女或选定了3男2女,然后分别计算对应的选法数,最后相加即可。
对于选定了2男3女的情况,选法数为C(3,2)*C(7,3)。
对于选定了3男2女的情况,选法数为C(3,3)*C(7,2)。
因此,至少有2男的选法数是C(3,2)*C(7,3)+C(3,3)*C(7,2),即1310种。
3、有7个人参加招待会,其中3个人是A公司的,4个人是B公司的。
现在需要从其中选取3人担任招待,问选出来的3人中至少有2个是A公司的人的概率是多少?解析:首先计算所有选法的总数,即A(7,3)=35种。
然后计算选出来的3人中,至少有2个是A公司的人的情况数。
这个情况数可以拆分成两个部分,即选出2个A公司人和1个B公司人的情况数,以及选出3个A公司人的情况数。
对于选出2个A公司人和1个B公司人的情况,情况数为C(3,2)*C(4,1)=12。
对于选出3个A公司人的情况,情况数为C(3,3)*C(4,0)=1。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
高中排列组合基础题 (含答案)

排列、组合问题基本题型及解法同学们在学习排列、组合的过程中,总觉得抽象,解法灵活,不容易掌握.然而排列、组合问题又是历年高考必考的题目.本文将总结常见的类型及相应的解法.一、相邻问题“捆绑法”将必须相邻的元素“捆绑”在一起,当作一个元素进行排列. 例1 甲、乙、丙、丁四人并排站成一排,如果甲、乙必须站在一起,不同的排法共有几种? 分析:先把甲、乙当作一个人,相当于三个人全排列,有33A =6种,然后再将甲、乙二人全排列有22A =2种,所以共有6×2=12种排法. 二、不相邻问题“插空法”该问题可先把无位置要求的元素全排列,再把规定不相邻的元素插入已排列好的元素形成的空位中(注意两端).例2 7个同学并排站成一排,其中只有A 、B 是女同学,如果要求A 、B 不相邻,且不站在两端,不同的排法有多少种?.分析:先将其余5个同学先全排列,排列故是55A =120.再把A 、B 插入五个人组成的四个空位(不包括两端)中,(如图0×0×0×0×0“×”表示空位,“0”表示5个同学)有24A =2种方法.则共有5254A A =440种排法.三、定位问题“优先法”指定某些元素必须排(或不排)在某位置,可优先排这个元素,后排其他元素.例3 6个好友其中只有一个女的,为了照像留念,若女的不站在两端,则不同的排法有 种.分析:优先排女的(元素优先).在中间四个位置上选一个,有14A 种排法.然后将其余5个排在余下的5个位置上,有55A 种方法.则共1545A A =480种排法.还可以优先排两端(位置优先). 四、同元问题“隔板法”例4 10本完全相同的书,分给4个同学,每个同学至少要有一本书,共有多少种分法? 分析:在排列成一列的10本书之间,有九个空位插入三块“隔板”.如图: ×× × ××× ××××一种插法对应于一种分法,则共有39C =84种分法. 五、先分组后排列对于元素较多,情形较复杂的问题,可根据结果要求,先分为不同类型的几组,然后对每一组分别进行排列,最后求和.例5 由数字0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于十位数字的共有( )(A )210个 (B )300个 (C )464个 (D )600个分析:由题意知,个位数字只能是0,1,2,3,4共5种类型,每一种类型分别有55A 个、113433A A A 个、113333A A A 个、113233A A A 个、1333A A 个,合计300个,所以选B例6 用0,1,2,3,…,9这十个数字组成五位数,其中含有三个奇数数字与两个偶数数字的五位数有多少个?【解法1】考虑0的特殊要求,如果对0不加限制,应有325555C C A 种,其中0居首位的有314544C C A 种,故符合条件的五位数共有325314555544C C A C C A =11040个.【解法2】按元素分类:奇数字有1,3,5,7,9;偶数字有0,2,4,6,8. 把从五个偶数中任取两个的组合分成两类:①不含0的;②含0的.①不含0的:由三个奇数字和两个偶数字组成的五位数有325545C C A 个;②含0的,这时0只能排在除首位以外的四个数位上,有14A 种排法,再选三个奇数数与一个偶数数字全排放在其他数位上,共有31415444C C A A 种排法.综合①和②,由分类计数原理,符合条件的五位数共有325545C C A +31415444C C A A =11040个. 例8 由数字1,2,3,4,5可以组成多少个无重复数字,比20000大,且百位数字不是3的自然数?【解】设A ={满足题设条件,且百位数字是3的自然数},B ={满足题设条件,且比20000大的自然数},则原题即求()card U B A ,画韦恩图如图,阴影部分 即UBA ,从图中看出()()card card UBA B AB =-.又A BB ,由性质2,有()()()card card card .B A B B A B -=-()card B 即由数字1,2,3,4,5组成无重复数字,且比20000大的自然数的个数,易知()1444card A A B =.()card A B 即由数字1,2,3,4,5组成无重复数字、比20000大,且百位数字是3的自然数的个数,易知()1333card A A AB =,所以()14134433card A A A A UB A =-=78.即可组成78个符合已知条件的自然数.典型例题例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数?解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个;当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ⋅⋅(个).∴ 没有重复数字的四位偶数有2296179250428181439=+=⋅⋅+A A A A 个.例2 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。
排列组合问题的常见模型(详解)#精选.

排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。
这类问题有如下一些常见的模型。
模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。
高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。
(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学完整讲义排列与组合排列组合问题的常见模型

1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++L 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯L 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+L ,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m nn n n n m n m m n m ---+==-L ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题知识内容排列组合问题的常见模型1解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.排队问题【例1】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法 ⑵ 如果女生必须全分开,可有多少种不同的排法 ⑶ 如果两端都不能排女生,可有多少种不同的排法典例分析【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法⑵其中甲、乙两人不相邻有多少种不同的排法⑶其中甲、乙两人不站排头和排尾有多少种不同的排法⑷其中甲不站排头,且乙不站排尾有多少种不同的排法【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法【例4】6个队员排成一排,⑴共有多少种不同的排法⑵若甲必须站在排头,有多少种不同的排法⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法【例5】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C 在后的原则,共有_______种排法(用数字作答).【例6】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例7】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种C .720种D .480种【例8】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例9】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1440种B .960种C .720种D .480种【例10】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例11】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例12】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法【例14】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例15】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例16】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例17】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例18】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6个人坐在一排10个座位上,问⑴ 空位不相邻的坐法有多少种⑵ 4个空位只有3个相邻的坐法有多少种 ⑶ 4个空位至多有2个相邻的坐法有多少种【例20】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例21】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C A B .2686C A C .2286C A D .2285C A【例22】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】 2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种数字问题 【例24】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数⑵可能组成多少个四位奇数 ⑶可能组成多少个四位偶数⑷可能组成多少个自然数【例25】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数【例26】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例27】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足12233445a a a a a a a a <><>,,,的五位数有多少个【例28】 用0129L ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个【例29】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种. 432;【例31】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A .1344种B .1248种C .1056种D .960种【例32】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例33】用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有()A.48个 B.36个 C.24个 D.18个,,,,,这6个数中,取出两个,使其和为偶数,则共可得到个这样的【例35】从1238910不同偶数【例36】求无重复数字的六位数中,能被3整除的数有______个.,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字【例37】用数字0123456之和为偶数的四位数共有个(用数学作答).,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的【例38】从012345个数为()A.300 B.216 C.180 D.162【例39】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例40】 从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数其中任意两偶数都不相邻的七位数有几个 ⑵上述七位数中三个偶数排在一起的有几个⑶⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个⑷⑴其中任意两偶数都不相邻的七位数有几个【例41】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数【例42】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例43】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个A .56个B .57个C .58个D .60个【例44】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430【例45】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个【例46】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线。
高中排列组合知识点汇总及典型例题(全)

一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n nn m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高中数学排列组合习题及解析终版.doc

排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。
1.排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合。
3.排列数公式:4.组合数公式:5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。
即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。
例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。
解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。
结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。
即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析此题若直接去考虑的话,就会比较复杂。
高中排列组合知识点汇总及典型例题(全)

一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 n nn n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
高考数学《排列组合---寻找合适的模型》典型例题分析

高考数学《排列组合---寻找合适的模型》典型例题分析在排列组合问题中,有一些问题如果直接从题目入手,处理起来比较繁琐。
但若找到解决问题的合适模型,或将问题进行等价的转化。
便可巧妙的解决问题一、典型例题:例1:设集合A 由n 个元素构成,即{}12,,,n A a a a =,则A 所有子集的个数为_______ 思路:可将组成子集的过程视为A 中的元素一个个进行选择,要不要进入到这个子集当中,所以第一步从1a 开始,有两种选择,同样后面的23,,,n a a a 都有两种选择,所以总数2222n n N =⨯⨯⨯=个个答案:2n例2:已知{}1,2,3,,40S =,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140−中寻找同奇同偶数的情况。
,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种答案:C例3:设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i ∈−=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130思路:因为0i x =或1i x =,所以若1234513x x x x x ≤++++≤,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个。
所以可根据i x 中含0的个数进行分类讨论。
① 五个数中有2个0,则另外3个从1,1−中取,共有方法数为23152N C =⋅ ② 五个数中有3个0,则另外2个从1,1−中取,共有方法数为32252N C =⋅ ③ 五个数中有4个0,则另外1个从1,1−中取,共有方法数为4352N C =⋅ 所以共有23324555222130N C C C =⋅+⋅+⋅=种答案:D例4:设集合{1,2,3,,10}A =,设A 的三元素子集中,三个元素的和分别为12,,,n a a a ,求12n a a a +++的值思路:A 的三元子集共有310C 个,若按照题目叙述一个个相加,则计算过于繁琐。
排列与组合训练题(7个题型) 高二下学期数学人教A版(2019)选择性必修第三册

6.2排列与组合(7个题型)题型一:排列数与组合数的计算1.(多选)下列等式正确的是( )A .()111mm n n n A A +++=B .()()!2!1n n n n =--C .!m m n n A C n =D .11m m n n A A n m +=- 2.(多选题)对于,N m n *∈关于下列排列组合数,结论正确的是( )A .C C m n m n n -=B .11C C C m m m n n n -+=+C .A C A m m m n n m =D .11A (1)A m m n n m ++=+3.(多选题)下列等式正确的是( )A .111111m m mm n n n n C C C C +--+--=++ B .!m mn nA C n = C .22(2)(1)m m n n n n A A ++++=D .111r r r n n n C C C ---=+4.解下列不等式或方程(1)288A 6A x x -< (2)567117C C 10C m m m -=题型二:排列、分组1.将5本不同的数学用书放在同一层书架上,则不同的放法有( )A .50B .60C .120D .902.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有1人连续参加两天服务的选择种数为( )A .120B .60C .40D .303按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)平均分成三份,每份2本;(3)分成三份,1份4本,另外两份每份1本;题型三:分组分配1.要安排4名学生到3个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.7种B.12种C.36种D.72种2安徽某医院安排5名专家到3个不同的区级医院支援,每名专家只去一个区级医院,每个区级医院至少安排一名专家,则不同的安排方法共有()A.60种B.90种C.150种D.240种3.安徽省旅游产业发展大会于2020年6月11日~13日在赣州举行,某旅游公司为推出新的旅游项目,特派出五名工作人员前往赣州三个景点进行团队游的可行性调研.若每名工作人员只去一个景点且每个景点至少有一名工作人员前往,则不同的人员分配方案种数为()A.60 B.90 C.150 D.2404.某医院分配3名医生6名护士紧急前往三个小区协助社区做核酸检测.要求每个小区至少一名医生和至少一名护士.问共有多少种分配方案?()A.3180B.3240C.3600D.36605将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球3个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.150种C.120种D.240种6按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(2)平均分配给甲、乙、丙三人,每人2本;(3)甲、乙、丙三人中,一人得4本,另外两人每人得1本;题型四:间接法1.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有()种A.9B.36C.54D.1082以长方体的顶点为顶点的三棱锥共有()个A.70 B.64 C.60 D.583.7名同学,其中4名男同学,3名女同学:(1)站成一排,甲、乙只能站在两端的排法共有多少种?(2)站成一排,甲、乙不能站在排头和排尾的排法共有多少种?1.个相同的小球放入A ,B ,C 三个盒子,每个盒子至少放一球,共有( )种不同的放法.A .60种B .36种C .30种D .15种2.将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为( )A .720种B .420种C .120种D .15种3.方程123412x x x x +++=的正整数解共有( )组A .165B .120C .38D .354不定方程12x y z ++=的非负整数解的个数为( )A .55B .60C .91D .5405某地举办庆祝建党100周年“奋进新时代,学习再出发”的党史知识竞赛.已知有15个参赛名额分配给甲、乙、丙、丁四支参赛队伍,其中一支队伍分配有7个名额,余下三支队伍都有参赛名额,则这四支队伍的名额分配方案有__________种.题型六:插空法1.永州是一座有着两千多年悠久历史的湘南古邑,民俗文化资源丰富.在一次民俗文化表演中,某部门安排了《东安武术》、《零陵渔鼓》、《瑶族伞舞》、《祁阳小调》、《道州调子戏》、《女书表演》六个节目,其中《祁阳小调》与《道州调子戏》不相邻,则不同的安排种数为( )A .480B .240C .384D .14402.若用0,1,2,3,4,5这6个数字组成无重复数字且奇数数字互不相邻的六位数,则这样的六位数共有( )个A .120B .132C .144D .1563.7名同学,其中4名男同学,3名女同学站成一排,4名男同学都不能相邻,3名女同学也不能相邻的排法共有多少种?4.7名同学,其中4名男同学,3名女同学站成一排,甲、乙和丙三名同学都不能相邻的排法共有多少种?1.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为()A.72B.48C.24D.602.中国航天工业迅速发展,取得了辉煌的成就,使我国跻身世界航天大国的行列.中国的目标是到2030年成为主要的太空大国.它通过访问月球,发射火星探测器以及建造自己的空间站,扩大了太空计划.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种3.同宿舍六位同学在食堂排队取餐,其中A,B,C三人两两不相邻,A和D是双胞胎,必须相邻,则符合排队要求的方法数为()A.288B.144C.96D.724.站成一排,甲、乙两名同学必须相邻的排法共有多少种?5.站成一排,4名男同学必须站在一起,3名女同学也必须站在一起.6.站成一排,甲、乙两名同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【习题集含详解】高中数学题库高考专点专练之191排列组合模型一、选择题(共40小题;共200分)1. 从1,2,3,4,5这五个数字中选出三个不相同数组成一个三位数,则奇数位上必须是奇数的三位数个数为( )A. 12B. 18C. 24D. 302. GZ新闻台做《一校一特色》访谈节目,分A,B,C三期播出,A期播出两所学校,B期,C期各播出1所学校,现从8所候选学校中选出4所参与这三项任务,不同的选法共有( )A. 140种B. 420种C. 840种D. 1680种3. 安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为( )A. 72B. 96C. 120D. 1564. 学校计划利用周五下午第一、二、三节课举办语文、数学、英语、理综4科的专题讲座,每科一节课,每节至少有一科,且数学、理综不安排在同一节,则不同的安排方法共有( )A. 6种B. 24种C. 30种D. 36种5. 某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( )A. 80种B. 90种C. 120种D. 150种6. 在某商业促销的最后一场活动中,甲、乙、丙、丁、戊、己6名成员随机抽取4个礼品,每人最多抽一个礼品,且礼品中有两个完全相同的笔记本电脑,两个完全相同的山地车,则甲、乙两人都抽到礼品的情况有( )A. 36种B. 24种C. 18种D. 9种7. 汉中最美油菜花节期间,5名游客到四个不同景点游览,每个景点至少有一人,则不同的游览方法共有( )种.A. 120B. 625C. 240D. 10248. 5位大学毕业生分配到3家单位,每家单位至少录用1人,则不同的分配方法共有( )A. 25种B. 60种C. 90种D. 150种9. 某翻译公司为提升员工业务能力,为员工开设了英语、法语、西班牙语和德语四个语种的培训课程,要求每名员工参加且只参加其中两种.无论如何安排,都有至少5名员工参加的培训完全相同.问该公司至少有多少名员工?( )A. 17B. 21C. 25D. 2910. 某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团.若每个同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1个参加“演讲团”的不同参加方法为( )A. 4680B. 4770C. 5040D. 520011. 小明有中国古代四大名著:《三国演义》,《西游记》,《水浒传》,《红楼梦》各一本,他要将这四本书全部借给三位同学,每位同学至少一本,但《西游记》,《红楼梦》这两本书不能借给同一人,则不同的借法有( )A. 36种B. 30种C. 24种D. 12种12. 四个大学生分到两个单位,每个单位至少分一个的分配方案有( )A. 10种B. 14种C. 20种D. 24种13. 某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法的种数是( )A. 18B. 24C. 36D. 4214. 甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )A. 258B. 306C. 336D. 29615. 将数字“124467”重新排列后得到不同的偶数个数为( )A. 72B. 120C. 192D. 24016. 有7张卡片分别写有数字1,1,1,2,2,3,4,从中任取4张,可排出的四位数有( )个.A. 78B. 102C. 114D. 12017. 从5名学生中选出4名分别参加A,B,C,D 四科竞赛,其中甲不能参加A,B 两科竞赛,则不同的参赛方案种数为( )A. 24B. 48C. 72D. 12018. 《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )A. 144种B. 288种C. 360种D. 720种19. 从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有( )A. 140种B. 80种C. 70种D. 35种20. 将6名留学归国人员分配到济南、青岛两地工作.若济南至少安排2人,青岛至少安排3人,则不同的安排方法数为( )A. 120B. 150C. 35D. 5521. 若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A. 60种B. 63种C. 65种D. 66种22. 有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选派方法共有( )A. 1260种B. 2025种C. 2520种D. 5040种23. 将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为( )A. 15B. 20C. 30D. 4224. 从5种主料中选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为( )A. 18B. 200C. 2800D. 3360025. 某学校安排3位老师与5名学生去3地参观学习,每地至少去1名老师和1名学生,则不同的安排方法总数为( )A. 1800B. 900C. 300D. 144026. 某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为( )A. 1080B. 480C. 1560D. 30027. 已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系上的坐标,则确定的不同点的个数为( )A. 6B. 32C. 33D. 3428. 从4位男数学教师和3位女语文教师中选出4位教师派到4个班担任班主任(每班1位班主任),要求这4位班主任中男女教师都有,则不同的选派方案共有( )A. 210种B. 420种C. 630种D. 816种29. 三对夫妻站成一排照相,则仅有一对夫妻相邻的站法总数是( )A. 72B. 144C. 240D. 28830. 现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为( )A. 12B. 24C. 36D. 4831. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A. 12种B. 18种C. 24种D. 36种32. 三个学校分别有1名、2名、3名学生获奖,这6名学生排成一排合影,要求同校的任意两名学生不能相邻,那么不同的排法共有( )A. 36种B. 72种C. 108种D. 120种33. 5位同学站成一排照相,其中甲与乙必须相邻,且甲不能站在两端的排法总数是( )A. 40B. 36C. 32D. 2434. 高考结束后高三的8名同学准备拼车去旅游,其中一班、二班、三班、四班每班各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中一班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰好有2名同学是来自同一班的乘坐方式共有( )A. 18种B. 24种C. 48种D. 36种35. 从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为( )A. 15B. 25C. 12D. 3536. 将5位同学分别保送到北京大学,上海交通大学,中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有( )A. 150种B. 180种C. 240种D. 540种37. 某班有60名学生,其中正、副班长各1人,现要选派5人参加一项社区活动,要求正、副班长至少1人参加,问共有多少种选派方法?下面是学生提供的四个计算式,其中错误的是( )A. C21C594B. C605−C585C. C21C594−C22C583D. C21C584+C22C58338. 四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A. 14B. 716C. 12D. 91639. 五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A. 12B. 1532C. 1132D. 51640. 将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( )A. 540B. 300C. 180D. 150二、填空题(共40小题;共200分)41. 航空母舰“辽宁舰”将进行一次编队配置科学实验,要求2艘攻击型核潜艇一前一后,2艘驱逐舰和2艘护卫舰分列左、右,同侧不能都是同种舰艇,则编队配置分配方案的方法数为.(用数字作答)42. 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为.43. 从4名男同学,3名女同学中选3名同学组成一个小组,要求其中男、女同学都有,则共有种不同的选法.(用数字作答)44. 用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有个(用数字作答).45. 工人在悬挂如图所示的一个正六边形装饰品时,需要固定六个位置上的螺丝,首先随意拧紧一个螺丝,接着拧紧距离它最远的第二个螺丝,再随意拧紧第三个螺丝,接着拧紧距离第三个螺丝最远的第四个螺丝,第五个和第六个以此类推,则不同的固定方式有种.46. 某校在一天的8节课中安排语文、数学、英语、物理、化学、选修课与2节自修课,其中第1节只能安排语文、数学、英语三门中的一门,第8节只能安排选修课或自修课,且选修课与自修课、自修课与自修课均不能相邻,则所有不同的排法共有种.(结果用数字表示)47. 将5幅不同的冬奥会宣传作品排成前后两排展出,每排至少2幅,其中A,B两幅作品必须排在前排,那么不同的排法共有种.48. 有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为.49. 现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有种不同的分法(用数字作答).50. 大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有种.(用数字作答)51. 某班主任准备请2016届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少一人参加,若甲乙同时参加,则他们发言中间需恰隔一人,那么不同的发言顺序共有种.(用数字作答)52. 某校开设A类选修课4门,B类选修课2门,每位同学需从两类选修课中共选4门.若要求至少选一门B类课程,则不同的选法共有种.(用数字作答)53. 2017年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,哈西站一定要有人去,则不同的游览方案为.54. 用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有种不同的涂色方法.55. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处,那么不同的搜寻方案有种.(以数字作答)56. 某班3名男生2名女生被派往三个单位实习,每个单位至少去一人,两名女生不去同一单位,则不同的分派方案有种(用数字作答).57. 将3个男同学和3个女同学排成一列,若男同学甲与另外两个男同学不相邻,则不同的排法种数为.(用具体的数字作答)58. 在庆祝抗战胜利70周年活动期间,有5位外国领导人在天安门城楼前站成一排照相留影,若领导人甲与领导人乙必须相邻,领导人甲与领导人丙一定不相邻,则不同排法的种数是.59. 从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)60. 我们把三个集合中,通过两次连线后能够有关系的两个数字的关系称为“鼠标关系”,如图1,可称a与q,b与q,c与q都为“鼠标关系”.集合A={a,b,c,d},通过集合B={1,2,3}与集合C={m,n}最多能够产生条“鼠标关系”.(只要有一条连线不同则“鼠标关系”不同)61. 若用1,2,3,4,5,6这6个数字组成不重复的六位数,满足1不在首位与末位,3个偶数中有且只有2个相邻,则这样的六位数的个数为.62. 我校高二某学生决定“五一”好好轻松一下,为此制定了一项旅游计划,从7个旅游城市中选择4个进行游览,如果A,B为必选城市,并且在游览过程中必须按先A后B的次序经过A,B两城市(A,B两城市可以不相邻),则有种不同的游览线路.63. 某班级原有一张周一到周五的值日表,五位班干部每人值一天,现将值日表进行调整,要求原周一和周五的两人都不值这两天,周二至周四的这三人都不值自己原来的日期,则不同的调整方法种数是(用数字作答).64. 若9个人任意排成一排,则甲排中间,且乙与丙相邻的概率为.65. 直线a,b为异面直线,直线a上有4个点,直线b上有5个点,以这些点为顶点的三角形共有个;66. 由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是.67. 甲、乙、丙三人站在共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数为.68. 现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为.69. 从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,⋯,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为(用数字作答).70. 2015年4月22日,亚非领导人会议在印尼雅加达举行,某五国领导人A,B,C,D,E除B与E,D与E不单独会晤外,其他领导人两两之间都要单独会晤.现安排他们在两天的上午、下午单独会晤(每人每个半天最多只进行一次会晤),那么安排他们单独会晤的不同方法共有种.71. 甲、乙、丙3人站到共有6级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).72. 将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张.如果分给同一人的2张参观券连号,那么不同的分法种数是.73. 从4名男生,3名女生中选派3人参加学科竞赛,一人参加数学竞赛、一人参加物理竞赛、一人参加化学竞赛,若3人中既有男生又有女生,则不同的选派方法有种.74. 现有5名教师要带3个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有种.(用数字作答)75. 从0,1,2,3,4,5,6这7个数字中选出4个不同的数字构成四位数,不大于3410的个数是.76. 从0,1,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有个.(结果用数字作答)77. 某校高一开设3门选修课,有3名同学,每人只选一门,则恰有1门课程没有同学选修共有种不同选课方案(用数字作答).78. 由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有个.79. 5个人排成一排,其中甲与乙必须相邻,而丙与丁不能相邻,则不同的排法种数有种.80. 从1,2,3,⋯,20这20个自然数中,每次任取3个数,(1)若3个数能组成等差数列,则这样的等差数列共有( )个,若组成等比数列,则这样的等比数列共有( )个;(2)若3个数的和是3的倍数,则这样的数组有( )个;若其和是大于10的偶数,则这样的数组有( )个.三、解答题(共20小题;共260分)81. (1)7位同学站成一排,共有多少种不同的排法?(2)7位同学站成两排(前3后4),共有多少种不同的排法?(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?82. 有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定要担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.83. 男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.84. 某地有 10 个著名景点,其中 8 个为日游景点,2 个为夜游景点.某旅行团要从这 10 个景点中选 5 个作为二日游的旅游地.行程安排为第一天上午、下午、晚上各一个景点,第二天上午、下午各一个景点.(1)甲、乙两个日游景点至少选 1 个的不同排法有多少种?(2)甲、乙两个日游景点在同一天游玩的不同排法有多少种?(3)甲、乙两个日游景点不同时被选,共有多少种不同排法?85. 班主任为了对本班学生的考试成绩进行分析,决定从本班 24 名女同学,18 名男同学中随机抽取一个容量为 7 的样本进行分析.附:线性回归方程为 y ^=b ^x +a ^,b^=i −x )n i=1i −y )(x −x )2,a ^=y −b^x , x y ∑(x i −x )27i=1∑(x i −x )7i=1(y i −y )7683812526(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的 7 名同学的数学,物理成绩(单位:分)对应如下表:学生序号i1234567数学成绩x i60657075858790物理成绩y i 70778085908693(i )若规定 85 分以上(包括 85 分)为优秀,从这 7 名同学中抽取 3 名同学,记 3 名同学中数学和物理成绩均为优秀的人数为 ξ,求 ξ 的分布列和数学期望;(ii )根据上表数据,求物理成绩 y 关于数学成绩 x 的线性回归方程(系数精确到 0.01);若班上某位同学的数学成绩为 96 分,预测该同学的物理成绩为多少分?86. 如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有 5种颜色可供使用,求不同的染色方法种数.87. 设三位数 n =abc ,若以 a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数 n 有多少个?88. 有 9 名学生,其中 2 名会下象棋但不会下围棋,3 名会下围棋但不会下象棋,4 名既会下围棋又会下象棋.现在要从这 9 名学生中选出 2 名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?89. 2016年某通讯公司推出一组手机卡号码,卡号的前七位数字固定,后四位数从“0000”到“9999”共10000个号码中选择.公司规定:凡卡号的后四位恰带有两个数字“6”或恰带有两个数字“8”的一律作为“金猴卡”,享受一定优惠政策.如后四位数为“2663”,“8685”为“金猴卡”,求这组号码中“金猴卡”的张数.90. 从5双不同的鞋中任意取出4只,求满足下列要求的不同取法有多少种:(1)所取的4只鞋中恰好有2只是成双的;(2)所取的4只鞋中至少有2只是成双的.91. (1)求(12−x)5的展开式中x3的系数及展开式中各项系数之和;(2)从0,2,3,4,5,6这6个数中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.92. (1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?93. 如图,四边形ABCD的两条对角线AC,BD相交于O,现用五种颜色(其中一种为红色)对图中四个三角形△ABO,△BCO,△CDO,△ADO进行染色,且每个三角形用一种颜色图染.(1)若必须使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中所有相邻三角形都不同色的染色方法的种数.94. 在1,2,3,⋯,30个数中,每次取两两不等的3个数,使它们的和为3的倍数,共有多少种不同的取法?95. 如图,一环形花坛分成A,B,C,D 4个区域摆放鲜花,有4种不同颜色的鲜花可供选择,规定每个区域只准摆放一种颜色的鲜花,相邻区域鲜花颜色不同,问共有多少种不同的摆花方案?96. 如图,由若干个小正方形组成的k层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k层有k个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k层的每个小正方形用数字进行标注,从左到右依次记为x1,x2,⋯,x k,其中x i∈{0,1}(1≤i≤k),其它小正方形标注的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为x0 .(1)当 k =4 时,若要求 x 0 为 2 的倍数,则有多少种不同的标注方法? (2)当 k =11 时,若要求 x 0 为 3 的倍数,则有多少种不同的标注方法?97. 8 人排成一排照相,A ,B ,C 3 人互不相邻,D ,E 也不相邻,共有多少种排法?98. 75600 有多少个正约数;有多少个奇约数?99. 设 A ,B 均为非空集合,且 A ∩B =∅,A ∪B ={1,2,3,⋯,n } (n ≥3,n ∈N ∗).记 A ,B 中的元素的个数分别为 a ,b ,所有满足" a ∈B ,且 b ∈A "的集合对 (A,B ) 的个数为 a n .(1)求 a 3,a 4 的值;(2)求 a n .100. 设 τ=(x 1,x 2,⋯,x 10) 是数 1,2,3,4,5,6,7,8,9,10 的任意一个全排列,定义 S (τ)=∑∣2x k −3x k+1∣10k=1,其中 x 11=x 1.(1)若 τ=(10,9,8,7,6,5,4,3,2,1),求 S (τ) 的值;(2)求 S (τ) 的最大值;(3)求使 S (τ) 达到最大值的所有排列 τ 的个数.答案第一部分 1. B 【解析】三个不相同的数组成三位数,首位与末位只能用奇数,中间位随意,故先排首位末位得 A 32×3=18.2. C 【解析】由题易知,不同的选法共有 C 82C 61C 51=840 种.3. B4. C【解析】由于每科一节课,每节至少有一科,必有两科在同一节,先从 4 科中任选 2科看作一个整体,然后做 3 个元素的全排列,共 C 42A 33种方法,再从中排除数学、理综安排在同一节的情形,共 A 33 种方法,故总的方法种数为 C 42A 33−A 33=36−6=30.5. D【解析】有两类情况:①其中一所学校 3 名教师,另两所学校各一名教师的分法有 C 53A 33=60 种;②其中一所学校 1 名教师,另两所学校各两名教师的分法有 C 51×C 422×A 33=90 种.∴ 共有 60+90=150种. 6. A【解析】若甲乙抽取的一个笔记本电脑和一个山地车,剩下 2 个礼品,被剩下的 4 人中的 2 个人抽取,有 A 22A 42=24 种,若甲乙抽取的都是笔记本电脑或两个山地车,剩下 2 个礼品,被剩下的 4 人中的 2 个人抽取,有A 22C 42=12 种,根据分类计数原理可得,共有 24+12=36 种. 7. C【解析】由于每个景点至少一人,故必有一个景点有 2 名游客,第一步,选出 2 名游客组成一组,共有 C 52=10 种方法,第二步,将选出的 2 名游客看作一个整体,和剩余的 3 名游客进行排列,共有 A 44=24 种方法, 所以不同的游览方法有 10×24=240 种. 8. D【解析】根据题意,分 2 步进行分析:①先把 5 位大学毕业生分成 3 组, 若分成 2−2−1 的三组,有 C 52C 32C 11A 22=15 种, 若分成 3−1−1 的三组,有C 53C 21C 11A 22=10 种,则一共有 15+10=25 种分组方法;②将分好的 3 组全排列,对应 3 家单位,有 A 33=6 种情况, 则不同的分配方法有 25×6=150 种. 9. C【解析】开设英语、法语、西班牙语和德语四个语种的培训课程,要求每名员工参加且只参加其中两种.没有相同的安排共有 C 42=6 种,当每种安排各有 4 人,没有 5 名员工参加的培训完全相同.此时有员工 4×6=24 人,当增加 1 人,必有 5 名员工参加的培训完全相同.所以该公司至少有 25 名员工. 10. C【解析】根据题意,分 2 种情况讨论:①若有 1 人参加“演讲团”,在 6 人中选出 1 人,参加“演讲团”,有 C 61=6 种情况,剩下的 5 个人参加剩下的 4 个社团,人数安排有 1,1,1,2 或 1,2,2 两种情况,则有 C 51C 41C 31C 22A 33×A 44+C 51C 42C 22A 22×A 43=600 种安排方法,则此时的不同参加方法有 6×600=3600 种.②若没有人参加“演讲团”,则 6 人参加 4 个社团,人数安排有 1,1,2,2 或 2,2,2 两种情况,此时有C 62C 42C 21C 11A 22A 22×A 44+C 62C 42C 22A 33×A 43=1440 种安排方法,则不同参加方法有 3600+1440=5040 种.11. B 12. B 13. D 【解析】根据题意,甲地需要选派 2 人且至少有 1 名女生,若甲地分派 2 名女生,有 C 22=1 种情况,若甲地分配 1 名女生,有 C 21⋅C 31=6 种情况,则甲地的分派方法有 1+6=7种,甲地安排好后,在剩余 3 人中,任选 2 人,安排在乙、丙两地,有 A 32=6 种安排方法,则不同的选派方法的种数是 7×6=42.14. C 【解析】由题意知本题需要分类解决, 因为对于 7 个台阶上每一个只站一人有 A 73 种;若有一个台阶有 2 人另一个是 1 人共有 C 31A 72 种,所以根据分类计数原理知共有不同的站法种数是 A 73+C 31A 72=336 种.15. D16. C 17. C 【解析】因为从 5 名学生中选出 4 名分别参加 A ,B ,C ,D 四科竞赛,其中甲不能参加 A ,B 两科竞赛,所以可分为以下几步:(1)先从 5 人中选出 4 人,分为两种情况:有甲参加和无甲参加.有甲参加时,选法有:C 43=4 种; 无甲参加时,选法有:C 44=1 种.(2)安排科目:有甲参加时,先排甲,再排其它人.排法有:A 21A 33=12 种.无甲参加时,排法有 A 44=24 种. 综上,4×12+1×24=72. 所以不同的参赛方案种数为 72. 18. A 19. C 20. C【解析】6 名留学归国人员分配到济南、青岛两地工作.若济南至少安排 2 人,青岛至少安排 3 人,分两类,第一类,青岛安排 3 人,济南安排 3 人,有 C 63=20 种, 第二类,青岛安排 4 人,济南安排 2 人,有 C 64=15 种,根据分类计数原理可得 20+15=35 种.21. D 【解析】由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得 4 个偶数时,有 C 44=1 种结果, 当取得 4 个奇数时,有 C 54=5 种结果, 当取得 2 奇 2 偶时有 C 42C 52=6×10=60 ,所以共有 1+5+60=66 种结果,。