正弦、余弦、正切函数的图象与性质

合集下载

正弦函数、余弦函数图像与性质

正弦函数、余弦函数图像与性质

x
0
sinx 0
1 1+sinx y
2
1
o
2
-1
2
1 2
2
3
2
2
0
-1
0
1
0
1
步骤:
y=1+sinx,x[0, 2]
1.列表 2.描点 3.连线
3
2
x
2 y=sinx,x[0, 2]
正弦、余弦函数的图象
例2 画出函数y= - cosx,x[0, 2]的简图:
x
0
2
3
2
2
cosx 1
0
-1
0
1
- cosx -1
(
((((((,,0,00),)0,),(003)2))(32,(-312,(1)32,)1((3,)3(21(23(323)2,2,1-,1,-),-1-)11)))
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)
(0,0) (0,0) (0,0) (0,0) (0,0)
2 ,1)
(
( 2 ,1)
(
2
,1)
( 2 ,1)
( 2 ,1)
( (
2
2
,1) ,1)
,0) 3
(

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。

三角函数的图象与性质

三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)

三角函数的图象和性质

三角函数的图象和性质

三角函数的图象和性质知识网络三角函数的图象和性质结构简图画龙点晴 概念三角函数的图象:(1) 函数x y sin =的图象叫做正弦曲线, 如图1; (2) 函数x y cos =的图象叫做余弦曲线, 如图2; (3) 函数x y tan =的图象叫做正切曲线, 如图3; (4) 函数x y cot =的图象叫做余切曲线, 如图4;周期函数: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)); 3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期). 三角函数的性质: 三角函数的性质如下表:[活用实例][例1] 求下列函数的最值: (1)y=sin(3x+4π)-1 ; (2) y=sin 2x-4sinx+5 ; (3) y=x x cos 3cos 3+- ; (4))3cos(2π-=x y (6π≤x ≤32π).[题解] (1) 当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时y max =0; 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时y min =-2. (2) y=(sinx-2)2+1 ∴当x=2k π-2π k ∈Z 时y max =10; 当x=2k π-2πk ∈Z 时y min = 2. (3)y=-1+xcos 31+ 当x=2k π+π k ∈Z 时 y max =2; 当x=2k π k ∈Z 时 y min = 21.(4)∵x ∈[6π,32π] ∴x-3π∈[-6π,3π], ∴当x-3π=0 即x=3π时 y max =2; 当x-3π=3π 即x=32π时 y min =1. [例2] 求下列函数的定义域:(1)y=x x 2cos 21cos 3-- ; (2)y=lg(2sinx+1)+1cos 2-x ; (3)y=)cos(sin x . [题解] (1)∵3cosx-1-2cos 2x ≥0 ∴21≤cosx ≤1 ∴定义域为:[2k π-3π, 2k π+3π] (k ∈Z). (2))(32326726221cos 21sin Z k k x k k x k x x ∈⎪⎩⎪⎨⎧+≤≤-+<<-⇒⎪⎩⎪⎨⎧≥->ππππππππ )(3262Z k k x k ∈+≤<-⇒ππππ ∴定义域为:)](32,62(Z k k k ∈+-ππππ.(3) ∵cos(sinx)≥0 ∴ 2k π-2π≤x ≤2k π+2π(k ∈Z) ∵-1≤sinx ≤1 , ∴x ∈R , 1cos ≤y ≤1.[例3] 已知函数f(x)=2asin 2x-23asinxcosx+b 的定义域为[0,2π],值域为[-5,4],求常数a,b 的值。

三角函数的图象、性质及应用(高中数学知识点讲解)

三角函数的图象、性质及应用(高中数学知识点讲解)

(5)不能认为y=tan
x在定义域上为增函数,应在区间
kπ-
π 2
,kπ
+
π 2
(k∈Z)内
为增函数.
知能拓展
考法一 关于三角函数图象的问题
例1 (1)(2018广东茂名化州二模,9)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<
φ<π)的部分图象如图所示,且f(α)=1,α∈
求φ及ω,从而
得到f(x)的解析式,由f(α)=1求α,进而得cos

+
5π 6
.
A = 5,
(2)①根据已知表格中的数据可得方程组
π 3
ω
+
φ
=
π 2
,
解之可得函数f(x)的
5π 6
ω
+
φ
=
3π 2
,
解析式,进而可补全表格.
②由①并结合函数图象平移可得,g(x)=5sin
2
x
+
2θ -
π 3
-2x
实质上是y=tan
x与y=
π 3
-2x的复合,应
按复合函数单调性求解.
方法总结 三角函数的单调性问题的常见类型及解题策略
1.已知三角函数解析式求单调区间
(1)求函数的单调区间应遵循简单化原则,将解析式进行化简,并注意复合
函数单调性规律“同增异减”.
(2)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调区间时,要视“ωx
2π ω
=4×
7π 12
-
π 3
=π,得ω=2,故f(x)=3sin(2x+φ),将

三角函数的图象与性质

三角函数的图象与性质

三角函数的图象与性质教学目标1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质.2.熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、态度,并会用“五点法”画出函数y=sin(ωx+φ)的图象。

3.理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化.重点难点重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题.难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度.教学过程三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻.【要点复习】一.y=sinx的图象和性质:1.图象:列表后描点,用平滑曲线相连得到y=sinx,x∈[0,2π]的图象y=sinx,x∈R时的完整的图象.由此可见,画出y=sinx 的图象关键是首先要画出y=sinx 在[0,2π]内的图象.而y=sinx 在[0,2π]的图象有这样五个点很重要:(0,0),(2π,1),(π,0),(32π,-1),(2π,0);其中(0,0), (π,0),(2π,0)是轴上的点,(2π,1), (32π,-1)分别是函数图象的最高、最低点.所以这五个点是确定y=sinx 图象的基本点.因此,代数描点法也可简称为“五点法”,以后再画y=sinx 图象时,就可直接使用五点法了.2.性质:(1)定义域:x ∈R .(2)值域:y ∈[-1,1], ∴y=sinx 是有界函数。

(3)周期性:正弦函数y=sinx 是周期函数.2π是它的最小正周期,2k π(k ∈Z ,k =0)都是它的周期.(4)单调性:从图象上可以看出正弦函数在整个实数域上不是增函数,也不是减函数,但具有增减区间。

高一数学 三角函数的图像及性质

高一数学  三角函数的图像及性质

三角函数一、知识梳理1.正弦函数、余弦函数和正切函数的图象与性质:2.周期函数定义:对于函数()f x ,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,()()f x T f x +=都成立,那么就把函数()f x 叫做周期函数,不为零的常数T 叫做这个函数的周期.结论:如果函数)()(k x f k x f -=+对于R x ∈任意的,那么函数()f x 的周期T=2k ;如果函数)()(x k f k x f -=+对于R x ∈任意的,那么函数()f x 的对称轴是k x k k x x =-++=2)()(3.图象的平移对函数y =A sin (ωx +ϕ)+k (A .>.0.,. ω.>.0.,. ϕ.≠0..,. k .≠0..).,其图象的基本变换有: (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长. (3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移二、方法归纳1.求三角函数的值域的常用方法:① 化为求代数函数的值域;② 化为求sin()y A x B ωϕ=++的值域; ③ 化为关于sin x (或cos x )的二次函数式;2.三角函数的周期问题一般将函数式化为()y Af x ωϕ=+(其中()f x 为三角函数,0ω>).3.函数sin()y A x ωϕ=+为奇函数k ϕπ⇔=()k ∈Z ; 函数sin()y A x ωϕ=+为偶函数2k πϕπ⇔=+()k ∈Z函数cos()y A x ωϕ=+为偶函数k ϕπ⇔=; 函数cos()y A x ωϕ=+为奇函数2k πϕπ⇔=+()k ∈Z4.函数sin()y A x ωϕ=+(0,0)A ω>>的单调增区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出,单调减区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出; 函数sin()y A x ωϕ=+(0,0)A ω<>的单调增区间可由32222k x k πππωϕπ+≤+≤+()k ∈Z 解出, 单调减区间可由2222k x k πππωϕπ-+≤+≤+()k ∈Z 解出.5.对称性:(1)函数sin()y A x ωϕ=+对称轴可由2x k πωϕπ+=+()k ∈Z 解出;对称中心的横坐标是方程x k ωϕπ+=()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法) (2)函数()cos y A x ωϕ=+对称轴可由x k ωϕπ+=()k ∈Z 解出;对称中心的横坐标是方程2x k πωϕπ+=+()k ∈Z 的解,对称中心的纵坐标为0.( 即整体代换法)(3)函数()tan y A x ωϕ=+对称中心的横坐标可由2kx ωϕπ+=()k ∈Z 解出, 对称中心的纵坐标为0,函数()tan y x ωϕ=+不具有轴对称性.三、课堂例题精讲例1.下列函数中,周期为2π的是( ) A.sin 2x y = B.sin 2y x =C.cos4x y = D.cos 4y x =答案:D例2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A.关于点0π⎛⎫ ⎪3⎝⎭,对称B.关于直线x π=4对称 C.关于点0π⎛⎫ ⎪4⎝⎭,对称D.关于直线x π=3对称 答案:A.解析:由题意知2ω=,所以解析式为()sin 23f x x π⎛⎫=+ ⎪⎝⎭,经验证可知它的一个对称中心为,03π⎛⎫⎪⎝⎭.例3.函数的最小正周期和最大值分别为( )A.π,1B.π2C.2π,1D.2π2答案:A.解析:x x x x x y 2cos 232sin 212cos 212cos 232sin =⋅-⋅+⋅+⋅=,∴T =π,y max =1 例4.函数[]()sin 3(π0)f x x x x =∈-,的单调递增区间是( )A.5ππ6⎡⎤--⎢⎥⎣⎦,B.5ππ66⎡⎤--⎢⎥⎣⎦, C.π03⎡⎤-⎢⎥⎣⎦,D.π06⎡⎤-⎢⎥⎣⎦,答案:D.解析:因为⎪⎭⎫ ⎝⎛π-=3sin 2)(x x f ,.0,6656,0),(65262),(22322符合题意由此可得得令得令⎥⎦⎤⎢⎣⎡π-π≤≤π-=∈π+π≤≤π-π∈π+π≤π-≤π-πx k k k x k k k x k Z Z例5.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为( ) A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫ ⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫ ⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 答案:A.解析:看向量a =⎪⎭⎫⎝⎛-π-2,4的数据“符号”,指令图象左移和下移,按“同旁相减,异旁相加”的口诀,立可否定B 、C 、D.例6.函数sin y x =的一个单调增区间是( )A.ππ⎛⎫- ⎪44⎝⎭, B.3ππ⎛⎫ ⎪44⎝⎭, C.3π⎛⎫π ⎪2⎝⎭,D.32π⎛⎫π⎪2⎝⎭, 答案:C解析:法一:∵函数sin y x =的一个单调递增区间为⎥⎦⎤⎢⎣⎡π2,0, 又函数sin y x =是以π为周期的函数,∴函数sin y x =的单调递增区间为⎥⎦⎤⎢⎣⎡π+ππ2,k k (k ∈Z ).当k =1时,函数sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C. 法二:作出函数sin y x =的图象,由图易知sin y x =的一个单调增区间为⎥⎦⎤⎢⎣⎡ππ23,.故选C.法三:将每个选择支中区间的两个端点值代入函数表达式,A 、B 两个选择支的端点值相等,而选择支D 的左端点值大于右端点值, 所以根据单调递增的概念判断,可排除A 、B 、D ,故选C.例7.函数sin()y A x ωϕ=+(,,A ωϕ为常数,0,0A ω>>)在闭区间[,0]π-上的图象如图所示,则ω= .答案: ω=3例8.已知函数()()3sin 06f x x πωω⎛⎫=-> ⎪⎝⎭和()()2cos 21g x x ϕ=++的图象的对称轴完全相同.若0,2x π⎡⎤∈⎢⎥⎣⎦,则()f x 的取值范围是 . 答案:3[-,3]2解析:由题意知,2ω=,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,由三角函数图象知:()f x 的最小值为33sin (-)=-62π,最大值为3sin =32π, 所以()f x 的取值范围是3[-,3]2. 例9.定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图象与y=5tanx 的图象的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图象交于点P 2,则线段P 1P 2的长为 . 答案:23解析“线段P 1P 2的长即为sinx 的值,且其中的x 满足6cosx=5tanx ,解得sinx=23. 故线段P 1P 2的长为23.例10.设函数()f x =·a b ,其中向量(cos2)mx =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.解析:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1 由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 例11. 已知函数()sin(),(0,0)f x x ωϕωϕπ=+>≤≤是R 上的偶函数,其图象关于点M )0,43(π对称,且在区间[0,2π]上是单调函数,求ϕ和ω的值. 解析:由)(x f 是偶函数,得)()(x f x f =-,故sin()sin()x x ωϕωϕ-+=+,cos sin cos sin x x ϕωϕω-=对任意x 都成立, 且0,cos 0.ωϕ>∴=依题设0≤ϕ≤π,cos .2πϕ∴=由)(x f 的图象关于点M 对称,得)43()43(x f x f +-=-ππ取0)43(),43()43(0=∴-==πππf f f x 得 0)43cos(),43cos()243sin()43(=∴=+=x x x f ωωπωπ又0>ω,得......2,1,0,243=+=k k x ππω ...2,1,0),12(32=+=∴k k ω当0=k 时,)232sin()(,32πω+==x x f 在]2,0[π上是减函数.当1=k 时,)22sin()(,2πω+==x x f 在]2,0[π上是减函数. 当k ≥2时,)2sin()(,310πωω+==x x f 在]2,0[π上不是单调函数. 所以,综合得32=ω或2=ω.四、课后作业1.函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A.233ππ⎛⎫ ⎪⎝⎭,B.62ππ⎛⎫ ⎪⎝⎭,C.03π⎛⎫ ⎪⎝⎭,D.66ππ⎛⎫- ⎪⎝⎭,2.已知函数()f x =Acos (x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( ) A.23-B .23 C.32 D. 32-3. 设ω>0,函数f (x )=2sinωx 在]4,3[ππ-上为增函数,那么ω的取值范围是 .4.判断方程sinx=π100x实数解的个数.5.求函数y=2sin )4(x -π的单调区间.6.已知函数()f x =xx x 2cos 1cos 3cos 224+-,求它的定义域和值域,并判断奇偶性.100л7.已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.8.设()f x = x x 2sin 3cos 62-, (1)求()f x 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求tan α54的值.9. 求下列函数的值域: (1)y=x x x cos 1sin 2sin -; (2)y=sinx+cosx+sinxcosx ; (3)y=2cos )3(x +π+2cosx.10.已知函数f (x )=-sin 2x+sinx+a ,(1)当f (x )=0有实数解时,求a 的取值范围; (2)若x ∈R ,有1≤f (x )≤417,求a 的取值范围.11.已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (Ⅰ)求()f x 的最大值和最小值;(Ⅱ)若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.12.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.参考答案: 1.答案:A 2.答案:C 3.答案:203ω<≤ 4.答案:199 解析:方程sinx=π100x 的实数解的个数等于函数y=sinx 与y=π100x 的图象交点个数, ∵|sinx|≤1∴|π100x|≤1, |x|≤100л 当x≥0时,如下图,此时两线共有100个交点, 因y=sinx 与y=π100x都是奇函数,由对称性知当x≤0时,也有100个交点, 原点是重复计数的,所以只有199个交点. 5.解析:y=2sin )4(x -π可看作是由y=2sinu 与u=x -4π复合而成的.又∵u=x -4π为减函数,∴由2k π-2π≤u ≤2k π+2π(k ∈Z ),得-2k π-4π≤x ≤-2k π+43π (k ∈Z ). 即⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z )为y=2sin )4(x -π 的递减区间. 由2k π+2π≤u ≤2k π+23π (k ∈Z ), 得2k π+2π≤4π-x ≤2k π+23π(k ∈Z ), 解得-2k π-45π≤x ≤-2k π-4π (k ∈Z ),即⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z )为y=2sin )4(x -π的递增区间. 综上可知:y=2sin )4(x -π的递增区间为⎥⎦⎤⎢⎣⎡----42,452ππππk k (k ∈Z ); 递减区间为⎥⎦⎤⎢⎣⎡+---432,42ππππk k (k ∈Z ). 6.解析:由题意知cos2x≠0,得2x≠k π+2π, 解得x≠42ππ+k (k ∈Z ). 所以()f x 的定义域为⎭⎬⎫⎩⎨⎧∈+≠∈Z R k k x x x ,42ππ且,. 又()f x =xx x 2cos 1cos 3cos 224+-=x x x 2cos )1)(cos 1cos 2(22--=cos 2x-1=-sin 2x.又定义域关于原点对称, ∴()f x 是偶函数. 显然-sin 2x ∈[-1,0],但∵x≠42ππ+k ,k ∈Z . ∴-sin 2x≠-21.所以原函数的值域为⎭⎬⎫⎩⎨⎧≤<--<≤-021211|y y y 或.7.解析:(Ⅰ)π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上增,在区间3π3π84⎡⎤⎢⎥⎣⎦,上减,又π08f ⎛⎫=⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为3π14f ⎛⎫=- ⎪⎝⎭.8.解析:(Ⅰ)1cos 2()622xf x x +=3cos 223x x =+12sin 232x x ⎫=-+⎪⎪⎭236x π⎛⎫=++ ⎪⎝⎭. 故()f x的最大值为3;最小正周期22T π==π.(Ⅱ)由()3f α=-2336απ⎛⎫++=- ⎪⎝⎭故cos 216απ⎛⎫+=- ⎪⎝⎭. 又由02απ<<得2666απππ<+<π+,故26απ+=π,解得512α=π.从而4tan tan 53απ==.9.解析:(1)y=x x x x cos 1sin cos sin 2-=xx x cos 1)cos 1(cos 22--=2cos 2x+2cosx=22)21(cos +x -21.于是当且仅当cosx=1时取得y max =4,但cosx≠1,∴y <4,且y min =-21,当且仅当cosx=-21时取得. 故函数值域为⎪⎭⎫⎢⎣⎡-4,21. (2)令t=sinx+cosx ,则有t 2=1+2sinxcosx ,即sinxcosx=212-t .有y=f (t )=t+212-t =1)1(212-+t .又t=sinx+cosx=2sin )4(π+x , ∴-2≤t≤2.故y=f (t )=1)1(212-+t (-2≤t≤2), 从而知:f (-1)≤y≤f (2), 即-1≤y≤2+21. 即函数的值域为⎥⎦⎤⎢⎣⎡+-212,1.(3)y=2cos )3(x +π+2cosx=2cos3πcosx-2sin 3πsinx+2cosx=3cosx-3sinx =23⎪⎪⎭⎫⎝⎛-x x sin 21cos 23=23cos )6(π+x . ∵)6cos(π+x ≤1,∴该函数值域为[-23,23].10.解析:(1)f (x )=0,即a=sin 2x -sinx=(sinx -21)2-41∴当sinx=21时,a min =-41,当sinx=-1时,a max =2, ∴a ∈[41-,2]为所求.(2)由1≤f (x )≤47得⎪⎩⎪⎨⎧+-≥+-≤1sin sin 417sin sin 22x x a x x a∵ u 1=sin 2x -sinx+2)21(sin 417-=x +4≥4u 2=sin 2x -sinx+1=43)21(sin 2+-x ≤3 ∴ 3≤a≤4.11.解析:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.12.解析:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], 而f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b . 当a >0时,则⎩⎨⎧=+-=,,15b a b 解之得a =6,b =-5.当a <0时,则⎩⎨⎧-=+=,,51b a b 解之得a =-6,b =1.。

第三章 第三节 正弦、余弦、正切函数的图像与性质

第三章  第三节      正弦、余弦、正切函数的图像与性质
x= +2kπ 时,
最 ymax=1(k∈Z); 2kπ 时, 值 x=ymin=-1(k∈Z)
x=2kπ 时 , ymax=1(k∈Z); π+2kπ 时, X= ymin=-1(k∈Z)
无最值
函数 奇偶 性
y=sinx
y=cosx
y=tanx 奇 对称中心 ( ,0), k∈Z


对称中心
对称中心 (kπ+ ,0) k∈Z
图 象
函 数 定 义 域
y=sinx
y=cosx
y=tanx
R
R
{x|x≠
+2kπ,k∈Z}
值 {y|-1 ≤ y ≤ 1} 域
{y|-1≤ y ≤ 1}
R
函 数
[-
y=sinx
+2kπ,
y=cosx [(2k-1)π,2kπ]
y=tanx
(- Kπ, Kπ) 上递增 k∈Z + +
上递增,∈Z; + 2kπ] 单 上递增,k∈Z; [2kπ,(2k+1)π] 调 [ +2kπ, +2kπ] 性 上递减,k∈Z 上递减,k∈Z
+2kπ≤ωx- φ ≤
3.对于y=Atan(ωx+φ)(A、ω、 φ为常数),其周期T=
单调区间利用ωx+ φ ∈(kπ- 的取值范围,即为其单调区间. ,kπ+

)(k∈Z),解出x
[特别警示] 求三角函数的单调区间时,一定要注意A和ω 的符号.
已知函数f(x)=log2[ (1)求函数的定义域;
在[0,2π]内,满足sinx=cosx的x为
再结合正弦、余弦函数的周期是2π,所以定义域为{x|
+2kπ<x<
+2kπ,k∈Z}.
1.形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间, 基本思路是把ωx+ φ 看作一个整体,由- +2kπ≤ωx

第四讲 正弦、余弦、正切函数的图象与性质(解析版)

第四讲  正弦、余弦、正切函数的图象与性质(解析版)

第四讲 正弦、余弦和正切函数的图像与性质知识提要1. 用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2. 正弦函数、余弦函数、正切函数的图象和性质函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R 且x ≠π2+k π,k ∈Z }值域[-1,1][-1,1]R单调性[-π2+2k π,π2+2k π](k ∈Z )上递增; [π2+2k π,3π2+2k π](k ∈Z )上递减 [-π+2k π,2k π](k ∈Z )上递增;[2k π,π+2k π](k ∈Z )上递减(-π2+k π,π2+k π) (k ∈Z )上递增最值x =π2+2k π(k ∈Z )时,y max =1;x =-π2+2k π(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =π+2k π(k ∈Z )时,y min =-1奇偶性 奇函数 偶函数 奇函数 对称中心 (k π,0)(k ∈Z ) (π2+k π,0) (k ∈Z ) (k π2,0)(k ∈Z ) 对称轴方程x =π2+k π(k ∈Z ) x =k π(k ∈Z )周期2π2ππ※ 学习评价1、判断下面结论是否正确(请在括号中打“√”或“×”)(1)常数函数f (x )=a 是周期函数,它没有最小正周期. ( √ ) (2)y =cos x 在第一、二象限上是减函数. ( × ) (3)y =tan x 在整个定义域上是增函数.( × )(4)y =k sin x +1(x ∈R ),则y max =k +1. ( × )2、函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:方法一 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z . 取k =-1,则x =-π4.方法二 用验证法.x =π4时,y =sin ⎝⎛⎭⎫π4-π4=0,不合题意,排除A ; x =π2时,y =sin ⎝⎛⎭⎫π2-π4=22,不合题意,排除B ; x =-π4时,y =sin ⎝⎛⎭⎫-π4-π4=-1,符合题意,C 项正确; x =-π2时,y =sin ⎝⎛⎭⎫-π2-π4=-22,不合题意,故D 项也不正确. 3、若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω等于( )A .23B .32C .2D .3解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增, 在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.例1 求函数y =1+sin ⎝⎛⎭⎫-12x +π4,x ∈[-4π,4π]的单调减区间. 解析:y =1+sin ⎝⎛⎭⎫-12x +π4=-sin ⎝⎛⎭⎫12x -π4+1. 由2k π-π2≤12x -π4≤2k π+π2(k ∈Z ).解得4k π-π2≤x ≤4k π+32π(k ∈Z).令k =0时,-π2 ≤x ≤32π; 令k =1时,72π≤x ≤4π+32π. 令k =-1时,-4π-π2≤x ≤-52π;∵-4π≤x ≤4π,∴函数y =1+sin ⎝⎛⎭⎫-12x +π4的单调减区间为 [-4π,-52π],[-π2,32π],[72π,4π].变式:(1)已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12]D .(0,2](2)已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f (x +π4)=f (-x )成立,且f (π8)=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3解析:(1)由π2<x <π得π2ω+π4<ωx +π4<πω+π4,由题意知(π2ω+π4,πω+π4)⊆[π2,3π2],∴⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,∴12≤ω≤54,故选A.解析:由f (x +π4)=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3. 故选C. 例2 求函数f (x )=lg sin x +16-x 2的定义域.解析:由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π). 例3 求下列函数的周期.(1)y =sin ⎝⎛⎭⎫2x +π3 (x ∈R); (2)y =cos(1-πx )(x ∈R); (3)y =|sin x | (x ∈R). 解析:(1)方法一 令z =2x +π3,∵x ∈R ,∴z ∈R ,函数f (z )=sin z 的最小正周期是2π,就是说变量z 只要且至少要增加到z +2π,函数f (z )=sin z (z ∈R)的值才能重复取得, 而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,从而函数y =sin ⎝⎛⎭⎫2x +π3 (x ∈R)的周期是π..方法二 y =sin ⎝⎛⎭⎫2x +π3(x ∈R)的周期为2π2=π. (2)设f (x )=cos(1-πx ),则f (x )=cos(πx -1).∵cos[(πx -1)+2π]=cos[(πx +2π)-1]=cos[π(x +2)-1]=co s(πx -1). ∴f (x +2)=f (x ),从而函数y =cos(1-πx )(x ∈R)的周期是2. (3)作出y =|sin x |(x ∈R)的图象.由图象可知,y =|sin x |(x ∈R)的周期为π.例4 (1) 求函数y =cos ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2的值域. (2) 求函数y =sin 2x -sin x +1,x ∈R 的值域.解 (1)∵0≤x ≤π2,∴π6≤x +π6≤23π. ∴cos 23π≤cos ⎝⎛⎭⎫x +π6≤cos π6,∴-12≤y ≤32(2)设t =sin x ,t ∈[-1,1],f (t )=t 2-t +1. ∵f (t )=t 2-t +1=⎝⎛⎭⎫t -122+34. ∵-1≤t ≤1, ∴当t =-1,即sin x =-1时,y max =f (t )max =3; 当t =12,即sin x =12时,y min =f (t )min =34.∴函数y =sin 2x -sin x +1,x ∈R 的值域为⎣⎡⎦⎤34,3.巩固提高※夯实基础1.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( A )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)2、函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.[0,2]3、求函数y =tan ⎝⎛⎭⎫π3x +π4的定义域、周期、单调区间和对称中心. 解析:①由π3x +π4≠k π+π2,k ∈Z ,得x ≠3k +34,k ∈Z .∴ 函数的定义域为{x |x ∈R ,且x ≠3k +34,k ∈Z }.②T =ππ3=3,∴函数的周期为3.③由k π-π2<π3x +π4<k π+π2,k ∈Z . 解得3k -94<x <3k +34,k ∈Z .∴函数的单调增区间为⎝⎛⎭⎫3k -94,3k +34,k ∈Z . ④由π3x +π4=k π2,k ∈Z . 解得x =3k 2-34,k ∈Z .∴函数的对称中心是⎝⎛⎭⎫3k 2-34,0,k ∈Z . 4. 设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值.解析:f (x )=cos 2x +sin x =1-sin 2x +sin x =-⎝⎛⎭⎫sin x -122+54. ∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22.5. 已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ], 又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .※能力提高6、将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是 ( )A.13B .1C.53D .2解析:根据题意平移后函数的解析式为y =sin ω⎝⎛⎭⎫x -π4, 将⎝⎛⎭⎫3π4,0代入得sin ωπ2=0,则ω=2k ,k ∈Z ,且ω>0,故ω的最小值为2. 7、函数y =|sin x +cos x |-1的定义域是( )A .[k π,k π+π2](k ∈Z )B .[2k π,2k π+π2](k ∈Z )C .[-π2+k π,k π](k ∈Z )D .[-π2+2k π,2k π](k ∈Z )解析:|sin x +cos x |-1≥0⇒(sin x +cos x )2≥1 ⇒sin 2x ≥0,∴2k π≤2x ≤2k π+π,k ∈Z ,故原函数的定义域是[k π,k π+π2](k ∈Z ).8、已知函数)2sin()(ϕ+=x x f ,其中ϕ为实数,若|)6(|)(πf x f ≤对R x ∈恒成立,且)()2(ππf f >,则)(x f 的单调递增区间是 ( ) (A) )(6,3Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ (B) )(2,Z k k k ∈⎥⎦⎤⎢⎣⎡+πππ(C) )(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ (D) )(,2Z k k k ∈⎥⎦⎤⎢⎣⎡-πππ 解析:∵|)6(|)(πf x f ≤, ∴)6(πf 为)(x f 的最小值或最大值,∴ 1)62sin()6(±=+⨯=ϕππf , ∴ Z k k ∈+=+,23ππϕπ,∴ Z k k ∈+=,6ππϕ.当6πϕ=时,2167sin )622sin()2(-==+⨯=ππππf ,216sin )62sin()(==+=ππππf . 这与)()2(ππf f >矛盾,舍去。

三角函数的图象与性质总结

三角函数的图象与性质总结

三角函数的图象与性质1.正弦函数、余弦函数、正切函数的图像2.三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈; x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,x y tan =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换。

先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。

课件4:1.3.2 余弦函数、正切函数的图象与性质

课件4:1.3.2 余弦函数、正切函数的图象与性质
|φ|的最小值为|φ|=2π+2- 3 =6.


答案:A
3.试比较
23
cos- 5 π与


17
cos- 4 π的大小.



23

解:cos- 5 π=cos



17

cos- 4 π=cos


23
3
3
5 π=cos(4π+5π)=cos 5π,
的图象也可由 y=cos x 的图象通过变换得到,变换规
律相同.
3.研究函数 y=Acos (ωx+φ)的性质时,注意采用整体代换的
思想.如当 ωx+φ=2kπ(k∈Z)时,它取得最大值;当 ωx+φ
=2kπ+π(k∈Z)时,它取得最小值.
4.正切函数的图象
π
正切函数有无数多条渐近线,渐近线方程为 x=kπ+ ,k∈Z,相邻
∴函数
1

π
π
3
y=tan-2x+4的单调递减区间是2kπ-2,2kπ+2π(k∈Z),




最小正周期 T=
π
1=2π.

2
小结 函数 y=tan(ωx+φ) (ω>0)的单调区间的求法是把
π
π
ωx+φ 看成一个整体,解-2+kπ<ωx+φ<2+kπ,k∈Z
即可.当 ω<0 时,先用诱导公式把 ω 化为正值再求单调
(
π
A.6
π
B.4
π
C.3
π
D.2
)
解析:由
f




,0
y=3cos(2x+φ)的图象关于点 3

最全三角函数的图像与性质知识点总结

最全三角函数的图像与性质知识点总结

三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin xy =cos x图 象定义域R R值域[-1,1] [-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z )递减区间:[2k π,2k π+π] (k ∈Z ) 最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性 奇函数 偶函数对称性 对称中心:(k π,0)(k ∈Z )(含原点)对称中心:(k π+π2,0)(k ∈Z )二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:对称轴:x =k π+π2,k ∈Z对称轴:x =k π,k ∈Z (含y 轴)最小正周期 2π 2π定要注意平移与伸缩的先后顺序,否则会出现错误。

2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.。

正弦、余弦、正切函数图象及其性质

正弦、余弦、正切函数图象及其性质

函数正弦函数y=sinx 余弦函数y=cosx 正切函数y=tanx图像定义域R R{x∣x≠Kπ+π/2,K∈Z}值域[-1,1][-1,1]R周期性最小正周期都是2π最小正周期都是2π最小正周期都是π奇偶性奇函数偶函数奇函数对称性对称中心是(Kπ,0),K∈Z;对称轴是直线x=Kπ+π/2,K∈Z对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z对称中心是(Kπ/2,0),K∈Z单调性在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增最值当X=2Kπ(K∈Z)时,Y取最大值1;当X=2Kπ+3π/2(K∈Z时,Y取最小值-1当X=2Kπ+π/2(K∈Z)时,Y取最大值1;当X=2Kπ+π(K∈Z时,Y取最小值-1无最大值和最小值正弦、余弦、正切函数图象及其性质注意1、正弦函数y=sinx在[2kπ-π/2, 2kπ+π/2](k∈Z)上是增函数,但不能说它在第一或第四象限是增函数;对于正切函数,它在定义域的每一个单调区间内都是增函数,但不能说它在定义域上是增函数。

2、对于复合函数y=Asin(ωx+φ)、y=Acos(ωx+φ)、y=Atan(ωx+φ)均可以将ωx+φ视为一个整体,用整体的数学方法转化为熟悉的形式解决。

当ω<0时,要特别注意。

如:y=sin(-2x+π/4)可以化为y=-sin(2x-π/4)或y=cos(2x+π/4)再求解。

3、函数y=Asin(ωx+φ)、y=Acos(ωx+φ)的最小正周期为2π/∣ω∣,y=Atan(ωx+φ) 的最小正周期为π/∣ω∣。

最全三角函数的图像与性质知识点总结

最全三角函数的图像与性质知识点总结

三角函数的图像与性质一、 正弦函数、余弦函数的图像与性质函数 y =sin x y =cos x图 象定义域 R R 值域[-1,1][-1,1]单调性递增区间:2,2()22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦递减区间:32,2()22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦递增区间:[2k π-π,2k π] (k ∈Z ) 递减区间:[2k π,2k π+π] (k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max =1;x =2k π+π(k ∈Z ) 时,y min =-1奇偶性奇函数偶函数对称性对称中心:(k π,0)(k ∈Z )(含原点)对称轴:x =k π+π2,k ∈Z对称中心:(k π+π2,0)(k ∈Z )对称轴:x =k π,k ∈Z (含y 轴)最小正周期2π2π二、正切函数的图象与性质 定义域 {|,}2x x k k Z ππ≠+∈值域 R单调性 递增区间(,)()22k k k Z ππππ-+∈奇偶性奇函数对称性 对称中心:(,0)()2k k Z π∈(含原点)最小正周期 π三、三角函数图像的平移变换和伸缩变换1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象x y sin =方法一:先平移后伸缩 方法二:先伸缩后平移 操作 向左平移φ个单位横坐标变为原来的1ω倍结果 )sin(ϕ+=x yx y ωsin =操作 横坐标变为原来的1ω倍向左平移ϕω个单位结果 )sin(ϕω+=x y操作 纵坐标变为原来的A 倍结果)sin(ϕω+=x A y注意:x 要注意平移与伸缩的先后顺序,否则会出现错误。

2. )sin(ϕω+=x A y (0,0A ω>>)的性质(1)定义域、值域、单调性、最值、对称性:将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2ππϕ±=k 时为偶函数; (3)最小正周期:ωπ2=T3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义(1) A 称为振幅;(2)2T πω=称为周期;(3)1f T=称为频率;(4)x ωϕ+称为相位; (5)ϕ称为初相(6)ω称为圆频率.如有侵权请联系告知删除,感谢你们的配合!。

正弦余弦正切函数的图象和性质

正弦余弦正切函数的图象和性质

6.正弦、余弦、正切函数的图象和性质(1)【复习目标】1. 掌握三角函数的图象及其性质2.会求三角函数的定义域、值域【活动过程】活动一:知识梳理和基础训练(一)考点梳理:1.周期函数及最小正周期:2.正弦、余弦、正切函数的图象和性质(二)基础训练1. 函数)22sin()(π-=x x f 的最小正周期为 ,是 函数(填奇、偶)2.已知定义在R 上的函数)(x f 满足)()2(x f x f -=+,则函数)(x f 的最小正周期为3. 函数x y 2cos log 2=的定义域为4. 函数3sin 2+-=x y 的最大值为 ;取得最大值时对应的=x ;最小值为 ;取得最小值时对应的=x5.函数)326)(6cos(πππ≤≤+=x x y 的值域是 6.求满足下列各式的x 的取值范围。

①1sin 2x ≥② 1cos 22x -≤≤ ③33tan -≥x活动二 求函数的定义域1.求下列函数的定义域:⑴⎪⎭⎫ ⎝⎛-=4tan πx y ⑵ x x y sin lg 162+-=(3)x x y 2cos 2sin 33--= (4) 0.5()log (sin cos )f x x x =-活动三 求三角函数的值域(最值)活动(一)可转化为b x a y ++=)sin(ϕω型1.已知函数()x x x x x x f cos sin sin 33sin cos 22+-⎪⎭⎫ ⎝⎛+=π, 求函数()x f 在⎥⎦⎤⎢⎣⎡-2,2ππ上的最值练习: 已知函数()b x a x f +⎪⎭⎫ ⎝⎛-=32sin 2π的定义域为⎥⎦⎤⎢⎣⎡2,0π,函数的最大值为1,最小值为-5,求b a ,的值。

活动(二)可转化为二次函数型1.已知31sin sin =+y x ,求x y 2cos sin -的最大值与最小值;2.求函数[]π,0,2cos sin 2cos sin ∈+++=x x x x x y 的最值;活动(三)利用不等式、导数或数形结合研究值域1. 函数sin (,)2y x x x ππ⎡⎤=-∈⎢⎥⎣⎦的最大值为2.已知()π,0∈x ,函数x x y sin 2sin +=的最小值为____________3.函数2sin 1sin 3+-=x x y 的值域为____________4.函数x x y sin cos 2-=的值域为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲解新课:正弦、余弦函数的图象
(1)函数y=sinx 的图象:叫做正弦曲线
第一步:在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应).
第二步:在单位圆中画出对应于角6
,


3π,2
π
,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).
第三步:连线.用光滑曲线把正弦线的终点连结起来,就得到正弦函数y=sinx ,x ∈[0,2π]的图象.
根据终边相同的同名三角函数值相等,把上述图象沿着x 轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx ,x ∈R 的图象.
把角x ()x R ∈的正弦线平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点的轨迹就是正弦函数y=sinx 的图象.
(2)余弦函数y=cosx 的图象:叫做余弦曲线 根据诱导公式,可以把正弦函数y=sinx 的图象向左平移
2
π
单位即得余弦函数y=cosx 的图象.
(3)
用五
点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (2

,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是哪几个?(0,1) (
2π,0) (π,-1) (2
3π,0) (2π,1) 讲解范例:
例1 作下列函数的简图
(1)y=1+sinx ,x ∈[0,2π], (2)y=-COSx
探究 如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到 (1)y =1+sinx ,x∈〔0,2π〕的图象; (2)y=sin(x- π/3)的图象?
y=cosx
y=sinx
π




6π-π
-2π-3π
-4π-5π
-6π-6π
-5π
-4π
-3π
-2π

6π5π



π
-1
1
y x
-11
o x
y
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

探究 如何利用y=cos x ,x ∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =-cosx ,
x ∈〔0,2π〕的图象?
小结:这两个图像关于X 轴对称。

探究 如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x 图象关于x 轴对称的图形,得到 y =-cosx 的图象,
再将y =-cosx 的图象向上平移2个单位,得到 y =2-cosx 的图象。

讲解新课: 正弦、余弦函数的性质(一)
1.周期函数定义:对于函数f (x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有: f (x+T)=f (x)那么函数f (x)就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:y=sinx, y=cosx 的最小正周期为2 (一般称为周期);从图象上可以看出sin y x =,x R ∈;cos y x =,
x R ∈的最小正周期为2π;
要点:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈的周期2||
T π
ω= 2、例题讲解:求下列函数的周期 例 y=sin(2x+
4
π)+2cos(3x-6π
)
解: y 1=sin(2x+
4
π) 最小正周期T 1=π y 2=2cos(3x-6π) 最小正周期 T 2=32π
∴T 为T 1 ,T 2的最小公倍数? ∴T=?
例 y=|sinx|
解: T=π 作图
练习:求下列三角函数的周期: ①x y cos 3= ②x y 2sin =(3)12sin()2
6
y x π
=-,x R ∈.
讲解新课:正弦、余弦函数的性质(二)
1.奇偶性 :从图象上可看出函数y=cosx 是偶函数, 函数y=sinx 是奇函数。

2.单调性:
正弦函数在每一个闭区间[-
2π+2k π,2π
+2k π](k ∈Z)上都是增函数,其值从-1增大到1; 在每一个闭区间[2π+2k π,2

+2k π](k ∈Z)上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z)上都是增函数,其值从-1增加到1;
在每一个闭区间[2k π,(2k +1)π](k ∈Z)上都是减函数,其值从1减小到-1.
π
-π 2π


3.有关对称轴:y=sinx 的对称轴为x=2
π
π+k k ∈Z ; y=cosx 的对称轴为x=πk k ∈Z
练习(1)写出函数x y 2sin 3=的对称轴; (2))4
sin(π
+
=x y 的一条对称轴是( )
(A) x 轴, (B) y 轴, (C) 直线4
π
=
x , (D) 直线4π
-
=x
4.例题讲解
例1 判断下列函数的奇偶性 (1)1sin cos ();1sin cos x x
f x x x
+-=
++ (2)2()lg(sin 1sin );f x x x =++
例2 函数f (x )=sin x 图象的对称轴是 ;对称中心是 .
例3.P38面例3
例4 不通过求值,指出下列各式大于0还是小于0;
①)10sin()18
sin(π
π
-
--
②)4
17cos()523cos(ππ---
例5 求函数)321sin(2π
+=x y 的单调递增区间;
思考:你能求]2,2[)2
1
3sin(πππ-∈-=x x y 的单调递增区间吗?
讲解新课:正切函数的性质与图象 1.正切函数的图象,称“正切曲线”。

正切函数的性质 (1)定义域:⎭
⎬⎫

⎨⎧∈+≠
z k k x x ,2|ππ
; (2)值域:R 观察:当x 从小于()z k k ∈+2
π
π,2
π+π−→−k x 时,tan x −−
→+∞ 当x 从大于
()z k k ∈+ππ
2
,ππ
k x +−→−
2时,-∞−→−
x tan 。

(3)周期性:π=T ;:函数 的周
期T π
ω
=
(4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数;
π
-O
π
23-π
2π-2π
π2
3y
y
x
x
()()
tan 0,0y A x A ωϕω=+≠≠
(5)单调性:在开区间z k k k ∈⎪⎭
⎫ ⎝⎛++-ππππ2,2内,函数单调递增。

(6)正切曲线是由被相互平行的直线()2
x k k Z π
π=+∈所隔开的无穷多支曲线组成的。

讲解范例: 例1比较⎪⎭⎫ ⎝⎛-
413tan π与⎪⎭

⎝⎛-517tan π的大小 解:tan 413tan -=⎪⎭⎫ ⎝⎛-
π 4π,52tan
517tan ππ-=⎪⎭⎫ ⎝⎛-,⎪⎭

⎝⎛=<<2,0tan ,5240πππ在x y 内单调递增, ⎪⎭

⎝⎛->⎪⎭⎫ ⎝⎛-->-∴<∴ππππππ
517tan 413tan ,52tan 4tan ,52tan
4
tan
即 例2:求下列函数的周期: (1)3tan 5y x π⎛⎫
=+ ⎪⎝

(2)tan 36y x π⎛⎫
=-
⎪⎝
⎭。

相关文档
最新文档