电力变压器差动保护技术

合集下载

变压器差动保护原理

变压器差动保护原理

变压器差动保护原理
变压器差动保护是一种常用于高压变压器保护的电气保护装置。

其原理是通过比较变压器两侧电流的差值,来识别是否存在故障或异常情况。

具体工作流程如下:
1. 变压器差动保护系统由一台差动继电器和多个电流互感器组成。

电流互感器分别连接到变压器两侧的主绕组,将电流信号传递给差动继电器。

2. 差动继电器内部设有比较电路,用于比较两侧电流的差值。

如果变压器正常运行,两侧电流应该保持平衡。

3. 如果存在故障,比如主绕组中出现短路或地故障,将导致两侧电流不平衡。

差动继电器将通过比较电路检测到这种差异,从而触发保护动作。

4. 差动继电器的动作可以通过断开变压器的断路器或刀闸来切断故障电流,保护变压器和其他设备免受损坏。

5. 为了提高差动保护的可靠性,通常还会配置差动保护的备用继电器和互感器,并采用冗余的电源供电系统。

综上所述,变压器差动保护通过比较变压器两侧电流的差值来识别故障,并触发保护动作,从而保护变压器和其他设备的安全运行。

变压器差动保护的基本原理

变压器差动保护的基本原理

变压器差动保护的基本原理1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。

2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。

因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等.变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法1)励磁涌流在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。

2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为—Φm。

但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示.此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流.-3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主.③励磁涌流的波形出现间断角.4)克服励磁涌流对变压器纵差保护影响的措施:①采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护.2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。

变压器的差动保护

变压器的差动保护

从计算结果可以看出正常情况下流入差动回路 的不平衡电流为 Ibp= I2Y- I2Δ=4.55A-4.32A=0.23A。 为了消除这不平衡电流的影响,可将平衡线圈 接入低压侧的保护臂中,由于I2Y>I2Δ,则有 I2Y- I2Δ的差电流流过差动回路,形成磁势 (I2Y- I2Δ)Wcd,适当选取Wph的匝数,并应 满足下式的要求: I2ΔWph =(I2Y- I2Δ)Wcd 接线时要注意极性,应使I2Δ在Wph上所产生的 磁势,与(I2Y- I2Δ)在Wcd上产生的磁势方 向相反,互相抵消,这样差动继电器的执行元 件中就没有电流。
三、两侧电流互感器的型号和所选变比不
完全合适。
所谓所选变比不完全合适是指变压器两侧的 电流互感器都是采用定型产品。所以实际的计算 变比与产品的标准变比是往往不一样的,而且对 变压器两侧的电流互感器来说,这种程度又不一 样。这就在差动回路中引起了不平衡电流。 因变比选择不合适而引起的不平衡电流,可以采 用BCH型差动继电器的平衡线圈Wph利用磁势平 衡原理来消除其影响。其接线图如图(2)所示:
纵差保护:是利用比较被保护 元件各端电流的幅值和相位原 理构成。
1LH
1DL
I
2LH
2DL
变压器纵差保护
变压器纵差保护是反应变压器一、二次侧电流差值的一种快速动 作的保护装置,用来保护变压器内部以及引出线和绝缘套管的相 间短路。 由于变压器各侧的额定电压和额定电流不等,各侧电流相位也不 相同。且高低压侧是通过电磁联系,在电源一侧中有励磁涌流出 现。这些特点都将导致差动回路中暂态不平衡电流和稳态不平衡 电流大大增大。这便构成了实现变压器纵差保的特殊问题。为了 提高纵差保护的灵敏度,有必要分析有关不平衡增大的原因和克 服的办法。

变压器差动保护原理

变压器差动保护原理

变压器差动保护一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,I1’:流过变压器高压侧的一次电流;I”:流过变压器低压侧的一次电流;I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流;I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;p:比率制动斜线上的任一点;e:p点的纵坐标;b:p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。

变压器差动保护的基本原理

变压器差动保护的基本原理

变压器差动保护的基本原理引言变压器是电力系统中常见且重要的设备,其稳定运行对电网的正常运行起着至关重要的作用。

然而,变压器在运行过程中可能会遇到各种故障,如短路、接地故障等,若这些故障不能及时得到保护和处理,将会对设备和系统产生严重影响。

因此,差动保护作为变压器保护的一种重要手段,具有重要意义。

变压器差动保护的概念变压器差动保护是指通过测量变压器主绕组和副绕组之间的电流差值,判断变压器是否存在故障,并在故障发生时迅速切除故障设备的保护方法。

基本原理变压器差动保护的基本原理是利用变压器主副绕组的电流之差来判断设备是否发生故障。

其基本原理可概括为以下几个方面:1. 差动电流测量原理差动保护通过测量变压器主绕组和副绕组之间的差动电流来实现。

通常情况下,变压器在正常运行时,主绕组和副绕组之间的电流是基本相等的。

若发生故障,导致主绕组和副绕组之间的电流不相等,则表示变压器发生了故障。

2. 差动电流比较原理差动保护系统会将主绕组和副绕组的电流进行比较,以判断两者是否相等。

常用的比较方法有直流量比较方式和交流量比较方式。

直流量比较方式主要是将两个电流通过电流互感器转换为直流信号进行比较;而交流量比较方式则是将两个电流通过电流互感器转换为交流信号,利用相关技术进行相位比较。

3. 故障检测原理差动保护系统通过对差动电流进行检测,可以判断变压器是否发生了故障。

在差动保护系统中,通常会设置定值元件,用于设定差动电流的阈值。

当差动电流超过设定的阈值时,差动保护系统会判断变压器发生了故障,并触发相应的保护动作。

变压器差动保护的实现方式变压器差动保护可以通过硬件实现、软件实现以及硬件与软件相结合的方式实现。

常见的实现方式包括以下几种:1. 采用硬件差动保护装置硬件差动保护装置通常由差动保护继电器、电流互感器、采样器等组成。

差动保护继电器是实现差动保护的核心设备,它能够将主绕组和副绕组的电流进行比较,并根据设定的差动电流阈值进行故障判据。

变压器差动保护

变压器差动保护

变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。

一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。

该保护也是我们继电保护调试人员在工作中经常接触到的设备。

下面将介绍一些有关于差动保护方面的一些知识。

二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。

简单地讲,就是输入的两端TA之间的设备。

由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。

差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。

三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。

差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。

在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。

当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。

变压器差动保护原理图解

变压器差动保护原理图解

变压器差动保护原理图解
差动爱护是依据被爱护区域内的电流变化差额而动作的。

它广泛用来爱护大容量的电力变压器、变电所母线、高压电动机等。

如右图所示是电力变压器的差动爱护原理图。

电流互感器TA1和TA2之间的区域就是差动爱护区,当爱护区内发生短路故障时,即变压器内部(如dl点),电流继电器KA中将产生较大的启动电流使爱护装置动作,而当爱护区外短路时,即变压器外部如(d2点),电流继电器中只流过一较小的不平稳电流,爱护装置不会动作。

所谓变压器的纵联差动爱护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的爱护。

纵联差动爱护装置,一般用来爱护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。

对于变压器线圈的匝间短路等内部故障,通常只作后备爱护。

纵联差动爱护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。

因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。

在正常状况下或爱护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但假如在爱护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到爱护作用。

变压器纵差爱护是根据循环电流原理构成的,变
压器纵差爱护的原理要求变压器在正常运行和纵差爱护区(纵差爱护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差爱护不动作。

但由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差爱护的正确工作,就须适当选择两侧电流互感器的变比,使得正常运行和外部故障时,两个电流相等。

电力变压器差动保护技术分析

电力变压器差动保护技术分析

电力变压器差动保护技术分析【摘要】电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务,变压器差动保护中诸多问题,不能够很好的解决这些问题,就会直接影响变压器差动保护的性能,甚至造成变压器差动保护的误动或拒动。

本文笔者根据多年从事工作经验对其技术进行阐述,谈谈个人一些认识与见解。

【关键词】电力系统;变压器;差动保护;技术分析1.电力变压器差动保护的原理差动保护的原理是基于节点电流定律,利用基尔霍夫电流定理工作的,当变压器正常工作或发生区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。

当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。

因而它只对被保护设备内部发生的短路故障发出响应,因此差动保护具有百分之百的选择性,即使外部的故障极其严重,它也不会对其做出任何动作,因此也可以作为线路、电机等电力设施的主保护。

绕组变压器两侧设有电流互感器,而它的二次侧则是按照循环电流法进行线路连接。

两侧的电流互感器同极端如果同时朝向母线,则会与同极性的端子连接,并且会在两个接线之间接入电流继电器。

继电线圈内部的电流为两边的电流互感器的二次电流差,所以差动继电器的位置是在差动回路上。

2.变压器差动保护技术的实现总结变压器纵差保护所遇到的技术问题,要实现变压器差动保护必须做到:使差动保护各侧电流的相位相同或相反;使由变压器各侧ta二次流入差动保护的电流产生的效果相同,即是等效的;变压器差动保护能可靠躲过励磁涌流空,保证投变压器时不会误动;大电流侧系统内发生接地故障时保护不会误动,即避开零序电流的影响;能可靠躲过稳态及暂态不平衡电流。

2.1变压器差动保护两侧电流的移相呈y,d接线的变压器,两侧电流的相位不同,就不能满σi=0。

因此,要使正常工况下差动保护各侧的电流向量和为零,首先应将某一侧差动ta二次电流进行移相。

变压器差动保护的基本原理

变压器差动保护的基本原理

变压器差动保护的基本原理
变压器差动保护是一种常用的电力系统保护方式,主要用于检测变压器的内部故障。

其基本原理如下:
差动保护是通过比较变压器的输入端和输出端的电流差值来实现的。

正常情况下,输入端和输出端的电流应当相等,因为变压器是一个能量转换设备,输入端的电流应当等于输出端的电流(不考虑损耗)。

如果发生内部故障,例如短路或绕组断线,就会导致输入端和输出端的电流不相等。

差动保护系统的基本组成包括电流互感器、比率变压器、差动继电器和保护装置。

电流互感器用于测量输入端和输出端的电流,传输给差动继电器进行比较。

比率变压器用于调整输入端和输出端电流的比例,以匹配差动继电器的输入要求。

当差动继电器检测到输入端和输出端的电流差值超过设定的阈值时,保护装置将触发,切断故障区域的电源,防止进一步损坏。

变压器差动保护的优点是能够快速、准确地检测到内部故障,并迅速采取保护措施,保证电力系统的安全稳定运行。

什么是变压器差动保护

什么是变压器差动保护

什么是变压器差动保护?变压器差动保护特点及误动作原因一、什么是变压器差动保护?变压器的差动保护是变压器的主保护,是按循环电流原理装设的。

主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。

在继电器线圈中流过的电流是两侧电流互感器的二次电流只差,也就是说差动继电器是接在差动回路的。

从理论上讲,正常运行及外部故障时,差动回路电流为零。

实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为Ik=I1-I2=Iumb 要求不平衡点流应尽量的小,以确保继电器不会误动。

当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即Ik=I1+I2=Iumb 能使继电器可靠动作。

变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。

由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。

二、变压器差动保护特点及误动作原因差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端的电气量进行比较,从而判断保护是否动作。

根据基尔霍夫定律,保护范围内流入与流出的电流应该相等(变压器应该归算到同侧)。

当保护范围内发生故障时,其流入与流出的电流就不相等了。

差动保护就是根据这个不平衡电流动作的。

因此,这种保护方法有很高的动作选择性和灵敏度,适用于保护大容量、强电流、高电压及对灵敏度要求高的电气设备。

所以,这种方法广泛用于保护大容量、高电压的变压器,并以其优越的保护性能成为大容量、高电压变压器的主要保护方法。

变压器差动保护的保护范围

变压器差动保护的保护范围

变压器差动保护的保护范围变压器差动保护是电力系统中一种非常重要的保护方式,它主要用于保护变压器绕组及其引出线、套管等设备免受内部故障和外部短路引起的损坏。

变压器差动保护的范围包括以下几个方面:1. 变压器内部故障保护变压器内部故障主要包括绕组的匝间短路、层间短路、相间短路等。

当变压器内部发生这些故障时,会产生很大的电流,可能导致变压器损坏。

差动保护装置能够迅速检测到这些故障,并切断变压器的电源,从而保护变压器不受损坏。

2. 变压器外部短路保护当变压器的外部线路发生短路时,会产生很大的电流,可能导致变压器过载或损坏。

差动保护装置能够迅速检测到这些故障,并切断变压器的电源,从而保护变压器不受损坏。

3. 变压器过载保护当变压器的负载超过其额定容量时,会导致变压器过载。

过载可能会导致变压器绕组过热,甚至烧毁。

差动保护装置能够检测到变压器的负载情况,当负载超过额定值时,及时切断变压器的电源,防止变压器过载损坏。

4. 变压器不平衡保护当变压器的负荷不均衡时,会导致磁通不平衡,从而产生不平衡电流。

这种不平衡电流会在变压器内部产生热量,可能导致变压器绕组过热,甚至烧毁。

差动保护装置能够检测到这种不平衡电流,并切断变压器的电源,防止变压器绕组过热损坏。

5. 变压器零序保护当变压器的中性点接地方式发生变化时,可能会产生零序电流。

这种零序电流会对变压器造成损害。

差动保护装置能够检测到这种零序电流,并切断变压器的电源,防止变压器受到损害。

6. 变压器励磁涌流保护当变压器投入运行或切除负荷时,会产生励磁涌流。

这种励磁涌流会在短时间内对变压器造成较大的冲击。

差动保护装置能够检测到这种励磁涌流,并切断变压器的电源,防止变压器受到冲击损坏。

7. 变压器瓦斯保护当变压器内部发生严重故障时,可能会产生大量瓦斯气体。

瓦斯气体的存在会对变压器造成严重的安全隐患。

差动保护装置能够检测到瓦斯气体的产生,并切断变压器的电源,防止事故的发生。

变压器保护分析之差动保护

变压器保护分析之差动保护
以需 要 设 置 变 压 器 的 继 电保 护 。
差 动 电流 的绕 组 都 以变 压 器 侧 为基 准 侧 。 由 于
变压器两侧 的电流大小不 同,电流相位在 Y, d接 线时也不相 同,故保护装置必须要对 两侧 电流进行相位补偿和数值补偿 ,才能使变压器 正常运行时 ,流入继 电器的不平衡 电流为零或 较小 。此外 ,差动保护还应考虑变压器励磁 涌 流及 不平衡 电流的影响。
作用 ,
双 绕组变压 器差 动保 护原理 接线如 下 图
所示 ,
I z d> I e 时 ,比率差动有较大的制动作用 。
2 . 3 . 5差 动 速 断 保 护
电流互感器采用减极性标注 。一般来说 ,
差 动保护 是变压 器 的主保 护 ,差 动保 护 的比率制动保护一般能满足正常运 行的变压器 需要 ,能正确及时的动作。但是在变压器 内部
根据 变压器 的各 种故 障状 态 ,变压 器继 电保护装置一般应配置下列保护功能 : 斯保护 ,瓦斯保护能迅速的反应变压器 内部故
态传变严重恶化 ,使差动回路 中的 电流改变了 方向或等于零 ( 无源侧),高次谐波分量增大 ,
反 应二 次谐 波 的判 据 误 将 比率 制 动 原 理 的 差 动
保 护闭琐 ,无法反映 区内短路故障 ,从而影响
2 . 3 . 2克服励磁 涌流对变压 器差动保 护影 响的 了比率差动保护 的快速动作 ,所以变压器 比率 制动原理 的差动保护还应配有差动速断保 护 , 措施
l d — l q d> k ( 1 z d — l e ) I z d> l e
式中l q d 一 差 动 电 流起 动 定 值
I d . 差动 电流动作值 ,l d => i 1> j 2

变压器差动保护

变压器差动保护

变压器差动保护一、差动保护原理变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电 流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。

三绕组变压 器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接人差动继电 器KD ,这里不再赘述。

电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。

如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动 回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即I ,= I',1 2流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和 幅值调整。

具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自 然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形 接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线 的电流互感器变比调整为原来的倍。

微型机变压器差动保护,可以通过软件 计算实现相位校正。

1. 变压器正常运行或外部故障根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧 电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补 偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作, 差动保护不动作。

此时流人差动继电器的电流为式中 n 1TA ——电流互感器1TA 、2TA 的变比;、油—一流人差动继电器的不平衡电流。

2. 变压器内部故障IKD I /—1— — ―2— n iTA^TA =I unb (4—1)根据图4-4(b )所示电流分布,此时流人差动继电器KD 的电流是变压器两侧 电流的二次值相量之和,使继电器动作,差动保护动作。

此时流人差动继电器的 电流为如果变压器只有一侧电源,则只有该侧的电流互感器二次电流流人差动继电 器;如果变压器两侧有电源,则两侧的电流互感器二次电流都流入差动继电器, 且数值相加。

变压器差动保护原理

变压器差动保护原理

变压器差动保护原理
变压器差动保护是一种常用的电力系统保护装置,用于保护变压器免受内部故障和外部故障的影响。

变压器差动保护的原理是基于电流平衡的原则,通过比较变压器的输入和输出电流来检测故障。

当变压器正常运行时,输入和输出电流应该是相等的,因为电流在变压器中是按照电能守恒的原则进行传递的。

如果出现故障,例如绕组短路或接地故障,会导致输入和输出电流不平衡,差动保护装置就会发出警报并采取措施来防止进一步损坏。

变压器差动保护通常由差动继电器、互感器和CT(电流互感器)组成。

差动继电器通过将输入和输出电流进行差值运算,来判断是否存在故障。

互感器用于将变压器的高电压转换为可测量的低电压,而
CT将高电流转换为适宜测量的低电流。

通过将互感器和CT的输出接入差动继电器,可以进行电流差动计算,并根据计算结果判断是否需要采取保护动作。

除了电流差动保护,变压器差动保护还可以包括电压差动保护和变比差动保护。

电压差动保护通过比较变压器的输入和输出电压来检测故障。

变比差动保护则通过监测变压器的变比来判断是否存在故障。

总之,变压器差动保护是一种重要的保护装置,能够有效地检测和防
止变压器内外部的故障。

它不仅可以保护变压器的运行安全,还能提高电力系统的可靠性和稳定性。

差动保护的原理

差动保护的原理

差动保护的原理
差动保护是一种用于电力系统中保护设备的保护装置,其主要原理是通过比较电流变量来检测系统中的故障。

差动保护的基本原理是根据基尔霍夫电流定律,通过比较进入和离开受保护区域的电流的差值,来判断是否有故障发生。

当系统正常运行时,进入和离开受保护区域的电流应该相等,差动保护的输出信号为零。

但是当系统发生故障时,导致有一部分电流发生了变化,进入和离开受保护区域的电流差值就会不为零,差动保护系统会发现这个差异并产生相应的保护动作。

差动保护通常应用于变压器、发电机、电缆等可能发生故障的设备上。

对于变压器来说,差动保护通常是通过在变压器的电流进出线路上安装电流互感器来实现的。

进入和离开变压器的电流通过电流互感器传递到差动保护装置,该装置比较这些电流的差异并判断是否有故障发生。

如果有故障发生,差动保护装置将发出信号,触发断路器或其他保护设备,切断受保护设备与电力系统的连接,从而保护设备免受进一步的损坏。

总之,差动保护通过比较电流变量来检测电力系统中的故障,当进入和离开受保护区域的电流差异大于预设值时,差动保护系统会触发相应的保护动作,以保护设备的安全运行。

二次谐波制动的变压器差动保护

二次谐波制动的变压器差动保护

二次谐波制动的变压器差动保护引言:电力系统中,变压器是一种非常重要的电力设备,用于实现不同电压水平之间的能量转换。

由于变压器在电力系统中的重要性,其保护措施也显得尤为重要。

本文将介绍一种用于变压器保护的技术——二次谐波制动的变压器差动保护。

一、变压器差动保护的原理变压器差动保护是一种常用的保护手段,通过监测变压器的两侧电流差值,实现对变压器内部故障的检测和保护。

当变压器发生内部故障时,变压器两侧的电流会发生差异,差动保护装置会通过比较两侧电流的差值来判断是否存在故障。

一般来说,差动保护装置会设置一个定值,当差值超过该定值时,就会动作保护装置,切断故障电路。

二、二次谐波制动的原理二次谐波制动是一种常用于变压器差动保护的技术。

其原理是利用变压器内部故障时产生的二次谐波电流来触发差动保护装置。

具体来说,当变压器发生内部故障时,故障电流会产生二次谐波电流,而正常工作状态下的电流不会产生二次谐波。

因此,差动保护装置可以通过检测二次谐波电流来判断是否存在故障。

当二次谐波电流超过设定的定值时,差动保护装置会动作,切断故障电路,保护变压器不受损害。

三、二次谐波制动的优点相比于传统的变压器差动保护技术,二次谐波制动具有以下优点:1. 灵敏度高:二次谐波制动技术可以更加准确地检测变压器内部故障,提高保护的灵敏度。

2. 抗干扰能力强:二次谐波制动技术可以有效抑制外部电磁干扰,提高保护的可靠性。

3. 技术成熟:二次谐波制动技术在实际应用中已经得到广泛验证,具有较高的可靠性和稳定性。

4. 适用范围广:二次谐波制动技术适用于各种类型的变压器,包括干式变压器和油浸式变压器。

四、二次谐波制动的应用二次谐波制动技术已经在电力系统中得到广泛应用。

其应用场景包括:1. 变电站:在变电站中,二次谐波制动技术可以用于各种类型的变压器保护,保障变电站的运行安全。

2. 工业领域:在工业领域中,二次谐波制动技术可以保护工业变压器不受损害,确保工业生产的正常进行。

变压器纵联差动保护原理

变压器纵联差动保护原理

变压器纵联差动保护原理变压器纵联差动保护是一种用于保护变压器的重要保护装置,主要用于检测变压器绕组之间的电流差异,以便快速准确地判断是否发生了内部故障。

以下是变压器纵联差动保护的基本原理:1. 基本原理:-纵联差动保护通过比较变压器绕组之间的电流来检测潜在的内部故障。

正常工作状态下,变压器的输入电流等于输出电流,即两侧绕组电流相等。

当发生内部故障时,如绕组短路或绝缘故障,绕组之间的电流差异将导致纵联差动电流。

2. 电流比较:-纵联差动保护系统会同时监测变压器高压绕组和低压绕组的电流。

这些电流通过电流互感器(CT)测量,并传输到差动保护设备中。

设备将两侧电流进行比较,正常情况下两侧电流应该平衡。

3. 设定电流和灵敏性:-差动保护设备设有一定的电流差动保护设定值。

当变压器内部发生故障时,导致两侧电流不平衡,超过设定值时,差动保护将启动,产生差动保护动作信号。

4. 差动保护动作:-一旦检测到电流差异超过设定阈值,差动保护设备会发出保护动作信号。

这通常包括切断电源、关闭刀闸等措施,以隔离变压器并防止故障蔓延。

5. 灵敏性和稳定性:-纵联差动保护需要在足够灵敏的同时保持稳定性,以防止误动作。

因此,设定值的选择、电流互感器的准确性和保护装置的灵敏性都是设计中需要考虑的关键因素。

6. 复合差动保护:-为了提高保护的可靠性,有时会采用复合差动保护,结合其他保护元件,如零序电流保护、过流保护等。

这样可以增加差动保护的鲁棒性,减少误动作的可能性。

变压器纵联差动保护是确保变压器正常运行和防止故障蔓延的关键保护装置之一。

通过及时、准确地检测内部故障,它有助于提高电力系统的可靠性和稳定性。

变压器差动保护的原理

变压器差动保护的原理

变压器差动保护的原理变压器差动保护是电力系统中常用的一种保护设备,它能够有效地检测和保护变压器的正常运行。

其原理是通过比较变压器的输入和输出电流之间的差值,来判断是否存在故障或异常情况,并及时采取相应的措施保护变压器。

变压器差动保护的基本原理是基于基尔霍夫电流定律。

根据这个定律,电流在闭合的电路中是守恒的,即输入电流等于输出电流。

对于变压器来说,输入电流等于输出电流,只有在正常工作状态下才能满足这个条件。

一旦发生故障或异常情况,如短路或相间短路,输入和输出电流之间就会存在差值。

为了实现变压器差动保护,需要在变压器的输入和输出侧分别安装电流互感器,用于测量输入和输出电流。

这些电流互感器将测量到的电流信号传输到差动保护装置中进行处理。

差动保护装置首先对输入和输出电流进行比较,计算它们之间的差值。

如果差值很小,即在设定的误差范围内,差动保护装置会认为变压器工作正常,不采取任何动作。

然而,如果差值超过设定的误差范围,差动保护装置就会判断存在故障或异常情况,并触发相应的保护动作。

为了提高差动保护的可靠性和抗干扰能力,通常还会采用一些辅助措施。

例如,差动保护装置可以设置时间延迟,以排除短暂的过电流或过负荷情况。

此外,还可以根据变压器的额定容量和负载情况,设置不同的差动保护动作值,以适应不同的工作条件。

总的来说,变压器差动保护利用输入和输出电流之间的差值来判断变压器的运行状态,一旦发现故障或异常情况,及时采取保护措施,避免进一步损坏变压器。

这种保护装置在电力系统中得到了广泛应用,提高了系统的可靠性和稳定性。

通过不断改进差动保护装置的技术,提高其灵敏度和可靠性,可以进一步提高电力系统的运行效率和安全性。

变压器比率差动保护原理

变压器比率差动保护原理

比率差动保护的实施方法
1
系统分析
需要详细分析系统的特点和需要保护
选择保护器件
2
的设备类型。
根据分析结果选择合适的差动保护器
件。
3
设定保护参数
根据设备规格和操作响应特点设定保
调试和测试
4
护参数。
进行差动保护测试和调试,并对系统 进行全面的检测和校准。
比率差动保护的未来发展趋势
数字化保护
数字化保护技术将带来更 高的性能和更快的响应速 度。
差动保护原理
电流平衡原理
在正常情况下,变压器的二次侧各相电流是相等 的。差动保护原理就是比较这些电流的差异,当 差异超过设定阈值时,检测为故障。
微处理器技术
微处理器技术已经广泛应用于差动保护技术中, 它们可以将差动电流信号放大并处理成符合需求 的信号,以实现差动保护。
比率差动保护的基本原理
什么是比率保护?
比率保护是指通过测量电压和电流之间比率的变化来实现保护。
构建保护计算模型
构建保护计算模型可以利用计算机技术轻松实现。例如,计算自举误差、互感器误差和绕组 接地等常见问题,并进行相应的校准,从而有效降低误trip电流的发生率。
比率差动保护的优势
精确性
比率差动保护可以提供更精 确的保护,可以捕捉更小的 变化,并从很多方面区别正 常的和故障的差异。
可靠性
比率差动保护通常比其他保 护技术更可靠、更稳定,可 以大大内检测到问题,可以及时地 响应并采取必要的措施。
比率差动保护的应用场景
变电站
在变电站中,比率差动保护可以应用于变压器和 母线的保护,具有非常重要的作用。
输电线路
比率差动保护也可以应用于输电线路和电缆线路 的保护,可以帮助提高整个系统的安全性。

变压器差动保护工作原理

变压器差动保护工作原理

变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。

想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。

可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。

这个保护的工作原理就像是在打扫卫生,保持一切井井有条。

变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。

比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。

这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。

就算是微小的电流差异,它也能立马检测出来。

你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。

这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。

有趣的是,这个过程其实是很迅速的,快得让人惊叹。

可以说,变压器在保护的帮助下,真的是“安全感爆棚”。

想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。

它的反应速度可以说是“飞一般的感觉”,不容小觑。

变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。

就像是调味品,盐放多了,菜就咸了,少了又没味儿。

合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。

这时候就需要专业人员仔细调试,确保一切都在“正轨”上。

而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。

搞定这些后,变压器的安全性就会大大提升。

毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将元件两端电流互感器按差接法连接,正常运行或外部故障时,流入继电器的电流为两侧电流差,接近零;内部故障时,流入继电器的电流为两侧电流和,其值为短路电流,继电器动作。

将此原理应用于变压器,即为变压器差动保护1.母联死区保护的概念对于双母线或单母线分段,在母联单元上只安装一组TA情况下,母联TA与母联断路器之间(K点)故障称为死区故障。

当K点发生故障,II母判为区内故障,I母判为区外故障,II母保护动作并跳开母联断路器后,K点故障仍然存在于I母,未能彻底切除故障。

双母线保护装置具有"母联死区保护"功能。

死区故障时,I母或II母保护动作后,发令切除该段母线上所有运行单元(包括母联开关),同时保护程序继续判别大差是否返回、母联TA上故障电流是否消失。

若经过延时(确保母联断路器可靠跳闸),大差未返回、母联TA仍有故障电流,则启动母联死区保护,发令动作于另一段母线保护的出口,从而彻底切除死区故障。

双母线母联单元热备用状态,即母联的两隔离刀闸闭合而母联断路器断开时,在死区发生故障,若母线保护按母联隔离刀闸状态计算两小差,则将造成故障母线判为区外,而非故障母线判为区内。

为解决此问题,将母联断路器辅助接点(常开接点)接入保护装置,作为判定母联单元"断"或"联"运行方式的依据。

母联断路器的辅助接点未闭合时,母线保护按双母线分列运行时的保护逻辑判别及出口。

I母小差及II母小差判据中不计入母联电流。

此时,若发生死区故障,故障母线判为区内而正确迅速动作,非故障母线则判为区外可靠不动作。

母联断路器的辅助接点闭合后,母线保护则按常规双母线并列运行时的保护逻辑判别及出口。

2、电容式电压互感器(CVT)的简单结构和特点电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保护等的电压源的电压互感器,电容式电压互感器还可以将载波频率耦合到输电线用于长途通信、远方测量、选择性的线路高频保护、遥控、电传打字等。

因此和常规的电磁式电压互感器相比,电容式电压互感器器除可防止因电压互感器铁芯饱和引起铁磁谐振外,在经济和安全上还有很多优越之处。

电容式电压互感器主要由电容分压器和中压变压器组成。

电容分压器由瓷套和装在其中的若干串联电容器组成,瓷套内充满保持0.1MPa正压的绝缘油,并用钢制波纹管平衡不同环境以保持油压,电容分压可用作耦合电容器连接载波装置。

中压变压器由装在密封油箱内的变压器,补偿电抗器和阻尼装置组成,油箱顶部的空间充氮。

一次绕组分为主绕组和微调绕组,一次侧和一次绕组间串联一个低损耗电抗器。

由于电容式电压互感器的非线性阻抗和固有的电容有时会在电容式电压互感器内引起铁磁谐振,因而用阻尼装置抑制谐振,阻尼装置由电阻和电抗器组成,跨接在二次绕组上,正常情况下阻尼装置有很高的阻抗,当铁磁谐振引起过电压,在中压变压器受到影响前,电抗器已经饱和了只剩电阻负载,使振荡能量很快被降低。

3、在综合重合闸装置中。

通常采用两种重合闸时间,即“短延时”和“长延时”.这是为什么?这是为了使三相重合和单相重合的重合时间可以分别进行整定。

因为由于潜供电流的影响,一般单相重合的时间要比三相重合的时间长。

另外可以在高频保护投入或退出运行时,采用不同的重合闸时间。

当高频保护投入时,重合闸时间投“短延时”;当高频保护退出运行时,重合闸时间投“长延时”。

4、电压切换回路在安全方面应注意哪些问题?手动和自动切换方式各有什么优缺点?在设计手动和自动电压切换回路时,都应有效地防止在切换过程中对一次侧停电的电压互感器进行反充电。

电压互感器的二次反充电,可能会造成严重的人身和设备事故。

为此,切换回路应采用先断开后接通的接线。

在断开电压回路的同时,有关保护的正电源也应同时断开。

电压回路切换采用手动方式和自动方式,各有其优缺点。

手动切换,切换开关装在户内,运行条件好,切换回路的可靠性较高。

但手动切换增加了运行人员的操作工作量,容易发生误切换或忘记切换,造成事故。

为提高手动切换的可靠性,应制定专用的运行规程,对操作程序作出明确规定,由运行人员执行。

自动切换可以减轻运行人员的操作工作量,也不容易发生误切换和忘记切换的事故。

但隔离开关的辅助触点,因运行环境差,可靠性不高,经常出现故障,影响了切换回路的可靠性。

为了提高自动切换的可靠性,应选用质量好的隔离开关辅助触点,并加强经常性的维护。

5、跳闸位置继电器与合闸位置继电器有什么作用?它们的作用如下:1)可以表示断路器的跳、合闸位置如果是分相操作的,还可以表示分相的跳、合闸信号。

2)可以表示断路器位置的不对应或表示该断路器是否在非全相运行壮态。

3)可以由跳闸位置继电器的某相的触点去启动重合闸回路。

4)在三相跳闸时去高频保护停信。

5)在单相重合闸方式时,闭锁三相重合闸。

6)发出控制回路断线信号和事故音响信号。

6、简述微机保护投运前为什么要用系统工作电压及负荷电流进行检验。

利用系统工作电压及负荷电流进行检验是对装置交流二次回路接线是否正确的最后—次检验,因此事先要做出检验的预期结果,以保证装置检验的正确性。

(1)检验交流电压、电流的相序:通过打印的采样报告来判断交流电压、电流的相序是否正确,零序电压、零序电流应为零。

(2)测定负荷电流相位:根据打印的采样报告,分析各相电流对电压的相位,是否与反应—次表计值换算的角度与幅值相—致。

(3)检验3U回路。

1)L、N线检查:主要依靠校对导线来确定。

2)检查电压互感器开口三角的接线是否符合保护装置的极性要求。

对于新建变电站,应在屋外电压互感器端子箱和保护屏端子排处,分别测定二次和三次绕组的各同名相电压,以此来判断极性端。

然后在电压互感器端子箱处,引出S—N电压加到微机保护3Uo绕组上,打印采样值,判断3U。

的极性是否正确。

对于已运行的变电站,可参照已运行的,且零序功率方向元件正确动作过的电压互感器开口三角的接线进行核对。

或者在L、N线校对导线正确,L线无断线的基础上,把S端用电缆芯临时引至微机保护屏上代替L端,参照上法检验。

(4)检验3I。

回路:在3I。

回路通一个IA电流,若3I。

与IA的采样值的相位与幅值相同,说明3I。

回路正确。

7、三相重合闸起动回路中的同期继电器常闭触点回路中,为什么要串接检线路有电压常开触点?三相检同期重合闸起动回路中串联KV常开触点,目的是为了保证线路上确有电压才进行检同期重合,另外在正常情况下,由于某种原因在检无压重合方式下,因为断路器自动脱落,线路有电压无法进行重合,此时,如果串有KV 常开触点的检同期起动回路与检无压起动回路并联工作,就可以靠检同期起动回路纠正这一误跳闸。

8、继电保护装置中的作为电流线性变换成电压的电流互感器和电抗变压器,其主要区别有哪些?前者如何使 I1与U2:同相?后者如何使I1与U2达到所需要的相位?主要区别在铁芯结构上,TA无气隙,而DKB有气隙,开路励磁阻抗TA大而DKB小;在一次电流和二次电压相位上,TA同相,DKB一次电流落后二次电压90°;TA二次电压取自负荷电阻R上的压降,为达到同相可并适当的电容,DKB可在二次线圈上并联可变电阻,靠改变电阻获得所需的相位。

9、什么叫电压互感器反充电?对保护装置有什么影响?通过电压互感器二次侧向不带电的母线充电称为反充电。

如220kV电压互感器,变比为2200,停电的一次母线即使未接地,其阻抗(包括母线电容及绝缘电阻)虽然较大,假定为1MΩ,但从电压互感器二次测看到的阻抗只有1000000/(2200)2=0.2Ω,近乎短路,故反充电电流较大(反充电电流主要决定于电缆电阻及两个电压互感器的漏抗),将造成运行中电压互感器二次侧小开关跳开或熔断器熔断,使运行中的保护装置失去电压,可能造成保护装置的误动或拒动。

文章转载来自北极星电力招聘网,旨在抛砖引玉供广大网友分享交流。

一、电力系统继电保护的概念与作用1.电力系统故障和不正常运行故障:短路和断线(断相)短路:大电流接地系统d(3)、d(2)、d(1)、d(1。

1)小电流接地系统d(3)、d(2)、d(1。

1)断相:单相断线和两项断线(不要与PT二次断线混淆)其中最常见且最危险的是各种类型的短路。

其后果:1I增加危害故障设备和非故障设备;2U降低影响用户正常工作;3破坏系统稳定性,使事故进一步扩大(系统震荡,互解)I2(I0)旋转电机产生附加发热I0—相邻通讯系统故障特征:I增加、U降低、Z降低接地故障、断线有零序不对称故障有负序不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。

如:小电流接地系统d(1)、过负荷、过电压、频率降低、系统震荡等。

2.继电保护的作用:要求能区分故障和正常运行、判断故障设备(区内还是区外故障)两个作用:故障不正常运行状态故障和不正常运行状态—>事故(P1),不可能完全避免且传播很快(光速)要求:几十毫秒内切除故障人(×),继电保护装置(√)任务:P2.被形象的比喻为“静静的哨兵”二、继电器继电器动作:继电器返回:继电特性:三、继电保护的基本原理、构成与分类:1.基本原理:为区分系统正常运行状态与故障或不正常运行状态——找差别:特征。

①增加故障点与电源间—>过电流保护②U降低—>低电压保护③变化;正常:20°左右—>短路:60°~85°—>方向保护.④;模值减少—>阻抗保护⑤—>——〉电流差动保护⑥I2、I0序分量保护等。

另非电气量:瓦斯保护,过热保护原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征(差别),即可找出一种原理,且差别越明显,保护性能越好。

2.构成以过电流保护为例:正常运行:Ir=IfLJ不动故障时:Ir=Id>IdzLJ动—>SJ动(延时)—>XJ动—>信号TQ动—>跳闸一般由测量元件、逻辑元件和执行元件三部分组成。

相关文档
最新文档