2020-2021学年最新江苏省盐城市中考数学模拟试卷及答案解析

合集下载

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(四)(满分:120分 考试时间:120分钟)一、选择题。

(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.-3的相反数是( ) A.31 B.31- C.-3 D.3 2.下列各式运算中结果为6a 的是( )A. 33a a +B.33)(aC.33·a a D.212a a ÷ 3.如图是由4个大小相同的正方体组合而成的几何体,其左视图是( )4.-27的立方根是( )A.3B.-3C.2D.-25.若a >b ,则下列各式中一定成立的是( )A.a -2>b -2B.a -5<b -5C.-2a >-2bD. 4a <4b6.如图,AB ∥CD ,直线l 分别交AB 、CD 于点E 、F ,∠1=58°,则∠2的度数是( )A.58°B.148°C.132°D.122°7.下面是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形。

下列推理正确的是( )A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②8.已知二次函数y =x 2+2x +a (a >0且a 为常数,当x =m 时的函数值y 1<0,则当x =m +2时的函数值y 2与0的大小关系为( )A.y 2>0B.y 2<0C.y 2=0D.不能确定二、填空題。

(本大题共10小题,每小题2分,共20分.不需要写出解答过程,请把答案直接填写在横线上)9.计算:=--014.39)(π . 10.若分式32+x 有意义,则x 的取值范围是 . 11.据探测,马里亚纳海沟的最大水深位于斐查兹海渊,水深约11000米,是地球的最深点,11000用科学记数法表示为 .12.把代数式xy 2-9x 分解因式,结果是 .13.若一次函数y =(k +5)x -2中y 随x 的增大而减小,则k 的取值范围是 .14.已知-1是关于x 的一元二次方程x 2+kx -3=0的一个根,则k = .15.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,DE 是BC 的垂直平分线,点E 是垂足。

2020-2021学年江苏省中考数学第二次模拟试卷1及答案解析

2020-2021学年江苏省中考数学第二次模拟试卷1及答案解析

江苏省中考数学二模试卷一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣22.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.206.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为.10.已知,则= .11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= .14.根据图中所标注的数据,计算此圆锥的侧面积cm2(结果保留π).15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为°;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标用含a的代数式表示F点的坐标(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣2【考点】算术平方根.【分析】根据算术平方根的定义即可得出答案.【解答】解:4的算术平方根是2,故选C.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:2+3+5=10根据题意得:80×+85×+90×=16+25.5+45=86.5(分)答:小王的成绩是86.5分.故选:D.4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【考点】三角形的外接圆与外心.【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.20【考点】平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=6,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=6,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==8,∴AE=2AO=16.故选C.6.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2【考点】二次函数图象与几何变换.【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2﹣8x﹣6=0,即x2+4x+3=0,解得x=﹣1或﹣3,则点A(﹣1,0),B(﹣3,0),由于将C1向左平移2个长度单位得C2,则C2解析式为y=﹣2(x+4)2+2(﹣5≤x≤﹣3),当y=﹣x+m1与C2相切时,令y=﹣x+m1=y=﹣2(x+4)2+2,即2x2+15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=﹣x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=﹣x+m与C1、C2共有3个不同的交点,故选:A.二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为 6.344×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6344000=6.344×106.故答案为:6.344×106.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为﹣6 .【考点】一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入y=2x+3b+c,得到3b+c=4,再将2﹣6b﹣2c变形为2﹣2(3b+c),然后把3b+c=4代入计算即可.【解答】解:∵直线y=2x+3b+c与x轴交于点(﹣2,0),∴0=2×(﹣2)+3b+c,∴3b+c=4,∴2﹣6b﹣2c=2﹣2(3b+c)=2﹣2×4=﹣6.故答案为﹣6.10.已知,则= ﹣.【考点】比例的性质.【分析】根据等式的性质,可得a=b,根据分式的性质,可得答案.【解答】解:两边都乘以b,得a=b.==﹣,故答案为:﹣.11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=5cm,∴S△ABC=×5×5=cm2.故答案是:cm2.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于 6 .【考点】概率公式.【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解此分式方程即可求得答案.【解答】解:根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= ﹣4 .【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数y=中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:如图,连接AO,设反比例函数的解析式为y=.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第二象限,∴k<0.∴k=﹣4.故答案为:﹣4.14.根据图中所标注的数据,计算此圆锥的侧面积15πcm2(结果保留π).【考点】圆锥的计算.【分析】先利用勾股定理计算出圆锥的母线长为5cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算此圆锥的侧面积.【解答】解:圆锥的高为4cm,圆锥的底面圆的半径为3cm,所以圆锥的母线长==5(cm),所以此圆锥的侧面积=•2π•3•5=15(cm2).故答案为15π.15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22 元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为4﹣或4+.【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理.【分析】分为两种情况:①当P在直线y=x的左边时,过P1D⊥AB于D,由垂径定理求出AD、由勾股定理求出P1D,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,得出DB=P1D=1,OB=DB=1,由勾股定理求出DO,得出直线P1D的解析式是y=x+,把P(a,4)代入求出a即可;②与①解法类似,当P在直线y=x的右边时,同法得出直线的解析式y=x﹣,把p(a,4)代入求出a的另一个值.【解答】解:分为两种情况:①当P在直线y=x的左边时,过P1D′⊥AB于D′,由垂径定理得:AD′=×2=,∵P1A=2,由勾股定理得:P1D′=1,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,则DB=P1D=1,∵直线y=x,∴∠DOB=45°,∴OB=DB=1,由勾股定理得:DO=,∵直线P1D∥直线y=x,∴直线P1D的解析式是y=x+(即把直线y=x相上平移个单位),∴把P(a,4)代入得:4=a+,∴a=4﹣,②当P在直线y=x的右边时,与①解法类似,P2M=ON=1,由勾股定理得OH=,把直线y=x向下平移个单位得出直线y=x﹣,把p(a,4)代入求出a的另一个值是4+.故答案为:4﹣或4+.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据零指数幂,负整数指数幂,二次根式的性质,特殊角的三角函数值分别求出每一部分的值,再合并即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)原式=1+9+2﹣2|﹣1|=10+2﹣2+=8+3;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为﹣1≤x<2.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.【考点】分式的化简求值;根的判别式.【分析】先算括号里面的,再算除法,根据实数m使关于x的一元二次方程x2﹣4x ﹣m=0有两个相等的实数根求出m的值,代入分式进行计算即可.【解答】解:原式=÷=•=,∵实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根,∴△=0,即(﹣4)2+4m=0,解得m=﹣4,∴原式=﹣.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50 天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为72 °;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据圆周角乘以3级所占的百分比,可得答案;(3)根据有理数的减法,可得5级的天数,根据5级的天数,再根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)360°×=72°,故答案为:72;(3)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.【考点】菱形的性质;全等三角形的判定与性质;平行四边形的性质.【分析】①欲证明△ADE≌△CBF,只要证明AD=BC,∠A=∠C,AE=CF即可.②连接BD,根据S四边形ABCD=2S△ABD,只要证明△ADB是直角三角形,求出AD、BD即可解决问题.【解答】①证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为AB、CD的中点,∵AE=EB,DF=FC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF,②连接BD,由①有AE=EB,∵四边形DEBF是菱形,∴DE=EB=AE,∴△ADB是直角三角形,在RT△ADB中,∵∠ADB=90°,AD=BC=2,AB=4,∴BD==2,∵四边形ABCD是平行四边形,∴S平行四边形ABCD=2•S△ADB=2××2×2=4.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.【考点】列表法与树状图法;算术平均数;中位数;众数;方差.【分析】(1)根据平均数的定义计算(2)班的平均数,根据中位数的定义确定(1)班的中位数;(2)可利用平均数或中位数或方差的意义说明九(2)班成绩好;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图展示所有9种等可能的结果数,找出另外两个决赛名额落在不同班级的结果数,然后根据概率公式求解.【解答】解:(1)a=95,b=93;(2)九(2)班成绩好的理由为:(2)班的平均数比(1)高;(2)班的方差比(1)班小,(2)班的成绩比(1)班稳定;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图为:共有9种等可能的结果数,其中另外两个决赛名额落在不同班级的结果数为8,所以另外两个决赛名额落在不同班级的概率==.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【解答】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y 小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.【考点】解直角三角形的应用-方向角问题.【分析】由各方向角得出:∠EAD=45°,FBD=30°,又∠DAC=15°,则∠EAC=60°,∠FBC=60°,∠DBC=30°,△ABD是等腰三角形,∠ADB的大小,即可;(2)过B作BO⊥DC,交其延长线于点O,把求CD的问题转化为求DO和CO的问题【解答】解:(1)由示意图可得:∠EAD=45°,∠FBD=30°,又∵∠DAC=15°,∴∠EAC=60°,∵AE∥BF,∴∠FBC=∠EAB=60°,∴∠DBC=30°,∴∠BDA=∠DBC﹣∠DAB=30°﹣15°=15°,∴∠BDA=∠DAB,∴AB=DB=2km,∴∠ADB=15°,∴∠DBC=∠ADB+∠DAC=15°+15°=30°;(2)如图,过B作BO⊥DC,交其延长线于点O,在Rt△DBO中,BD=2,∠DBO=60°,∴DO=2×sin60°=,BO=2×cos60°=1.在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,∴CD=DO﹣CO=﹣=(km).即C,D之间的距离km.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.【考点】切线的判定.【分析】(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;(2)利用相似三角形的判定与性质首先得出△FED∽△FAC,进而求出即可.【解答】(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴=,∴=,解得:AC=9,即⊙O的直径为9.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标(1﹣b,b)用含a的代数式表示F点的坐标(a,1﹣a)(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.【考点】反比例函数综合题.【分析】(1)易得点E的纵坐标为b,点F的横坐标为a,代入直线的解析式y=﹣x+1,即可用a,b的式子表示出E、F两点的坐标;(2)由直线y=﹣x+1与x,y轴分别交于A、B两点可得OA=OB=1,从而得到∠OAB=45°,将OE2、EF、EA分别用a、b的代数式表示,可得OE2=EF•EA,可证明△EOF∽△EAO,可得到∠EOA=∠EFO,又∠EAO=∠FBO,可证明△AOE∽△BFO;(3)由(2)可得∠EOF=∠OAE=45°,其值不变.【解答】解:(1)如图1,∵PM⊥x轴与M,交线段AB于F,∴x F=x M=x P=a,∵PN⊥y轴于N,交线段AB于E,∴y E=y N=y P=b,∵点E、F在直线AB上,∴y E=﹣x E+1=b,y F=﹣x F+1=﹣a+1,∴x E=1﹣b,y F=1﹣a,∴点E的坐标为(1﹣b,b),点F的坐标为(a,1﹣a).故答案为:(1﹣b,b);(a,1﹣a);(2)证明:过点E作EH⊥OM,垂足为H,如图2,∵EN⊥ON,∴OE2=ON2+EN2=b2+(1﹣b)2=2b2+1﹣2b,∵EH⊥OM,EH=b,AH=1﹣(1﹣b)=b,∴EA==b,同理可得:FA=(1﹣a),∴EF=EA﹣FA=b﹣(1﹣a)=(b+a﹣1),∵2ab=1,∴EF•EA=(b+a﹣1)b=2(b2+ab﹣b)=2b2+2ab﹣2b=2b2+1﹣2b,∴OE2=EF•EA,∴=,∵∠OEF=∠AEO,∴△OEF∽△AEO,∴∠EFO=∠AOE,∵OA=OB=1,∠AOB=90°,∴∠OAB=∠OBA=45°,∴△AOE∽△BFO;(3)由(2)可知△OEF∽△AEO,∴∠EOF=∠EAO=45°,∴∠EOF的大小不变,始终等于45°.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)求出A、B、D坐标,理由等腰直角三角形性质即可解决问题.(2)存在.先求出直线CD解析式,再求出线段CD的垂直平分线的解析式,即可求出点P坐标,观察点P纵坐标即可解决问题.(3)存在.如图2中,作AF⊥BC,垂足为F,求出OA=AF时,OC的长即可解决问题.【解答】解:(1)令y=0,则x2﹣4x+3=0,解得x=3或1,∴A(1,0).B(3,0),又∵y=a(x﹣2)2﹣a,∴顶点D(2,﹣a),∵△ABD是直角三角形,DA=DB,∴|﹣a|=AB,|﹣a|=1,∵a>0,∴a=1,∴二次函数解析式为y=x2﹣4x+3,(2)存在.理由:如图1中,∵点P在对称轴上,∴PA=PB,∵四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等,∴PC=PD,设点P(2,t),∵C(0,3a),D(2,﹣a),∴直线CD解析式为y=﹣2ax+3a,线段CD的垂直平分线的解析式为y=x+a﹣,∴点P的纵坐标t=+a,∴当a=3时,t>3,∴存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等.(3)如图2中,作AF⊥BC,垂足为F,当OA=AF=1时,在RT△AFB中,∵AB=2,AF=1,∴AB=2AF,∴∠ABF=30°,∴在RT△BOC中,∵∠BOC=90°,∠OBC=30°,OB=3,∴OC=OB•tan30°=3×=,由图象可知当0<3a<时,即0<a时,点O的对应点O′落在△ABC的外部.。

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷附解析

2023年江苏省盐城市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.其市气象局预报称:明天本市的降水概率为70%,这句话指的是( ) A . 明天本市70%的时间下雨,30%的时间不下雨 B . 明天本市70%的地区下雨,30%的地区不下雨 C . 明天本市一定下雨D . 明天本市下雨的可能性是70%2.如图,AC 、BC 是两个半圆的直径,∠ACP=30°,若AB=10㎝,则PQ 的值为( ) A .5㎝ B .35 C .6D .8㎝函数y kx b =+的图象如图所示,则2y kx b =+的图象可能是( )3.已知A .B .C .D . 4.某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A .长方体B .圆锥体C .正方体D .圆柱体5. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( ) A .30°B . 40°C . 50°D . 60°1QP6.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.0067.如图所示的几张图中,相似图形是( )A .①和②B .①和③C .①和④D .②和③8.如图所示,把三个相同的宽为l cm 、长为2 cm 的长方形拼成一个长为3 cm 、宽为2 cm 的长方形ABGH ,分别以B ,C 两点为圆心,2 cm 长为半径画弧AE 和弧DG ,则阴影部分的面积是( )A .34πcm 2 B .32πcm 2 C .2cm 2 D .(4)2π-cm 29.如图.在△ABC 中,AB AC ,AB 的中垂线DE 交AC 于点D ,交AB 于点E ,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A .24B .30C .32D .34二、填空题10.已知⊙O 1与⊙O 2的半径分别为2cm 和3cm ,当⊙O 1与⊙O 2外切时,圆心距O 1O 2=____ cm .θ=,则θ= .11.若θ为三角形的一个锐角,且2sin312.已知Rt△ABC中,∠C=90°,∠A=60°,BC=5,BD是中线,则BD= .13.如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.14.一个多边形的每个外角都相等,且比它们的内角小l40°,这个多边形的边数为,它有条对角线.15.将三粒质地均匀的分别标有 1、2、3、4、5、6的正六面体骰子同时掷出,出现的数字分别为a、b、c,则a、b、c正好都相同的概率是 .解答题16.如图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50°,∠AEP=80°,则∠B= .17.浙江省教育网开通了网上教学,某校九年级(8)班班主任为了了解学生上网学习时间,对本班40名学生某天上网学习时间进行了调查,将数据(取整数)整理后,绘制出如图所示频率分布直方图,已知从左到右各个小组的频率分别是0.15,0.25,0.35,0.20, 0.05,则根据直方图所提供的信息,这一天上网学习时间在100~119 min之间的学生人数是人.三、解答题18.如图,梯形ABCD中,AB∥CD,且AB=2CD,E,F分别是AB,BC•的中点,EF与BD 相交于点M. (1)求证:△EDM∽△FBM;(2)若DB=9,求BM.19.已知抛物线2y x bx c =++的图象向右平移3个单位,再向下平移 2 个单位得到抛物线2(3)1y x =-+,求b 、c 的值.20.今青少年视力水平的下降已引起全社会的关注,为了了解某中学毕业年级300名学生的视力情况,从中抽取了一部分学生的视力,进行数据整理后如下表: (1)在这个问题中总体是 ; (2)填写频数分布表中未完成的部分;(3)若视力为4.9,5.0,5.1均属正常,不需矫正,试估计该校毕业年级学生视力正常的人数约为多少?21.如图,AD ,BE 是△ABC 的高,F 是DE 中点,G 是AB 的中点.求证:GF ⊥DE .B 组22.通过证明结论的 不成立,从而得出 成立,这种证明方法叫做反证法,它的关键是找出由假设所产生的,与 、 、 、 之间的矛盾.分组 频数 频率 3.95~4.252 0.046 0.124.55~4.85 234.85~5.155.15~5.45 10.02 合计1.0023.试判断命题:“若一条直线上的两点到另一条直线的距离相等,则这两条直线平行”的真假,并说明理由.24.将如图所示的几何体分类,并说明理由.(1)立方体 (2)圆柱 (3)长方体 4)球 (5)圆锥 (6)三棱锥25.如图,如果∠1 是它的补角的5倍,∠2的余角是∠2的2倍,那么AB∥CD吗?为什么?26.705班在召开期末总结表彰会前,班主任安排班长史小青去商店购买奖品,下面是史小青与售货员的对话:史小青:阿姨,你好!售货员:同学你好,想买点什么?史小青:我只有100元,请帮助我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见!根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.图②、③、④、⑤分别由图①变换而成的,请你分析它们的形成过程.28.如图,将△ABC先向上平移5格得到△A′B′C′,再以直线MN为对称轴,将△A′B′C′作轴对称变换,得到△A″B″C″,作出△A′B′C′和△A″B″C″.29.已知,如图所示,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BE=CF.试判断∠B与∠DEC是否相等,并说明理由.30.小彬解方程21152x x a-++=时,方程左边1 没有乘以 10,由此求得方程的解为 x=4. 试求 a的值,并正确地求出方程的解.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.D5.B6.A7.C8.C9.D二、填空题10.511.60°12.335 13. 714.18,13515.13616. 40°17.14三、解答题 18.(1)略(2)3.19.由题意,平移前解析式为22(33)123y x x =-+++=+,∴b= 0 , c= 320.⑴某中学毕业年级300名学生视力的全体情况;⑵频率分布表的第一列应填4.25~4.55;第二列从上到下依次为:18,50;第三列从上到下依次为:0.46,0.36;⑶108名.21.连结EG ,DG .证EG=DG22.反面,结论,已知,定义,公理,定理23.假命题,如图所示,AB ⊥BD 于B ,CD ⊥BD 于D ,AB=CD ,但AC 不平行BD24.答案不唯一,如:(1)按平面分:立方体、长方体、三棱锥;(2)按曲面分:圆柱、球、圆锥25.AB∥CD.理由:设∠l的度数为x,则x=5×(180°-x),解得x=150°.同理,∠2的度数为30°∵∠l+∠2=150°+30°=180°,∴AB∥CD26.5元和3元.27.由图①经过连续四次绕圆心顺时针旋转90°得到28.略29.∠B=∠DEC,理由略30.x=1a=-,13。

2020年江苏省盐城市射阳县中考数学一模试卷 (解析版)

2020年江苏省盐城市射阳县中考数学一模试卷 (解析版)

2020年盐城市射阳县中考数学一模试卷一、选择题(共8小题).1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d2.下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.3.今年以来,人们对全国多地大范围持续的雾霾天气记忆犹新,“细颗粒物PM2.5”遂成为显示度最高的热词之一.PM2.5是指大气中直径小于或等于0.0000025米(即2.5微米)的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.25×10﹣74.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①③②B.②①③C.③①②D.①②③5.圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切6.下列运算正确的是()A.3x﹣2x=x B.3x+2x=5x2C.3x•2x=6x D.3x÷2x=7.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.78.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.立交桥总长为168 mB.从F口出比从G口出多行驶48mC.甲车在立交桥上共行驶11 sD.甲车从F口出,乙车从G口出二、填空题(本大题共8小题,每小题3分,共24分)9.二次根式有意义,则x的取值范围是.10.9的平方根是.11.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是.12.分解因式:9x2﹣y2=.13.小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差.(填“变大”、“变小”或“不变”)14.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧的长为cm.15.如图,△ABC中,D,E两点分别在AB、BC上,若BD:BA=BE:BC=1:3,则△DBE的面积:△ADC的面积=.16.如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA 的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为.三、解答题(本大题共11小题,共102分,解答时写出必要的文字说明、证明过程或演算步骤.)17.计算(﹣3)0+﹣2sin30°﹣|﹣2|.18.先化简,再求值:÷(﹣),其中x是满足不等式组的最大整数.19.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩子中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.20.关于x的一次函数y1=﹣2x+m和反比例函数y2=的图象都经过点A(﹣2,1).求:(1)一次函数和反比例函数的解析式;(2)若一次函数和反比例函数图象的另一个交点B的坐标为(,﹣4),请结合图象直接写出y1>y2的x取值范围.21.2020贺岁片《囧妈》提档大年三十网络首播、“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有人;(2)扇形统计图中,扇形C的圆心角度数是;(3)请补全条形统计图;(4)“乐调查”平台调查了春节期间观看《囧妈》的观众约5000人,请估计观众对该电影的满意(A、B、C类视为满意)的人数.22.如图,矩形ABCD中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1)求证:四边形AOBE是菱形;(2)若∠EAO+∠DCO=180°,DC=3,求四边形ADOE的面积.23.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.24.“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价x(元/千克)12162024日销售量y(千克)220180140m (注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:①m=千克;②当销售价格x=元时,日销售利润W最大,最大值是元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.25.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道由A地到O地,再由O地到B地可大大缩短路程、∠OAC=45°,∠OBC=60°,∠ACB=90°,AC=540公里,BC=400公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4,≈2.4)26.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.27.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A (3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA,且PA=NA时,求此时点P的坐标;(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请求出点Q的坐标.参考答案一、选择题(本大题共8题,每题3分,满分24分)1.实数a、b、c、d在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是()A.a B.b C.c D.d【分析】根据数轴上某个数与原点的距离的大小确定结论.解:由图可知:c到原点O的距离最短,所以在这四个数中,绝对值最小的数是c;故选:C.2.下列四张扑克牌的牌面,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念和扑克牌的花色特点求解.解:根据中心对称图形的概念,知A、B、C都是中心对称图形;D、旋转180°后,中间的花色发生了变化,不是中心对称图形.故选:D.3.今年以来,人们对全国多地大范围持续的雾霾天气记忆犹新,“细颗粒物PM2.5”遂成为显示度最高的热词之一.PM2.5是指大气中直径小于或等于0.0000025米(即2.5微米)的颗粒物,也称为可入肺颗粒物.把0.0000025用科学记数法表示为()A.0.25×10﹣5B.2.5×10﹣5C.2.5×10﹣6D.25×10﹣7【分析】根据科学记数法和负整数指数的意义求解.解:0.0000025=2.5×10﹣6.故选:C.4.如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①③②B.②①③C.③①②D.①②③【分析】根据简单几何体的三视图,可得答案.解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:A.5.圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【分析】由⊙O的直径为8cm,得出圆的半径是4cm,圆心O到直线l的距离为4cm,即d=4cm,得出d=r,即可得出直线l与⊙O的位置关系是相切.解:∵⊙O的直径为8cm,∴r=4cm,∵d=4cm,∴d=r,∴直线l与⊙O的位置关系是相切.故选:B.6.下列运算正确的是()A.3x﹣2x=x B.3x+2x=5x2C.3x•2x=6x D.3x÷2x=【分析】先根据合并同类项法则,单项式乘以单项式和单项式除以单项式进行计算,再判断即可.解:A、结果是x,故本选项符合题意;B、结果是5x,故本选项不符合题意;C、结果是6x2,故本选项不符合题意;D、结果是,故本选项不符合题意;故选:A.7.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1B.1C.﹣7D.7【分析】利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k与b的值,即可求出所求.解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.8.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°.甲、乙两车由A口同时驶入立交桥,均以8m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.立交桥总长为168 mB.从F口出比从G口出多行驶48mC.甲车在立交桥上共行驶11 sD.甲车从F口出,乙车从G口出【分析】根据题意、结合图象问题可得.解:由图象可知,两车通过,,弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.因此,甲车所用时间为4+3+4=11s,故C正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走48m,故B正确;根据两车运行时间,可知甲先驶出,应从G口驶出,故D错误;根据题意立交桥总长为(3×3+4×3)×8=168m,故A正确;故选:D.二、填空题(本大题共8小题,每小题3分,共24分)9.二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.10.9的平方根是±3.【分析】直接利用平方根的定义计算即可.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.11.在平面直角坐标系中,点A(2,1)关于x轴对称的点的坐标是(2,﹣1).【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为:(2,﹣1).12.分解因式:9x2﹣y2=(3x+y)(3x﹣y).【分析】利用平方差公式进行分解即可.解:原式=(3x+y)(3x﹣y),故答案为:(3x+y)(3x﹣y).13.小华5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差变小.(填“变大”、“变小”或“不变”)【分析】根据方差公式求出小华6次的方差,再进行比较即可.解:(5+9+7+10+9)÷5=8(环),∵前5次小华的方差是3.2,小华再射击1次,分别命中8环,∴小华这六次射击成绩的方差是×[3.2×5+(8﹣8)2]=2.67,∵2.67<3.2,∴小华这六次射击成绩的方差会变小;故答案为:变小.14.在半径为2cm的⊙O中,用刻度尺(单位:cm)测得弦AB的长如图所示,则劣弧的长为cm.【分析】连接OA,OB,过点O作OD⊥AB于点D,根据已知条件得到△OAB是等边三角形,求得∠AOB=60°,根据弧长公式即可得到结论.解:连接OA,OB,过点O作OD⊥AB于点D,∵OA=OB=2cm,AB=2cm,∴∴△OAB是等边三角形,∴∠AOB=60°,∴劣弧的长==π,故答案为:.15.如图,△ABC中,D,E两点分别在AB、BC上,若BD:BA=BE:BC=1:3,则△DBE的面积:△ADC的面积=1:6.【分析】先证△BED与△BCA相似,求出△BED与△BCA的相似比,进一步求出其面积比,然后分别过点B,D作AC的垂线BM,DN,求出DN与BM的比值,推出△DCA 与△BCA的面积比,结合△BED与△BCA的面积比即可求出最终结果.解:∵BD:BA=BE:BC=1:3,又∵∠DBE=∠ABC,∴△BED∽△BCA,∴,分别过点B,D作AC的垂线BM,DN,则DN∥BM,∴△ADN∽△ABM,∴,∵S△ADC=AC•DN,S△BCA=AC•BM,∴,∴,故答案为:1:6.16.如图,点A在双曲线y=(k<0)上,连接OA,分别以点O和点A为圆心,大于OA 的长为半径作弧,两弧相交于D,E两点,直线DE交x轴于点B,交y轴于点C(0,3),连接AB.若AB=1,则k的值为﹣.【分析】BC交OA于H,如图,利用基本作图得到CB垂直平分OA,则BO=BA=1,AH=OH,在Rt△OCB中先利用勾股定理计算出CB,再利用面积法计算出OH=,则OA=,设A(m,n),根据•两点间的距离公式得到(m+1)2+n2=12,m2+n2=()2,解关于m、n的方程组得到A(﹣,),然后利用反比例函数图象上点的坐标特征求k的值.解:BC交OA于H,如图,由作法得CB垂直平分OA,∴BO=BA=1,AH=OH,∠OBH=90°,∴B(﹣1,0),在Rt△OCB中,∵C(0,3),∴OC=3,∴CB==,∵×OH×BC=×OB×OC,∴OH==,∴OA=2OH=,设A(m,n),则(m+1)2+n2=12,m2+n2=()2,解得m=﹣,n=,∴A(﹣,),把A(﹣,)代入y=得k=﹣×=﹣.故答案为﹣.三、解答题(本大题共11小题,共102分,解答时写出必要的文字说明、证明过程或演算步骤.)17.计算(﹣3)0+﹣2sin30°﹣|﹣2|.【分析】原式利用零指数幂法则,算术平方根定义,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.解:原式=1+3﹣2×﹣2=4﹣1﹣2=1.18.先化简,再求值:÷(﹣),其中x是满足不等式组的最大整数.【分析】根据分式的减法和除法可以化简题目中的式子,然后根据x是满足不等式组的最大整数,可以求得x的值,然后代入化简后的式子即可解答本题.解:÷(﹣)===,由不等式组,得x<,∵x是满足不等式组的最大整数,∴x=0,当x=0时,原式==0.19.节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,c.若主持人分别从三位家长和三位孩子中各选一人参加游戏.(1)若已选中家长A,则恰好选中孩子的概率是.(2)请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.【分析】(1)根据概率公式直接得出答案即可;(2)先画出树状图,得出所有等情况数和恰好是同一家庭成员的情况数,然后根据概率公式即可得出答案.解:(1)∵有三位孩子,分别是a,b,c,∴家长A恰好选中孩子的概率是;故答案为:.(2)画树状图如下:∵共有9种等情况数,恰好是同一家庭成员的有3种情况数,∴被选中的恰好是同一家庭成员的概率是=.20.关于x的一次函数y1=﹣2x+m和反比例函数y2=的图象都经过点A(﹣2,1).求:(1)一次函数和反比例函数的解析式;(2)若一次函数和反比例函数图象的另一个交点B的坐标为(,﹣4),请结合图象直接写出y1>y2的x取值范围.【分析】(1)把两函数的交点A的坐标分别代入y1=﹣2x+m和y2=中求出m、n 即可得到两函数解析式;(2)先大致画出两函数图象,利用函数图象,写出直线在反比例函数图象上方所对应的自变量的范围即可.解:(1)把A(﹣2,1)代入y1=﹣2x+m得4+m=1,解得m=﹣3,∴一次函数解析式为y1=﹣2x﹣3;把A(2,﹣1)代入y2=得n+1=2×(﹣1)=﹣2,∴反比例函数的解析式为y2=﹣;(2)如图,当x<﹣2或0<x<时,y1>y2.21.2020贺岁片《囧妈》提档大年三十网络首播、“乐调查”平台为了全面了解观众对《囧妈》的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有100人;(2)扇形统计图中,扇形C的圆心角度数是54°;(3)请补全条形统计图;(4)“乐调查”平台调查了春节期间观看《囧妈》的观众约5000人,请估计观众对该电影的满意(A、B、C类视为满意)的人数.【分析】(1)利用B的人数除以B所占百分比可得答案;(2)用360°乘以C所占比例可得扇形C的圆心角度数;(3)用总人数减去B、C、D三类人数可得A类人数,再补图即可;(4)利用样本估计总体的方法计算即可.解:(1)本次接受调查的观众:25÷25%=100(人),故答案为:100;(2)扇形C的圆心角度数是:360°×=54°故答案为:54°;(3)A类别的人数:100﹣25﹣15﹣10=50(人),如图所示;(4)5000×=4500(人),答:估计观众对该电影的满意(A、B、C类视为满意)的人数为4500人.22.如图,矩形ABCD中,对角线AC,BD交于点O,以AD,OD为邻边作平行四边形ADOE,连接BE.(1)求证:四边形AOBE是菱形;(2)若∠EAO+∠DCO=180°,DC=3,求四边形ADOE的面积.【分析】(1)先证明四边形AOBE是平行四边形,再证明AB⊥OE即可;(2)根据∠EAO+∠DCO=180°,以及矩形性质可求得∠EAO=120°,求出△AEO面积,利用四边形ADOE的面积等于△AEO面积的2倍即可求解.解:(1)∵四边形ABCD是矩形,∴DO=BO.∵四边形ADOE是平行四边形,∴AE∥DO,AE=DO,AD∥OE.∴AE∥BO,AE=BO.∴四边形AOBE是平行四边形.∵AD⊥AB,AD∥OE,∴AB⊥OE.∴四边形AOBE是菱形;(2)设AB与EO交点为M.∵AB∥CD,∴∠DCO=∠BAO.∵四边形AOBE是菱形,∴∠EAO=2∠BAO.∵∠EAO+∠DCO=180°,∴∠BAO=120°,∠EAM=60°.又AM=AB=,∴EM=.∴EO=3,∴△AEO面积为×3×=,∴四边形ADOE面积=.23.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.【分析】(1)连接OD和CD,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.【解答】(1)证明:连接OD,CD,∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC,AB=10,∴AD=BD=5,∵O为BC中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD过O,∴直线DF是⊙O的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC=13,∴CD=12,∴cos∠ADF=cos∠BCD==.24.“全民防控新冠病毒”期间某公司推出一款消毒产品,成本价8元/千克,经过市场调查,该产品的日销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,该产品的日销售量与销售单价几组对应值如表:销售单价x(元/千克)12162024日销售量y(千克)220180140m (注:日销售利润=日销售量×(销售单价﹣成本单价)(1)求y关于x的函数解析式(不要求写出x的取值范围);(2)根据以上信息,填空:①m=100千克;②当销售价格x=21元时,日销售利润W最大,最大值是1690元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1500元,试确定该产品销售单价的范围.【分析】(1)设y关于x的函数解析式为y=kx+b,由待定系数法求解即可;(2)①将x=24代入一次函数解析式,计算即可得出m的值;②根据日销售利润=日销售量×(销售单价﹣成本单价)写出函数关系式,并将其配方,写成顶点式,按照二次函数的性质可得答案;(3)根据题意,W=﹣10x2+420x﹣2720﹣100≥1500,变形得出关于x的二次不等式,然后解一元二次方程,再根据二次函数的性质可得答案.解:(1)设y关于x的函数解析式为y=kx+b,将(12,220),(16,180)代入得:,解得:.∴y=﹣10x+340;(2)①∵当x=24时,y=﹣10×24+340=100,∴m=100.故答案为:100;②由题意得:W=(﹣10x+340)(x﹣8)=﹣10x2+420x﹣2720=﹣10(x﹣21)2+1690,∵﹣10<0,∴当x=21时,W有最大值为1690元.故答案为:21,1690;(3)由题意得:W=﹣10x2+420x﹣2720﹣100≥1500,∴x2﹣42x+432≤0,当x2﹣42x+432=0时,解得:x1=18,x2=24,∵函数y=x2﹣42x+432的二次项系数为正,图象开口向上,∴18≤x≤24,∴该产品销售单价的范围为18≤x≤24.25.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起,高铁大大缩短了时空距离,改变了人们的出行方式,如图A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道由A地到O地,再由O地到B地可大大缩短路程、∠OAC=45°,∠OBC=60°,∠ACB=90°,AC=540公里,BC=400公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4,≈2.4)【分析】过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,通过解直角三角形,用x表示CD和AD,由AC的长度列出x的方程,求得x,进而由勾股定理求得OA与OB,便可计算出结果.解:过点O作OD⊥AC于点D,OE⊥BC于点E,设BE=x公里,则OD=CE=400﹣x(公里),∴CD=OE=BE•tan∠OBE=x•tan60°=x,AD=,∵AD+CD=AC=540,∴x+400﹣x=540,∴x=70+70,∴BE=70+70,OE=70+210,AD=OD=330﹣70,∴AO=,OB=,∴AO+OB=330﹣70+140+140=672,AC+CB=540+400=940,940﹣672=268,答:隧道打通后与打通前相比,从A地到B地的路程将约缩短268公里.26.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【分析】(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE.(3)如图3中,在DC上取一点G,使得DG=BE,证明△ABE≌△ADG(SAS),推出AE=AG,∠BAE=∠DAG,证明△AFE≌△AFG(SAS),推出EF=FG,设BE=x,则CG=13﹣x,EF=FG=18﹣x,在Rt△ECF中,根据EF2=EC2+CF2,构建方程求出x即可解决问题.【解答】(1)证明:如图1中,由旋转可得GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中,,∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF.(2)解:结论:EF=DF﹣BE,理由:如图2中,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF(SAS),∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE.(3)解:如图3中,在DC上取一点G,使得DG=BE,∵∠BAD=∠BCD=90°,∴∠ABC+∠D=180°,∠ABE+∠ABC=180°,∴∠ABE=∠D,∵AB=AD,BE=DG,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∴∠EAB+∠BAF=∠DAG+∠BAF=45°,∵∠BAD=90°,∴∠FAG=∠FAE=45°,∵AE=AG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,设BE=x,则EC=EB+BC=x+7,EF=FG=18﹣x,在Rt△ECF中,∵EF2=EC2+CF2,∴52+(7+x)2=(18﹣x)2,∴x=5,∴BE=5.27.如图,二次函数y=﹣x2+2(m﹣2)x+3的图象与x、y轴交于A、B、C三点,其中A (3,0),抛物线的顶点为D.(1)求m的值及顶点D的坐标;(2)如图1,若动点P在第一象限内的抛物线上,动点N在对称轴1上,当PA⊥NA,且PA=NA时,求此时点P的坐标;(3)如图2,若点Q是二次函数图象上对称轴右侧一点,设点Q到直线BC的距离为d,到抛物线的对称轴的距离为d1,当|d﹣d1|=2时,请求出点Q的坐标.【分析】(1)将点A的坐标代入函数表达式,即可求解;(2)证明△NMA≌△AHP(AAS),则AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,即可求解;(3)则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,即可求解.解:(1)将点A的坐标代入函数表达式得:0=﹣32+2(m﹣2)×3+3,解得:m=3,故抛物线的表达式为:y=﹣x2+2x+3,故点D的坐标为:(1,4);(2)过点A作y轴的平行线交过点N与x轴的平行线于点M,交过点P与x轴的平行线于点H,∵∠NAM+∠PAH=90°,∠NAM+∠ANM=90°,∴∠PAH=∠ANM,∵∠NMA=∠AHP=90°,AP=NP,∴△NMA≌△AHP(AAS),∴AN=MN=3﹣1=2,即y P=2=﹣x2+2x+3,解得:x=1(舍去负值),故点P(1,2);(3)设直线BC的表达式为:y=kx+b,则,解得:,由点B、C的表达式为:y=3x+3,如图2,过点Q作y轴的平行线交BC于点M,交x轴于点N,则MN∥y轴,∴∠BCO=∠M,而tan∠BCO==,则sin∠BCO==sin M,过点Q作QH⊥BM,设点Q(t,﹣t2+2t+3),则点M(t,3t+3),则d=DH=MQ sin M=[(3t+3)﹣(﹣t2+2t+3)],d1=t﹣1,∵|d﹣d1|=2,即[(3t+3)﹣(﹣t2+2t+3)]﹣(t﹣1)=±2,解得:t=或﹣1(舍去﹣1),故点Q的坐标为:(,2﹣7).。

2020年江苏省盐城市中考数学试卷 (解析版)

2020年江苏省盐城市中考数学试卷 (解析版)

2020年盐城市中考数学试卷一、选择题(共8小题).1.2020的相反数是()A.﹣2020B.2020C.D.﹣2.下列图形中,属于中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=2B.a3•a2=a6C.a3÷a=a2D.(2a2)3=6a5 4.实数a,b在数轴上表示的位置如图所示,则()A.a>0B.a>b C.a<b D.|a|<|b|5.如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.6.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为()A.0.4×106B.4×109C.40×104D.4×1057.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.68.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上).9.如图,直线a、b被直线c所截,a∥b,∠1=60°,那么∠2=°.10.一组数据1、4、7、﹣4、2的平均数为.11.因式分解:x2﹣y2=.12.分式方程=0的解为x=.13.一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.14.如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC=°.15.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k≠0)的图象上,则k的值为.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:23﹣+(﹣π)0.18.解不等式组:.19.先化简,再求值:÷(1+),其中m=﹣2.20.如图,在△ABC中,∠C=90°,tan A=,∠ABC的平分线BD交AC于点D,CD =,求AB的长?21.如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.23.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.24.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.25.若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.26.木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.32 1.50.4BC0.40.8 1.2 1.62 2.4 2.8 AC+BC 3.2 3.5 3.8 3.94 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=____时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=____时,AC+BC最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B﹣﹣E﹣﹣F﹣﹣G﹣﹣A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米.∠E=∠F=∠G=90°.平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区域,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2020的相反数是()A.﹣2020B.2020C.D.﹣【分析】根据a的相反数是﹣a,直接得结论即可.解:2020的相反数是﹣2020.故选:A.2.下列图形中,属于中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A.此图案不是中心对称图形,不符合题意;B.此图案是中心对称图形,符合题意;C.此图案不是中心对称图形,不符合题意;D.此图案不是中心对称图形,不符合题意;故选:B.3.下列运算正确的是()A.2a﹣a=2B.a3•a2=a6C.a3÷a=a2D.(2a2)3=6a5【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、2a﹣a=a,故此选项错误;B、a3•a2=a5,故此选项错误;C、a3÷a=a2,正确;D、(2a2)3=8a6,故此选项错误;故选:C.4.实数a,b在数轴上表示的位置如图所示,则()A.a>0B.a>b C.a<b D.|a|<|b|【分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.5.如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图象是俯视图,可得答案.解:观察图形可知,该几何体的俯视图是.故选:A.6.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为()A.0.4×106B.4×109C.40×104D.4×105【分析】按科学记数法的要求,直接把数据表示为a×10n(其中1≤|a|<10,n为整数)的形式即可.解:400000=4×105.故选:D.7.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6【分析】根据任意一行,任意一列及两条对角线上的数之和都相等,可得第三行与第三列上的两个数之和相等,依此列出方程即可.解:由题意,可得8+x=2+7,解得x=1.故选:A.8.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3D.5【分析】先根据菱形的性质得到AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,再利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到OH的长.解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,在Rt△BOC中,BC==5,∵H为BC中点,∴OH=BC=.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上).9.如图,直线a、b被直线c所截,a∥b,∠1=60°,那么∠2=60°.【分析】利用平行线的性质,直接得结论.解:∵a∥b,∴∠2=∠1=60°.故答案为:60°.10.一组数据1、4、7、﹣4、2的平均数为2.【分析】直接根据算术平均数的定义列式求解可得.解:数据1、4、7、﹣4、2的平均数为=2,故答案为:2.11.因式分解:x2﹣y2=(x﹣y)(x+y).【分析】直接利用平方差公式分解因式得出即可.解:x2﹣y2=(x+y)(x﹣y).故答案为:(x+y)(x﹣y).12.分式方程=0的解为x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:分式方程=0,去分母得:x﹣1=0,解得:x=1,经检验x=1是分式方程的解.故答案为:1.13.一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.【分析】直接利用概率公式进而计算得出答案.解:∵一只不透明的袋中装有2个白球和3个黑球,∴搅匀后从中任意摸出1个球摸到白球的概率为:.故答案为:.14.如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC=130°.【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.解:如图,取⊙O上的一点D,连接BD,CD,∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°﹣50°=130°,故答案为:130.15.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为2.【分析】由平行线得三角形相似,得出AB•DE,进而求得AB,DE,再由相似三角形求得结果.解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k≠0)的图象上,则k的值为﹣6或﹣4.【分析】根据题意求得A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),则分两种情况:当A′、C′在函数y=(k≠0)的图象上时,求得k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,求得k=﹣4.解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其中m<,△A′B′C′与△ABC关于直线l对称,∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,∴在函数y=(k≠0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y=(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:23﹣+(﹣π)0.【分析】先求出23、、(﹣π)0的值,再加减即可.解:原式=8﹣2+1=7.18.解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≥1,得:x≥,解不等式4x﹣5<3x+2,得:x<7,则不等式组的解集为≤x<7.19.先化简,再求值:÷(1+),其中m=﹣2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.解:原式=÷(+)=÷=•=,当m=﹣2时,原式==1.20.如图,在△ABC中,∠C=90°,tan A=,∠ABC的平分线BD交AC于点D,CD =,求AB的长?【分析】根据∠C=90°,tan A=,可求出∠A=30°,∠ABC=60°,再根据BD 是∠ABC的平分线,求出∠CBD=∠ABD=30°,在不同的直角三角形中,根据边角关系求解即可.解:在Rt△ABC中,∠C=90°,tan A=,∴∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,又∵CD=,∴BC==3,在Rt△ABC中,∠C=90°,∠A=30°,∴AB==6.答:AB的长为6.21.如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.【分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.解:(1)如图所示,点E即为所求.(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.22.在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为41,新增确诊人数为13;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.【分析】(1)根据图①条形统计图可直接得出星期三A地区累计确诊人数,较前一天的增加值为新增确诊人数;(2)计算出A地区这一周的每天新增确诊人数,再绘制折线统计图;(3)通过“新增确诊人数”的变化,提出意见和建议.解:(1)41﹣28=13(人),故答案为:41,13;(2)分别计算A地区一周每一天的“新增确诊人数”为:14,13,16,17,14,10;绘制的折线统计图如图所示:(3)A地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10人以上,变化不明显,而B地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位.23.生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为16;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为3.【分析】(1)画出树状图,即可得出答案;(2)画出树状图,即可得出答案;(3)由题意得出规律,即可得出答案.解:(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4;(2)画树状图如下:共有16种等可能结果,故答案为:16;(3)由图①得:当n=1时,21=2,由图④得:当n=2时,22×22=16,∴n=3时,23×23×23=512,∵16<492<512,∴n的最小值为3,故答案为:3.24.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.【分析】(1)连接OC,根据等腰三角形的性质得到∠OCA=∠A,根据圆周角定理得到∠BCA=90°,求得OC⊥CD,于是得到结论;(2)根据已知条件得到∠A+∠DCA=90°,得到∠DCA=∠EFA,推出∠DCA=∠DFC,于是得到结论.【解答】证明:(1)连接OC,∵OC=OA,∴∠OCA=∠A,∵AB是⊙O的直径,∴∠BCA=90°,∴∠A+∠B=90°,∵∠DCA=∠B,∴∠OCA+∠DCA=∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠OCA+∠DCA=90°,∠OCA=∠A,∴∠A+∠DCA=90°,∵DE⊥AB,∴∠A+∠EFA=90°,∴∠DCA=∠EFA,∵∠EFA=∠DFC,∴∠DCA=∠DFC,∴△DCF是等腰三角形.25.若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=S1.(1)抛物线的开口方向上(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.【分析】(1)根据题意借助图象即可得到结论;(2)由点A(0,2)及△CAN是等腰直角三角形,可知C(﹣2,0),N(2,0),由A、C两点坐标可求直线l;(3)由S2=S1,可知B点纵坐标为5,代入直线AB解析式可求B点横坐标,将A、B、N三点坐标代入y=ax2+bx+c中,可求抛物线解析式.解:(1)如图,如二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).∴抛物线开口向上,故答案为:上;(2)①若∠ACN=90°,则C与O重合,直线l与抛物线交于A点,因为直线l与该函数的图象交于点B(异于点A),所以不合题意,舍去;②若∠ANC=90°,则C在x轴的下方,与题意不符,舍去;③若∠CAN=90°,则∠ACN=∠ANC=45°,AO=CO=NO=2,∴C(﹣2,0),N(2,0),设直线l为y=kx+b,将A(0,2)C(﹣2,0)代入得,解得,∴直线l相应的函数表达式为y=x+2;(3)过B点作BH⊥x轴于H,S1=,S2=,∵S2=S1,∴OA=BH,∵OA=2,∴BH=5,即B点的纵坐标为5,代入y=x+2中,得x=3,∴B(3,5),将A、B、N三点的坐标代入y=ax2+bx+c得,解得,∴抛物线的解析式为y=2x2﹣5x+2.26.木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.【分析】(1)如图①,过点P作PE⊥CD于点E,求得PE,进而得矩形A′B′C′D′的两邻边长,再由矩形的周长公式便可得答案;(2)连接PE、PF、PG,过点P作PQ⊥CD于点Q,如图②,求得PE的长度,便可得雕刻图案的4直线段边的长度,再求得PG长度,以及DP′绕D点旋转至DP″的旋转角度,便可根据弧长公式求得雕刻图案四角的圆弧长,进而得出整个雕刻图案的周长.解:(1)如图①,过点P作PE⊥CD于点E,∵点P是边长为30厘米的正方形雕刻模具的中心,∴PE=15cm,同理:A′B′与AB之间的距离为15cm,A′D′与AD之间的距离为15cm,B′C′与BC之间的距离为15cm,∴A′B′=C′D′=200﹣15﹣15=170(cm),B′C′=A′D′=100﹣15﹣15=70(cm),∴C四边形A′B′C′D′=(170+70)×2=480cm,答:图案的周长为480cm;(2)连接PE、PF、PG,过点P作PQ⊥CD于点Q,如图②∵P点是边长为30cm的等边三角形模具的中心,∴PE=PG=PF,∠PGF=30°,∵PQ⊥GF,∴GQ=FQ=15cm,∴PQ=GQ•tan30°=15cm,PG==30cm,当△EFG向上平移至点G与点D重合时,由题意可得,△E′F′G′绕点D顺时针旋转30°,使得E′G′与AD边重合,∴DP′绕点D顺时针旋转30°到DP″,∴,同理可得其余三个角均为弧长为5πcm的圆弧,∴=600﹣120+20π(cm),答:雕刻所得图案的周长为(600﹣120)cm.27.以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.32 1.50.4BC0.40.8 1.2 1.62 2.4 2.8 AC+BC 3.2 3.5 3.8 3.94 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=____时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=____时,AC+BC最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ)2;(Ⅳ)BC=a;问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B﹣﹣E﹣﹣F﹣﹣G﹣﹣A是一个感光元件的截面设计草图,其中点A,B间的距离是4厘米,AG=BE=1厘米.∠E=∠F=∠G=90°.平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区域,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.【分析】问题1:利用那地方解决问题即可.问题2:利用图象法解决问题即可.问题3:设BC=x,AC﹣BC=y,根据一元二次方程,利用根的判别式解决问题即可.问题4:延长AM交EF的延长线于C,过点A作AH⊥EF于H,过点B作BK⊥GF于K交AH于Q.证明FN+FM=EF+FG﹣EN﹣GM=BK+AH﹣﹣=BQ+AQ+KQ+QH﹣=BQ+AQ+2﹣,求出BQ+AQ的最大值即可解决问题.解:问题1:函数图象如图所示:问题2:(Ⅲ)观察图象可知,x=2时,y有最大值.(Ⅳ)猜想:BC=a.故答案为:2,BC=a.问题3:设BC=x,AC﹣BC=y,在Rt△ABC中,∵∠C=90°∴AC==,∴y=x+,∴y﹣x=,∴y2﹣2xy+x2=4a2﹣x2,∴2x2﹣2xy+y2﹣4a2=0,∵关于x的一元二次方程有实数根,∴b2﹣4ac=4y2﹣4×2×(y2﹣4a2)≥0,∴y2≤8a2,∵y>0,a>0,∴y≤2a,当y=2a时,2x2﹣4ax+4a2=0∴(x﹣2a)2=0,∴x1=x2=a,∴当BC=a时,y有最大值.问题4:延长AM交EF的延长线于C,过点A作AH⊥EF于H,过点B作BK⊥GF于K交AH于Q.在Rt△BNE中,∠E=90°,∠BNE=60°,BE=1cm,∴tan∠BNE=,∴NE=(cm),∵AM∥BN,∴∠C=60°,∵∠GFE=90°,∴∠CMF=30°,∴∠AMG=30°,∵∠G=90°,AG=1cm,∠AMG=30°,∴在Rt△AGM中,tan∠AMG=,∴GM=(cm),∵∠G=∠GFH=90°,∠AHF=90°,∴四边形AGFH为矩形,∴AH=FG,∵∠GFH=∠E=90°,∠BKF=90°∴四边形BKFE是矩形,∴BK=FE,∵FN+FM=EF+FG﹣EN﹣GM=BK+AH﹣﹣=BQ+AQ+KQ+QH﹣=BQ+AQ+2﹣,在Rt△ABQ中,AB=4cm,由问题3可知,当BQ=AQ=2cm时,AQ+BQ的值最大,∴BQ=AQ=2时,FN+FM的最大值为(4+2﹣)cm.。

2020年江苏省盐城市中考数学试题(解析版)

2020年江苏省盐城市中考数学试题(解析版)

盐城市二○一一年高中阶段教育招生统一考试数学试题、选择题(本大题共有8小题,每小题 3 分,共 24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)考点】 几何体的三视图。

分析】 根据几何体的三视图,直接得出结果。

4.已知 a-b =1,则代数式 2a -2b -3的值是A .-1B .1答案】 A 。

考点】 代数式代换。

分析】 2a 2b 3 2 a b 3 2 35.若⊙ O 1、⊙ O 2的半径分别为 4和 6,圆心距 O 1O 2=8,则⊙ O 1与⊙ O 2的位置关系是A .内切B .相交C .外切D .外离【答案】 B 。

【考点】 圆心距。

分析】 Q6 4< O 1O 2< 6 4 两圆相交 。

16.对于反比例函数 y= x ,下列说法正确的是x1.- 2的绝对值是1A .-2B .- 2【答案】 C 。

【考点】 绝对值。

【分析】 根据绝对值的定义,直接得出结果。

2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6【答案】 B 。

【考点】 同底幂的乘法。

【分析】 x 4 x 2 x 4 2 x 63.下面四个几何体中,俯视图为四边形的是C .2C .x 6÷x 2= x 3 D .( x 2)3= x 8C .-5D .51CA .图象经过点( 1, -1)B .图象位于第二、四象限C .图象是中心对称图形D .当 x <0时, y 随 x 的增大而增大【答案】 C 。

【考点】 反比例函数。

【分析】 根据反比例函数性质,直接得出结果。

7.某市 6月上旬前 5 天的最高气温如下(单位:℃): 28,29,31,29,32.对这组数据,列说法正 确 的是答案】 B 。

考点】 平均数、众数、中位数、极差。

考点】 二次函数。

分析】 从图可知,他离家 8km 共用了 30min ,他等公交车时间为 16-10=6min ,他步行的 二、填空题(本大题共有 10小题,每小题 3分,共 30 分.不需写出解答过程,请将答案直 接写在答题卡相应位置上)9. 27 的立方根为 ▲ . 【答案】 3。

2023年江苏省盐城市中考数学专题练——6四边形

2023年江苏省盐城市中考数学专题练——6四边形

2023年江苏省盐城市中考数学专题练——6四边形一.选择题(共7小题)1.(2021•建湖县一模)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD 交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4 2.(2022•滨海县一模)下列多边形中,内角和最大的是()A.B.C.D.3.(2022•滨海县一模)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°4.(2021•滨海县二模)如图,菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的面积为()A.9B.12C.15D.20 5.(2021•滨海县一模)如图,矩形ABCD的对角线AC、BD相交于点O,∠ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3√3B.4C.2√3D.3 6.(2021•盐城模拟)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是()A.4B.8C.16D.24 7.(2021•盐都区三模)如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9B.12C.24D.32二.填空题(共7小题)8.(2022•建湖县二模)一个正多边形的一个内角是与其相邻的一个外角的3倍,则这个正多边形的边数是.9.(2021•盐城二模)如图,点A是边长为2的正方形DEFG的中心,在△ABC中,∠ABC =90°,AB=2,BC=4,DG∥BC,点P为正方形边上的一动点,在BP的右侧作∠PBH =90°且BH=2PB,则AH的最大值为.10.(2021•射阳县二模)如图,菱形ABCD中,AB=5,AC=6,E为AD上一点且AE=1,连接BE、AC交于点F,过点F作FG⊥BC于点G,则FG=.11.(2021•盐都区二模)如图,在矩形ABCD中,AB=13,BC=17,点E是线段AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,AE的长为.12.(2021•射阳县模拟)如图,▱ABCD的对角线AC、BD相交于点O,点E是AB的中点,△ABC的面积是16,则△BEO的面积为.13.(2021•亭湖区校级模拟)如图,在平行四边形ABCD中,AB=AE.若AE平分∠DAB,∠EAC=25°,则∠AED的度数为.14.(2021•阜宁县二模)已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE =DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.三.解答题(共8小题)15.(2022•亭湖区校级三模)如图,在△ABC中,点D是BC边的中点,点F,E分别是AD及其延长线上的点,CF∥BE,连接BF,CE.(1)求证:四边形BECF是平行四边形.(2)当△ABC满足条件时,四边形BECF为菱形.(填写序号)①AB=AC.②∠BAC=90°,③AB=BC,④∠BCA=90°.16.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.17.(2022•滨海县模拟)如图,在矩形ABCD中,AB=6,BC=8,点E是AD边上的动点,将矩形ABCD沿BE折叠,点A落在点A′处,连接BD.(1)如图1,当A′点恰好落在BC上,则折痕BE的长为;(2)如图2,若点A′恰好落在BD上.①求证:∠DEA′=2∠ABE;②求tan∠ABE的值;(3)如图3,若将图1中的四边形ABA′E剪下,在AE上取中点F,将△ABF沿BF折叠得到△MBF,点P、Q分别是边A′E、A′B上的动点(均不与顶点重合),将△A′PQ沿PQ折叠,点A′的对应点N恰好落在BM上,当△A′PQ的一个内角与∠A′BM 相等时,请直接写出A′Q的长度.18.(2022•亭湖区校级一模)小明学习了图形的旋转之后,积极思考,利用两个大小不同的直角三角形与同学做起了数学探究活动.如图1,在△ABC与△DEF中,AC=BC=a,∠C=90°,DF=EF=b,(a>b),∠F=90°.【探索发现】将两个三角形顶点C与顶点F重合,如图2,将△DEF绕点C旋转,他发现BE与AD的数量关系一直不变,则线段BE与AD具有怎样的数量关系,请说明理由;【深入思考】将两个三角形的顶点C与顶点D重合,如图3所示将△DEF绕点C旋转.①当B、F、E三点共线时,连接BF、AE,线段BF、CF、AE之间的数量关系为;②如图4所示,连接AF、AE,若线段AC、EF交于点O,试探究四边形AECF能否为平行四边形?如果能,求出a、b之间的数量关系,如果不能,试说明理由.【拓展延伸】如图5,将△DEF绕点C旋转,连接AF,取AF的中点M,连接EM,则EM的取值范围为(用含a、b的不等式表示).19.(2022•滨海县一模)在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)推理证明:如图1,若∠DAB=120°,且∠D=90°,求证:AD+AB=AC;(2)问题探究:如图2,若∠DAB=120°,试探究AD、AB、AC之间的数量关系,(3)迁移应用:如图3,若∠DAB=90°,AD=2,AB=4,求线段AC的长度.20.(2022•滨海县一模)如图,在正方形ABCD中,对角线AC、BD相交于点O,点E、F 是对角线AC上的两点,且AE=CF.连接DE、DF、BE、BF.(1)证明:△ADE≌△CBF;(2)若AB=5√2,AE=3,求四边形BEDF的周长.21.(2022•东台市模拟)小明在学习矩形知识后,进一步开展探究活动:将一个矩形ABCD 绕点A顺时针旋转α(0°<α≤90°),得到矩形AB'C'D',连结BD.【探究1】如图1,当a=90°时,点C'恰好在DB延长线上.若AB=1,求BC的长.【探究2】如图2,连结AC',过点D'作D'M∥AC'交BD于点M.线段D'M与DM相等吗?请说明理由.【探究3】在探究2的条件下,射线DB分别交AD',AC'于点P,N(如图3),发现线段DN,MN,PN存在一定的数量关系,请写出这个关系式,并加以证明.22.(2022•建湖县一模)【问题再现】苏科版《数学》八年级下册第94页有这样一题:如图1,在正方形ABCD中,E,F,G分别是BC,CD,AD上的点,GE⊥BF,垂足为M,那么GE BF.(填“<”、“=”或“>”)【迁移尝试】如图2,在5×6的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求∠AMC 的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求∠DMC 的度数;②连接AC 交DE 于点H ,直接写出DH BC的值为 .2023年江苏省盐城市中考数学专题练——6四边形参考答案与试题解析一.选择题(共7小题)1.(2021•建湖县一模)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD 交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.2.(2022•滨海县一模)下列多边形中,内角和最大的是()A.B.C.D.【解答】解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.3.(2022•滨海县一模)如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=132°,则∠A=()A.38°B.48°C.58°D.66°【解答】解:∵∠DCE=132°,∴∠DCB=180°﹣∠DCE=180°﹣132°=48°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=48°,故选:B.4.(2021•滨海县二模)如图,菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACEF的面积为()A.9B.12C.15D.20【解答】解:∵菱形ABCD,∴AB=BC=3,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=3,∴正方形ACEF的边长为3,∴正方形ACEF的面积为9,故选:A.5.(2021•滨海县一模)如图,矩形ABCD的对角线AC、BD相交于点O,∠ABO=60°,若矩形的对角线长为6.则线段AD的长是()A.3√3B.4C.2√3D.3【解答】解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD=6,∴AO=OB=3,∵∠ABO=60°,∴△AOB是等边三角形,∴AB=3=OA,∴AD=√BD2−AB2=√36−9=3√3,故选:A.6.(2021•盐城模拟)如图,在菱形ABCD中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是()A.4B.8C.16D.24【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵点P是AB的中点,∴AB=2OP,∵PO=2,∴AB=4,∴菱形ABCD的周长是:4×4=16,故选:C.7.(2021•盐都区三模)如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9B.12C.24D.32【解答】解:∵点E、F分别是AB、AC的中点,EF=4,∴BC=2EF=8,∵四边形ABCD是菱形,∴菱形ABCD 的周长是:4×8=32.故选:D .二.填空题(共7小题)8.(2022•建湖县二模)一个正多边形的一个内角是与其相邻的一个外角的3倍,则这个正多边形的边数是 8 .【解答】解:设正多边形的一个外角等于x °,∵一个内角的度数恰好等于它相邻的外角的3倍,∴这个正多边形的一个内角为:3x °,∴x +3x =180,解得:x =45,∴这个正多边形的边数是:360°÷45°=8.故答案为:8.9.(2021•盐城二模)如图,点A 是边长为2的正方形DEFG 的中心,在△ABC 中,∠ABC =90°,AB =2,BC =4,DG ∥BC ,点P 为正方形边上的一动点,在BP 的右侧作∠PBH =90°且BH =2PB ,则AH 的最大值为 2√13 .【解答】解:连结AP ,CH ,并延长P A ,HC 交于点M ,P A 交BH 于点N ,∵∠PBH =∠ABC =90°,∴∠PBA =∠HBC ,∴PB BA =AB BC =12, ∴△PBA ∽△HBC ,∴CH =2P A ,∠BP A =∠BHC ,∴∠MAH +∠AHM=∠MAH +∠AHB +∠BHC=∠PNB +∠BP A =90°,∴∠M =90°,∴CH ⊥P A ,∵P 是以点A 为中心的正方形DEFG 的边上的动点,∴H 的轨迹为以C 为中心的正方形E ′F ′G ′D ′,且正方形E ′F ′G ′D ′的边长为正方形DEFG 的两倍,如下图所示:当H 与F '重合时,AH 最大,延长AB ,F 'G '交于点K ,则AK =4,KF '=6,∴AF ′=√42+62=2√13,∴AH 的最大值为2√13.10.(2021•射阳县二模)如图,菱形ABCD 中,AB =5,AC =6,E 为AD 上一点且AE =1,连接BE 、AC 交于点F ,过点F 作FG ⊥BC 于点G ,则FG = 4 .【解答】解:如图,连接BD ,交AC 于点O ,∵四边形ABCD 是菱形,∴AB =BC =5,AC ⊥BD ,AO =CO =3,AD ∥BC ,∴BO =√AB2−AO 2=√25−9=4, ∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC=AF CF , ∴15=6−CF CF ,∴CF =5,∵sin ∠ACB =BO BC =FG FC , ∴45=FG 5,∴FG =4,故答案为:4.11.(2021•盐都区二模)如图,在矩形ABCD 中,AB =13,BC =17,点E 是线段AD 上一个动点,把△BAE 沿BE 向矩形内部折叠,当点A 的对应点A 1恰好落在∠BCD 的平分线上时,AE 的长为 135或263 .【解答】解:由翻折的性质可得,A 1B =AB =13,A 1E =AE ,∵CA 1平分∠BCD ,∠BCD =90°,∴∠DCA 1=∠BCA 1=45°,过点A 1作A 1F ⊥BC 于点F ,如图,则△A 1CF 是等腰直角三角形,∴A 1F =CF ,设CF =m ,则A 1F =m ,BF =17﹣m ,在Rt △A 1BF 中,由勾股定理可得,A 1B 2=A 1F 2+BF 2,即132=m 2+(17﹣m )2,解得m =5或m =12,当m =12时,延长F A 1交AD 于点G ,如图1;此时A 1F =CF =12,BF =5,∴A 1G =FG ﹣A 1F =1,设AE =t ,则A 1E =t ,∵∠A 1GE =∠A 1FB =90°,∠EA 1B =∠A =90°,∴∠EA 1G +∠GEA 1=90°,∠BA 1F +∠EA 1G =90°,∴∠GEA 1=∠BA 1F ,∴△A 1EG ∽△BA 1F ,∴A 1E :A 1G =BA 1:BF ,即t :1=13:5,∴t =135,即AE =135;当m =5时,延长F A 1交AD 于点G ,如图2;此时A 1F =CF =5,BF =12,∴A 1G =FG ﹣A 1F =8,设AE =a ,则A 1E =a ,∵∠A 1GE =∠A 1FB =90°,∠EA 1B =∠A =90°,∴∠EA 1G +∠GEA 1=90°,∠BA 1F +∠EA 1G =90°,∴∠GEA 1=∠BA 1F ,∴△A 1EG ∽△BA 1F ,∴A 1E :A 1G =BA 1:BF ,即a :8=13:12,∴a =263,即AE =263;故答案为:135或263.12.(2021•射阳县模拟)如图,▱ABCD 的对角线AC 、BD 相交于点O ,点E 是AB 的中点,△ABC 的面积是16,则△BEO 的面积为 4 .【解答】解:∵▱ABCD 的对角线AC 、BD 相交于点O ,∴OA =OC ,∵点E 是AB 的中点,∴OE =12BC ,OE ∥BC ,∴△AOE ∽△ACB ,∴S △AOES △ACB =(OE BC )2=14,∵△ABC 的面积是16,∴S △AOE =4,∴S △BEO =4.故答案为:4.13.(2021•亭湖区校级模拟)如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠AED 的度数为 85° .【解答】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC .∴∠DAE =∠AEB .∵AB =AE ,∴∠AEB =∠B .∴∠B =∠DAE .∵在△ABC 和△AED 中,{AB =AE ∠B =∠DAE AD =BC,∴△ABC ≌△EAD (SAS ),∴∠AED =∠BAC ,∵AE 平分∠DAB (已知),∴∠DAE=∠BAE;又∵∠DAE=∠AEB,∴∠BAE=∠AEB=∠B.∴△ABE为等边三角形.∴∠BAE=60°.∵∠EAC=25°,∴∠BAC=85°,∴∠AED=85°.故答案为:85°14.(2021•阜宁县二模)已知正方形ABCD的边长为4,点E,F分别在AD,DC上,AE=DF=1,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为52.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵{AB=AD∠BAE=∠D AE=DF,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=12BF,∵BC=4、CF=CD﹣DF=4﹣1=3,∴BF=√BC2+CF2=5,∴GH =12BF =52,故答案为:52.三.解答题(共8小题)15.(2022•亭湖区校级三模)如图,在△ABC 中,点D 是BC 边的中点,点F ,E 分别是AD 及其延长线上的点,CF ∥BE ,连接BF ,CE .(1)求证:四边形BECF 是平行四边形.(2)当△ABC 满足 ① 条件时,四边形BECF 为菱形.(填写序号)①AB =AC .②∠BAC =90°,③AB =BC ,④∠BCA =90°.【解答】(1)证明:在△ABC 中,D 是BC 边的中点,∴BD =CD ,∵CF ∥BE ,∴∠CFD =∠BED ,在△CFD 和△BED 中,{∠CFD =∠BED CD =BD ∠FDC =∠EDB∴△CFD ≌△BED (AAS ),∴CF =BE ,∴四边形BFCE 是平行四边形;(2)解:满足条件①时四边形BECF 为菱形.理由:若AB =AC 时,△ABC 为等腰三角形,∵AD 为中线,∴AD ⊥BC ,即FE ⊥BC ,由(1)知,△CFD≌△BED,∴BD=CD,ED=FD,∴平行四边形BECF为菱形.故答案为:①.16.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB =AC ,AD 是△ABC 的角平分线,∴BD =CD ,∵DE =4BE ,∴BD =CD =5BE ,∴CE =CD +DE =9BE ,∵∠EDF =90°,点M 是EF 的中点,∴DM =ME ,∴∠MDE =∠MED ,∵AB =AC ,∴∠B =∠C ,∴△DBQ ∽△ECN ,∴QB NC =BD CE =59, ∵QB =6,∴NC =545, ∵AN =CN , ∴AC =2CN =1085, ∴AB =AC =1085. 17.(2022•滨海县模拟)如图,在矩形ABCD 中,AB =6,BC =8,点E 是AD 边上的动点,将矩形ABCD 沿BE 折叠,点A 落在点A ′处,连接BD .(1)如图1,当A ′点恰好落在BC 上,则折痕BE 的长为 6√2 ;(2)如图2,若点A ′恰好落在BD 上.①求证:∠DEA ′=2∠ABE ;②求tan ∠ABE 的值;(3)如图3,若将图1中的四边形ABA ′E 剪下,在AE 上取中点F ,将△ABF 沿BF 折叠得到△MBF ,点P 、Q 分别是边A ′E 、A ′B 上的动点(均不与顶点重合),将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,当△A ′PQ 的一个内角与∠A ′BM 相等时,请直接写出A ′Q 的长度.【解答】(1)解:如图1,∵将矩形ABCD沿BE折叠,A′点恰好落在BC上,∴BA′=BA=6,∠EBA′=∠EBA=12∠ABC=12×90°=45°,∠BA′E=∠BAE=90°,∴△BEA′是等腰直角三角形,∴BE=√2BA′=6√2,故答案为:6√2;(2)①证明:如图2,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD∥BC,∴∠ADB+∠ABD=90°,由折叠得:∠ABE=∠DBE=12∠ABD,∠BA′E=∠A=90°,∴∠ADB+∠DEA′=90°,∴∠DEA′=∠ABD,∴∠DEA′=2∠ABE;②解:∵矩形ABCD中,AB=6,BC=8,∴∠A=90°,AD=BC=8,∴由勾股定理得:BD=10,∵矩形ABCD沿BE折叠,点A恰好落在BD上点A′处,∴∠BA′E=∠A=90°,BA′=BA=6,A′E=AE,∴∠DA′E=90°,A′D=BD﹣BA′=10﹣6=4,设A′E=AE=m,则DE=8﹣m,在Rt△DA′E中,由勾股定理列方程得:m2+42=(8﹣m)2,解得:m=3,即AE=3,∴tan ∠ABE =AE AB =36=12; (3)解:由(1)可知△BEA ′是等腰直角三角形,∴∠BA ′E =90°,BA =BA ′,∵∠A ′BM <90°,∴∠A ′≠∠A ′BM ,当∠A ′QP =∠A ′BM 时,如图3,连接A ′N 交PQ 于点H ,∵将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,∴点 A ′与点N 关于直线PQ 对称,∴PQ 垂直平分A ′N ,∵∠A ′QP =∠A ′BM ,∴PQ ∥BM ,∴A′Q A′B =A′H A′N=12, ∴A ′Q =12A ′B =12×6=3;当∠A ′PQ =∠A ′BM 时,如图4,过点N 作NG ⊥A ′B 于点G ,连接FG 、A ′N ,∵将△A ′PQ 沿PQ 折叠,点A ′的对应点N 恰好落在BM 上,∴点 A ′与点N 关于直线PQ 对称,∴PQ 垂直平分A ′N ,∴∠A ′PQ +∠P A ′N =90°,∵∠BA ′N +∠P A ′N =90°,∴∠A ′PQ =∠BA ′N ,∴∠A ′BM =∠BA ′N ,∵NG ⊥A ′B ,∴BG =12BA ′=3,∵AF =BG =3,AF ∥BG ,∠A =90°,∴四边形ABGF 是矩形,∴∠BGF =90°,∴F 、N 、G 在同一条直线上,∴FG ∥AB ,∴∠BFG =∠ABF =∠FBM ,∴BN =FN ,设NG =x ,则BN =FN =6﹣x ,∵BG 2+NG 2=BN 2,∴32+x 2=(6﹣x )2,解得:x =94,∴NG =94,BN =6−94=154,∵PQ 垂直平分A ′N ,∴A ′Q =NQ ,设A ′Q =NQ =n ,则GQ =3﹣n ,在Rt △NGQ 中,GQ 2+NG 2=NQ 2,∴(3﹣n )2+(94)2=n 2, 解得:n =7532, ∴A ′Q =7532; 综上所述,A ′Q 的长度为3或7532.18.(2022•亭湖区校级一模)小明学习了图形的旋转之后,积极思考,利用两个大小不同的直角三角形与同学做起了数学探究活动.如图1,在△ABC 与△DEF 中,AC =BC =a ,∠C =90°,DF =EF =b ,(a >b ),∠F =90°.【探索发现】将两个三角形顶点C 与顶点F 重合,如图2,将△DEF 绕点C 旋转,他发现BE 与AD 的数量关系一直不变,则线段BE 与AD 具有怎样的数量关系,请说明理由;【深入思考】将两个三角形的顶点C 与顶点D 重合,如图3所示将△DEF 绕点C 旋转. ①当B 、F 、E 三点共线时,连接BF 、AE ,线段BF 、CF 、AE 之间的数量关系为 BF=AE +CF ;②如图4所示,连接AF 、AE ,若线段AC 、EF 交于点O ,试探究四边形AECF 能否为平行四边形?如果能,求出a 、b 之间的数量关系,如果不能,试说明理由.【拓展延伸】如图5,将△DEF 绕点C 旋转,连接AF ,取AF 的中点M ,连接EM ,则EM 的取值范围为 |a−√5b|2≤EM ≤a+√5b 2(用含a 、b 的不等式表示).【解答】解:【探究发现】BE =AD ,BE ⊥AD ,理由如下:如图1,∵∠ACB =∠AFD =90°,∴∠ACB ﹣∠ACE =∠AFD ﹣∠ACE ,∴∠BCE =∠AFD ,在△BCE 和△AFD 中,{BC =AC ∠BCE =∠AFD CE =FD,∴△BCE ≌△AFD (SAS ),∴BE =AD ;【深入思考】①BF =AE +CF ,理由如下:如图2,在FB 上截取FG =EF ,可得△CGE 是等腰直角三角形,∴CF =FG =EF ,由【探究发现】得:BG =AE ,∴BF =BG +GF =AE +CF ;故答案为:BF =AE +CF ;②四边形AECF 可以为平行四边形,此时OF =OE =12b ,OC =OA =12a ,∵∠CFO =90°,∴OC 2=CF 2+OF 2=b 2+(12b)22=54b 2, ∴14a 2=54b 2,∴a =√5b ;【拓展延伸】如图3,延长FE 至O ,是EO =EF ,连接OA ,∴EM =12AO ,在Rt △COF 中,OF =2EF =2b ,CF =b ,∴OC =√5b ,∴点O 在以C 为圆心,√5b 的圆上运动,∴当点O 在AC 的延长线上时,AO 最大,最大值为:a +√5b ,当点O 在射线CA 上时,AO 最小,最小值为|a −√5b |,∴EM 最大=a+√5b 2,EM 最小=|a−√5b|2, 故答案为:|a−√5b|2≤EM ≤a+√5b 2. 19.(2022•滨海县一模)在四边形ABCD 中,∠B +∠D =180°,对角线AC 平分∠BAD .(1)推理证明:如图1,若∠DAB =120°,且∠D =90°,求证:AD +AB =AC ;(2)问题探究:如图2,若∠DAB =120°,试探究AD 、AB 、AC 之间的数量关系,(3)迁移应用:如图3,若∠DAB =90°,AD =2,AB =4,求线段AC 的长度.【解答】(1)证明:∵AC 平分∠BAD ,∴∠DAC =∠BAC =12∠BAD .∵∠DAB =120°,∴∠DAC =∠BAC =60°,又∵∠B +∠D =180°,∠D =90°,∴∠B =180°﹣∠D =180°﹣90°=90°,∴∠ACD =∠ACB =30°,∴AD =12AC ,AB =12AC ,∴AD +AB =12AC +12AC =AC .(2)解:AD +AB =AC ,理由如下:在图2中,过点C 作CE ⊥AD 于点E ,过点C 作CF ⊥AB 的延长线于点F .∵AC 平分∠BAD ,∴CE =CF ,∠DEC =∠CFB =90°.∵∠D +∠ABC =180°,∠ABC +∠FBC =180°,∴∠D =∠FBC . 在△BFC 与△DEC 中,{∠D =∠FBC∠DEC =∠BFC CE =CF,∴△BFC ≌∠DEC (AAS ),∴DF =BF ,∴AD+AB=AE+DE+AF﹣BF=AE+AF.由(1)可知:AE+AF=AC,∴AD+AB=AC.(3)解:在图3中,过点C作CM⊥AB于点M,过点C作CN⊥AD的延长线于点N.由(2)知:△CDN≌△CBM,∴DN=BM,∴AD+AB=AN﹣DN+AM+BM=AN+AM.∵∠DAB=90°,AC平分∠BAD,∴∠NAC=∠MAC=∠ACN=45°,∴△ACN,△ACM均为等腰直角三角形,∴AN=AM=CN=√22AC,∴AD+AB=AN+AM=√22AC+√22AC=√2AC.又∵AD=2,AB=4,∴AC=AD+AB√2=2+4√2=3√2.20.(2022•滨海县一模)如图,在正方形ABCD中,对角线AC、BD相交于点O,点E、F 是对角线AC上的两点,且AE=CF.连接DE、DF、BE、BF.(1)证明:△ADE ≌△CBF ;(2)若AB =5√2,AE =3,求四边形BEDF 的周长.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB =BC =CD =AD ,∠ADC =∠ABC =90°,∠DAC =∠BCA =45°,在△ADE 与△BCF 中,{AD =BC ∠DAC =∠BCA AE =CF,∴△ADE ≌△CBF (SAS );(2)解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA =OC ,OB =OD ,又∵AE =CF ,∴OE =OF ,∴四边形DEBF 为平行四边形,又∵AC ⊥BD ,∴平行四边形DEBF 为菱形,∵AB =5√2,∴OA =OB =√22AB =5,又∵AE =3,∴OE =2,∴BE =√OE 2+OB 2=√29,∴四边形DEBF 的周长为4BE =4√29.21.(2022•东台市模拟)小明在学习矩形知识后,进一步开展探究活动:将一个矩形ABCD 绕点A 顺时针旋转α(0°<α≤90°),得到矩形AB 'C 'D ',连结BD .【探究1】如图1,当a =90°时,点C '恰好在DB 延长线上.若AB =1,求BC 的长.【探究2】如图2,连结AC ',过点D '作D 'M ∥AC '交BD 于点M .线段D 'M 与DM 相等吗?请说明理由.【探究3】在探究2的条件下,射线DB 分别交AD ',AC '于点P ,N (如图3),发现线段DN ,MN ,PN 存在一定的数量关系,请写出这个关系式,并加以证明.【解答】解:(1)如图1,设BC =x ,∵矩形ABCD 绕点A 顺时针旋转90°得到矩形AB ′C ′D ′,∴点A ,B ,D '在一条线上,∴AD '=AD =BC =x ,D 'C '=AB '=AB =1,∴D 'B =AD '﹣AB =x ﹣1,∵∠BAD =∠D '=90°,∴D 'C '∥DA ,又∵点C '在DB 的延长线上,∴△D 'C 'B ∽△ADB ,∴D′C′AD=D′B AB , ∴1x =x−11,解得x 1=1+√52,x 2=1−√52(不合题意,舍去), ∴BC =1+√52; (2)D 'M =DM ,理由如下:如图2,连接DD ',∵D'M∥AC',∴∠AD'M=∠D'AC',∵AD'=AD,∠AD'C'=∠DAB=90°,D'C'=AB,∴△AC'D'≌△DBA(SAS),∴∠D'AC'=∠ADB,∴∠ADB=∠AD'M,∵AD'=AD,∴∠ADD'=∠AD'D,∴∠MDD'=∠MD'D,∴D'M=DM;(3)关系式为MN2=PN•DN,理由如下:如图3,连接AM,∵D'M=DM,AD'=AD,AM=AM,∴△AD'M≌△ADM(SSS),∴∠MAD'=∠MAD,∵∠AMN=∠MAD+∠NDA,∠NAM=∠MAD'+∠NAP,∵∠NDA=∠NAP,∴∠AMN=∠NAM,∴MN=AN,在△NAP和△NDA中,∠ANP=∠DNA,∠NAP=∠NDA,∴△NP A ∽△NAD ,∴PN AN =AN DN ,∴AN 2=PN •DN ,∴MN 2=PN •DN .22.(2022•建湖县一模)【问题再现】苏科版《数学》八年级下册第94页有这样一题: 如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,CD ,AD 上的点,GE ⊥BF ,垂足为M ,那么GE = BF .(填“<”、“=”或“>”)【迁移尝试】如图2,在5×6的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求∠AMC 的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求∠DMC 的度数;②连接AC 交DE 于点H ,直接写出DH BC 的值为 √22.【解答】解:【问题再现】∵GE ⊥BF ,∴∠BMG =90°,将线段GE 向左平移至AL 处,交BF 于I ,∴AL =GE ,∠AIB =∠BMG =90°,∴∠BAL +∠ABI =90°,∵四边形ABCD 为正方形,∴AB =BC ,∠ABC =∠C =90°,∴∠CBF +∠ABI =90°,∴∠BAL =∠CBF ,∴△ABL ≌△BCF (ASA ),∴AL =BF ,∴GE =BF ,故答案为:=;【迁移尝试】将线段AB 向右平移至ND 处,使得点B 与点D 重合,连接PN ,如图2所示:∴∠AMC =∠NDC ,设正方形网格的边长为单位1,则由勾股定理可得:DN =√22+42=2√5,PD =√12+32=√10,PN =√12+32=√10,∴PN 2+PD 2=DN 2,∴△DPN 是直角三角形,∠DPN =90°,且PN =PD ,∴∠AMC =∠NDC =45°;【拓展应用】①平移线段BC 至DK 处,连接KE ,如图3所示:则∠DMC =∠KDE ,四边形DKBC 是平行四边形,∴DC =KB ,∵四边形ADCP 与四边形PBEF 都是正方形,∴DC =AD =AP ,BP =BE ,∠DAK =∠KBE =90°∴DC =AD =AP =KB ,∴AG =BP =BE ,在△AKD 和△BEK 中,{AK =BE ∠DAK =∠KBE AD =KB,∴△AKD ≌△BEK (SAS ),∴DK =EK ,∠ADK =∠EKB ,∴∠EKB +∠AKD =∠ADK +∠AKD =90°,∴∠EKD =90°,∴∠KDE =∠KED =45°,∴∠DMC =∠KDE =45°;②如备用图所示:∵AC 为正方形ADCP 的对角线, ∴∠DAC =∠P AC =∠DMC =45°, ∴AC =√2AD ,∵∠HCM =∠BCA ,∴∠AHD =∠CHM =∠ABC , ∴△ADH ∽△ACB ,∴DH BC =AD AC =√2AD =√22, 故答案为√22.。

2022年江苏省盐城市盐城初级中学南北校区中考三模数学试题(含答案与解析)

2022年江苏省盐城市盐城初级中学南北校区中考三模数学试题(含答案与解析)
13.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点
D的坐标是(3,4),则点B的坐标是____.
14.用半径为9,圆心角为120° 扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径等于_______.
15.小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满 元减 元,满 元减 元,满 元减 元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元.
【答案】3
【解析】
【分析】
根据中位数的定义直接解答即可;
【详解】把这些数从小到大排列为:3,3,3,5,6,
则这组数据的中位数为:3,
故答案为:3.
【点睛】本题考查了中位数的求法,正确掌握知识点是解题的关键.
13.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,若点
D的坐标是(3,4),则点B的坐标是____.
菜品
单价(含包装费)
数量
水煮牛肉(小份)

1
醋溜土豆丝(小份)

1
豉汁排骨(小份)

1
手撕包菜(小份)

1
米饭

2
16.在平面直角坐标系中, , ,点D、E是 的三等分点,点P是线段 上的一个动点,若只存在唯一一个点P使得 ,则a需满足的条件是:____________.
三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)
A. B. C. D.
【答案】C
【解析】
【分析】先确定a=1.14,再确定n=6,用科学记数法形式表示出来即可.

2020年江苏省盐城市中考数学试题及参考答案(word解析版)

2020年江苏省盐城市中考数学试题及参考答案(word解析版)

盐城市二〇二〇年初中毕业与升学考试数学试题(考试时间为120分,卷面总分为150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.2020的相反数是()A.﹣2020 B.2020 C.D.﹣2.下列图形中,属于中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a﹣a=2 B.a3•a2=a6C.a3÷a=a2D.(2a2)3=6a54.实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|5.如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.6.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为()A.0.4×106B.4×109C.40×104D.4×1057.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.68.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3 D.5二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程).9.如图,直线a、b被直线c所截,a∥b,∠1=60°,那么∠2=°.10.一组数据1、4、7、﹣4、2的平均数为.11.因式分解:x2﹣y2=.12.分式方程=0的解为x=.13.一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.14.如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC=°.15.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m<,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k ≠0)的图象上,则k的值为.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:23﹣+(﹣π)0.18.(6分)解不等式组:.19.(8分)先化简,再求值:÷(1+),其中m=﹣2.20.(8分)如图,在△ABC中,∠C=90°,tanA=,∠ABC的平分线BD交AC于点D,CD =,求AB的长?21.(8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.22.(10分)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.23.(10分)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.24.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.25.(10分)若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.26.(12分)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.27.(14分)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.3 2 1.5 0.4BC 0.4 0.8 1.2 1.6 2 2.4 2.8AC+BC 3.2 3.5 3.8 3.9 4 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=时,AC+BC最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);问题3,证明上述(Ⅴ)中的猜想;问题4,图②中折线B﹣﹣E﹣﹣F﹣﹣G﹣﹣A是一个感光元件的截面设计草图,其中点A,B 间的距离是4厘米,AG=BE=1厘米.∠E=∠F=∠G=90°.平行光线从AB区域射入,∠BNE=60°,线段FM、FN为感光区域,当EF的长度为多少时,感光区域长度之和最大,并求出最大值.答案与解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.2020的相反数是()A.﹣2020 B.2020 C.D.﹣【知识考点】相反数.【思路分析】根据a的相反数是﹣a,可直接得结论.【解题过程】解:2020的相反数是﹣2020.故选:A.【总结归纳】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.下列图形中,属于中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念求解.【解题过程】解:A.此图形不是中心对称图形,不符合题意;B.此图形是中心对称图形,符合题意;C.此图形不是中心对称图形,不符合题意;D.此图形不是中心对称图形,不符合题意;故选:B.【总结归纳】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列运算正确的是()A.2a﹣a=2 B.a3•a2=a6C.a3÷a=a2D.(2a2)3=6a5【知识考点】合并同类项;同底数幂的乘法;同底数幂的除法.【思路分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解题过程】解:A、2a﹣a=a,故此选项错误;B、a3•a2=a5,故此选项错误;C、a3÷a=a2,故此选项正确;D、(2a2)3=8a6,故此选项错误;故选:C.【总结归纳】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.实数a,b在数轴上表示的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|【知识考点】绝对值;实数与数轴.【思路分析】根据在数轴上表示的两个实数,右边的总比左边的大,即可判断.【解题过程】解:根据实数a,b在数轴上表示的位置可知:a<0,b>0,∴a<b.故选:C.【总结归纳】本题考查了实数与数轴、绝对值,解决本题的关键是掌握数轴上的两个点表示的数右边的总比左边的大.5.如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从上面看得到的图象是俯视图,可得图形.【解题过程】解:观察图形可知,该几何体的俯视图是.故选:A.【总结归纳】本题考查了简单组合体的三视图,从上面看到的视图是俯视图.6.2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为()A.0.4×106B.4×109C.40×104D.4×105【知识考点】科学记数法—表示较大的数.【思路分析】按科学记数法的要求,直接把数据表示为a×10n(其中1≤|a|<10,n为整数)的形式即可.【解题过程】解:400000=4×105.故选:D.【总结归纳】本题考查了用科学记数法表示较大的数.掌握用科学记数法表示较大数的方法是解决本题的关键.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1 B.3 C.4 D.6【知识考点】一元一次方程的应用.【思路分析】根据任意一行,任意一列及两条对角线上的数之和都相等,可得第三行与第三列上的两个数之和相等,依此列出方程即可.【解题过程】解:由题意,可得8+x=2+7,解得x=1.故选:A.【总结归纳】本题考查了一元一次方程的应用,理解“九宫格”满足的条件进而得到等量关系列出方程是解题的关键.8.如图,在菱形ABCD中,对角线AC、BD相交于点O,H为BC中点,AC=6,BD=8.则线段OH的长为()A.B.C.3 D.5【知识考点】直角三角形斜边上的中线;三角形中位线定理;菱形的性质.【思路分析】先根据菱形的性质得到AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,再利用勾股定理计算出BC,然后根据直角三角形斜边上的中线性质得到OH的长.【解题过程】解:∵四边形ABCD为菱形,∴AC⊥BD,OB=OD=BD=4,OC=OA=AC=3,在Rt△BOC中,BC===5,∵H为BC中点,∴OH=BC=.故选:B.【总结归纳】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了直角三角形斜边上的中线性质.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程).9.如图,直线a、b被直线c所截,a∥b,∠1=60°,那么∠2=°.【知识考点】平行线的性质.【思路分析】利用平行线的性质,直接得结论.【解题过程】解:∵a∥b,∴∠2=∠1=60°.故答案为:60°.【总结归纳】本题考查了平行线的性质,题目比较简单.两直线平行,同位角(内错角)相等,两直线平行,同旁内角互补.10.一组数据1、4、7、﹣4、2的平均数为.【知识考点】算术平均数.【思路分析】直接根据算术平均数的定义列式求解可得.【解题过程】解:数据1、4、7、﹣4、2的平均数为=2,故答案为:2.【总结归纳】本题主要考查算术平均数,对于n个数x1,x2,…,x n,则=(x1+x2+…+x n)就叫做这n个数的算术平均数.11.因式分解:x2﹣y2=.【知识考点】因式分解﹣运用公式法.【思路分析】直接利用平方差公式分解因式得出即可.【解题过程】解:x2﹣y2=(x+y)(x﹣y).故答案为:(x+y)(x﹣y).【总结归纳】此题主要考查了利用公式法分解因式,熟练掌握平方差公式是解题关键.12.分式方程=0的解为x=.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:分式方程=0,去分母得:x﹣1=0,解得:x=1,经检验x=1是分式方程的解.故答案为:1.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.【知识考点】概率公式.【思路分析】直接利用概率公式进而计算得出答案.【解题过程】解:∵一只不透明的袋中装有2个白球和3个黑球,∴搅匀后从中任意摸出1个球摸到白球的概率为:.故答案为:.【总结归纳】此题主要考查了概率公式,正确应用概率求法是解题关键.14.如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC=°.【知识考点】圆心角、弧、弦的关系;圆周角定理.【思路分析】根据圆周角定理和圆内接四边形的性质即可得到结论.【解题过程】解:如图,取⊙O上的一点D,连接BD,CD,则四边形ABDC是⊙O的内接四边形,∴∠D+∠BAC=180°.∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°﹣50°=130°,故答案为:130.【总结归纳】本题考查了圆周角定理与圆内接四边形的性质,正确作出辅助线是解题的关键.15.如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则的值为.【知识考点】相似三角形的判定与性质.【思路分析】由平行线得△ADE和△ABC相似,得出AB•DE,进而求得AB,DE,再由相似三角形的性质求得结果.【解题过程】解:∵BC∥DE,∴△ADE∽△ABC,∴=,即=,∴AB•DE=16,∵AB+DE=10,∴AB=2,DE=8,∴,故答案为:2.【总结归纳】本题主要考查了相似三角形的性质与判定,关键是由相似三角形的性质求得AB、DE的值.16.如图,已知点A(5,2)、B(5,4)、C(8,1).直线l⊥x轴,垂足为点M(m,0).其中m <,若△A′B′C′与△ABC关于直线l对称,且△A′B′C′有两个顶点在函数y=(k ≠0)的图象上,则k的值为.【知识考点】反比例函数图象上点的坐标特征;轴对称的性质.【思路分析】根据题意求得A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),则分两种情况:当A′、C′在函数y=(k≠0)的图象上时,求得k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,求得k=﹣4.【解题过程】解:∵点A(5,2)、B(5,4)、C(8,1),直线l⊥x轴,垂足为点M(m,0).其中m<,△A′B′C′与△ABC关于直线l对称,∴A′(2m﹣5,2),B′(2m﹣5,4),C′(2m﹣8,1),∵A′、B′的横坐标相同,∴在函数y=(k≠0)的图象上的两点为,A′、C′或B′、C′,当A′、C′在函数y=(k≠0)的图象上时,则k=2(2m﹣5)=2m﹣8,解得m=1,∴k=﹣6;当B′、C′在函数y=(k≠0)的图象上时,则k=4(2m﹣5)=2m﹣8,解得m=2,∴k=﹣4,综上,k的值为﹣6或﹣4,故答案为﹣6或﹣4.【总结归纳】本题考查了反比例函数图象上点的坐标特征,轴对称的性质,表示出对称点的坐标是解题的关键.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:23﹣+(﹣π)0.【知识考点】实数的运算;零指数幂.【思路分析】先求出23、、(﹣π)0的值,再加减即可.【解题过程】解:原式=8﹣2+1=7.【总结归纳】本题考查了实数的运算.掌握立方运算、开方运算及零指数幂的意义是解决本题的关键.18.(6分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解题过程】解:解不等式≥1,得:x≥,解不等式4x﹣5<3x+2,得:x<7,则不等式组的解集为≤x<7.【总结归纳】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(8分)先化简,再求值:÷(1+),其中m=﹣2.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【解题过程】解:原式=÷(+)=÷=•=,当m=﹣2时,原式==1.【总结归纳】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.(8分)如图,在△ABC中,∠C=90°,tanA=,∠ABC的平分线BD交AC于点D,CD =,求AB的长?【知识考点】角平分线的性质;解直角三角形.【思路分析】根据∠C=90°,tanA=,可求出∠A=30°,∠ABC=60°,再根据BD是∠ABC的平分线,求出∠CBD=∠ABD=30°,在不同的直角三角形中,根据边角关系求解即可.【解题过程】解:在Rt△ABC中,∠C=90°,tanA=,∴∠A=30°,∴∠ABC=60°,∵BD是∠ABC的平分线,∴∠CBD=∠ABD=30°,又∵CD=,∴BC==3,在Rt△ABC中,∠C=90°,∠A=30°,∴AB==6.答:AB的长为6.【总结归纳】本题考查解直角三角形,掌握直角三角形的边角关系,是正确解答的关键.21.(8分)如图,点O是正方形ABCD的中心.(1)用直尺和圆规在正方形内部作一点E(异于点O),使得EB=EC;(保留作图痕迹,不写作法)(2)连接EB、EC、EO,求证:∠BEO=∠CEO.【知识考点】全等三角形的判定与性质;正方形的性质;作图—复杂作图.【思路分析】(1)作BC的垂直平分线,在BC的垂直平分线上(正方形内部异于点O)的点E 即为所求;(2)根据等腰三角形的性质和角的和差关系即可求解.【解题过程】解:(1)如图所示,点E即为所求.(2)证明:连结OB,OC,∵点O是正方形ABCD的中心,∴OB=OC,∴∠OBC=∠OCB,∵EB=EC,∴∠EBC=∠ECB,∴∠BEO=∠CEO.【总结归纳】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.(10分)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图②为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图②中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.【知识考点】条形统计图;折线统计图;方差.【思路分析】(1)根据图①条形统计图可直接得出星期三A地区累计确诊人数,较前一天的增加值为新增确诊人数;(2)计算出A地区这一周的每天新增确诊人数,再绘制折线统计图;(3)通过“新增确诊人数”的变化,提出意见和建议.【解题过程】解:(1)41﹣28=13(人),故答案为:41,13;(2)分别计算A地区一周每一天的“新增确诊人数”为:14,13,16,17,14,10;绘制的折线统计图如图所示:(3)A地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10人以上,变化不明显,而B地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位.【总结归纳】本题考查条形统计图、折线统计图的意义和制作方法,条形统计图反映数据的具体数量,折线统计图则反映数据的增减变化情况.23.(10分)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图②,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图③可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图④为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.【知识考点】列表法与树状图法.【思路分析】(1)画出树状图,即可得出答案;(2)画出树状图,即可得出答案;(3)由题意得出规律,即可得出答案.【解题过程】解:(1)画树状图如下:共有4种等可能结果,∴图③可表示不同信息的总个数为4;(2)画树状图如下:共有16种等可能结果,故答案为:16;(3)由图①得:当n=1时,21=2,由图④得:当n=2时,22×22=16,∴n=3时,23×23×23=512,∵16<492<512,∴n的最小值为3,故答案为:3.【总结归纳】本题考查的是列表法和树状图法以及规律型.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.24.(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.【知识考点】等腰三角形的判定;圆周角定理;三角形的外接圆与外心;切线的判定与性质.【思路分析】(1)连接OC,根据等腰三角形的性质得到∠OCA=∠A,根据圆周角定理得到∠BCA=90°,求得OC⊥CD,于是得到结论;(2)根据已知条件得到∠A+∠DCA=90°,得到∠DCA=∠EFA,推出∠DCA=∠DFC,于是得到结论.【解题过程】证明:(1)连接OC,∵OC=OA,∴∠OCA=∠A,∵AB是⊙O的直径,∴∠BCA=90°,∴∠A+∠B=90°,∵∠DCA=∠B,∴∠OCA+∠DCA=∠OCD=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)∵∠OCA+∠DCA=90°,∠OCA=∠A,∴∠A+∠DCA=90°,∵DE⊥AB,∴∠A+∠EFA=90°,∴∠DCA=∠EFA,∵∠EFA=∠DFC,∴∠DCA=∠DFC,∴△DCF是等腰三角形.【总结归纳】本题考查了切线的判定,等腰三角形的判定和性质,圆周角定理,熟练掌握切线的判定定理是解题的关键.25.(10分)若二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N(x2,0)(0<x1<x2),且经过点A(0,2).过点A的直线l与x轴交于点C,与该函数的图象交于点B(异于点A).满足△ACN是等腰直角三角形,记△AMN的面积为S1,△BMN的面积为S2,且S2=S1.(1)抛物线的开口方向(填“上”或“下”);(2)求直线l相应的函数表达式;(3)求该二次函数的表达式.【知识考点】一次函数图象上点的坐标特征;待定系数法求一次函数解析式;二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点;等腰直角三角形.【思路分析】(1)根据题意借助图象即可得到结论;(2)由点A(0,2)及△CAN是等腰直角三角形,可知C(﹣2,0),N(2,0),由A、C两点坐标可求直线l;(3)由S2=S1,可知B点纵坐标为5,代入直线AB解析式可求B点横坐标,将A、B、N三点坐标代入y=ax2+bx+c中,可求抛物线解析式.【解题过程】解:(1)如图,如二次函数y=ax2+bx+c的图象与x轴有两个交点M(x1,0),N (x2,0)(0<x1<x2),且经过点A(0,2).∴抛物线开口向上,故答案为:上;(2)①若∠ACN=90°,则C与O重合,直线l与抛物线交于A点,因为直线l与该函数的图象交于点B(异于点A),所以不合题意,舍去;②若∠ANC=90°,则C在x轴的下方,与题意不符,舍去;③若∠CAN=90°,则∠ACN=∠ANC=45°,AO=CO=NO=2,∴C(﹣2,0),N(2,0),设直线l为y=kx+b,将A(0,2)C(﹣2,0)代入得,解得,∴直线l相应的函数表达式为y=x+2;(3)过B点作BH⊥x轴于H,S1=,S2=,∵S2=S1,∴OA=BH,∵OA=2,∴BH=5,即B点的纵坐标为5,代入y=x+2中,得x=3,∴B(3,5),将A、B、N三点的坐标代入y=ax2+bx+c得,解得,∴抛物线的解析式为y=2x2﹣5x+2.【总结归纳】本题考查了二次函数的综合运用.关键是根据已知条件判断抛物线开口方向及大致位置,根据特殊三角形求直线解析式,根据面积法求B点坐标,运用待定系数法求抛物线解析式.26.(12分)木门常常需要雕刻美丽的图案.(1)图①为某矩形木门示意图,其中AB长为200厘米,AD长为100厘米,阴影部分是边长为30厘米的正方形雕刻模具,刻刀的位置在模具的中心点P处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;(2)如图②,对于(1)中的木门,当模具换成边长为30厘米的等边三角形时,刻刀的位置仍在模具的中心点P处,雕刻时也始终保持模具的一边紧贴木门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图②中画出雕刻所得图案的草图,并求其周长.【知识考点】四边形综合题.【思路分析】(1)如图①,过点P作PE⊥CD于点E,求得PE,进而得矩形A′B′C′D′的两邻边长,再由矩形的周长公式便可得答案;(2)连接PE、PF、PG,过点P作PQ⊥CD于点Q,如图②,求得PE的长度,便可得雕刻图案的4直线段边的长度,再求得PG长度,以及DP′绕D点旋转至DP″的旋转角度,便可根据弧长公式求得雕刻图案四角的圆弧长,进而得出整个雕刻图案的周长.【解题过程】解:(1)如图①,过点P作PE⊥CD于点E,∵点P是边长为30厘米的正方形雕刻模具的中心,∴PE=15cm,同理:A′B′与AB之间的距离为15cm,A′D′与AD之间的距离为15cm,B′C′与BC之间的距离为15cm,∴A′B′=C′D′=200﹣15﹣15=170(cm),B′C′=A′D′=100﹣15﹣15=70(cm),∴C四边形A′B′C′D′=(170+70)×2=480cm,答:图案的周长为480cm;(2)连接PE、PF、PG,过点P作PQ⊥CD于点Q,如图②∵P点是边长为30cm的等边三角形模具的中心,∴PE=PG=PF,∠PGF=30°,∵PQ⊥GF,∴GQ=FQ=15cm,∴PQ=GQ•tan30°=15cm,PG==30cm,当△EFG向上平移至点G与点D重合时,由题意可得,△E′F′G′绕点D顺时针旋转30°,使得E′G′与AD边重合,∴DP′绕点D顺时针旋转30°到DP″,∴,同理可得其余三个角均为弧长为5πcm的圆弧,∴=600﹣120+20π(cm),答:雕刻所得图案的周长为(600﹣120)cm.【总结归纳】本题是四边形的综合题,主要考查了矩形的性质,正方形的性质,圆弧长的计算,等边三角形的性质,关键是P点到门边沿的距离和雕刻图案四角的圆弧长计算.27.(14分)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题1~4.(Ⅰ)在Rt△ABC中,∠C=90°,AB=2,在探究三边关系时,通过画图,度量和计算,收集到一组数据如下表:(单位:厘米)AC 2.8 2.7 2.6 2.3 2 1.5 0.4BC 0.4 0.8 1.2 1.6 2 2.4 2.8AC+BC 3.2 3.5 3.8 3.9 4 3.9 3.2(Ⅱ)根据学习函数的经验,选取上表中BC和AC+BC的数据进行分析:①BC=x,AC+BC=y,以(x,y)为坐标,在图①所示的坐标系中描出对应的点:②连线:观察思考(Ⅲ)结合表中的数据以及所画的图象,猜想.当x=时,y最大;(Ⅳ)进一步精想:若Rt△ABC中,∠C=90°,斜边AB=2a(a为常数,a>0),则BC=时,AC+BC最大.推理证明(Ⅴ)对(Ⅳ)中的猜想进行证明.问题1,在图①中完善(Ⅱ)的描点过程,并依次连线;问题2,补全观察思考中的两个猜想:(Ⅲ);(Ⅳ);。

江苏省盐城市2021年中考数学试题真题(Word版+答案+解析)

江苏省盐城市2021年中考数学试题真题(Word版+答案+解析)
请根据以上信息,解答下列问题:
(1)这八周中每周接种人数的平均数为________万人:该地区的总人口约为________万人;
(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.
①估计第9周的接种人数约为________万人;
②专家表示:疫苗接种率至少达60%,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?
【详解】a2+2a+1=(a+1)2.
故答案为 .
【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.
11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.
【答案】9
【解析】
【详解】解:360÷40=9,即这个多边形的边数是9
12.如图,在⊙O内接四边形 中,若 ,则 ________ .
(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)
23.如图, 、 、 分别是 各边的中点,连接 、 、 .
(1)求证:四边形 为平行四边形;
(2)加上条件后,能使得四边形 为菱形,请从① ;② 平分 ;③ ,这三个条件中选择条件填空(写序号),并加以证明.
试根据下列各题中所给 定点 的坐标和角度 的大小来解决相关问题.
【初步感知】
如图1,设 , ,点 是一次函数 图像上的动点,已知该一次函数的图像经过点 .
(1)点 旋转后,得到的点 的坐标为________;
(2)若点 的运动轨迹经过点 ,求原一次函数的表达式.
【深入感悟】
(3)如图2,设 , ,点 反比例函数 的图像上的动点,过点 作二、四象限角平分线的垂线,垂足为 ,求 的面积.

2021-2022学年江苏省盐城市高一上期中数学模拟试卷及答案解析

2021-2022学年江苏省盐城市高一上期中数学模拟试卷及答案解析

第 4 页 共 15 页
2021-2022 学年江苏省盐城市高一上期中数学模拟试卷
参考答案与试题解析
一.选择题(共 8 小题,满分 40 分,每小题 5 分)
1.(5 分)已知集合 A={x|y=lg(x﹣2)},B={x|x2﹣5x+4<0},则(∁RA)∩B=( )
A.{x|1<x<2}
B.{x|1<x≤2}
D.存在某个位置,使 MB⊥平面 A1DE
11.(5 分)在下列根式与分数指数幂的互化中,不正确的是( )
A.(﹣x)0.5
(x≠0)

B.
C.( )
(xy≠0)

D.
12.(5 分)某校在劳动基地开展开垦菜地、种植蔬菜的实践活动.某班级统计其负责菜地 连续八周的蔬菜周产量(单位:斤),并制作折线图如图所示.根据折线图信息,下列结
A.增区间是(0,+∞)
B.减区间是(﹣∞,﹣1)
C.增区间是(﹣∞,1)
D.增区间是(﹣1,1)
【解答】解:根据题意,函数 f(x)=﹣x|x|+2x
, ,
,<
第 6 页 共 15 页
当 x<0 时,f(x)=x2+2x=(x+1)2﹣1,在区间(﹣∞,﹣1)上为减函数,在区间(﹣ 1,0)上为增函数, 当 x≥0 时,f(x)=﹣x2+2x=﹣(x﹣1)2+1,在区间(0,1)上为增函数,在区间(1, +∞)上为减函数,
故选:B.
6.(5 分)已知 f( ⺁)=x+3,则 f(x)的解析式可取(
⺁ A.

⺁ B.

C. ⺁
【解答】解:令 t
⺁,(t≠1)

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷附答案解析 (2)

2021年中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.32.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤53.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×305.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.48.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是.10.(5分)已知+=3,求=.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.2021年中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.(4分)若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1C..4D.3【分析】根据根与系数的关系即可求出答案.【解答】解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.2.(4分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2B.m≥3C.m<5D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.3.(4分)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故A 错误.B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故B错误;C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故D正确;故选:D.4.(4分)某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【分析】根据空白区域的面积=矩形空地的面积可得.【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.5.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.6.(4分)若点A(﹣1,m)、B(1,m)、C(2,m﹣1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【分析】由点A(﹣1,m),B(1,m),C(2,m﹣1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而减小,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,D错误;∵B(1,m),C(2,m﹣1),∴当x>0时,y随x的增大而减小,故B正确,C错误.故选:B.7.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b >0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.8.(4分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,1)B.(2020,0)C.(2020,2)D.(2019,0)【分析】分析点P的运动规律找到循环规律即可.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则2020=505×4,所以,前505次循环运动点P共向右运动505×4=2020个单位,且在x轴上,故点P坐标为(2020,0).故选:B.二.填空题(共5小题,满分25分,每小题5分)9.(5分)把多项式x2y﹣6xy+9y分解因式的结果是y(x﹣3)2.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)210.(5分)已知+=3,求=﹣.【分析】由+=3知=3,即a+b=3ab,整体代入到原式,计算可得.【解答】解:∵+=3,∴=3,则a+b=3ab,所以原式====﹣,故答案为:﹣.11.(5分)如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA,OE都在x轴上,点C在OB边上,S△ABD=,反比例函数y=(x>0)的图象经过点B,则k的值为.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得到OD∥AB,求得S△BDO=S△AOD,推出S△AOB=S△ABD=,过B作BH⊥OA于H,由等边三角形的性质得到OH=AH,求得S△OBH=,于是得到结论.【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,∴S△BDO=S△AOD,∵S四边形ABDO=S△ADO+S△ABD=S△BDO+S△AOB,∴S△AOB=S△ABD=,过B作BH⊥OA于H,∴OH=AH,∴S△OBH=,∵反比例函数y=(x>0)的图象经过点B,∴k的值为,故答案为:.12.(5分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加(4﹣4)m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA=OB=AB=2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过将A点坐标(﹣2,0)代入抛物线解析式可得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.13.(5分)已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为0<m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m (m>0),设直线l与x轴、y轴分别交于点A、B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•m=×m×m,∵m>0,解得OD=m由直线与圆的位置关系可知<6,解得0<m<.故答案为:0<m<.三.解答题(共4小题,满分43分)14.(5分)计算:﹣2tan60°.【分析】原式利用二次根式性质,绝对值的代数意义,负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+5﹣2﹣2=3.15.(12分)如图,已知AB是⊙O的直径,CB⊥AB,D为圆上一点,且AD∥OC,连接CD,AC,BD,AC与BD交于点M.(1)求证:CD为⊙O的切线;(2)若CD=AD,求的值.【分析】(1)连接OD,设OC交BD于K.想办法证明△ODC≌△OBC(SSS)即可解决问题.(2)由CD=AD,可以假设AD=a,CD=a,设KC=b.由△CDK∽△COD,推出=,推出=整理得:2()2+()﹣4=0,解得=或(舍弃),由此即可解决问题.【解答】(1)证明:连接OD,设OC交BD于K.∵AB是直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥AD,∴OC⊥BD,∴DK=KB,∴CD=CB,∵OD=OB,OC=OC,CD=CB,∴△ODC≌△OBC(SSS),∴∠ODC=∠OBC,∵CB⊥AB,∴∠OBC=90°,∴∠ODC=90°,∴OD⊥CD,∴CD是⊙O的切线.(2)解:∵CD=AD,∴可以假设AD=a,CD=a,设KC=b.∵DK=KB,AO=OB,∴OK=AD=a,∵∠DCK=∠DCO,∠CKD=∠CDO=90°,∴△CDK∽△COD,∴=,∴=整理得:2()2+()﹣4=0,解得=或(舍弃),∵CK∥AD,∴===.16.(12分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1)求两种车租金每辆各多少元?(2)若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案.【分析】(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意列出方程解答即可.(2)根据租用的8辆客车所载的总人数应大于等于师生的总人数和所需的费用应比单独租用车辆的费用少,列出不等式组进行求解,然后分类讨论.【解答】解:(1)设42座客车租金x元/辆,60座客车租金(x+140)元/辆,根据题意,得:3x+2(x+140)=1880,解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆;(2)设租42座客车m辆,则60座客车(8﹣m)辆,根据题意得:42m+60(8﹣m)≥385•,320m+460 (8﹣m)≤3200,解得:3≤m≤5∵m为整数,∴m的值可以是4、5,即有2种方案;设总费用为W,则W=320m+460 (8﹣m)=﹣140m+3680,∵W随m的增大而减小大,∴当m=5时,W取得最小值,最小值为2980,17.(14分)如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.(1)求a、b的值;(2)当△BCD是直角三角形时,求△OBC的面积;(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.【分析】(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称﹣最短路径问题得到点Q.最后利用方程思想解答.【解答】解:(1)∵过点的抛物线y=ax2+bx的对称轴是x=2,∴解之,得;(2)设点C的坐标是(0,m).由(1)可得抛物线,∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).当∠CBD=90°时,有BC2+BD2=CD2.∴,解之,得,∴;当∠CDB=90°时,有CD2+BD2=BC2.∴,解之,得,∴;当∠BCD=90°时,有CD2+BC2=BD2.∴,此方程无解.综上所述,当△BDC为直角三角形时,△OBC的面积是或;(3)设直线y=kx过点,可得直线.由(1)可得抛物线,∴,∴当时,PQ最大,此时Q点坐标是.∴PQ最大时,线段BQ为定长.∵MN=2,∴要使四边形BQMN的周长最小,只需QM+BN最小.将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.设直线y=cx+d过点和点B(4,0),则解之,得∴直线过点Q2和点B.解方程组得∴点N的坐标为,∴点M的坐标为,所以点Q、M、N的坐标分别为,,.。

江苏省盐城市2023年九年级下学期中考数学模拟试卷(二)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(二)

江苏省盐城市2023年九年级下学期中考数学模拟试卷(二)一.选择题(共10小题,满分30分,每小题3分)1.﹣4的倒数是()A.B.﹣C.4D.﹣42.在函数y=中,自变量x的取值范围是()A.x>2B.x≥2C.x≠0D.x≠23.下列计算正确的是()A.b3•b3=2b3B.x16÷x4=x4C.2a2+3a2=6a4D.(a5)2=a104.如图,是由相同小正方体组成的立体图形,它的主视图为()A.B.C.D.5.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:月用水量(吨)3458户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.众数是4B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.56.若一个正多边形的每一个外角都等于40°,则这个正多边形的边数是()A.7B.8C.9D.107.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补8.如图,所示的曲边三角形可按下述方法作出:作等边三角形ABC;分别以点A,B,C 为圆心,以AB的长为半径作弧BC,弧AC,弧AB,三段弧所围成的图形就是一个曲边三角形,如果一个曲边三角形的周长为3π,则它的面积为()A.B.C.D.9.如图,在矩形ABCD中,AB=5,BC=2,点A与原点重合,点B在y轴的正半轴上.点D在x轴的负半轴上,将矩形ABCD绕点A逆时针旋转30°得到矩形AB′C′D′,直线B′C′与CD相交于点M,则M的坐标为()A.(2,)B.(﹣2,)C.(2,)D.(﹣2,)10.如图,平行四边形OABC的顶点O,A,C的坐标分别是(0,0),(4,0),(1,2),则顶点B的坐标是()A.(4,2)B.(5,2)C.(4,3)D.(5,3)二.填空题(共8小题,满分16分,每小题2分)11.分解因式:9x2+6x+1=.12.2020年12月9日世卫组织公布,全球新冠肺炎确诊病例超6810万例,请用科学记数法表示6810万例为例.13.设a、b是方程x2+x﹣2020=0的两个不等实根,则a2+2a+b的值是.14.已知反比例函数y=的图象经过点(2,﹣4),则k的值为.15.命题“正方形的四条边相等”的逆命题是,它是(填“真命题”或“假命题”).16.《周髀算经》中的“赵爽弦图”(如图),图中的四个直角三角形都全等,如果正方形ABCD 的面积是正方形EFGH面积的13倍,那么∠ABE的余切值是.17.小明做了一个圆心角∠AOB=120°,半径为2cm的扇形纸板,并在水平的桌面上作无滑动滚动,如图,当滚动一周,圆心O从桌面开始再次滚动到桌面O1处时,圆心O经过的轨迹的长为cm(不求近似值)18.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A的坐标是(a,b),则经过第2021次变换后所得A点坐标是.三.解答题(共10小题,满分84分)19.(8分)(1)计算:﹣|﹣2|+()0﹣(﹣1).(2)化简:(x﹣1)2﹣x(x+7).20.(8分)(1)解方程:=;(2)解不等式组:.21.(8分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:△ADC≌△BDF;(2)线段BF与AE有何数量关系?并说明理由.(3)若CD=,求AD的长.22.(8分)为了解龙华区某校七年级学生对A《最强大脑》、B《朗读者》、C《中国诗词大会》、D《极限挑战》四个电视节目的喜爱情况,随机抽取了m位学生进行调查统计(要求每位学生选出并且只能选一个自己最喜爱的节目).并将调查结果绘制成如图两幅不完整的统计图.根据统计图提供的信息,回答下列问题:(1)m=,n=.(2)在图1中,喜爱《极限挑战》节目所对应的扇形的圆心角度数是度;(3)请根据以上信息补全图2的条形统计图;(4)已知该校七年级共有500位学生,那么他们最喜欢《最强大脑》这个节目的学生约有人.23.(8分)将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)(1)取出的2张卡片数字相同;(2)取出的2张卡片中,至少有1张卡片的数字为“3”.24.(6分)如图,四边形ABCD为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上;(尺规作图,保留作图痕迹,不写作法)(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B'C'恰好经过点D,且满足B'C'⊥BD;(尺规作图,保留作图痕迹,不写作法)(3)在(2)的条件下,若AB=2,BC=4,则CN=.25.(8分)如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.26.(10分)习近平总书记指出:“扶贫先扶志,扶贫必扶智”.某企业扶贫小组准备在春节前夕慰问贫困户,为贫困户送去温暖.该扶贫小组购买了一批慰问物资并安排两种货车运送.据调查得知,2辆大货车与4辆小货车一次可以满载运输700件;5辆大货车与7辆小货车一次可以满载运输1450件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)计划租用两种货车共10辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1300件,且总费用不超过46000元.请你指出共有几种运输方案,并计算哪种方案所需费用最少,最少费用是多少?27.(10分)在平面直角坐标系xOy中,点A(m,n)为第一象限内一点,过点A分别作x 轴,y轴的垂线,垂足分别为点B,点C,作△OAB关于直线OA的对称图形△OAB′.(1)当n=4时,①若点B′落在y轴上,则m=;②若点B′落在第一象限内,且tan∠CAB′=,求m的值;(2)设△OAB′与四边形OBAC重合部分的面积为S,若S为四边形OBAC面积的,求的值.28.(10分)如图,抛物线y=mx2﹣4mx+n(m>0)与x轴交于A,B两点,点B在点A的右侧,抛物线与y轴正半轴交于点C,连接CA、CB,已知tan∠CAO=3,sin∠CBO=.(1)求抛物线的对称轴与抛物线的解析式;(2)设D为抛物线对称轴上一点,①当△BCD的外接圆的圆心在△BCD的边上时,求点D的坐标;②若△BCD是锐角三角形,直接写出点D纵坐标的取值范围.。

江苏省盐城市景山中学2024届中考数学仿真试卷含解析

江苏省盐城市景山中学2024届中考数学仿真试卷含解析

江苏省盐城市景山中学2024届中考数学仿真试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°2.下列几何体中三视图完全相同的是()A.B.C.D.3.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π4.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查5.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件6.平面直角坐标系中,若点A(a,﹣b)在第三象限内,则点B(b,a)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.点A、C为半径是4的圆周上两点,点B为AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆半径的中点上,则该菱形的边长为()A.7或22B.7或23C.26或22D.26或238.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.9.若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,310.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是()A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.3二、填空题(共7小题,每小题3分,满分21分)11.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于_____.(结果保留根号及π).12.如图,直线3与双曲线y=kx交于A,B两点,OA=2,点C在x轴的正半轴上,若∠ACB=90°,则点C的坐标为______.13.与直线2y x =平行的直线可以是__________(写出一个即可).14.如图,已知直线m ∥n ,∠1=100°,则∠2的度数为_____.15.如图,半径为3的⊙O 与Rt △AOB 的斜边AB 切于点D ,交OB 于点C ,连接CD 交直线OA 于点E ,若∠B=30°,则线段AE 的长为 .16.计算:1275-=______.17.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由BC ,线段CD 和线段BD 所围成图形的阴影部分的面积为__.三、解答题(共7小题,满分69分)18.(10分)综合与实践:概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n ],''AB C S ∆:ABC S ∆= .问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点B,C,C′在同一直线上,且四边形ABB′C′为矩形,求θ 和n 的值.拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换得到△AB′C′,则四边形ABB′C′为正方形19.(5分)[阅读]我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”.[理解]如图1,Rt△ABC是“中边三角形”,∠C=90°,AC和BD是“对应边”,求tanA的值;[探究]如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.当β=45°时,若△APQ是“中边三角形”,试求as的值.20.(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:3,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)21.(10分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元.求购买A 型和B 型公交车每辆各需多少万元?预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?22.(10分)如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.23.(12分)如图,已知△ABC ,按如下步骤作图:①分别以A 、C 为圆心,以大于AC 的长为半径在AC 两边作弧,交于两点M 、N ;②连接MN ,分别交AB 、AC 于点D 、O ;③过C 作CE ∥AB 交MN 于点E ,连接AE 、CD .(1)求证:四边形ADCE 是菱形;(2)当∠ACB=90°,BC=6,△ADC 的周长为18时,求四边形ADCE 的面积.24.(14分)计算:|﹣2|++(2017﹣π)0﹣4cos45°参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.2、A【解题分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【题目详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.【题目点拨】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3、B【解题分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【题目详解】连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选B.【题目点拨】 本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式180n r l π=. 4、B【解题分析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A 、调查范围广适合抽样调查,故A 不符合题意;B 、适合普查,故B 符合题意;C 、调查范围广适合抽样调查,故C 不符合题意;D 、调查范围广适合抽样调查,故D 不符合题意;故选:B .点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、C【解题分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【题目详解】A 、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B 、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C 、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D 、“a 是实数,|a|≥0”是必然事件,故此选项错误.故选C .【题目点拨】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.6、D【解题分析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限.详解:∵点A在第三象限,∴a<0,-b<0,即a<0,b>0,∴点B在第四象限,故选D.点睛:本题主要考查的是象限中点的坐标特点,属于基础题型.明确各象限中点的横纵坐标的正负性是解题的关键.7、C【解题分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【题目详解】过B作直径,连接AC交AO于E,∵点B为AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵2222=43=7OC OE--在Rt△DEC中,由勾股定理得:2222=(7)1=22CE DE++如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:CE=2222=41=15OC OE--,DC=2222=3(15)=26DE CE++.故选C.【题目点拨】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.8、B【解题分析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.9、C【解题分析】试题分析:解分式方程得:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知关于x的分式方的解为正数,得m=1,m=3,故选C.考点:分式方程的解.10、D【解题分析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.二、填空题(共7小题,每小题3分,满分21分)11、2π+42【解题分析】根据正方形的性质,得扇形所在的圆心角是90°,扇形的半径是22.解:根据图形中正方形的性质,得∠AOB=90°,OA=OB=22.∴扇形OAB的弧长等于90222180π⨯=π.12、(2,0)【解题分析】根据直线y=3x与双曲线y=kx交于A,B两点,OA=2,可得AB=2AO=4,再根据Rt△ABC中,OC=12AB=2,即可得到点C的坐标【题目详解】如图所示,∵直线3与双曲线y=kx交于A,B两点,OA=2,∴AB=2AO=4,又∵∠ACB=90°,∴Rt△ABC中,OC=12AB=2,又∵点C在x轴的正半轴上,∴C(2,0),故答案为(2,0).【题目点拨】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC 的长.13、y=-2x+5(答案不唯一)【解题分析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【题目详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【题目点拨】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.14、80°.【解题分析】如图,已知m ∥n ,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【题目详解】如图,∵m ∥n ,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【题目点拨】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.15、【解题分析】要求AE 的长,只要求出OA 和OE 的长即可,要求OA 的长可以根据∠B=30°和OB 的长求得,OE 可以根据∠OCE和OC 的长求得.【题目详解】解:连接OD ,如图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3, ∴AE=OE ﹣OA=3-2=,【点晴】切线的性质16、33-【解题分析】原式=353=33-故答案为:33-17、3﹣23π. 【解题分析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=3OCD 1223232S =⨯=OBC 60423603S ππ⨯==扇形,则2233S π=阴影.三、解答题(共7小题,满分69分)18、(1)2n ;(2)60,2n θ=︒=;(3)452︒⎡⎣.【解题分析】(1)根据定义可知△ABC ∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;(2)根据四边形''ABB C 是矩形,得出90BAC '∠=︒,进而得出30AB B '∠=︒,根据30°直角三角形的性质即可得出答案;(3)根据四边形 ABB′C′为正方形,从而得出45CAC '∠=︒,再根据等腰直角三角形的性质即可得出答案.【题目详解】解:(1)∵△AB′C′的边长变为了△ABC 的n 倍,∴△ABC ∽△AB′C′, ∴2''AB C ABCS n S ∆∆=, 故答案为:2n .(2)四边形''ABB C 是矩形,∴90BAC '∠=︒.903060CAC BAC BAC θ''∴=∠=∠-∠=︒-︒=︒.在Rt ABB '中,90,60ABB BAB ''︒∠=∠=︒, 30AB B '∴∠=︒.2AB n AB'∴==. 60,2n θ∴=︒=.(3)若四边形 ABB′C′为正方形,则AB AC '=,90BAC '∠=︒,∴45CAC '∠=︒,∴45θ=︒,又∵在△ABC 中,,∴A C C '=,∴n =故答案为:45︒⎡⎣.【题目点拨】本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.19、tanA=32;综上所述,当β=45°时,若△APQ是“中边三角形”,as的值为34或151102.【解题分析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得∴BC=x,可得tanA===(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得△AEF∽△CEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QN⊥AP于N,可得tan∠APQ===,tan∠APE===,∴=,【题目详解】解:[理解]∵AC和BD是“对应边”,∴AC=BD,设AC=2x,则CD=x,BD=2x,∵∠C=90°,∴BC===x,∴tanA===;[探究]若β=45°,当点P在AB上时,△APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,∵PC=QC,∠ACB=∠ACD,∴AC是QP的垂直平分线,∴AP=AQ,∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴===,∵PE=CE,∴=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,==,∴=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QN⊥AP于N,∴MN=AN=PM=QM,∴QN=MN,∴ntan∠APQ===,∴ta∠APE===,∴=,综上所述,当β=45°时,若△APQ是“中边三角形”,的值为或.【题目点拨】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.20、(1)观测点B 到航线l 的距离为3km (2)该轮船航行的速度约为40.6km/h【解题分析】试题分析:(1)设AB 与l 交于点O ,利用∠DAO=60°,利用∠DAO 的余弦求出OA 长,从而求得OB 长,继而求得BE 长即可;(2)先计算出DE=EF+DF=求出DE=53,再由进而由tan ∠CBE=CE BE求出EC ,即可求出CD 的长,进而求出航行速度.试题解析:(1)设AB 与l 交于点O ,在Rt △AOD 中,∵∠OAD=60°,AD=2(km ),∴OA=0cos60AD =4(km ), ∵AB=10(km ),∴OB=AB ﹣OA=6(km ),在Rt △BOE 中,∠OBE=∠OAD=60°,∴BE=OB•cos60°=3(km ),答:观测点B 到航线l 的距离为3km ;(2)∵∠OAD=60°,AD=2(km ),∴OD=AD·tan60°=23 , ∵∠BEO=90°,BO=6,BE=3,∴OE=22OB BE -=33,∴DE=OD+OE=53(km );CE=BE•tan ∠CBE=3tan76°,∴CD=CE ﹣DE=3tan76°﹣53≈3.38(km ), ∵5(min )=112 (h),∴v=112S CD t==12CD=12×3.38≈40.6(km/h ), 答:该轮船航行的速度约为40.6km/h .【题目点拨】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC ,DE ,DO 的长是解题关键.21、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B 型公交车3辆;③购买A 型公交车8辆,则B 型公交车2辆;(3)购买A 型公交车8辆,B 型公交车2辆费用最少,最少费用为1100万元.【解题分析】详解:(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得,解得, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由题意得,解得:6≤a≤8,因为a 是整数,所以a=6,7,8;则(10-a )=4,3,2;三种方案:①购买A 型公交车6辆,B 型公交车4辆;②购买A 型公交车7辆,B 型公交车3辆;③购买A 型公交车8辆,B 型公交车2辆.(3)①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元; ②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;故购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【题目点拨】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22、(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解题分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【题目详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0),∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94. 23、(1)详见解析;(2)1.【解题分析】(1)利用直线DE 是线段AC 的垂直平分线,得出AC ⊥DE ,即∠AOD=∠COE=90°,从而得出△AOD ≌△COE ,即可得出四边形ADCE 是菱形.(2)利用当∠ACB=90°时,OD ∥BC ,即有△ADO ∽△ABC ,即可由相似三角形的性质和勾股定理得出OD 和AO 的长,即根据菱形的性质得出四边形ADCE 的面积.【题目详解】(1)证明:由题意可知:∵分别以A 、C 为圆心,以大于AC 的长为半径在AC 两边作弧,交于两点M 、N ;∴直线DE 是线段AC 的垂直平分线,∴AC ⊥DE ,即∠AOD=∠COE=90°;且AD=CD 、AO=CO ,又∵CE ∥AB ,∴∠1=∠2,在△AOD 和△COE 中∴△AOD ≌△COE (AAS ),∴OD=OE ,∵A0=CO ,DO=EO ,∴四边形ADCE 是平行四边形,又∵AC⊥DE,∴四边形ADCE是菱形;(2)解:当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,∴又∵BC=6,∴OD=3,又∵△ADC的周长为18,∴AD+AO=9,即AD=9﹣AO,∴可得AO=4,∴DE=6,AC=8,∴【题目点拨】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.24、1.【解题分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【题目详解】解:原式=2+2+1﹣4×=2+2+1﹣2=1.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.。

2021年江苏省盐城市中考数学试题附解析

2021年江苏省盐城市中考数学试题附解析

2021年江苏省盐城市中考数学试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知一组数据:10,8,6,10,9,13,11,11,10,10,则下列各组中,频率为0.2的是( )A .5.5~7.5B .9.5~11.5C .7.5~9.5D .11.5~13.52.一个画家有l4个边长为1 cm 的正方体,他在地上摆成如图所示的形状,然后把露出的表面都染上颜色,那么被染上颜色的面积有( )A .21m 2B .24 m 2C .33 m 2D .37m 23.等腰三角形一边长等于4,一边长等于9,它的周长是( )A .17B .22C .17或22D .134.从哈尔滨开往A 市的特快列车,途中要停靠两个站点,如果任意两站间的票价都不同,那么不同的票价的种数为( )A .4 种B . 6 种C . 10 种D . 12 种5.A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A .3B .5C .2D .46.如图,在数轴上表示到原点的距离为3个单位的点有( )A .D 点B .A 点C .A 点和D 点 D .B 点和C 点二、填空题7.小芳晚上到人民广场去玩,她发现有两人的影子一个向南,一个向北,于是她肯定的说:“广场上的大灯泡一定位于两人 ”.8.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .9.已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.m =1;m ≠1;m =010.将一长方形的纸片按如图方式折叠,BC ,BD 为折痕,则∠CBD= 度.11.分解因式:m 3-4m= .12.如图所示,已知AC=AD ,BC=BD ,说明△ABC ≌△ABD 的理由.解:在△ABC 和△ABD 中, ( ),BC=BD( ),( ),∴△ABC ≌△△ABD( ).13.5的相反数是 ,-2的倒数是 ,-6的绝对值是 .14.去括号:-(a-b+c-d)= ;+ (2m- 2n-p)= ;- 2 (-3a+2b- 2c) = .解答题三、解答题15.解不等式组331213(1)8x x x x-⎧+>+⎪⎨⎪--≤-⎩, 并在数轴上把解表示出来.16.已知线段AB a =,延长AB 至点C ,使BC =31AB ,点D 为线段AC 的中点. (1)求CD 的长;(2)若BD =2cm,求AB 的长.17.三峡一期工程结束后,当年发电量为 5. 5×109千瓦时,某区有 100 万户居民,若平均每A CB D · · · ·户每年用电32.7510⨯千瓦时,那么该年所发的电能供该区居民使用多少年?18.某生产车间制造 a 个零件,原计划每天造 x个,后来实际每天多造 b个,则可提前几天完成.2abx bx+19.如图,小明家、王老师家、学校同在一条路上,小明家到王老师家的路程为 3 km,王老师家到学校的路程为 0. 5 km .王老师有一天骑自行车接小明上学,已知王老师骑自行车的速度是步行速度的 3 倍,这天比平时步行直接去上班多用了 20 min,问王老师的步行速度是多少?20.一只箱子里共有3个球,其中2个白球,1个红球,它们除颜色外其余均相同.(1)从箱子中任意摸出一个球是白球的概率是多少?(2)从箱子中任意摸出一个球,不将它放回箱子,搅匀后再摸出一个球,求两次摸出球的都是白球的概率,并画出树状图.21.解下列方程:(1)156178x x+=-(2)2419 36x xx -+=-(3)10.50.12 0.30.2x x---=22.如图是某市一天的温度曲线图,其中x 表示时间(时),y 表示某市的温度(℃),根据图象回答下面问题:(1)这个函数反映了哪两个变量之间的关系?(2)这天几时温度最高、最低,它们相差多少度?(3)温度y 可以看成时间x 的函数吗?为什么?(4)求当x=21时的函数值,并说明它的实际意义.23.某汽车油箱的容积为 70 L ,小王把油箱注满油后准备驾驶汽车从县城到300 km 外的省城接客人,在接到客人后立即按原路返回,请回答下列问题:(1)油箱注满油后,汽车能够行驶的总路程 a(km)与每千米平均耗油量 b(L)之间有怎样的函数关系?(2)小王以平均每千米耗油 0.1 L 的速度驾驶汽车到达省城,在返程时由于下雨,小王降低了车速,此时每行驶1 km 的耗油量增加了一倍,如果小王一直以此速度行驶,油箱里的油是否够回到县城?如果不够用,至少还需加多少油?24. 计算: 61510 1112133 (3)3(33)128(4)(22)(322)+; 281()17- 12()312; (7)(236)(326)⨯25.如图,在四边形ABCD中,AB=CD,E,F,M,N分别是BD,AC,AD,BC的中点.(1)求证:四边形MENF是平行四边形;(2)若AB=4 cm,求四边形MENF的周长.26.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.27.已知抛物线y=3x2-2x- 53与直线y=2x有两个交点,如何平移直线y=2x,使得直线与抛物线只有一个交点.28.如图,在△ABC 中,∠C =90°,∠BAC=30°,AB=AD,求 tanD.29.如图,已知⊙O1、⊙O2相交于 A,、B,PE 切⊙O1于 P,PA、PB 交⊙O2于 C.D. 求证: CD∥PE.30.2008年 10月 18 日上午 10时,经过中国铁建十六局集团和中铁隧道局集团2000多名员工4年零2个月的顽强拼搏,被誉为世界级工程难题的宜万铁路野三关隧道Ⅱ线胜利贯通. 如图,这是工程建设中一个山峰的平面图,施工队在施工之前需要先测量出隧道AB的长度,请你利用三角形全等的知识设计一种测量方法,并说明理由.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.B4.B5.A6.C二、填空题7.之间的上方8.4.9米9.10.9011.)2)(2(-+m m m 12.AC=AD ,已知,已知,AB=AB ,公共边,SSS13.-5,-12,6 14.a b c d -+-+,22m n p --,644a b c -+三、解答题15.不等式组的解为21x -≤<,图略16.(1)∵BC =31AB =31a , ∴AC =AB BC +=a +31a =34a . ∵D 为线段AC 的中点, ∴CD =21AC =32a . (2)∵AD =CD =32a , ∴BD =AB AD -=a -32a =31a . ∵BD =2 ,∴AB =3BD =6(cm). 17.2年18.2ab x bx +19. 5 km/h20.(1)32;(2)31. 21. (1)x=7 (2)x=3 (3)4723x = 22.某市一天中时间与温度之间的关系;(2)这天15时温度最高为16℃,3时温度最低为2℃,相差l4℃;(3)可以;(4)10℃,21时温度为10℃23. (1)70a b=(2)实际耗油量= 300×< 0.1I + 300× 0.2=90>70,90- 70=20(L)∴ 油箱里的油不够用,还需加 20 L 油.24.(1) 30;(2)3;(3)32182-;(4)22+;(5)1517;(6)12;(7)126+ 25.(1)利用中位线定理证明;(2)8 cm26.(1)画图略;(2)B ′(-6,2),C ′(-4,-2).(3)M ′(-2x ,-2y).27.y=2x+by=3x2-2x-53,Δ=0得b=-3,即向下平移3个单位; 28.如图,Rt △ABC 中,∠ BAC=30°, 设 BC=x ,AB=2x ,∴3AC x =∵AB=AD ,∴AD=2x .在 Rt △BCD 中,1tan 232323BC x D DC x x ====-++. 29.作直径 PT ,连结 AT 、AB.∴∠PAT=90°,∠T+∠TPA=90°.∵PE 切⊙O 1 于点P.∴∠TPA+∠EPA=90°,∴∠EPA=∠T ,∵∠T=∠B ,∠B=∠C ,∴∠EPA=∠C ,∴CD ∥PE .30.利用全等三角形的判定(AAS ,SAS ,ASA)来设计完成。

2024年江苏省盐城市中考数学试卷及答案解析

2024年江苏省盐城市中考数学试卷及答案解析

2024年江苏省盐城市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2024的相反数是()A.2024B.﹣2024C.D.2.(3分)下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器B.移动中的黑板C.折叠中的纸片D.骑行中的自行车3.(3分)下列运算正确的是()A.a6÷a2=a4B.2a﹣a=2C.a3•a2=a6D.(a3)2=a54.(3分)盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.0.24×107B.24×105C.2.4×107D.2.4×1065.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都6.(3分)小明将一块直角三角板摆放在直尺上,如图,若∠1=55°,则∠2的度数为()A.25°B.35°C.45°D.55°7.(3分)矩形相邻两边长分别为cm、cm,设其面积为S cm2,则S在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和58.(3分)甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.10.(3分)分解因式:x2+2x+1=.11.(3分)两个相似多边形的相似比为1:2,则它们的周长的比为.12.(3分)如图,△ABC是⊙O的内接三角形,∠C=40°,连接OA、OB,则∠OAB=°.13.(3分)已知圆锥的底面半径为4,母线长为5,该圆锥的侧面积为.14.(3分)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.15.(3分)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37°,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B 的俯角为45°,则教学楼AB的高度约为m.(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,点D是AC的中点,连接BD,将△BCD 绕点B旋转,得到△BEF.连接CF,当CF∥AB时,CF=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|﹣(1+π)0+4sin30°.18.(6分)求不等式≥x﹣1的正整数解.19.(8分)先化简,再求值:1﹣÷,其中a=4.20.(8分)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙);C.新四军重建军部纪念塔(大铜马).小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为;(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.21.(8分)已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF.若,则AB=CD.请从①CE∥DF;②CE=DF;③∠E=∠F这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.22.(10分)小明在草稿纸上画了某反比例函数在第二象限内的图象,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.23.(10分)如图,点C在以AB为直径的⊙O上,过点C作⊙O的切线l,过点A作AD⊥l,垂足为D,连接AC、BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求⊙O的半径.24.(10分)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为t h,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t <2;D.t≥2),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.25.(10分)如图1,E、F、G、H分别是▱ABCD各边的中点,连接AF、CE交于点M,连接AG、CH 交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC、BD交于点O,可得M、N两点都在BD上,当▱ABCD满足时,中顶点四边形AMCN 是菱形;②如图3,已知矩形AMCN 为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)26.(12分)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x 名工人加工“雅”服装,y 名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y 224雅x1正148探究任务任务1探寻变量关系求x 、y 之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w 元,求w 关于x 的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.27.(14分)发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,n>k≥3,d>0),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为,共铲行,则铲除全部籽的路径总长为;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.2024年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【解答】解:2024的相反数是﹣2024,故选:B.【点评】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.【分析】依次对选项中的现实运动作出判断即可.【解答】解:因为工作中的雨刮器的运动方式属于旋转,所以A选项不符合题意.因为移动中的黑板的运动方式属于平移,所以B选项不符合题意.因为折叠中的纸片的运动方式属于翻折,所以C选项符合题意.因为骑行中的自行车的运动方式属于平移,所以D选项不符合题意.故选:C.【点评】本题主要考查了生活中的平移现象及生活中的旋转现象,熟知平移、旋转及翻折的性质是解题的关键.3.【分析】利用同底数幂乘法及除法法则,合并同类项法则,幂的乘方法则逐项判断即可.【解答】解:a6÷a2=a4,则A符合题意;2a﹣a=a,则B不符合题意;a3•a2=a5,则C不符合题意;(a3)2=a6,则D不符合题意;故选:A.【点评】本题考查同底数幂乘法及除法,合并同类项,幂的乘方,熟练掌握相关运算法则是解题的关键.4.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:2400000=2.4×106,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.【分析】正方体的表面展开图相对的面之间一定相隔一个正方形,根据这一特点进行作答.【解答】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“地”与“都”是相对面,“之”与“盐”是相对面,“湿”与“城”是相对面,故选:C.【点评】本题主要考查了正方体相对两个面上的文字,关键在于要注意正方体的空间图形,从相对面入手解答问题.6.【分析】由两直线平行,内错角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图:∵直尺的两边平行,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣90°﹣55°=35°,∴∠2=∠ACB=35°.故选:B.【点评】此题考查了平行线的性质.注意两直线平行,内错角相等定理的应用是解此题的关键.7.【分析】根据矩形的面积公式先求出矩形的面积,再根据无理数的估算方法进行求解,即可得出答案.【解答】解:S=×=(cm2),∵<<,∴3<<4,∴S在3和4之间.故选:C.【点评】本题主要考查了无理数的估算,正确估算出3<<4是解题的关键.8.【分析】从甲、乙两个公司,相同时间内利润的变化量,做出比较得出结论,不要受直观感觉影响.【解答】解:甲家公司的利润增长较快,理由是:甲公司从2019﹣2023年,利润增长了210﹣100=110(万元),增长率为×100%=110%,乙公司从2019﹣2023年利润增长了160﹣120=40(万元),增长率为,×100%≈33.3%,因此甲公司利润始终比乙增长快.故选:A.【点评】本题考查折线统计图的特征,当纵轴单位数据不同时,会造成折线被拉伸和压缩,直观上使人产生错觉.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.【分析】根据分母不为零的条件进行解题即可.【解答】解:若有意义,则x的取值范围是x≠1.故答案为:x≠1.【点评】本题考查分式有意义的条件,掌握分母不为零的条件是解题的关键.10.【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.【分析】直接根据相似多边形周长的比等于相似比进行解答即可.【解答】解:∵两个相似多边形的相似比为1:2,∴两个相似多边形周长的比等于1:2,故答案为:1:2.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比.12.【分析】根据圆周角定理可以得到∠AOB的度数,再根据等腰三角形的性质和三角形内角和,可以求得∠OAB的度数.【解答】解:∵∠C=40°,∴∠AOB=80°,∵OA=OB,∴∠OAB=∠OBA,∵∠OAB+∠OBA+∠AOB=180°,∴∠OAB=50°,故答案为:50.【点评】本题考查三角形的外接圆与外心,圆心角、弧、弦的关系,三角形内角和定理,等腰三角形的判定和性质,圆周角定理,解答本题的关键是明确题意,利用数形结合的思想解答.13.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:由圆锥的底面半径为4,母线长为5,则圆锥的侧面积为×2π×4×5=20π.故答案为:20π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14.【分析】设该问题中的竿子长为x尺,则绳索长为(x+5)尺,根据“将绳索对折去量竿子,绳索就比竿子短5尺”,可列出关于x的一元一次方程,解之即可得出结论.【解答】解:设该问题中的竿子长为x尺,则绳索长为(x+5)尺,根据题意得:x﹣(x+5)=5,解得:x=15,∴该问题中的竿子长为15尺.故答案为:15.【点评】本题考查了一元一次方程的应用以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.15.【分析】令AB的延长线与PQ的延长线交于点C,先求出PC,从而得到QC,BC,再利用AB=AC﹣BC即可求出AB.【解答】解:如图,令AB的延长线与PQ的延长线交于点C,由题意,知AC=30m,PQ=26.6m,∠APC=37°,∠BQC=45°,在Rt△APC中,PC=≈=40(m),∴QC=PC﹣PQ=40﹣26.6=13.4(m),在Rt△BQC中,BC=QC=13.4m,∴AB=AC﹣BC=30﹣13.4=16.6≈17(m),故答案为:17.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,能熟练运用三角函数关系是解题的关键.16.【分析】根据旋转的性质可知:△DCB≌△FEB,根据勾股定理可以求得BD的值,然后再根据平行线的性质和勾股定理、锐角三角函数,可以求得CG和GF的值,从而可以求得CF的值;还有一种情况就是点F在点C的左侧时,同理可以求得CF的值.【解答】解:作BG⊥CF于点G,如图所示,∵∠ACB=90°,AC=BC=2,点D是AC的中点,∴CD=,∠ABC=45°,∴BD===,由旋转的性质可知:△DCB≌△FEB,∴BD=BF=,∵CF∥AB,∴∠ABC=∠BCG=45°,∴CG=BC•sin∠BCG=2×=2,∴BG==2,∴GF===,∴CF=CG+GF=2+;当点D运动点F′时,此时CF′∥AB,同理可得,GF′=,CG=2,∴CF′=﹣2;故答案为:2+或﹣2.【点评】本题考查旋转的性质、全等三角形的性质、勾股定理、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.【分析】利用绝对值的性质,零指数幂,特殊锐角三角函数值计算即可.【解答】解:原式=2﹣1+4×=2﹣1+2=3.【点评】本题考查实数的运算,绝对值的性质,零指数幂,特殊锐角三角函数值,熟练掌握相关运算法则是解题的关键.18.【分析】根据解一元一次不等式的步骤对所给不等式进行求解,并写出正整数解即可.【解答】解:,1+x≥3x﹣3,x﹣3x≥﹣3﹣1,﹣2x≥﹣4,x≤2.所以此不等式的正整数解为:1,2.【点评】本题考查一元一次不等式的整数解,熟知解一元一次不等式的步骤是解题的关键.19.【分析】先计算分式的除法,再计算分式的减法,把原式化简,把a的值代入计算即可.【解答】解:原式=1﹣•=1﹣=﹣=,当a=4时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.20.【分析】(1)直接根据概率公式求解即可;(2)列出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵共有三个基地开展研学活动,∴小明选择基地A的概率为;故答案为:;(2)画树状图如下:由上可得,一共有9种等可能性,其中小明和小丽选择相同基地的可能性有3种,∴小明和小丽选择相同基地的概率为=.【点评】此题考查了树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】选择①,利用AAS证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD;选择②,无法证明;选择③,利用ASA证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD.【解答】证明:选择①,∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠ACE=∠D,在△AEC和△BFD中,,∴△AEC≌△BFD(AAS),∴AC=BD,∴AB=CD;选择③,∴∠A=∠FBD,在△AEC和△BFD中,,∴△AEC≌△BFD(ASA),∴AC=BD,∴AB=CD.【点评】本题考查了全等三角形的性质与判定,平行线的性质与判定,掌握性质和判定方法是解题的关键.22.【分析】(1)根据图象信息可知A(﹣3,2),待定系数法求出反比例函数解析式即可;(2)由图象可知,BC的解析式为y=﹣,与反比例函数解析式联立方程组求出点C坐标即可.【解答】解:(1)由图可知点A的坐标为(﹣3,2),∵反比例函数图象上过点A,设反比例函数关系式为y=,∴k=﹣6,∴反比例函数解析式为y=﹣;(2)直线OA的解析式为y=﹣x,由图象可知,直线OA向上平移三个单位得到直线BC的解析式为y=﹣,联立方程组,解得,(舍去),∴C(﹣,4).【点评】本题考查了反比例函数图象与性质,熟练掌握联立方程组求出交点坐标是关键.23.【分析】(1)先证明OC∥AD,得到∠CAD=∠ACO=∠CAB,再根据∠D=∠ACB=90°,得到△ABC ∽△ACD;(2)根据△ABC∽△ACD,得到,求出AB,得到半径.【解答】(1)证明:连接OC,∵l是⊙O的切线,∵AD⊥l,∴OC∥AD,∴∠CAD=∠ACO=∠CAB,∵∠D=∠ACB=90°,∴△ABC∽△ACD;(2)解:∵AC=5,CD=4,∠ADC=90°,∴AD==3,∵△ABC∽△ACD,∴,∴,∴AB=,∴半径为.【点评】本题考查了相似三角形的性质与判定,切线的性质,圆周角定理等,综合运用性质与判定是解题的关键.24.【分析】(1)把条形统计图各组人数相加可得样本容量;用该地区七年级学生总人数乘样本中“每天阅读时间不少于1小时”的人数所占比例即可求出该地区七年级学生“每天阅读时间不少于1小时”的人数;(2)分别求出12月份和9月份“每天阅读时间不少于1小时”所占百分比即可解答;(3)答案不唯一,只要合理均可.【解答】解:(1)2023年9月份抽样调查的样本容量为:80+320+280+120=800;该地区七年级学生“每天阅读时间不少于1小时”的人数约为:8000×=7200(人),故答案为:800,7200;(2)12月份“每天阅读时间不少于1小时”的占比为(1﹣5%)=95%,9月份“每天阅读时间不少于1小时”的占比为×100%=90%,[(1﹣5%)﹣×100%]÷(×100%)≈5.56%,故该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率为(3)该地区出台相关激励措施的做法收到了良好的效果,“每天阅读时间少于1小时”的比例由9月份的10%减少到12份的5%,“每天阅读时间大约于1.5小时”的比例也有大幅度上升.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG,四边形AFCH均为平行四边形,进而得到:AM∥CN,AN∥CM,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OB,然后连接AB、BC、CD、DA即可得出点M和N分别为△ABC△ADC的重心,据此作图即可.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵点E、F、G、H分别是▱ABCD各边的中点,∴,AE∥CG,∴四边形AECG为平行四边形,同理可得:四边形AFCH为平行四边形,∴AM∥CN,AN∥CM,∴四边形AMCN是平行四边形;(2)解:①当平行四边形ABCD满足AC⊥BD时,中顶点四边形AMCN是菱形,由(1)得四边形AMCN是平行四边形,∵AC⊥BD,∴MN⊥AC,∴中顶点四边形AMCN是菱形,故答案为:AC⊥BD;②如图所示,即为所求,连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OM,然后连接AB、BC、CD、DA即可,∴点M和N分别为△ABC和△ADC的重心,符合题意;证明:矩形AMCN,∴AC=MN,OM=ON,∵ND=2ON,MB=2OM,∴OB=OD,∴四边形ABCD为平行四边形;分别延长CM、AM、AN、CN交四边于点E、F、G、H如图所示:∵矩形AMCN,∴AM∥CN,MO=NO,由作图得BM=MN,∴△MBF∽△NBC,∴,∴点F为BC的中点,同理得:点E为AB的中点,点G为DC的中点,点H为AD的中点.【点评】本题主要考查了四边形综合,平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.26.【分析】任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有(70﹣x﹣y)人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【解答】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有(70﹣x﹣y)人,∵“正”服装总件数和“风”服装相等,∴(70﹣x﹣y)×1=2y,整理得:;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],∴w=2y×24+(70﹣x﹣y)×48+x[100﹣2(x﹣10)],整理得:w=(﹣16x+1120)+(﹣32x+2240)+(﹣2x2+120x),∴w=﹣2x2+72x+3360(x>10),任务3:由任务2得w=﹣2x2+72x+3360=﹣2(x﹣18)2+4008,∴当x=18时,获得最大利润,,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,,不符合题意;当x=19时,,符合题意;∴70﹣x﹣y=34,综上:安排19名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.【点评】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.27.【分析】方案1:根据题意列出代数式即可求解;方案2:根据题意列出代数式即可求解;方案3:根据图得出斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,即可得出总路径长;解决问题:利用作差法比较三种方案即可.【解答】解:方案1:根据题意每行有n个籽,行上相邻两籽的间距为d,∴每行铲的路径长为(n﹣1)d,∵每列有k个籽,呈交错规律排列,∴相当于有2k行,∴铲除全部籽的路径总长为2(n﹣1)dk,故答案为:(n﹣1)d;2k;2(n﹣1)dk;方案2:根据题意每列有k个籽,列上相邻两籽的间距为d,∴每列铲的路径长为(k﹣1)d,∵每行有n个籽,呈交错规律排列,∴相当于有2n列,∴铲除全部籽的路径总长为2(k﹣1)dn,故答案为:2(k﹣1)dn;方案3:由图得斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,∴铲除全部轻的路径总长为:;解决问题由上得:2(n﹣1)dk﹣2(k﹣1)dn=2ndk﹣2dk﹣2ndk+2dn=2d(n﹣k)>0,∴方案1的路径总长大于方案2的路径总长;,∵n>k≥3,当k=3时,,,∴方案3铲籽路径总长最短,销售员的操作方法是选择最短的路径,减少对菠萝的损耗.【点评】题目主要考查列代数式,整式的加减运算,二次根式的应用,理解题意是解题关键。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷(3月份)一、选择题(本大题共有6小题,每小题3分,共18分)1.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,1)2.如表记录了甲、乙、丙、丁四名跳远运动员几次选拔赛成绩的平均数与方差S2:甲乙丙丁平均数(cm)563 560 563 560方差S2(cm2) 6.5 6.5 17.5 14.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁3.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.4.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20°B.25°C.30°D.50°5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠06.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据:4,2,5,0,3.这组数据的中位数是.8.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为cm.9.一元二次方程2x2+3x+1=0的两个根之和为.10.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于cm2.11.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为.12.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x …﹣2 0 2 3 …y …8 0 0 3 …当x=﹣1时,y=.13.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)14.如图,在△ABC中,DE∥BC,=,则=.15.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为.三、解答题(本大题共有11小题,共102分)17.计算:sin45°+2cos30°﹣tan60°18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组别雾霾天气的主要成因百分比A 工业污染45%B 汽车尾气排放mC 炉烟气排放15%D 其他(滥砍滥伐等)n19.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.22.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?24.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB 的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=3.求BF的长.25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC 的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明.(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.27.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.抛物线y=2(x﹣2)2﹣1的顶点坐标是()A.(0,﹣1)B.(﹣2,﹣1)C.(2,﹣1)D.(0,1)【分析】直接利用顶点式的特点可写出顶点坐标.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=2(x﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k 中,对称轴为x=h,顶点坐标为(h,k).2.如表记录了甲、乙、丙、丁四名跳远运动员几次选拔赛成绩的平均数与方差S2:甲乙丙丁平均数(cm)563 560 563 560方差S2(cm2) 6.5 6.5 17.5 14.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.【解答】解:∵S甲2=6.5,S乙2=6.5,S丙2=17.5,S丁2=14.5,∴S甲2=S乙2<S丁2<S丙2,∵=563,=560,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.【点评】此题考查了平均数和方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为()A.B.C.D.【分析】列表得出所有等可能的情况数,找出小明、小华两名学生参加社会实践活动的情况数,即可求出所求的概率.【解答】解:可能出现的结果甲打扫社区卫生打扫社区卫生参加社会调查参加社会调查乙打扫社区卫生参加社会调查参加社会调查打扫社区卫生由上表可知,可能的结果共有4种,且他们都是等可能的,其中两人同时选择“参加社会调查”的结果有1种,则两人同时选择“参加社会调查”的概率为,故选:B.【点评】此题考查的是用列表法或树状图法求概率.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.4.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若的度数为50°,则∠ADC的度数为()A.20°B.25°C.30°D.50°【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=,然后根据圆周角定理计算∠ADC的度数.【解答】解:∵的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=,∴∠ADC=∠BOC=25°.故选:B.【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.5.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k<1且k≠0 C.k≥﹣1且k≠0 D.k>﹣1且k≠0【分析】根据方程有两个不相等的实数根,得到根的判别式的值大于0列出不等式,且二次项系数不为0,即可求出k的范围.【解答】解:∵一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,且k≠0,解得:k>﹣1且k≠0.故选:D.【点评】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.6.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选:B.【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出△CBA∽△CAD,是一道基础题.二、填空题(本大题共有10小题,每小题3分,共30分)7.已知一组数据:4,2,5,0,3.这组数据的中位数是 3 .【分析】要求中位数,按从小到大的顺序排列后,找出最中间的一个数(或最中间的两个数的平均数)即可.【解答】解:从小到大排列此数据为:0,2,3,4,5,第3位是3,则这组数据的中位数是3.故答案为:3.【点评】考查了中位数的知识,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.8.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为 4 cm.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=2×8,解得c=±4(线段是正数,负值舍去),故答案为:4.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.9.一元二次方程2x2+3x+1=0的两个根之和为﹣.【分析】设方程的两根分别为x1、x2,根据根与系数的关系可得出x1+x2=﹣=﹣,此题得解.【解答】解:设方程的两根分别为x1、x2,∵a=2,b=3,c=1,∴x1+x2=﹣=﹣.故答案为:﹣【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.10.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面积等于24πcm2.【分析】根据圆锥的侧面积公式即扇形面积公式计算.【解答】解:圆锥的侧面积=×2π×4×6=24π,故答案为:24π.【点评】本题考查的是圆锥的计算,圆锥的侧面积:S侧=•2πr•l=πrl.11.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为2019 .【分析】把x=m代入方程,求出2m2﹣3m=1,再变形后代入,即可求出答案.【解答】解:∵m是方程2x2﹣3x﹣1=0的一个根,∴代入得:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴6m2﹣9m+2016=3(2m2﹣3m)+2016=3×1+2016=2019,故答案为:2019.【点评】本题考查了求代数式的值和一元二次方程的解,能求出2m2﹣3m=1是解此题的关键.12.已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:x …﹣2 0 2 3 …y …8 0 0 3 …当x=﹣1时,y= 3 .【分析】先确定出抛物线的对称轴,然后利用对称性求解即可.【解答】解:依据表格可知抛物线的对称轴为x=1,∴当x=﹣1时与x=3时函数值相同,∴当x=﹣1时,y=3.故答案为:3.【点评】本题主要考查的是二次函数的性质,利用二次函数的对称性求解是解题的关键.13.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为8πcm.(结果保留π)【分析】先求得正多边形的每一个内角,然后由弧长计算公式.【解答】解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为:8π.【点评】本题考查了弧长的计算和正多边形和圆.与圆有关的计算,注意圆与多边形的结合.14.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B,∠AED=∠C,进而可得出△ADE∽△ABC,利用相似三角形的性质可得出=,进而可得出=,此题得解.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=()2=()=,∴===.故答案为:.【点评】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.15.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为 1 .【分析】根据勾股定理求出△ABC的各个边的长度,根据勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【解答】解:如图:长方形AEFM,连接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴tan∠ABC==1,故答案为:1.【点评】本题考查了解直角三角形和勾股定理及逆定理等知识点,能求出∠ACB=90°是解此题的关键.16.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为2﹣2 .【分析】取BC中点G,连接HG,AG,由直角三角形的性质可得HG=CG=BG=BC=2,由勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【解答】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=BC=2,在Rt△ACG中,AG==2在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为2﹣2,故答案为:2﹣2【点评】本题考查了等腰直角三角形的性质,三角形三边关系,勾股定理,确定使AH值最小时点H的位置是本题的关键.三、解答题(本大题共有11小题,共102分)17.计算:sin45°+2cos30°﹣tan60°【分析】原式利用特殊角的三角函数值计算即可求出值.【解答】解:原式=×+2×﹣=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组别雾霾天气的主要成因百分比A 工业污染45%B 汽车尾气排放mC 炉烟气排放15%D 其他(滥砍滥伐等)n【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.【点评】本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键.19.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图的方法求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.【分析】(1)依据题意画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率;(2)根据(1)中所求,进而求出两人获胜的概率,即可得出答案.【解答】解:(1)画树状图得:,由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为奇数的结果有4种.∴P(取出的两张卡片数字之和为奇数)=.(2)不公平,理由如下:由(1)可得出:取出的两张卡片数字之和为偶数的概率为:.∵<,∴这个游戏不公平.【点评】此题主要考查了游戏公平性,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【分析】由BC∥DE,可得=,构建方程即可解决问题.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米.【点评】本题考查相似三角形的应用、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.如图,点A、B、C在⊙O上,用无刻度的直尺画图.(1)在图①中,画一个与∠B互补的圆周角;(2)在图②中,画一个与∠B互余的圆周角.【分析】(1)根据四点共圆进行画图即可;(2)根据90°的圆周角所对的弦是直径进行画图即可.【解答】解:(1)如图1,∠P即为所求:(2)如图2,∠CBQ即为所求.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.熟练掌握圆周角定理是解决此题的关键.22.某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【解答】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈6.9米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,理解仰角的概念、灵活运用锐角三角函数的定义是解题的关键.23.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB 的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=3.求BF的长.【分析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.【解答】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=3,∴,∴BF=2.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.26.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD、CE是△ABC 的高,M是BC的中点,点B、C、D、E是否在以点M为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B、C、D、E在以点M为圆心的同一个圆上”,在连接MD、ME的基础上,只需证明ME=MD=MB=MC .(2)初步思考:如图②,BD、CE是锐角△ABC的高,连接DE.求证:∠ADE=∠ABC,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD、CE、AF是锐角△ABC的高,三条高的交点G叫做△ABC的垂心,连接DE、EF、FD,求证:点G是△DEF的内心.【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE 为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【解答】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC=∠CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点评】本题考查了圆的定义,直角三角形斜边上的中线等于斜边一半,圆内接四边形对角互补,圆周角定理,内心的定义.第(3)题解题关键是选取适当的四点证明共圆,再利用圆周角定理证明角相等27.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此时P点坐标.【解答】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+3x+4,。

相关文档
最新文档