2018年理科数学全国1卷高考预测卷一(5月) 理科(网络版)
2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年高等学校招生全国统一考试押题卷理科数学试卷(一)含解析
绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷理科数学(一)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .2.已知集合(){},2M x y x y =+=,(){},2N x y x y =-=,则集合M N =( )A .{}0,2B .()2,0C .(){}0,2D .(){}2,0【答案】D班级 姓名 准考证号 考场号 座位号此卷只装订不密封【解析】解方程组22x y x y +=-=⎧⎨⎩,得20x y =⎧⎨=⎩.故(){}2,0MN =.选D .3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .3132【答案】C 【解析】1i =, (1)21,2x x i =-=,(2)()221143,3x x x i =--=-=, (3)()243187,4x x x i =--=-=, (4)()28711615,5x x x i =--=-=, 所以输出16150x -=,得1516x =,故选C . 4.《九章算术》有这样一个问题:今有女子善织,日增等尺,七日共织二十八尺,第二日、第五日、第八日所织之和为十五尺,则第十日所织尺数为( ) A .9B .10C .11D .12【答案】B【解析】设第一天织布1a 尺,从第二天起每天比第一天多织d 尺,由已知得:1111721284715a d a d a d a d +=⎧⎨+++++=⎩,解得11a =,1d =,∴第十日所织尺数为101910a a d =+=,故选B .5.已知0.41.9a =,0.4log 1.9b =, 1.90.4c =,则( ) A .a b c >> B .b c a >> C .a c b >> D .c a b >>【答案】C 【解析】0.401.9 1.91a =>=,0.40.4log 1.91log 0b =<=, 1.9000.40.41c <=<=,a cb ∴>>,故选C .6.则函数()()cos g x A x ωϕ=+图像的一个对称中心可能为( )A .()2,0-B .()1,0C .()10,0 D .()14,0【答案】C【解析】由题意得A =()26282ωωππ=⨯+⇒=,把点(2,-代入方程可得34ϕπ=-()g x 的一个对称中心为()10,0,故选C .7.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )ABCD【答案】C【解析】函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( ) A .()0,4 B .()0,+∞C .()3,4D .()3,+∞【答案】C【解析】如图,若()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则()34a ∈,,故选C .9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B,当P ,A ,B 不共线时,PAB △面积的最大值是( ) A.BC.3D.3【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系;则:()10A -,,()10B ,,设()P x y ,,PA PB=两边平方并整理得:()222261038x y x x y +-+=⇒-+=.∴PAB △面积的最大值是122⨯⨯=A .10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D【答案】B【解析】如图所示,1S =正,23924S π⎛⎫=π= ⎪⎝⎭圆B . 11()()()1g x f x k x =-+在(],1-∞恰有两个不同的零点,则实数k 的取值范围是( ) A .[)1,3 B .(]1,3 C .[)2,3 D .()3,+∞【答案】A【解析】函数()()()1g x f x k x =-+在(],1-∞恰有两个不同的零点,等价于()y f x =与()1y k x =+的图象恰有两个不同的交点,画出函数如图,()1y k x =+的图象是过定点()1,0-斜率为k 的直线,当直线()1y k x =+经过点()1,2时,直线与()y f x =的图象恰有两个交点,此时,1k =,当直线经过点()0,3时直线与()y f x =的图象恰有三个交点,直线在旋转过程中与()y f x =的图象恰有两个交点,斜率在[)1,3内变化,所以实数k 的取值范围是[)1,3.12.已知椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,O 为原点,点P 是抛物线准线上一动点,点A 在抛物线上,4AF =,PA PO +的最小值为( ) A.B.C.D.【答案】A【解析】椭圆2215y x +=,2514c ∴=-=,即2c =,则椭圆的焦点为()0,2±,不妨取焦点()0,2,抛物线2x ay =44a y ⎛⎫= ⎪⎝⎭,∴抛物线的焦点坐标为0,4a ⎛⎫⎪⎝⎭,椭圆2215y x +=与抛物线2x ay =有相同的焦点F ,24a ∴=,即8a =,则抛物线方程为28x y =,准线方程为2y =-,4AF =,由抛物线的定义得:A ∴到准线的距离为4,24y +=,即A 点的纵坐标2y =,又点A 在抛物线上,4x ∴=±,不妨取点A 坐标()4,2A ,A 关于准线的对称点的坐标为()4,6B -,则PA PO PB PO OB +=+≥,即O ,P ,B 三点共线时,有最小值,最小值为OB ====,故选A .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年全国卷1理科数学含答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上.写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z =A .0B .12C .1D2.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N 。
泄露天机2018高考押题卷理科数学(一)
泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。
3.考试结束后将试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。
2+iB。
2-iC。
1+iD。
i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。
2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。
解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。
3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。
解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。
因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。
2018年全国一卷理科数学题型预测
1,集合及运算2,复数及运算(理:二项式定理)3,向量坐标运算及简单的几何运算(中线)4,线性规划5,程序框图6,同角三角函数基本关系式7,三角函数性质(奇偶性及图像变换)8,三视图(与球、圆锥、圆柱相关的体积及表面积运算)9,函数图像判断(方法:先看奇偶性,再取特殊值,多取几个)10,二项式定理11,定积分计算面积12,等差等比数列(基本量的应用,利用前n项和求通项)13,排列组合14,统计(抽样、频率分布直方图、回归方程及独立性检验)15,解三角形(三角关系、选择正弦定理和余弦定理的方法、面积公式)16,圆锥曲线的基本性质(焦点、离心率及渐近线)解答题:1,数列(等差、等比数列或是证明题。
去看求通项及前n项和的常用方法)2,立体几何(平行与垂直的证明、利用坐标系求空间角)3,概率分布列(频率分布直方图与卡方结合实际应用进行考察)4,圆锥曲线(重点是椭圆与抛物线)5,导数的应用(重点在切线问题、判断单调性还有零点个数)6,极坐标或不等式(根据自己情况选做)。
确保4-5分以上(考前结合实例自主复习)1,集合及运算2,复数及运算(实部、虚部,点的对应、模、乘法与除法运算)3,向量坐标运算及简单的几何运算(中线)4,线性规划(先画图、再联立)5,程序框图6,同角三角函数定义及基本关系式(商数关系、平方关系)7,三角函数性质(奇偶性及图像变换)8,三视图(与球、圆锥、圆柱相关的体积及表面积运算)9,函数图像判断(方法:先看奇偶性,再取特殊值,多取几个)10,几何概型11,利用指数、对数及幂函数的性质比较大小(注意用0与1分类)12,等差等比数列(基本量的应用,利用前n项和求通项)13,统计(抽样、频率分布直方图、回归方程及独立性检验)14,圆锥曲线的基本性质(焦点、离心率及渐近线)15,解三角形(三角关系、选择正弦定理和余弦定理的方法、面积公式)解答题:1,三角函数及解三角形(考前复习二倍角公式及辅助角公式)2,立体几何(平行与垂直的证明、利用等积法计算体积及距离)3,统计(频率分布直方图与卡方结合实际应用进行考察、结合生活实际考察分段函数)4,圆锥曲线(重点是椭圆方程的求法及韦达定理、向量相等的应用)5,导数的应用(重点在切线问题、判断单调性还有零点个数)6,极坐标或不等式(根据自己情况选做)。
2018高考全国1卷理科数学试卷及答案
2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。
$\{x|-1<x<2\}$B。
$\{x|-1\leq x\leq 2\}$C。
$\{x|x2\}$D。
$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。
$-12$B。
$-10$C。
10D。
125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。
$\frac{3}{11}AB-\frac{8}{11}AC$B。
$\frac{4}{11}AB-\frac{7}{11}AC$C。
$\frac{7}{11}AB-\frac{4}{11}AC$D。
2018年高考理科数学全国卷1(含详细答案)
理科数学试题A 第1页(共26页)理科数学试题A 第2页(共26页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码张贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液,不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设121i z i i-=++,则z =( )A .0B .12C .1 D2.已知集合{}2|20A x x x =-->,则A =R ð( ) A .{}|12x x -<< B .{}|12x x -≤≤ C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( ) A .12-B .10-C .10D .125.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N的路径中,最短路径的长度为( )A. B. C .3D .28.设抛物线24C y x =:的焦点为F ,过点()20-,且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .89.已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a的取-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________理科数学试题A 第3页(共26页)理科数学试题A 第4页(共26页)值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC ,ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y -=:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则MN =( )A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )ABCD二、填空题(本题共4小题,每小题5分,共20分)13.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数()2sin sin 2f x x x =+,则()f x 的最小值是________.三、解答题(共70分。
2018年全国一般高等学校招生高考数学模拟试卷理科一及答案
2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<03.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B.C.D.4.(5分)已知等差数列{a n}的前n项和为S n,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣487.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4 8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.log b a<log c aC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.212.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F1作y轴的垂线,交双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2,那么双曲线的离心率为.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R【解答】解:集合A={x|2﹣x>0}={x|x<2},B={x|()x<1}={x|x>0},那么A∩B={x|0<x<2},A∪B=R.应选:D.2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<0【解答】解:由z+3i=a+ai,得z=a+(a﹣3)i,又∵复数z是纯虚数,∴,解得a=0.应选:B.3.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B. C.D.【解答】解:设直角三角形的长直角边为a=4,短直角边为b=3,由题意c=5,∵大方形的边长为a+b=3+4=7,小方形的边长为c=5,那么大正方形的面积为49,小正方形的面积为25,∴知足题意的概率值为:1﹣=.应选:B.4.(5分)已知等差数列{an }的前n项和为Sn,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣【解答】解:由等差数列的性质可得:S9=6π==9a5,∴a=.5=tan=﹣.那么tan a5应选:C.5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增【解答】解:当a≤0时,函数f(x)=x+在区间(0,+∞)内单调递增,当a>0时,函数f(x)=x+在区间(0,]上单调递减,在[,+∞)内单调递增,故A,B均错误,∀a∈R,f(﹣x)=﹣f(x)均成立,故f(x)是奇函数,故C错误,应选:D.6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣48【解答】解:∵(2﹣x)4展开式的通项公式为 T=•24﹣r(﹣x)r,r+1∴(1+x)(2﹣x)4的展开式中x项的系数为﹣•23+24=﹣16,应选:A.7.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.其直观图如下所示:其表面积S=2×π•12+2××2×1++﹣2×1=2π+4+4,应选:B8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.logba<logcaC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b【解答】解:依照对数函数的单调性可得log2018a>log2018b正确,logba<logca正确,∵a>1,0<c<b<1,∴a c<a b,a﹣c>0,∴(a﹣c)a c<(a﹣c)a b,故C不正确,∵c﹣b<0,∴(c﹣b)a c>(c﹣b)a b正确,应选:C.9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?【解答】解:第1次执行循环体,S=3,应不知足输出的条件,n=2,第2次执行循环体,S=7,应不知足输出的条件,n=3,第3次执行循环体,S=15,应不知足输出的条件,n=4,第4次执行循环体,S=31,应不知足输出的条件,n=5,第5次执行循环体,S=63,应不知足输出的条件,n=6,第6次执行循环体,S=127,应不知足输出的条件,n=7,第7次执行循环体,S=255,应不知足输出的条件,n=8,第8次执行循环体,S=511,应不知足输出的条件,n=9,第9次执行循环体,S=1023,应不知足输出的条件,n=10,第10次执行循环体,S=2047,应不知足输出的条件,n=11第11次执行循环体,S=4095,应知足输出的条件,故判定框中的条件能够是S<4095?,应选:C.10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)【解答】解:依照函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象,可得==+,∴ω=2,依照+φ=2•(﹣)+φ=0,∴φ=,故f(x)=2sin(2x+).将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g(x)的图象重合,故g(x)=2sin(2x++)=2sin(2x+).应选:A.11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.2【解答】解:抛物线C:y2=4x的核心为F(1,0),过点F作斜率为1的直线l:y=x﹣1,可得,消去y可得:x2﹣6x+1=0,可得xP +xQ=6,xPxQ=1,|PF|=xP +1,|QF|=xQ+1,|PF||QF|=xQ +xP+xPxQ+1=6+1+1=8,则+===1.应选:C.12.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:依照题意,数列{a n }中,n (a n+1﹣a n )=a n +1, 即na n+1﹣(n+1)a n =1,那么有﹣==﹣,那么有=(﹣)+(﹣)+(﹣)+…+(a 2﹣a 1)+a 1=(﹣)+(﹣)+(﹣)+…+(1﹣)+2=3﹣<3,<2t 2+at ﹣1即3﹣<2t 2+at ﹣1,∵关于任意的a ∈[﹣2,2],n ∈N *,不等式<2t 2+at ﹣1恒成立,∴2t 2+at ﹣1≥3, 化为:2t 2+at ﹣4≥0,设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 可得f (2)≥0且f (﹣2)≥0,即有即,可得t ≥2或t ≤﹣2,那么实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞). 应选:A .二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为0 .【解答】解:向量=(1,λ),=(3,1),向量2﹣=(﹣1,2λ﹣1),∵向量2﹣与=(1,2)共线,∴2λ﹣1=﹣2,即λ=.∴向量=(1,﹣),∴向量在向量方向上的投影为||•cos<,>===0.故答案为:0.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.【解答】解:实数x,y知足,对应的可行域如图:线段AB,z=x﹣3y+1化为:y=,若是z最大,那么直线y=在y轴上的截距最小,作直线l:y=,平移直线y=至B点时,z=x﹣3y+1取得最大值,联立,解得B(,).因此z=x﹣3y+1的最大值是:.故答案为:﹣.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F作y轴的垂线,交1,那么双曲线的双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2离心率为.作y轴的垂线,【解答】解:过双曲线﹣=1(a>0,b>0)的下核心F1交双曲线于A,B两点,那么|AB|=,,以AB为直径的圆恰好于其上核心F2可得:,∴c2﹣a2﹣2ac=0,可得e2﹣2e﹣1=0,解得e=1+,e=1﹣舍去.故答案为:1+.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为4.【解答】解:设该项长方体底面边长为x米,由题意知其高是:=6﹣2x,(0<x<3)那么长方体的体积V(x)=x2(6﹣2x),(0<x<3),V′(x)=12x﹣6x2=6x(2﹣x),由V′(x)=0,得x=2,且当0<x<2时,V′(x)>0,V(x)单调递增;当2<x<3时,V′(x)<0,V(x)单调递减.∴体积函数V(x)在x=2处取得唯一的极大值,即为最大值,现在长方体的高为6﹣2x=2,∴其外接球的直径2R==2,∴R=,∴其外接球的体积V==4.故答案为:4.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.【解答】证明:(1)取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE∥BB1,ED=,又M为CC1的中点,∴.∴四边形CDEM是平行四边形.∴CD∥EM,又EM⊂MAB1,CD⊄MAB1∴CD∥平面MAB1;解(2)∵CA,CB,CC1两两垂直,∴以C为原点,CA,CB,CC1所在直线别离为x、y、z轴成立空间直角坐标系.∵在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,可得∠MAC为直线AM与平面ABC所成的角,设AC=1,tan,得CM=∴C(0,0,0),A(1,0,0),B(0,1,0),B1(0,1,2),M(0,0,)设AMB1的法向量为,可取又平面B1C1CB的法向量为.cos==.∵二面角A﹣MB1﹣C1为钝角,∴二面角A﹣MB1﹣C1的余弦值为﹣.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.【解答】解:(1)众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,那个人测试成绩在70分以上的概率为=,∴该校这次测试成绩在70分以上的约有:3000×=2000人.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.∴P(X≥87)==.②由题意得ξ的可能取值为0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的散布列为:ξ 0 1 2 3 4P∴E(ξ)==2.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.【解答】解:(1)显然当点P位于短轴端点时,△PF1F2的面积取得最大值,∴,解得,∴椭圆的方程为=1.(2)联立方程组,消元得(8+9k2)x2+36kx﹣36=0,∵直线l恒过点(0,2),∴直线l与椭圆始终有两个交点,设M(x1,y1),N(x2,y2),那么x1+x2=,设MN的中点为E(x0,y),那么x=,y=kx+2=.∵|GM|=|GN|,∴GE⊥MN,设G(m,0),那么kGE==﹣,∴m==,当k>0时,9k+≥2=12.当且仅当9k=,即k=时取等号;∴﹣≤m<0,当k<0时,9k+≤﹣2=﹣12,当且仅当9k=,即k=﹣时取等号;∴0<m≤.∴点G的横坐标的取值范围是[﹣,0)∪(0,].21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.【解答】解:(1)∵函数f(x)在区间[0,+∞)内单调递增,∴f′(x)=e x﹣≥0在区间[0,+∞)恒成立,即a≥e﹣x﹣x在[0,+∞)恒成立,记g(x)=e﹣x﹣x,那么g′(x)=﹣e﹣x﹣1<0恒成立,故g(x)在[0,+∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1,+∞);(2)∵0<a<,f′(x)=e x﹣,记h(x)=f′(x),那么h′(x)=e x+>0,知f′(x)在区间(﹣a,+∞)递增,又∵f′(0)=1﹣<0,f′(1)=e﹣>0,,∴f′(x)在区间(﹣a,+∞)内存在唯一的零点x即f′(x)=﹣=0,于是x0=﹣ln(x+a),当﹣a<x<x时,f′(x)<0,f(x)递减,当x>x时,f′(x)>0,f(x)递增,故f(x)min =f(x)=﹣2a﹣ln(x+a)=x+a+﹣3a≥2﹣3a,当且仅当x+a=1时取“=”,由0<a<得2﹣3a>0,∴f(x)min =f(x)>0,即函数f(x)无零点.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.【解答】解:(1)依照题意,椭圆C的方程为+=1,那么其参数方程为,(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin =3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的一般方程为x+y﹣6=0;(2)依照题意,M(x,y)为椭圆一点,那么设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.【解答】(1)解:不等式f(x)+f(2+x)≤4,即为|x﹣2|+|x|≤4,当x≥2时,2x﹣2≤4,即x≤3,那么2≤x≤3;当0<x<2时,2﹣x+x≤4,即2≤4,那么0<x<2;当x≤0时,2﹣x﹣x≤4,即x≥﹣1,那么﹣1≤x≤0.综上可得,不等式的解集为{x|﹣1≤x≤3};(2)证明:g(x)=f(x)﹣f(2﹣x)=|x﹣2|﹣|x|,由|x﹣2|﹣|x|≤|x﹣2﹣x|=2,当且仅当x≤0时,取得等号,即g(x)≤2,那么m=2,任意不相等的正实数a,b,可得af(b)+bf(a)=a|b﹣2|+b|a﹣2|=|ab﹣2a|+|ab﹣2b|≥|ab﹣2a﹣ab+2b|=|2a﹣2b|=2|a﹣b|=m|a﹣b|,当且仅当(a﹣2)(b﹣2)≤0时,取得等号,即af(b)+bf(a)≥m|a﹣b|.。
2018年高考全国卷1理科数学(含答案)
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试押题卷数学(理)试卷(一)
2018年普通高等学校招生全国统一考试押题卷数学(理)试卷(一)2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数z=a+i(a∈R)的共轭复数为z,满足z=1,则复数z=()A。
2+iB。
2-iC。
1+iD。
i答案】D解析】根据题意可得,z=a-i,所以z^2=a^2+1=1,解得a=0,所以复数z=i。
2.集合A={θ∈(0,π)<sinθ≤1﹥,B={φ∈(π,4)<sinφ﹥},则集合A∩B=()A。
{θ∈(π,4)<sinθ≤1﹥}B。
{θ∈(0,π)<sinθ≤1﹥}C。
{θ∈(π,4)<sinθ﹥}D。
{θ∈(0,π)<sinθ﹥}答案】D解析】A={θ∈(0,π)<sinθ≤1﹥},B={φ∈(π,4)<sinφ﹥},则A∩B={θ∈(0,π)<sinθ≤1﹥∩{φ∈(π,4)<sinφ﹥}={θ∈(0,π)<sinθ≤1﹥}。
3.2018年3月7日《科学网》刊登“动物可以自我驯化”的文章表明:关于野生小鼠的最新研究,它们在几乎没有任何人类影响的情况下也能表现出进化的迹象——皮毛上白色的斑块以及短鼻子。
为了观察野生小鼠的这种表征,从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为()A。
1/4B。
1/3C。
2/3D。
3/4答案】C解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠是同一表征的事件为(A,a),(a,A),(B,b),(b,B),共计4种,所以拿出的野生小鼠不是同一表征的概率为1-4/12=2/3.4.已知函数f(x)=2sin(ωx+ϕ)的图象向左平移π个单位长度后得到函数g(x),则函数g(x)的解析式为()A。
2018年全国统一高考数学押题卷(理科)(一)(解析版)19
全国统一高考数学押题卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知全集U=R,集合A={x|x<﹣1},B={x|x≥0},则集合∁U(A∪B)=()A.[﹣1,+∞)B.(﹣∞,0)C.(﹣1,0]D.[﹣1,0)2.已知i是虚数单位,若=1﹣i,则z的共轭复数为()A.1﹣2i B.2﹣4i C.﹣2i D.1+2i3.某社团有男生30名,女生20名,从中抽取一个容量为5的样本,恰好抽到2名男生和3名女生,则①该抽样一定不是系统抽样;②该抽样可能是随机抽样;③该抽样不可能是分层抽样;④男生被抽到的概率大于女生被抽到的概率;其中说法正确的为()A.①②③ B.②③C.③④D.①④4.已知点P是△ABC内一点,且+=6,则=()A.B.C.D.5.已知函数f(x)=a x,则“0<a≤”是“对任意x1≠x2,都有<0成立”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件6.在等比数列{a n}中,a3,a15是方程x2﹣6x+8=0的根,则的值为()A.B.4 C.D.±47.执行如图所示的程序框图,则输出的a的值为()A.B.C.D.8.设函数f(x)=sin(2x+φ)+cos(2x+φ)(|φ|<),且其图象关于直线x=0对称,则()A.y=f(x)的最小正周期为π,且在(0,)上为增函数B.y=f(x)的最小正周期为,且在(0,)上为增函数C.y=f(x)的最小正周期为π,且在(0,)上为减函数D.y=f(x)的最小正周期为,且在(0,)上为减函数9.若关于x的不等式3x2+2ax+b≤0在区间[﹣1,0]上恒成立,则a2+b2﹣1的取值范围是()A.[,+∞)B.(﹣1,]C.[,+∞)D.(﹣1,]10.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案共有()A.150种B.300种C.600种D.900种11.已知双曲线﹣=1(a>0,b>0)的右焦点为F2(2,0),设A、B是双曲线上关于原点对称的两点,AF2、BF2的中点分别为M、N,已知以MN为直径的圆经过原点,且直线AB的斜率为,则双曲线的离心率为()A.B.C.2 D.212.设函数f(x)=x2﹣b|x|+c,g(x)=kx+c﹣2(k>0),函数h(x)=f(x)﹣g(x),若f(﹣4)=f(0),f(﹣2)=﹣2,则当函数h(x)的零点个数为2时,k的取值范围为()A.B.C.(4,+∞)D.二、填空题:本大题共4小题。
2018年高考全国卷1数学试题及答案(理科)(可编辑修改word版)
理科数学试题第1页(共4页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在 答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
_、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
1 -i1. 设 z = ------ 2i ,贝!j | z |=1 + iA. 0B. -C. 1D. V222. 已知集合 A = {X \X 2-X -2>0},则 d R A =A. {x| -1 <x<2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地 了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半C. {x | x < -1} U {x | x > 2}D. {x | x -1} \J{x\x ^2}建设前经济收入构成比例则下面结论中不正确的是理科数学试题 第2页(共4页)4.记A 为等差数列{a,,}的前n 项和.若3S 3=S 2+S A , a, = 2,则a 5 = 8.设抛物线C: /= 4x 的焦点为F ,过点(-2,0)且斜率为j 的直线与C 交于似,N UUUL UUU 两点,则FM =A. 5B. 6C. 7D. 8取值范围是 A. [― 1,0)B. [0,+co)C. [― 1, +co)D. [1,+co)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个 半圆的直径分别为直角三角形的斜边SC ,直角边AB, AC. AABC 的三边所 围成的区域记为丨,黑色部分记为II ,其余部分记为III.在整个图形中随机取一点, 此点取自I ,II, III 的概率分别记为A ,p 2, p 3,则BCA. A =p 2B. A =p 3C. P 2=P 3D. Pi =p 2 + p 35. 6. 7.A. -12B. -10C. 10D. 12设函数f(x) = x 3+(a-l)x 2+ax.若/⑺为奇函数,贝ij 曲线=/(x)在点(0,0)处的 切线方程为A. y = -2xB. y--xC. y = 2xD. y = xUUL在八ABC 中,JD 为5C 边上的中线,£为^4£)的中点,则£B = a uur iuuur i uur 3 uuur A. -AB 一一AC B. -AB--AC4 4 4 4 3 uur 1 uur 1 uur 3 uuar C. -AB + -AC D. -AB + -AC4 4 4 4 某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点A/在正视图上的对应点为儿圆柱表面上的点W 在左视图上的对应点为凡则在此圆柱侧 面上,从M 到的路径中,最短路径的长度为 A. 2^17B. 2>/59. 己知函数/(x)= <lnx, x 0, x > 0,^x) = f(x) + x + a 若g(x)存在2个零点,贝ija 的理科数学试题 第3页(共4页)己知双曲线G 丁十U 賴示原点’ F 为C 的右焦点,奴的直线与C 的 两条渐近线的交点分别为A/,N.若为直角三角形,则|胃|=己知正方体的棱长为I ,每条棱所在直线与平面a 所成的角都相等,则a 截此正方体所得截面面积的最大值为 A.B.d434二、 填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试预测密卷(一)数学(理)试题(解析版)15
普通高等学校招生全国统一考试预测密卷(一)数学(理)试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.设集合M Z =,{}220N x x x =--<,则MN =( )A .{}0 1,B .{}1 0-,C .{}1 2,D .{}1 2-, 2.已知i 是虚数单位,复数()220172i +的共轭复数为( )A .34i -B .34i +C .54i -D .54i +3.已知等比数列{}n a 的公比q =2,316,a =则其前2017项和2017S =( ) A .201924- B .201822- C .201824- D .201922-4.下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输出的2a =,则输入的,a b 可能是( )A.15,18B.14,18C.12,18D.9,185.若实数,x y 满足不等式组102200x y x y y -+≥⎧⎪+-≥⎨⎪≥⎩,则2291241z x xy y =+++的最小值为( )A .2B .5C .26D .376.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()322213f x x bx a c ac x =+++-1+有极值点,则sin(2)3B π-的最小值是( )A. 0B. D. -1 7.某学校需要把6名实习老师安排到A ,B ,C 三个班级去听课,每个班级安排2名老师,已知甲不能安排到A 班,乙和丙不能安排到同一班级,则安排方案的种数有( ) A .24 B .36 C .48 D .728.如图,12,F F 分别是双曲线()222210,0x y a b a b -=>>的左、右焦点,过1(F 的直线l 与双曲线分别交于点,A B ,若2ABF ∆为等边三角形,则双曲线的方程为( )A .22551728x y -=B .2216x y -=C .2216y x -= D .22551287x y -=9.函数2()(1)cos()12xf x ex =-+的图象的大致形状是( )10.在三棱锥BCD A -中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为π1520,则△ABC 边长为( )A. C. D.611.如图所示,A ,B ,C 是半径为2 的圆O 上不同的三点,线段CO 的延长线与线段BA 交于圆外的一点D ,若2OC OA OB λμ=+(R λ∈,R μ∈),则λμ+的取值范围是( )A .(0,2)B .(2,)+∞C .(),2-∞-D .()2,0-12. 已知实数b a ,满足2211a e b e ⎡⎤⎛⎫-++= ⎪⎢⎥⎝⎭⎣⎦,0)c >的最小值为( )A .B D .11e e+-第Ⅱ卷(13-21为必做题,22-23为选做题)二、填空题(本大题共4个小题,每小题5分,共20分。
(完整)2018高考数学全国1卷1(理科数学)
2018年普通高等学校招生全国统一考试(全国I 卷理科数学)一、选择题:本体共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 项是符合题目要求的。
1 i 1•设 Z ——+2i ,则 Z =()1 i1A . 0B .—22.已知集合 A = {x|x 2— x-2<0,则?R A =(3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解 该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例, 得到如下饼图:则下面结论中不正确的是( )A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半C . 1D . 2)B . {x|— 1 $€}D . {xX w — 1}?{ x|x 列A . {x|— 1C . {x|x v — 1}?{ x|x>2}A. -12D . 12B. -10C. 104.记S n为等差数列{a n}的前n项和3S3 S2 S4,若,31 2,则35 ()5. 设函数f x x 3 a 1 x 2 ax ,若f (x )为奇函数,则曲线 y=f (x )在点(0, 0)处的切线 方程为()A . y= -2xB . y= -xC . y= 2xD . y= x6.在?ABC 中,AD 为BC 边上的中线,E 为AD 的中点,贝U EB =()3 uuu i uuir i uuu 3 uuirA . AB — AC B . AB — AC 4 4 4 4径中,最短路径的长度为( )径分别为直角三角形 ABC 的斜边BC ,直角边AB , AC , ? ABC 的三边所围成的区域记为 I ,3uuu 1 uuir C . 一 AB + — AC 4 41 uuu 3 uuir D . - AB+ — AC4 47. 某圆柱的高为2,底面周长为16,其三视图如下图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则此圆柱侧面上,从 M 到N 的路A . 2.17B . 2 .5C . 38.设抛物线C : y 2= 4x 的焦点为F ,过点(一22,0)且斜率为一的直线与C 交于M , N 两3 点,则FM ?FNA . 5( )B .6 9.已知函数f xe x ,x 0, g xf xIn x, x0.值范围是()A . [ — 1, 0)B .[0, + m )C . 7D . 8x a ,若g x 存在2个零点,贝U a 的取C . [ — 1 , +〜D . [1 , +〜此图由三个半圆构成,三个半圆的直黑色部分记为?,其余部分记为?,在整个图形中随机取一点,此点取自I , ?, ?的概率分别记为RAR ,则( )得截面面积的最大值为(A .B .C . P 2 = P 3D . P = P 2 + P 32x 2 11.已知双曲线 C :y31 , O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的焦点分别为M , N ,若?OMN 为直角三角形,则|MN|=(B .C . 2343 D .212•已知正方体的棱长为1 ,每条棱所在直线与平面 a 所成的角都相等,则a 截此正方体所A .3、342,C . J 24D .仝2二、填空题:本题共 4小题,每小题5分,共20分。
【高考】2018年高考全国卷一理科数学含答案
【关键字】高考绝密★启用前2018年普通高等学校招生全国统一考试(新课标Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设,则()A.0 B.C.D.2.已知集合,则()A.B.C.D.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记为等差数列的前项和.若,,则()A.B.C.D.125.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.6.在中,为边上的中线,为的中点,则()A.B.C.D.7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.28.设抛物线的焦点为,过点且斜率为的直线与交于,两点,则()A.5 B.6 C.7 D.89.已知函数,,若存在2个零点,则的取值范围是()A.B.C.D.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则()A.B.C.D.11.已知双曲线,为坐标原点,为的右焦点,过的直线与的两条渐近线的交点分别为,.若为直角三角形,则()A.B.3 C.D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)13.若满足约束条件,则的最大值为________.14.记为数列的前项和.若,则________.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)16.已知函数,则的最小值是________.三、解答题(共70分。
2018全国I卷高考压轴卷理科数学含答案
2018全国卷Ⅰ高考压轴卷理科数学本试卷共23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}z x x x x A ∈≤-+=,022,{}z k k x x B ∈==,2,则B A 等于()A .{}10,B .{}24--,C . {}01,-D .{}02,- 2. 设,a b ∈R ,则“a b >”是“a a b b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件3. 为得到)63sin(2π+=x y 的图象,只需把函数x y sin 2=的图象上所有的点 ( ) A 、向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B 、向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C 、向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D 、向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)4.展开式中任取一项,则所取项是有理项的概率为( ) A.B.C.D.5. 已知函数2|21|,1()log (),1x x f x x m x +<⎧=⎨->⎩,若123()()()f x f x f x ==(1x 、2x 、3x 互不相等),且123x x x ++的取值范围为(1,8),则实数m 的值为( ). A .0B .-1C .1D .26. 如图是一个几何体的三视图,则该几何体的体积为( ) A..3.233 D .337. 设函数()2ln 2f x x x x =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],a b 上的值域为()()2,2k a k b ++⎡⎤⎣⎦,则k 的取值范围是( )A .92ln 21,4+⎛⎫ ⎪⎝⎭ B .92ln 21,4+⎡⎤⎢⎥⎣⎦ C. 92ln 21,10+⎛⎤ ⎥⎝⎦ D .92ln 21,10+⎡⎤⎢⎥⎣⎦8. 执行如图所示的程序,若输入的3x =,则输出的所有x 的值的和为A .243B .363C .729D .10929. 已知抛物线2:4M y x =,圆()()222:10N x y r r -+=>.过点()1,0的直线l 交圆N 于,C D 两点,交抛物线M 于,A B 两点,且满足AC BD =的直线l 恰有三条,则r 的取值范围为( )A .30,2r ⎛⎤∈ ⎥⎝⎦ B .(]1,2r ∈ C .()2,r ∈+∞ D .3,2r ⎡⎫∈+∞⎪⎢⎣⎭10. 函数32)2()44ln()(-+-=x x x x f 的图象可能是( )A .B .C .D .11. 若0,0,a b >>且函数32()422f x x ax bx =--+在2x =处有极值,则ab 的最大值等于A .121B .144C .72D .8012. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A. B . C .D . [)∞+,2 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16 π 3 17 π 3
(B) (D)
11 π 2 35 π 6
(7)函数 y A sin( x )( 0,
x ) 8 4 (C) y 4 sin( x ) 8 4
(A) y 4 sin(
, x R ) 的部分图象如图所示,则函数表达 2 (B) y 4 sin( x ) 8 4 (D) y 4 sin( x ) 8 4
1 2 1 2 x , 0 x 1, 当 x [0, 2) 时, f ( x ) 2 函数 g ( x ) 2 ln x x 2 x m ,若 x1 6,8 , 2 f (2 x ),1 x 2, x2 (0, ) ,使 g ( x2 ) f ( x1 ) 0 成立,则实数 m 的取值范围是
(8)执行如图所示的程序框图,如果输入的 t [ 2, 2] ,则输出的 S 属于 (A) [ 4, 0] (C) [2, 4] (B) [2, 2] (D) [4, 2]
2
(9)若实数 a , b 满足 a b 1 , m log a (log a b ) , n (log a b) ,
(B)
(
)
2
x2 y2 =1 9 13
x2 y2 =1 13 9
(C)
x2 - y2 = 1 3
(D) x
2
y2 1 3
第 一 页 【理科数学试题 共 五 页】
2018 年 5 月高考理科数学模拟预测(一)
李文歆、陈康栋收编
(6)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体 的三视图,则该几何体的体积为 (A) (C)
(A) 2- 2 5 (B) 2± 2 5 (C) 3- 5 2 ( D) 3± 5 2
(11)已知函数 f ( x )
) ,给出下列命题: 4 3 ①函数 f ( x ) 的最小正周期为 2 ; ②函数 f ( x ) 关于 x 对称; ③函数 f ( x ) 关于 ( , 0) 对称; 4 4
( B)
R CI Q P
1 2
(2)设复数 z1 2 i , z2 1 ai ,若 z1 z 2 R ,则实数 a 的值为 (A) —2
1 2
(C)
(D)2
(3)已知定义域为 R 的函数 f(x)不是偶函数,则下列命题一定为真命题的是 (A) x R, f ( xห้องสมุดไป่ตู้) f ( x ) (C) x0 R, f ( x0 ) f ( x0 ) (B) x R, f ( x ) f ( x ) (D) x0 R, f ( x0 ) f ( x0 )
l log a b 2 ,则 m , n , l 的大小关系为
(A) m l n (C) n l m ( B) l n m (D) l m n
x y 4, y+1 (10)已知 k≥-1,实数 x,y 满足约束条件 3 x 2 y 6 ,且 的最小值为 k,则 k 的值为 x y k
2018 年 5 月高考理科数学模拟预测(一) 绝密★启用前
李文歆、陈康栋收编
2018 年高中毕业班全国卷 模拟预测试题(一)(5 月)
数学(理科)
本试卷共 5 页,满分 150 分.考试用时 120 分钟. 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、 准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效. 4.考试结束,将本试卷和答题卡一并交回.
2 cos 2 x cos( x
④函数 f ( x ) 的值域为 [ (A) 1
4 6 4 6 , ] ,则其中正确的命题个数为 9 9
(C) 3 ( D) 4
(B)2
(12)若函数 y f ( x ) , x M ,对于给定的非零实数 a ,总存在非零常数 T ,使得定义域 M 内
(4)甲、乙两人进行象棋比赛,比赛采用五局三胜制,无论哪一方先胜三局则比赛结束, 假定甲每局比赛获胜的概率均为 (A)
2 ,则甲以 3∶1 的比分获胜的概率为 3
(C)
(B)
(D)
(5)已知双曲线 与圆 x - 2 (A)
x2 y 2 = 1( a > 0, b > 0) 的一个焦点为 F(2, 0) ,且双曲线的渐近线 a 2 b2 + y 2 = 3 相切,则双曲线的方程为
第Ⅰ卷
一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一 项是符合题目要求的.
(1)已知全集为 I,集合 P,Q,R 如图所示,则图中阴影部分可以表示为 (A) R CI P Q (C) (B) R CI P Q (D)
R CI P Q
第 二 页 【理科数学试题 共 五 页】
2018 年 5 月高考理科数学模拟预测(一)
李文歆、陈康栋收编
的任意实数 x ,都有 af ( x ) f ( x T ) 恒成立,此时 T 为 f ( x ) 的类周期,函数 y f ( x ) 是 M 上 的 a 级类周期函数,若函数 y f ( x ) 是定义在区间 [0, ) 内的 2 级类周期函数,且 T 2 ,
(A) ( , ]
5 2
(B) ( ,
13 ] 2
(C) ( , ]
3 2
( D) [
13 , ) 2
第Ⅱ卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都 必须做答.第(22)题~第(23)题为选考题,考生根据要求做答. 二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,请把正确的答案填写在答题卡相 应的横线上.