高考数学一轮复习单元检测二不等式单元检测含解析

合集下载

新高考数学一轮复习练习-一元二次不等式解法及运用(提升)(解析版)

新高考数学一轮复习练习-一元二次不等式解法及运用(提升)(解析版)

2.1 一元二次不等式解法及运用(提升)一、单选题1.(2021·广东珠海市·高三二模)已知,满足,,,则( )A .B .C .D .【答案】C【解析】因,,则a>0,b<0,,A 不正确;,则,B 不正确;又,即,则,,C 正确;由得,D 不正确.故选:C2.(2021·天津高三一模)已知,则( )A .B .C .D .【答案】A 【解析】(由函数为增函数)对于A ,,故正确;对于B ,取,,故错误;对于C ,取,显然不成立,故错误;对于D ,假设成立,则,即,可得,而时,不能一定有,故不成立.,a b ∈R 0ab <0a b +>a b >11a b<0b a a b+>22a b >a b<0ab <a b >110,0a b><0,0b a a b <<0b aa b +<0a b +>0a b >->22()a b >-22a b >0a b >->||a b >0,0,lnlg y xx y x y >>>11x y>sin sin y x>y x x y<10x y yxe >lnlg y x x y> ln ln lg lg y x x y ∴->-ln lg ln lg y y x x∴+>+0x y ∴>>ln lg y x x =+011x x y y>>⇒>,2y x ππ==sin 0sin 1y x =<=2,1y x ==10x y yxe >ln ln10x y yxe >ln10y xx y>22ln10y x >0y x >>22ln10y x >故选:A3.(2021·全国高三专题)若关于的不等式()的解集为空集,则的最小值为( )AB .C .D.【答案】D【解析】关于的不等式()的解集为空集所以,,得,∴,令,则,∴,当且仅当时,等号成立,即的最小值为4,故选:D.4.(2020·上海市建平中学)已知关于的一元二次不等式的解集中有且仅有3个整数,则所有符合条件的整数的值之和是( )A .13B .18C .21D .26【答案】C 【解析】x 210x bx c a++<1ab >1(2)2(1)1a b c T ab ab +=+--24x 210x bx c a++<1ab >10a >240c b a -≤24ab c ≥221(2)122(1)12(1)a b c ab a b T ab ab ab +++=+≥---1ab m -=0m >212(1)(1)22422m m m T m m++++≥=++≥2m =1(2)2(1)1a b c T ab ab +=+--设,其图象是开口向上,对称轴是x =3的抛物线,如图所示.若关于x 的一元二次不等式的解集中有且仅有3个整数,则,即,解得5<a ⩽8,又a ∈Z ,∴a =6,7,8.则所有符合条件的a 的值之和是6+7+8=21.故选C.5.(2020·全国高三)设是关于的一元二次方程的两个实根,则的最小值是( )A .B .18C .8D .-6【答案】C【解析】因为是关于的一元二次方程的两个实根所以由韦达定理得 ,且所以2()6f x x x a =-+260x x a -+≤()()2010f f ⎧⎪⎨>⎪⎩…2226201610a a ⎧-⨯+⎨-⨯+>⎩…,a b x 2260x mx m -++=22(1)(1)a b -+-494-,a b x 2260x mx m -++=26a b m ab m +=⎧⎨=+⎩()2460m m ∆=--≥()()22222224(1)(1)610a b ab b y m a b a m =+-=-+--++=--2349444m ⎛⎫=-- ⎪⎝⎭且或由二次函数的性质知,当时,函数取得最小值为即的最小值为故选C.6.(2021·山西太原市)设不等式x2-2ax+a+2≤0的解集为A,若A⊆[1,3],则实数a的取值范围是( )A.B.C.D.【答案】A【解析】设,则不等式的解集,①若,则,即,解得②若,则,∴综上,故实数的取值范围是故选A.7.(2021·全国高三专题练习)已知x∈(0,+∞)时,不等式9x-m·3x+m+1>0恒成立,则m的取值范围是()A.2-<m<2+B.m<2C.m<2+D.m≥2+【答案】C【解析】令t=3x(t>1),则由已知得函数f(t)=t2-mt+m+1的图象在t∈(1,+∞)上恒在x轴的上方,则对于方程f(t)=0,有或,3m≥2m≤-3m=2349444y m⎛⎫=--⎪⎝⎭822(1)(1)a b-+-8111,5⎛⎤- ⎥⎝⎦111,5⎛⎤⎥⎝⎦112,5⎛⎤⎥⎝⎦(]1,3-222f x x ax a=-++()2220x ax a-++≤[]13A⊆,A∅=24420a a=-+V()<220a a--<12a<<-A∅≠()()103013ffa∆≥⎧⎪≥⎪⎨≥⎪⎪<<⎩1125a≤≤1115a-<≤a111]5-(,()()2410m m∆=--+<()121110mf m m∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩解得,所以m <2+.故选:C8.(2021·全国高三专题练习)若不等式对于一切恒成立,则的最小值是( )A .0B .-2C .D .-3【答案】B【解析】,,由对勾函数性性质可知,当为减函数,当时,为增函数,故,即恒成立,,故的最小值为-2故选:B9.(2021·浙江高三专题练习)若不等式恒成立,则实数的取值范围是( )A .B .C .D .【答案】B【解析】不等式恒成立,即,即恒成立,即恒成立,所以,解得,所以实数的取值范围是,故选B.10.(2021·全国高三专题练习)当时,不等式恒成立,则的取值范围是( )A .B .C .D .【答案】A【解析】根据题意构造函数:,由于当时,不等式恒成立,即,解得,即 ,故选A.11.(2021·四川成都市·高三月考)给出下列命题:①且;②22m -<<+2m ≤-210x ax ++≥(]0,2x ∈a 52-(]0,2x ∈ 2110x ax x a x∴++≥⇔+≥-()0,1,x ∈()1f x x x =+()12x ,∈()1f x x x=+()()min 1112f x f ==+=2a -≤2a ≥-a ()2223122x axx a -+<a (0,1)-3(,)4+∞3(0,43(,)4-∞22231()22x axx a -+<222(3)11()()22x ax x a --+<222(3)x ax x a ->-+22(32)0x a x a +-+>22(32)40a a ∆=--<34a >a 3(,)4+∞()1,2x ∈240x mx ++<m 5m ≤-5m <-5m <5m ≥()()241,2f x x mx x =++∈,12x ∈(,)240x mx ++<()()1020f f ⎧≤⎪⎨≤⎪⎩45m m ≤-⎧⎨≤-⎩5m ≤-11x y x y -≠⇔-≠1y x -≠;③.其中真命题的个数为( )A .B .C .D .【答案】C【解析】对于①,且的逆否命题为:或,因为:或是真命题,所以原命题是真命题;对于②,由得,解得或,所以是假命题;对于③,由得,由得,即,因为, 即,所以是真命题.故选:C.12.(2021·全国高三专题练习)下列选项中,使成立的的取值范围是A .B .C .D .【答案】A【解析】故选A.13.(2020·湖北高三期中)已知,恒成立,则实数a 的取值范围为( )A .B .C .D .【答案】B【解析】由题意,函数,令,111x x <⇒>22330aba b ab a b>⇔>-012311x y x y -≠⇔-≠1y x -≠1x y -=1y x -=⇔1x y -=1x y -=1y x -=⇔1x y -=11x <10xx-<1x >0x <22a b ab >()0ab a b ->330ab a b>-()330ab a b ->()()220ab a b a ab b -++>22223024b a ab b a b⎛⎫⎛⎫++=++> ⎪ ⎪ ⎪⎝⎭⎝⎭()()3300ab a b ab a b ->⇔->22330aba b ab a b >⇔>-21x x x<<x (,1)-∞-(1,0)-(0,1)(1,)+∞22(1)(1)11,01{,{{ 1.11,0(1)(1)0x x x x x xxx x x x x x x x x+-<<<-<<∴∴∴<-><-++<> 或原不等式可化为,或2()41f x x x a =+++,(())0x R f f x ∀∈≥⎫+∞⎪⎪⎭[2,)+∞[1,)-+∞[3,)+∞2()41f x x x a =+++()2241(2)33t f x x x a x a a ==+++=+-+≥-又由恒成立,即对任意恒成立,当时,即时,,解得,此时无解;当时,即时,,解得,综上可得,实数a 的取值范围为.14.(2020·浙江宁波市·高三期中)已知,,对任意的实数均有,则的最小值为( )A .B .C .D .【答案】D【解析】因为,,对任意的实数均有,令,则有对任意的恒成立;若,则,原不等式可化为,因为,所以解不等式可得或,因,所以不满足原不等式对任意的恒成立;即不满足题意;若,当时,,则原不等式可化为,令,则是开口向上的二次函数,且零点为和,为使对任意的恒成立;只有;当时,;若,则由不等式可得或,解得或,因为,所以不能满足原不等式对任意的恒成立;若,则由不等式可得或,(())0x R f f x ∀∈≥()0f t ≥3t a ≥-32a -≤-1a ≤()min (2)30f t f a ==-≥3a ≥32a ->-1a >()2min (3)20f t f a a a =-=--≥2a ≥[2,)+∞a b R ∈x ()()()210x a x b x a +---≥2+a b 1581782a b R ∈x ()()()210x a x b x a +---≥t x =()()()210t a t b t a +---≥[)0,t ∈+∞0b ≤0t b -≥()()210t a t a +--≥()2221311024a a a a a ⎛⎫+--=++=++> ⎪⎝⎭()()210t a t a +--≥21t a ≥+t a ≤-21a a +>-[)0,t ∈+∞0b ≤0b >0a ≥0t a +≥()()210t b t a ---≥()()()21f t t b t a =---()f t t b =21t a =+()()210t b t a ---≥[)0,t ∈+∞21b a =+0a <0a ->21a b a -<<+()()()210t a t b t a +---≥()()210t a t b t a +≥⎧⎪⎨---≥⎪⎩()()210t a t b t a +≤⎧⎪⎨---≤⎪⎩21t a ≥+a t b -≤≤21b a <+[)0,t ∈+∞21b a a <-<+()()()210t a t b t a +---≥()()2010t b t a t a -≥⎧⎪⎨+--≥⎪⎩,解得或,因为,所以不满足原不等式对任意的恒成立;若,则由不等式可得或,解得或,因为,所以不满足原不等式对任意的恒成立;若,则不等式可化为,解得或,不满足原不等式对任意的恒成立;若,则不等式可化为,解得,不满足原不等式对任意的恒成立;综上,为使对任意的恒成立,只有,所以,令,则其是开口向上的二次函数,对称轴为,所以其在上单调递增,因此.故选:D.二、多选题15.(2021·烟台市教育局高三三模)已知,,且,则( )A .B .C .D .【答案】ACD【解析】对A ,由,,且可得,则,()()210t b t a t a -≤⎧⎪⎨+--≤⎪⎩21t a ≥+b t a ≤≤-21a a -<+[)0,t ∈+∞21a a b -<+<()()()210t a t b t a +---≥()()2010t a t b t a +≥⎧⎪⎨---≥⎪⎩()()210t a t b t a +≤⎧⎪⎨---≤⎪⎩t b ≥21a t a -≤≤+21a b +<[)0,t ∈+∞=-b a ()()()210t a t b t a +---≥()()2210t a t a +--≥21t a ≥+t a =-[)0,t ∈+∞21b a =+()()()210t a t b t a +---≥()()2210t a t a +--≥t a ≥-[)0,t ∈+∞()()()210t a t b t a +---≥[)0,t ∈+∞21a b a ≥⎧⎨=+⎩222111511522222216848a b a a a a a ⎛⎫⎛⎫+=++=+++=++ ⎪ ⎪⎝⎭⎝⎭2211522248y a a a ⎛⎫=++=++ ⎪⎝⎭14a =-[)0,+∞2220022y a a =++≥++=0a >0b >1a b -=e e 1a b ->e e 1a b -<914a b-≤222log log 2a b -≥0a >0b >1a b -=0a b >>()()11ba abbb eee e e e -=-=--,,又,,即,故A 正确;对B ,令,则,故B 错误;对C ,,当且仅当时等号成立,故C正确;对D ,,当且仅当,即时等号成立,故D 正确.故选:ACD.16.(2021·重庆巴蜀中学高三月考)已知实数a ,b ,c ,则下列命题为真命题的是( )A .若,则B .若,则的最小值为8C .若,,则D .若,则【答案】ABC 【解析】选项A 中,则A 正确;B ,,当且仅当,即时,等号成立,则B 正确;选项C 中,因为,所以,则,所以,则C 正确;若,满足,而,D 不正确,故选:ABC .17.(2021·全国高三专题练习)下列四种说法中正确的有( )A .命题“,”的否定是“,”;B .若不等式的解集为,则不等式的解集为C .复数满足,在复平面对应的点为,则D .已知,,若是的充分不必要条件,则实数的取值范0b > 1b e ∴>11e ->()11be e ∴->e e 1a b ->2,1a b ==e e 211e a b =-->()9191910104b a a b a b a b a b ⎛⎫⎛⎫-=--=-+≤-= ⎪ ⎪⎝⎭⎝⎭9b a a b =()22222222112log log log log lo 2g 22log b a b b b b a b ⎛⎫+⎛⎫==++≥+= ⎪ ⎪ ⎪⎝⎭⎭-⎝=1b b=1b =0a b >>11a b>0,0,21a b a b >>+=21a b+0a b >>1ab =12a b a b<+0a b >>sin sin a b>110b a a b ab --=>214(2)48b a a b a b a b ⎛⎫++=++≥ ⎪⎝⎭4b a a b =11,24a b ==1,0ab a b =>>10>>>a b 11122,222a ab a a b a +=>=<⋅12a b a b <+,2a b ππ==0a b >>sin sin a b <x R ∀∈231x x >+x R ∃∈231x x <+210ax bx ++>{}13x x -<<23650ax bx ++<()(),15,-∞-+∞ z 21z i -=z (),x y ()2221x y +-=1:32p x ≤≤()21:100q x a x a a ⎛⎫-++≤> ⎪⎝⎭p q a围是【答案】BCD【解析】选项A :命题“,”的否定应该是“,”,故选项A 错误;选项B :因为不等式的解集为,所以方程的两个根为和3,且.由,解出.所以不等式可化为:,即,解得或.所以不等式的解集为,故选项B 正确;选项C :设,,所以满足.故选项C 正确;由得到:.当时,,所以有.由题意可得:,解得;当时,,[)10,3,3⎛⎤+∞ ⎥⎝⎦U x ∀∈R 231x x >+0x ∃∈R 02031xx ≤+210ax bx ++>{}13x x -<<210ax bx ++=1-0a <213b a a ⎧-=⎪⎪⎨⎪=-⎪⎩1323a b ⎧=-⎪⎪⎨⎪=⎪⎩23650ax bx ++<2450x x -++<2450x x -->1x <-5x >23650ax bx ++<()(),15,-∞-+∞ i z a b =+()2i 2i 1z a b -=+-==()2221x y +-=()21100x a x a a ⎛⎫-++≤> ⎪⎝⎭()10x a x a ⎛⎫--≤ ⎪⎝⎭1a ≥1a a>1:q x a a≤≤1123a a ⎧≤⎪⎨⎪≥⎩3a ≥01a <<1a a<所以有.由题意可得:,解得.因此,实数的取值范围是.故选项D 正确.故选:BCD.18.(2021·全国高三专题练习)已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值可以是( ).A .6B .7C .8D .9【答案】ABC【解析】设,其图像为开口向上,对称轴是的抛物线,如图所示.若关于的一元二次不等式的解集中有且仅有3个整数,因为对称轴为,则解得,.又,故可以为6,7,8.故选:ABC19.(2021·全国高三专题练习)若“”是“”的充分不必要条件,则实数可以是( )A .-8B .-5C .1D .41:q a x a≤≤1213a a⎧≤⎪⎪⎨⎪≥⎪⎩103a <≤a [)10,3,3⎛⎤+∞ ⎥⎝⎦U a Z ∈x 260x x a -+≤a 26y x x a =-+3x =x 260x x a -+≤3x =2226201610⎧-⨯+≤⎨-⨯+>⎩a a 58a <≤a Z ∈a 2340x x +-<()222330x k x k k -+++>k【答案】ACD【解析】,解得,即,解得或,由题意知,所以或,即.故选:ACD三、填空题20.(2020·奉新县第一中学高三月考)若一元二次方程的两个实根都大于,则的取值范围____【答案】或.【解析】由题意得应满足解得:或.故答案为:或.21.(2020·全国高三专题练习)要使关于的方程的一根比1大且另一根比1小,则的取值范围是__________.【答案】【解析】由题意,设,要使得关于的方程的一根笔译1大且另一根比1小,根据二次函数的图象与性质,则满足,即,即,解得,即实数的取值范围是.22.(2021·固原市第五中学高三期末)若对时,不等式恒成立,则实数的取值范围是____________..2340x x +-<41x -<<()222330x k x k k -+++>()[(3)]0x k x k --+>x k <3x k >+(4,1)-n (,)(3,)k k -∞⋃++∞1k ³34k +≤-(,7][1,)k ∈-∞-⋃+∞2(1)30mx m x -++=1-m 2m <-5m ≥+0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩2m <-5m ≥+2m <-5m ≥+x ()22120x a x a +-+-=a 21a -<<()22(1)2f x x a x a =+-+-x 22(1)20x a x a +-+-=()10f <220a a +-<(1)(2)0a a -+<21a -<<a 21a -<<(,1]x ∈-∞-21()2()12x xm m --<m【答案】【解析】不等式转化为,化简为,令,又,则,即恒成立,令,又,当时,取最小值,所以,恒成立,化简得,解不等式得.故答案为:23.(2021·全国高三专题练习)设关于x 的不等式,只有有限个整数解,且0是其中一个解,则全部不等式的整数解的和为____________【答案】【解析】设,其图象为抛物线,对于任意一个给定的值其抛物线只有在开口向下的情况下才能满足而整数解只有有限个,所以,因为0为其中一个解可以求得,又,所以或,则不等式为和,可分别求得和,因为位整数,所以和,所以全部不等式的整数解的和为.故答案为:.24.(2021·全国高三专题练习)设函数,若对于恒成立,则的取值范围是________.【答案】()2,3-()21212xxm m ⎛⎫--< ⎪⎝⎭2214x x m m +-<2211(22x x m m -<+12x t =(],1x ∈-∞-[)2,t ∈+∞22m m t t -<+2()f t t t =+[)2,t ∈+∞2t =()f t min ()(2)6f t f ==26m m -<260m m --<23m -<<()2,3-28(1)7160,()ax a x a a Z ++++≥∈10-28(1)716y ax a x a =++++a 0y ≥0a <167a ≥-a Z ∈2a =-1a =-22820x x --+≥290x -+≥22x --≤≤-33x -≤≤x 4,3,2,1x =----3,2,1,0,1,2,3x =---10-10-2()1,(0)f x mx mx m =--≠[1,3],()5x f x m ∈<-+m 6|007m m m ⎧⎫<<<⎨⎬⎩⎭或【解析】 要使上恒成立,则在上恒成立.令,当时,在上是增函数,,则当时,在上是减函数,,故:综上所述,的取值范围是.故答案为:.四、解答题25.(2021·全国高三专题练习)解关于x 的不等式ax 2-(a +1)x +1<0(a ∈R ).【答案】答案见解析【解析】若a =0,原不等式等价于-x +1<0,解得x >1.若a <0,原不等式等价于,解得或x >1.若a >0,原不等式等价于.①当a =1时,,无解; [1,3],()5x f x m ∈<-+∴260mx mx m -+-<2136024m x m ⎛⎫-+-< ⎪⎝⎭[1,3]x ∈213()624g x m x m ⎛⎫=-+- ⎪⎝⎭[1,3]x ∈0m >[1,3]∴max ()(3)760g x g m ==-<∴67m <607m <<0m <()g x [1,3]∴max ()(1)60g x g m ==-<∴6m <0m <m 6|007m m m ⎧⎫<<<⎨⎬⎩⎭或6|007m m m ⎧⎫<<<⎨⎬⎩⎭或()110x x a ⎛⎫--> ⎪⎝⎭1x a <()110x x a ⎛⎫--< ⎪⎝⎭11a =()110x x a ⎛⎫--< ⎪⎝⎭②当a >1时,,解,得;③当0<a <1时, ,解,得;综上所述,当a <0时,解集为或; 当a =0时,解集为{x |x >1};当0<a <1时,解集为; 当a =1时,解集为∅;当a >1时,解集为.26.(2021·上海市)已知,其中.(1)当时,解关于的不等式;(2)若在时恒成立,求实数的取值范围.【答案】(1)见解析;(2).【解析】(1)∵,∴,∵,∴当时,的解集为当时,的解集为当时,的解集为(2)根据题意得,在时恒成立,即在时恒成立,即在时恒成立,即在时恒成立即11a <()110x x a ⎛⎫--< ⎪⎝⎭11x a <<11a >()110x x a ⎛⎫--< ⎪⎝⎭11x a <<1|x x a ⎧<⎨⎩}1x >1|1x x a ⎧⎫<<⎨⎬⎩⎭1|1x x a ⎧⎫<<⎨⎬⎩⎭()()21f x ax a x =-+()13g x a x =-+a R ∈0a <x ()0f x <()()f x g x <[]2,3x ∈a 6a ≤()()21f x ax a x =-+()()21010ax a x ax a x -+<⇔--<0a <01a >>-()0f x <()1,0,a a ⎛⎫-∞+∞ +⎪⎝⎭ 1a =-()0f x <()(),00,-∞+∞ 1a <-()0f x <(),0,1a a ⎛⎫-∞+∞+⎪⎝⎭ ()2113ax a x a x -+<-+[]2,3x ∈()2140ax a x a -++<[]2,3x ∈()2114a x x x -+≤[]2,3x ∈21414111x a x x x x≤=-++-[]2,3x ∈min 1411a x x ⎛⎫ ⎪≤ ⎪ ⎪+-⎝⎭∵在,单调递增,∴,∴,∴实数的取值范围是.27.(2021·全国高三)解关于x 的不等式:.【答案】见解析【解析】将不等式变形为.当a <0或时,有a < a 2,所以不等式的解集为或;当a =0或时,a = a 2=0,所以不等式的解集为且;当0< a <1时,有a > a 2,所以不等式的解集为或;28.(2021·全国高三专题练习)解关于的不等式:.【答案】答案不唯一,具体见解析【解析】原不等式移项得,即.∵,∴当时,当时,当时,综上所述:当时,解集为当时,解集为当时,解集为29.(2021·全国高三专题练习)解关于的不等式:【答案】当时,解集为 ;当 时,解集为或; 11y x x =+-[]2,3x ∈max 173133y =+-=14673a ≤=a 6a ≤()2230x a ax a -++>()2230x a a x a -++>()()20x a x a -->1a >{|x x a <2}x a >1a ={|,x x R ∈}x a ≠2{|x x a <}x a >x ()2220ax x ax a -≥-<()2220ax a x +--≥()()120x ax +-≥0a <()210x x a ⎛⎫+-≤ ⎪⎝⎭20a -<<21x a≤≤-2a =-1x =-2a <-21x a -≤≤20a -<<21x x a ⎧⎫≤≤-⎨⎬⎩⎭2a =-{}1x x =-2a <-21x x a ⎧⎫-≤≤⎨⎬⎩⎭x 22(2)20().ax a x a a R -++>∈0a ={}0x x <0a <<2{|x x a>}x a <当或;当 时,解集为;当 时,解集为; 当;当;【解析】由则 因为,故对分情况讨论当时,则,所以,不等式的解集为 当 时,由,不等式的解集或 当或当 时,不等式的解集为当 时,不等式的解集为 当当30.(2021·全国高三专题练习)解关于的不等式【答案】当时,不等式的解集是或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.当时,不等式的解集为.【解析】不等式可化为.①当时,原不等式可以化为,根据不等式的性质,这个不等式等价于.a >{|x x a >2}x a <0a <<2{|}x x a a <<a <2{|}x a x a <<a ={|x x ≠a =∅22(2)20().ax a x a a R -++>∈(2)()0ax x a -->a R ∈a 0a =20x ->0x <{}0x x <0a <<(2)()0ax x a -->2{|x x a >}x a <a >{|x x a >2}x a <0a <<2{|}x x a a<<a <2{|}x a x a <<a ={|x x ≠a =∅x 2(21)20()ax a x a R -++<∈0a <1{|x x a <2}x >0a ={|2}x x >102a <<1{|2}x x a <<12a =∅12a >1{|2}x x a<<(1)(2)0ax x --<0a >1(2)0a x x a ⎛⎫--< ⎪⎝⎭1(2)0x x a ⎛⎫--< ⎪⎝⎭因为方程的两个根分别是2,,所以当时,,则原不等式的解集是;当时,原不等式的解集是;当时,,则原不等式的解集是.②当时,原不等式为,解得,即原不等式的解集是.③当时,原不等式可以化为,根据不等式的性质,这个不等式等价于,由于,故原不等式的解集是或.综上所述,当时,不等式的解集是或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.当时,不等式的解集为.1(2)0x x a ⎛⎫--= ⎪⎝⎭1a 102a <<12a<1|2x x a ⎧⎫<<⎨⎬⎩⎭12a =∅12a >12a <1|2x x a ⎧⎫<<⎨⎬⎩⎭0a =(2)0x --<2x >{|2}x x >0a <1(2)0a x x a ⎛⎫--< ⎪⎝⎭1(2)0x x a ⎛⎫--> ⎪⎝⎭12a<1{|x x a<2}x >0a <1{|x x a <2}x >0a ={|2}x x >102a <<1{|2}x x a <<12a =∅12a >1{|2}x x a <<。

2021届高考数学一轮复习第二章不等式第4节绝对值不等式及其应用含解析

2021届高考数学一轮复习第二章不等式第4节绝对值不等式及其应用含解析

第4节 绝对值不等式及其应用考试要求 1。

理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a +b |≤|a |+|b |(a ,b ∈R );|a -b |≤|a -c |+|c -b |(a ,b ∈R );2。

会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ;|ax +b |≥c ;|x -c |+|x -b |≥a .知 识 梳 理1。

绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集不等式a >0 a =0 a <0 |x |<a(-a ,a ) |x |〉a (-∞,-a )∪(a ,+∞) (-∞,0)∪(0,+∞) R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c 〉0)型不等式的解法 ①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2。

含有绝对值的不等式的性质(1)如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立;(2)|a|-|b|≤|a±b|≤|a|+|b|;(3)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立。

[常用结论与易错提醒]1。

绝对值不等式的三种常用解法:零点分段法,数形结合法,构造函数法。

2。

不等式恒成立问题、存在性问题都可以转化为最值问题解决。

3。

可以利用绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|求函数最值,要注意其中等号成立的条件。

高考数学一轮复习讲练测(新教材新高考)专题2-2基本不等式及其应用教师版

高考数学一轮复习讲练测(新教材新高考)专题2-2基本不等式及其应用教师版

专题2.2基本不等式及其应用练基础1.(2021·曲靖市第二中学高三二模(文))已知(),,0,a b c ∈+∞,320a b c -+=,则b的()A B .最大值是3C .最小值是D .最小值是3【答案】B 【解析】由题意得32a cb +=,再代入所求式子利用基本不等式,即可得到答案;【详解】因为320a b c -+=,所以32a cb +=,所以3323c a b =≤=+,等号成立当且仅当3a c =.故选:B.2.(2021·山东高三其他模拟)已知a b ,均为正实数,则“2aba b≤+”是“16ab ≤”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】取100,2a b ==可得由2ab a b ≤+推不出16ab ≤,反过来,由基本不等式可得由16ab ≤能推出2aba b≤+,然后可选出答案.【详解】取100,2a b ==,则2002102ab a b =<+,但20016ab =>,所以由2ab a b≤+推不出16ab ≤,反过来,若16ab ≤,则22ab a b ≤=≤+,当且仅当4a b ==时取等号,所以由16ab ≤能推出2ab a b ≤+,所以“2aba b≤+”是“16ab ≤”的必要不充分条件,故选:C3.(2021·吉林长春市·东北师大附中高三其他模拟(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的面积是()2214S b c =+,则ABC 的三个内角大小为()A .60ABC === B .90,45A B C ===C .120,30A B C ===D .90,30,60A B C ===【答案】B 【解析】由ABC 的面积是()2214S b c =+,利用面积公式及基本不等式判断出90A =︒,由b=c 得45B C == .【详解】因为222b c bc +≥,所以()221142S b c bc =+≥(当且仅当b=c 时取等号).而ABC 的面积是1sin 2S bc A =,所以11sin 22S bc A bc =≥,即sin 1A ≥,所以sin =1A ,因为A 为三角形内角,所以90A =︒.又因为b=c ,所以90,45A B C === .故选:B4.(2021·浙江高三月考)已知实数x ,y 满足2244x y +=,则xy 的最小值是()A .2-B .C .D .1-【答案】D 【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值性质进行求解即可.【详解】由22224414x x y y +=⇒+=,令2cos sin x y θθ=⎧⎨=⎩,因此2cos sin sin 2xy θθθ==,因为1sin 21θ-≤≤,所以11xy -≤≤,因此xy 的最小值是1-,5.(2021·北京高三二模)某公司购买一批机器投入生产,若每台机器生产的产品可获得的总利润s (万元)与机器运转时间t (年数,*t ∈N )的关系为22364s t t =-+-,要使年平均利润最大,则每台机器运转的年数t 为()A .5B .6C .7D .8【答案】D 【解析】根据题意求出年平均利润函数。

数学高考一轮复习基本不等式专项练习(带解析)

数学高考一轮复习基本不等式专项练习(带解析)

数学高考一轮复习基本不等式专项练习(带解析)学习数学能够让我们的思维更清晰,我们在摸索和解决问题的时候,条理更清晰。

小编预备了差不多不等式专项练习,期望你喜爱。

1.若xy0,则对xy+yx说法正确的是()A.有最大值-2B.有最小值2C.无最大值和最小值D.无法确定答案:B2.设x,y满足x+y=40且x,y差不多上正整数,则xy的最大值是()A.400B.100C.40D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x0时,求f(x)的最小值;(2)当x0 时,求f(x)的最大值.解:(1)∵x0,12x,4x0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x0时,f(x)的最小值为83.(2)∵x0,-x0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x0时,f(x)的最大值为-83.一、选择题1.下列各式,能用差不多不等式直截了当求得最值的是()A.x+12xB.x2-1+1x2-1C.2x+2-xD.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3B.-3C.62D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是()A.200B.100C.50D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2ba②∵x,y(0,+),lgx+lgy2lgx③∵aR,a0,4a+a 24a④∵x,yR,,xy0,xy+yx=-[(-xy)+(-yx)]-2-xy-yx=-2.其中正确的推导过程为()A.①②B.②③C.③④D.①④解析:选D.从差不多不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合差不多不等式的条件,故①的推导过程正确;②尽管x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合差不多不等式的条件,4a+a24aa=4是错误的;④由xy0得xy,yx均为负数,但在推导过程中将全体xy+yx提出负号后,(-xy)均变为正数,符合差不多不等式的条件,故④正确.5.已知a0,b0,则1a+1b+2ab的最小值是()A.2B.22C.4D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab=1时,等号成立,即a=b=1时,不等式取得最小值4.6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64B.最大值164C.最小值64D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x0,y0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2021年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x0,y0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x1)的最值.解:(1)∵x-1,x+10.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x1,x-10.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b-1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建筑单价为每米400元,中间一条隔壁建筑单价为每米100元,池底建筑单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120211600x225x+12021=36000(元)家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

浙江专用2021届高考数学一轮复习专题二不等式2.1不等式及其解法试题含解析

浙江专用2021届高考数学一轮复习专题二不等式2.1不等式及其解法试题含解析

专题二不等式【考情探究】课标解读考情分析备考指导主题内容一、不等式及其解法1.了解生活中的不等关系,会从实际问题中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

1.考查内容:从近几年高考的情况看,本专题内容考查的重点是不等式的性质与解法,基本不等式及不等式的综合应用。

常与导数、函数零点等知识结合,常用到数形结合、分类讨论、化归与转化等数学思想方法.2.不等式是常考的内容,在选择题、填空题中,常考查不等式的性质、解法及应用基本不等式求最值;在解1。

不等式的性质及不等式的解法难度较小,对于含有参数的一元二次不等式的求解要学会分类讨论(特别是二次项系数、判别式符号均不确定的问题)。

2.对于利用基本不等式求最值的问题,要学会配凑方法,将之表示成“和定"或“积定"的形式,对于多次使用基本不等式求最值的问题,要保证每次的等号均能同时取到.3。

对于不等式恒成立问题,不能停留在具体的求解方法(比如分离参数法等)上,而是将较难的、生疏的问题经过分析、转化为基本的研究函数单调性的问题,积累具体分析、转化的经验.二、基本不等式与不等式的综合了解基本不等式的证明过程,会用基本不等式解决简单的最大(小)应用值问题。

答题中,常与导数结合研究与函数相关的大小关系.【真题探秘】§2.1不等式及其解法基础篇固本夯基【基础集训】考点一不等式的性质1。

若a〉b>0,c〈d〈0,则一定有()A.ac >bdB。

ac〈bdC.ad>bcD。

ad〈bc答案D2.已知实数a=ln22,b=ln33,c=ln55,则a ,b,c 的大小关系是( )A 。

a<b<c B.c 〈a<b C.c<b 〈a D 。

b<a<c 答案 B3。

若a 〈0,b<0,则p=b 2a+a 2b与q=a+b 的大小关系为 .答案 p≤q考点二 不等式的解法4.不等式x 2+2x —3≥0的解集为( )A.{x |x≤—3或x≥1} B 。

高三数学一轮复习单元评估检测(2) 第2章 函数、导数及其应用 理 新人教A版

高三数学一轮复习单元评估检测(2) 第2章 函数、导数及其应用 理 新人教A版

单元评估检测(二)(第二章)(120分钟 150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中可以表示以M ={x|0≤x≤1}为定义域,以N ={y|0≤y≤1}为值域的函数的图象是( )2.(2012·韶关模拟)已知函数f(x)=ax 3+bx -3,若f(-2)=7,则f(2) =( )(A)13 (B)-13 (C)7 (D)-73.(2011·广东高考)设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是( )(A)f(x)+|g(x)|是偶函数 (B)f(x)-|g(x)|是奇函数 (C)|f(x)|+g(x)是偶函数 (D)|f(x)|-g(x)是奇函数4.已知函数f(x)=a x(a>0,a≠1)是定义在R 上的单调递减函数,则函数g(x)=log a (x +1)的图象大致是( )5.设函数f(x)=13x -lnx(x >0),则y =f(x)( )(A)在区间(1e,1),(1,e)内均有零点(B)在区间(1e,1),(1,e)内均无零点(C)在区间(1e ,1)内有零点,在区间(1,e)内无零点(D)在区间(1e,1)内无零点,在区间(1,e)内有零点6.(2012·珠海模拟)函数y =f(x)的导函数y =f′(x)的图象如图所示,则f(x)的解析式可能是( )(A)y =a x(B)y =log a x (C)y =xe x (D)y =xlnx7.(易错题)设函数f(x)=x·sinx,若x 1,x 2∈[-π2,π2],且f(x 1)>f(x 2),则下列不等式恒成立的是( )(A)x 1>x 2 (B)x 1<x 2 (C)x 1+x 2>0 (D)x 12>x 228.(2011·湖南高考)已知函数f(x)=e x-1,g(x)=-x 2+4x -3.若有f(a)=g(b),则b 的取值范围为( )(A)[ 2-2,2+2] (B)(2-2,2+2) (C)[1,3] (D)(1,3)二、填空题(本大题共6小题,每小题5分,共30分.请把正确答案填在题中横线上)9.(2011·四川高考)计算(lg 14-lg25)÷10012 = .10.定积分∫0ln2e xdx 的值为 .11.已知直线y =x +1与曲线y =ln(x +a)相切,则a 的值为 .12.当x∈(1,2)时,不等式(x -1)2<log a x 恒成立,则实数a 的取值范围为 . 13.函数f(x)=(x +a)3对任意t∈R,总有f(1+t)=-f(1-t),则f(2)+ f(-2)等于 .14.(2011·四川高考)函数f(x)的定义域为A ,若x 1,x 2∈A 且f(x 1)=f(x 2)时总有x 1=x 2,则称f(x)为单函数.例如,函数f(x)=2x +1(x∈R)是单函数.下列命题:①函数f(x)=x 2(x∈R)是单函数;②若f(x)为单函数,x 1,x 2∈A 且x 1≠x 2,则f(x 1)≠f(x 2);③若f :A→B 为单函数,则对于任意b∈B,A 中至多有一个元素与之对应; ④函数f(x)在某区间上具有单调性,则f(x)一定是单函数. 其中的真命题是 .(写出所有真命题的编号)三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)(2012·广州模拟)设函数f(x)=lg(2x +1-1)的定义域为集合A ,函数g(x)=1-a 2-2ax -x 2的定义域为集合B.(1)求证:函数f(x)的图象关于原点成中心对称;(2)a≥2是A∩B= 的什么条件(充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件),并证明你的结论.16.(13分)两个二次函数f(x)=x 2+bx +c 与g(x)=-x 2+2x +d 的图象有唯一的公共点P(1,-2).(1)求b ,c ,d 的值;(2)设F(x)=(f(x)+m)·g′(x),若F(x)在R 上是单调函数,求m 的取值范围,并指出F(x)是单调递增函数,还是单调递减函数.17.(13分)(2011·北京高考)已知函数f(x)=(x -k)2e x k. (1)求f(x)的单调区间;(2)若对于任意的x∈(0,+∞),都有f(x)≤1e,求k 的取值范围.18.(14分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a 件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x 2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元). (1)写出y 与x 的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. 19.(14分)已知幂函数f(x)=2m 2m 3x -++(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=14f(x)+ax 3+92x 2-b(x∈R),其中a ,b∈R.若函数g(x)仅在x =0处有极值,求a 的取值范围.20.(14分)(预测题)已知f(x)=xlnx ,g(x)=12x 2-x +a.(1)当a =2时,求函数y =g(x)在[0,3]上的值域; (2)求函数f(x)在[t ,t +2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>g′(x)+1e x-2e 成立.答案解析1. 【解析】选C.由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A 、B ;再结合函数的定义,可知对于集合M 中的任意x ,N 中都有唯一的元素与之对应,故排除D.2.【解析】选B.∵f(-2)=-a ·23-2b -3=-(a ·23+2b)-3=7, ∴a ·23+2b =-10,∴f(2)=a ·23+2b -3=-10-3=-13.3. 【解析】选A.∵g(x)是奇函数,其图象关于原点对称, ∴|g(x)|的图象关于y 轴对称,是偶函数, 又f(x)为偶函数,∴f(x)+|g(x)|是偶函数. 【方法技巧】函数奇偶性与函数图象的关系(1)函数的奇偶性,揭示了函数图象的对称性.已知函数的奇偶性可得函数图象的对称性;反之,已知函数图象的对称性可得函数的奇偶性.(2)从图象判断函数的奇偶性是很有效的方法.利用图象变换,可以很容易地画出形如|f(x)|或f(|x|)的函数图象,进而可判断函数的奇偶性.4. 【解题指南】由指数函数的单调性可得a 的取值范围,再判断函数g(x)=log a (x +1)的图象.【解析】选D.由题可知0<a<1,函数g(x)的图象由函数y =log a x 的图象向左平移一个单位得到,故选D.5. 【解析】选D.∵f ′(x)=13-1x ,∴x ∈(3,+∞)时,y =f(x)单调递增; x ∈(0,3)时,y =f(x)单调递减. 而0<1e<1<e <3,又f(1e )=13e +1>0,f(1)=13>0,f(e)=e3-1<0,∴在区间(1e,1)内无零点,在区间(1,e)内有零点.【一题多解】选D.令g(x)=13x ,h(x)=lnx ,如图,作出g(x)与h(x)在x>0的图象,可知g(x)与h(x)的图象在(1e,1)内无交点,在(1,e)内有1个交点,故选D.【变式备选】已知函数f(x)=⎩⎪⎨⎪⎧4x -4,x ≤1x 2-4x +3,x >1,则关于x 的方程f(x)=log 2x 解的个数为( )(A)4 (B)3 (C) 2 (D)1【解析】选B.在同一直角坐标系中画出y =f(x)与y =log 2x 的图象,从图象中可以看出两函数图象有3个交点,故其解有3个.6.【解析】选D.由图知,导函数的定义域为(0,+∞), ∵(a x)′=a xlna ,(xe x)′=e x+xe x,导函数的定义域为R , ∴排除选项A ,C.由图象知导函数的值是先负后正,又(log a x)′=1xlna ,导函数的符号与参数a 有关,排除B ,故选D.7.【解析】选D.显然f(x)为偶函数, 当x ∈(0,π2]时,f ′(x)=sinx +xcosx >0,∴f(x)在(0,π2]上单调递增.又f(x 1)>f(x 2)⇔f(|x 1|)>f(|x 2|)⇔|x 1|>|x 2|⇔x 12>x 22.8.【解析】选B.∵f(a)>-1,∴g(b)>-1, ∴-b 2+4b -3>-1,∴b 2-4b +2<0, ∴2-2<b<2+ 2.故选B. 9.【解析】(lg 14-lg25)÷12100-=lg 1425÷1100=lg 1100÷110=10×lg10-2=-20. 答案:-2010.【解析】∫0ln2e xdx =e x|0ln2=e ln2-e 0=2-1=1. 答案:111.【解析】y ′=1x +a (x +a)′=1x +a,设切点为(x 0,x 0+1),则⎩⎪⎨⎪⎧1x 0+a =1x 0+1=ln(x 0+a),解得a =2. 答案:212.【解析】设y 1=(x -1)2,则y 1的图象如图所示:设y 2=log a x ,则当x ∈(1,2)时,y 2的图象应在y 1的图象上方, ∴a >1且log a 2≥(2-1)2=1, ∴a ≤2,∴1<a ≤2. 答案:{a|1<a ≤2}13.【解析】令t =1,则f(2)=-f(0). ∴(2+a)3=-a 3, ∴a =-1,∴f(2)+f(-2)=(2-1)3+(-2-1)3=-26. 答案:-26 14.【解析】答案:②③15.【解析】(1)A ={x|2x +1-1>0},2x +1-1>0⇒x -1x +1<0⇒(x +1)(x -1)<0, ∴-1<x<1.∴A =(-1,1),故f(x)的定义域关于原点对称. 又f(x)=lg 1-x x +1,则f(-x)=lg 1+x -x +1=lg(1-x x +1)-1=-lg 1-xx +1,∴f(x)是奇函数.即函数f(x)的图象关于原点成中心对称. (2)B ={x|x 2+2ax -1+a 2≤0},得-1-a ≤x ≤1-a ,即B =[-1-a,1-a], 当a ≥2时,-1-a ≤-3,1-a ≤-1,由A =(-1,1),B =[-1-a,1-a],有A ∩B =∅. 反之,若A ∩B =∅,可取-a -1=2,则a =-3,a 小于2. 所以,a ≥2是A ∩B =∅的充分不必要条件.16.【解题指南】(1)把点P 的坐标代入两函数解析式,结合x 2+bx +c =-x 2+2x +d 有唯一解,可求得b ,c ,d ,(2)若F(x)在R 上是单调函数,则F ′(x)在R 上恒有F ′(x)≥0或F ′(x)≤0.【解析】(1)由已知得⎩⎪⎨⎪⎧1+b +c =-2-1+2+d =-2,化简得⎩⎪⎨⎪⎧b +c =-3d =-3,且x 2+bx +c =-x 2+2x +d ,即2x 2+(b -2)x +c -d =0有唯一解, 所以Δ=(b -2)2-8(c -d)=0,即b 2-4b -8c -20=0, 消去c 得b 2+4b +4=0,解得b =-2,c =-1,d =-3. (2)由(1)知f(x)=x 2-2x -1,g(x)=-x 2+2x -3, 故g ′(x)=-2x +2, F(x)=(f(x)+m)·g ′(x) =(x 2-2x -1+m)·(-2x +2)=-2x 3+6x 2-(2+2m)x +2m -2, F ′(x)=-6x 2+12x -2-2m.若F(x)在R 上为单调函数,则F ′(x)在R 上恒有F ′(x)≤0或F ′(x)≥0成立. 因为F ′(x)的图象是开口向下的抛物线, 所以F ′(x)≤0在R 上恒成立,所以Δ=122+24(-2-2m)≤0,解得m ≥2, 即m ≥2时,F(x)在R 上为单调递减函数.17.【解析】(1)f ′(x)=1k (x 2-k 2)e xk ,令f ′(x)=0,得x =±k.当k >0时,f(x)与f ′(x)的情况如下:所以f(x)的单调递增区间是(-∞,-k)和(k ,+∞);单调递减区间是(-k ,k). 当k <0时,f(x)与f ′(x)的情况如下:所以f(x)的单调递减区间是(-∞,k)和(-k ,+∞);单调递增区间是(k , -k).(2)当k >0时,因为f(k +1)=ek 1k+>1e ,所以不会有∀x ∈(0,+∞),f(x)≤1e. 当k <0时,由(1)知f(x)在(0,+∞)上的最大值是f(-k)=4k2e .所以∀x ∈(0,+∞),f(x)≤1e ,等价于f(-k)=4k 2e ≤1e ,解得-12≤k <0.故对∀x ∈(0,+∞),f(x)≤1e 时,k 的取值范围是[-12,0).18.【解析】(1)改进工艺后,每件产品的销售价为20(1+x)元,月平均销售量为a(1-x 2)件,则月平均利润y =a(1-x 2)·[20(1+x)-15](元),∴y 与x 的函数关系式为 y =5a(1+4x -x 2-4x 3)(0<x<1).(2)y ′=5a(4-2x -12x 2),令y ′=0得x 1=12,x 2=-23(舍),当0<x<12时y ′>0;12<x<1时y ′<0,∴函数y =5a(1+4x -x 2-4x 3)(0<x<1)在x =12处取得最大值.故改进工艺后,产品的销售价为20(1+12)=30元时,旅游部门销售该纪念品的月平均利润最大.【变式备选】某地建一座桥,两端的桥墩已建好,这两个桥墩相距m 米,余下的工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x 米的相邻两墩之间的桥面工程费用为(2+x)x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 【解析】(1)设需要新建n 个桥墩,(n +1)x =m ,即n =mx -1,所以y =f(x)=256n +(n +1)(2+x)x =256(m x -1)+mx (2+x)x=256m x+m x +2m -256.(2)由(1)知,f ′(x)=-256m x 2+1212mx -=m2x2(x 32-512).令f ′(x)=0,得x 32=512,所以x =64,当0<x<64时,f ′(x)<0,f(x)在区间(0,64)上为减函数; 当64<x<640时,f ′(x)>0,f(x)在区间(64,640)上为增函数, 所以f(x)在x =64处取得最小值,此时, n =m x -1=64064-1=9, 故需新建9个桥墩才能使y 最小.19.【解题指南】(1)由函数f(x)在区间(0,+∞)上为增函数,可得-m 2+2m +3>0,再由f(x)为偶函数得m 的值.(2)g(x)仅在x =0处有极值,则意味着g ′(x)=0有唯一一个变号零点是0.【解析】(1)∵f(x)在区间(0,+∞)上是单调增函数,∴-m 2+2m +3>0即m 2-2m -3<0,∴-1<m<3.又m ∈Z ,∴m =0,1,2,而m =0,2时,f(x)=x 3不是偶函数,m =1时,f(x)=x 4是偶函数, ∴f(x)=x 4.(2)g(x)=14x 4+ax 3+92x 2-b , g ′(x)=x(x 2+3ax +9),显然x =0不是方程x 2+3ax +9=0的根.为使g(x)仅在x =0处有极值,则有x 2+3ax +9≥0恒成立,即有Δ=9a 2-36≤0,解不等式,得a ∈[-2,2].这时,g(0)=-b 是唯一极值,∴a ∈[-2,2].20.【解析】(1)∵g(x)=12(x -1)2+32,x ∈[0,3], 当x =1时,g(x)min =g(1)=32; 当x =3时,g(x)max =g(3)=72, 故g(x)在[0,3]上的值域为[32,72]. (2)f ′(x)=lnx +1,当x ∈(0,1e),f ′(x)<0,f(x)单调递减, 当x ∈(1e,+∞),f ′(x)>0,f(x)单调递增. ①0<t<t +2<1e,t 无解; ②0<t<1e <t +2,即0<t<1e 时,f(x)min =f(1e) =-1e; ③1e ≤t<t +2,即t ≥1e时,f(x)在[t ,t +2]上单调递增,f(x)min =f(t)=tlnt ; 所以f(x)min =⎩⎪⎨⎪⎧ -1e ,0<t<1e tlnt ,t ≥1e .(3)g ′(x)+1=x ,所以问题等价于证明xlnx>x e x -2e(x ∈(0,+∞)),由(2)可知f(x)=xlnx(x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e时取到; 设m(x)=x e x -2e(x ∈(0,+∞)), 则m ′(x)=1-x e x , 易得m(x)max =m(1)=-1e,当且仅当x =1时取到,从而对一切x ∈(0,+∞),都有xlnx>g ′(x)+1e x -2e成立.。

2025届高考数学一轮复习第7章不等式第2节二元一次不等式组及简单的线性规划问题课时跟踪检测理含解析

2025届高考数学一轮复习第7章不等式第2节二元一次不等式组及简单的线性规划问题课时跟踪检测理含解析

第七章 不等式其次节 二元一次不等式(组)及简洁的线性规划问题A 级·基础过关 |固根基|1.不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示)应是( )A B C D解析:选C (x -2y +1)(x +y -3)≤0⇔⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.结合图形可知选C .2.(2025届南昌一模)设不等式组⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,3x -y -5≤0表示的平面区域为M ,若直线y =kx 经过区域M 内的点,则实数k 的取值范围为( )A .⎝⎛⎦⎤12,2 B .⎣⎡⎦⎤12,43 C .⎣⎡⎦⎤12,2D .⎣⎡⎦⎤43,2解析:选C不等式组⎩⎪⎨⎪⎧x +y -3≥0,x -y +1≥0,3x -y -5≤0表示的平面区域如图中阴影部分所示,即三角形ABC (含边界),由⎩⎪⎨⎪⎧x +y -3=0,3x -y -5=0得点A (2,1),由⎩⎪⎨⎪⎧x +y -3=0,x -y +1=0得点C (1,2).又直线OA 的斜率为k OA =12,直线OC 的斜率为k OC =2,而直线y =kx 表示过原点O 的直线,因此依据题意可得k OA ≤k ≤k OC ,即12≤k ≤2.3.(2024年浙江卷)若实数x ,y 满意约束条件⎩⎪⎨⎪⎧x -3y +4≥0,3x -y -4≤0,x +y ≥0,则z =3x +2y 的最大值是( )A .-1B .1C .10D .12解析:选C 作出可行域如图中阴影部分所示,数形结合可知,当直线z =3x +2y 过点A (2,2)时,z 取得最大值,z max =6+4=10.故选C .4.(2025届贵阳摸底)已知实数x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥4,x -y ≤1,则z =3x +y 的最小值为( )A .11B .9C .8D .3解析:选C 依据不等式组画出可行域如图中阴影部分所示,作出直线y =-3x 并平移,则当直线y =-3x +z 过点B 时,z 最小,由⎩⎪⎨⎪⎧x +y -4=0,y =2,得⎩⎪⎨⎪⎧x =2,y =2,即B (2,2),故z 的最小值为3×2+2=8.故选C .5.(2025届昆明市质检)若x ,y 满意约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -3y -3≤0,且z =x +2y ,则( )A .z 有最小值也有最大值B .z 无最小值也无最大值C .z 有最小值无最大值D .z 有最大值无最小值解析:选C 作出可行域如图中阴影部分所示,z =x +2y 可变形为y =-12x +z2,所以z的几何意义为直线y =-12x +z2的纵截距的两倍,结合图形可知,当直线z =x +2y 过A 点时,z 取最小值,无最大值.6.(2025届郑州市其次次质量预料)设变量x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则目标函数z =⎝⎛⎭⎫133x +y的最大值为( ) A .⎝⎛⎭⎫1311B .⎝⎛⎭⎫133C .3D .4解析:选C 可行域如图中阴影部分所示,目标函数z =⎝⎛⎭⎫133x +y,设u =3x +y ,欲求z=⎝⎛⎭⎫133x +y的最大值,等价于求u =3x +y 的最小值.u =3x +y 可化为y =-3x +u ,该直线的纵截距为u ,作出直线y =-3x 并平移,当直线y =-3x +u 经过点B (-1,2)时,纵截距u 取得最小值u min =3×(-1)+2=-1,所以z =⎝⎛⎭⎫133x +y 的最大值z max =⎝⎛⎭⎫13-1=3.故选C .7.设x ,y 满意约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( )A .[1,5]B .[2,6]C .[2,10]D .[3,11]解析:选D 设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )与定点D (-1,-1)连线的斜率.画出可行域如图中阴影部分所示,易知B (0,4),A ⎝⎛⎭⎫127,127,则z ′∈[k DA ,k DB ],又k DB =4+10+1=5,k DA =127+1127+1=1,∴z ′∈[1,5],所以z =1+2z ′∈[3,11].8.(2025届济南市高考模拟)已知变量x ,y 满意约束条件⎩⎪⎨⎪⎧x -y -4≤0,-2≤x <2,y ≤1,若z =2x -y ,则z 的取值范围是( )A .[-5,6)B .[-5,6]C .(2,9)D .[-5,9]解析:选A 作出可行域如图中阴影部分所示,由z =2x -y ,得y =2x -z ,作出直线y=2x ,并平移,可知当直线经过点A (-2,1)时,z 取得最小值,z min =2×(-2)-1=-5;当直线经过点B (2,-2)时,z 取得最大值,z max =2×2+2=6.由于点B 不在可行域内,所以z ∈[-5,6),故选A .9.已知实数x ,y 满意约束条件⎩⎪⎨⎪⎧y ≤2x +1,y ≥-x +4,x ≥3,则z =1-y -3x 的最大值为________.解析:作出可行域如图中阴影部分所示,由⎩⎪⎨⎪⎧y =-x +4,x =3,得⎩⎪⎨⎪⎧x =3,y =1,即B (3,1).由图可知,直线z =1-y -3x 经过点B (3,1)时,z 取得最大值,z max =1-1-3×3=-9.答案:-910.已知x ,y 满意⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有多数个,则a的值等于________.解析:先依据约束条件画出可行域,如图中阴影部分所示,当直线z =ax +y 能和直线AB 重合时,z 取得最大值的点(x ,y )有多数个,∴-a =k AB =1,∴a =-1.答案:-1B 级·素养提升 |练实力|11.(2025届成都摸底)若实数x ,y 满意约束条件⎩⎪⎨⎪⎧x +2y -2≤0,x -1≥0,y ≥0,则z =x -2y 的最小值为( )A .0B .2C .4D .6解析:选A 解法一:画出不等式组表示的平面区域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作出y =12x 并平移,由图可知,当动直线y =12x -12z 经过点A 时,z 取得小值,由⎩⎪⎨⎪⎧x =1,x +2y -2=0,得A 1,12,即z min =1-2×12=0,故选A .解法二:由⎩⎪⎨⎪⎧x +2y -2=0,x -1=0,得⎩⎪⎨⎪⎧x =1,y =12,此时z =0;由⎩⎪⎨⎪⎧x +2y -2=0,y =0,得⎩⎪⎨⎪⎧x =2,y =0,此时z =2;由⎩⎪⎨⎪⎧x -1=0,y =0,得⎩⎪⎨⎪⎧x =1,y =0,此时z =1.综上所述,z 最小值为0,故选A . 12.(2025届南昌市重点中学测试)记不等式组⎩⎪⎨⎪⎧x ≥1,x +y -5≥0,x -2y +1≤0的解集为D ,若∀(x ,y )∈D ,不等式a ≤2x +y 恒成立,则a 的取值范围是( )A .(-∞,3]B .[3,+∞)C .(-∞,6]D .(-∞,8]解析:选C不等式组⎩⎪⎨⎪⎧x ≥1,x +y -5≥0,x -2y +1≤0表示的平面区域如图中阴影部分所示,设z =2x +y ,作出直线2x +y =0,并平移,由图知目标函数z =2x +y 取得最小值的最优解为A (1,4),所以目标函数z =2x +y 的最小值为6.因为∀(x ,y )∈D ,不等式a ≤2x +y 恒成立,所以a ≤6,故选C .13.(2025届江西五校联考)设点M 是⎩⎪⎨⎪⎧x +2≤0,x -2y +6≥0,x +2y +2≥0表示的区域Ω1内任一点,点N 是区域Ω1关于直线l :y =x 的对称区域Ω2内的任一点,则|MN |的最大值为( )A . 2B .2 2C .4 2D .5 2解析:选D不等式组⎩⎪⎨⎪⎧x +2≤0,x -2y +6≥0,x +2y +2≥0表示的区域Ω1如图中阴影部分所示,因为区域Ω1与区域Ω2关于直线y =x 对称,并且M 是区域Ω1内任一点,N 是区域Ω2内任一点,所以当点M 到直线y =x 的距离最大,并且点N 为M 关于直线y =x 的对称点时,|MN |最大,最大值为点M 到直线y =x 距离的2倍,因此转化为求区域Ω1内的点到直线y =x 的距离的最大值,由图可知点A (-4,1)到直线y =x 的距离最大,为522,所以|MN |的最大值为5 2.14.设实数x ,y 满意⎩⎪⎨⎪⎧x +y -3≤0,y -12x ≥0,x -1≥0,则u =y x -xy的取值范围为( )A .⎣⎡⎦⎤12,2 B .⎣⎡⎦⎤-23,2 C .⎣⎡⎦⎤-23,32 D .⎣⎡⎦⎤-32,32 解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,令yx =t ,由图可得k BO ≤t ≤k OA ,而12≤t ≤2,则u =t -1t 在⎣⎡⎦⎤12,2上明显是增函数,所以当t =12时,u min =-32;当t =2时,u max =32,因此u =y x -xy的取值范围为⎣⎡⎦⎤-32,32.15.设x ,y 满意约束条件⎩⎪⎨⎪⎧x ≥2,3x -y ≥1,y ≥x +1,若目标函数z =ax +by (a >0,b >0)的最小值为2,则ab 的最大值为( )A .1B .12C .14D .16解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线ax +by =0(a >0,b >0)并平移,可知在点A (2,3)处,目标函数z =ax +by (a >0,b >0)取得最小值2,故2a +3b =2≥22a ×3b ,当且仅当2a =3b ,即a =12,b =13时取等号,所以ab ≤16,故选D .16.(2025届河北五个一名校联盟模拟)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的限量如表所示.假如生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 原料限量 A /吨 3 2 12 B /吨128A .16万元B .17万元C .18万元D .19万元解析:选C 设该企业每天生产x 吨甲产品,y 吨乙产品,可获得利润为z 万元,则z =3x +4y ,且x ,y 满意不等式组⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出不等式组表示的可行域如图中阴影部分所示,作出直线3x +4y =0并平移,可知当直线经过点A (2,3)时,z 取得最大值,z max =3×2+4×3=18(万元).故选C .。

2023年高考数学一轮复习单元检测二函数含解析文

2023年高考数学一轮复习单元检测二函数含解析文

单元检测(二) 函数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x )的定义域是[0,2],则函数g (x )=f ⎝ ⎛⎭⎪⎫x +12+f ⎝ ⎛⎭⎪⎫x -12的定义域是( ) A .⎣⎢⎡⎦⎥⎤12,1B .⎣⎢⎡⎦⎥⎤12,2 C .⎣⎢⎡⎦⎥⎤12,32D .⎣⎢⎡⎦⎥⎤1,32 2.下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .43.已知二次函数f (x )=ax 2+bx +5的图象过点P (-1,11),且其对称轴是直线x =1,则a +b 的值是( )A .-2B .0C .1D .24.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g [f (-8)]=( )A .-1B .-2C .1D .25.[2022·湖北武汉武昌调研]函数f (x )=x 2e x|x |的图象大致为( )6.已知函数y =f (x +1)是定义域为R 的偶函数,且f (x )在[1,+∞)上单调递减,则不等式f (2x -1)>f (x +2)的解集为( )A .⎝ ⎛⎭⎪⎫-13,1B .[1,3)C .⎝ ⎛⎭⎪⎫-13,3D .⎝ ⎛⎭⎪⎫13,3 7.若a =⎝ ⎛⎭⎪⎫67-14,b =⎝ ⎛⎭⎪⎫7615,c =log 278,定义在R 上的奇函数f (x )满足:对任意的x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,则f (a ),f (b ),f (c )的大小顺序为( )A .f (b )>f (a )>f (c )B .f (c )>f (b )>f (a )C .f (c )>f (a )>f (b )D .f (b )>f (c )>f (a )8.某校为了规范教职工绩效考核制度,现准备拟定一函数用于根据当月评价分数x (正常情况下0≤x ≤100,且教职工平均月评价分数在50分左右,若有突出贡献可以高于100分)计算当月绩效工资y (元),要求绩效工资不低于500元,不设上限,且让大部分教职工的绩效工资在600元左右,另外绩效工资越低或越高时,人数要越少,则下列函数最符合要求的是( )A .y =(x -50)2+500B .y =10x25+500 C .y =11000(x -50)3+625 D .y =50[10+lg (2x +1)]9.在实数的原有运算法则(“·”“-”仍为通常的乘法和减法)中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则当x ∈[-2,2]时,函数f (x )=(1⊕x )·x -(2⊕x )的最大值等于( )A .-1B .1C .6D .1210.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,g (x )为定义在R 上的奇函数,且当x <0时,g (x )=x 2-2x -5.若f [g (a )]≤2,则实数a 的取值范围是( )A .(-∞,-1]∪[0,22-1]B .[-1,22-1]C .(-∞,-1]∪(0,3]D .[-1,3]11.高斯是德国著名数学家,近代数学奠基者之一,有“数学王子”之称,用其名字命名的“高斯函数”为:设x ∈R ,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如:[-2.1]=-3,[3.1]=3,已知函数f (x )=2x +11+2x-13,则函数y =[f (x )]的值域是( ) A .{0,1}B .{-1,1} C .{-1,0}D .{-1,0,1}12.已知函数f (x )是R 上的偶函数,对于x ∈R 都有f (x +4)=f (x )+f (2)成立,且f (3)=-1,当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0.则给出下列命题:①f (2017)=-1;②函数y =f (x )图象的一条对称轴方程为x =-4;③函数y =f (x )在[-6,-4]上为减函数;④方程f (x )=0在[-6,6]上有4个根.其中正确的命题个数为( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.函数y =log a (x -1)+4的图象恒过点P ,点P 在幂函数f (x )的图象上,则f (3)=________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2(2-x ),x <1,2x ,x ≥1,则f (-2)+f (log 23)的值是________.15.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.16.若直角坐标平面内不同两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上,②P ,Q 关于原点对称,则称(P ,Q )是函数y =f (x )的一个“伙伴点组”(点组(P ,Q )与(Q ,P )可看成同一个“伙伴点组”).已知函数f (x )=⎩⎪⎨⎪⎧k (x +1),x <0,x 2+1,x ≥0有两个“伙伴点组”,则实数k 的取值范围是________________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数f (x )=log 3(ax 2-x +3),a ∈R . (1)若函数f (x )的定义域为R ,求a 的取值范围;(2)已知集合M =[1,3],方程f (x )=2的解集为N ,若M ∩N ≠∅,求a 的取值范围.18.(本小题满分12分)已知定义在R 上的奇函数f (x ),当x >0时,f (x )=-x 2+2x . (1)求函数f (x )在R 上的解析式;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.19.(本小题满分12分)已知定义域为R 的函数f (x )=b -2x2x +a是奇函数,其中a ,b 为实数.(1)求实数a ,b 的值;(2)用定义证明f (x )在R 上是减函数;(3)若对于任意的t ∈[-2,2],不等式f (t 2-2t )+f (-2t 2+k )<0恒成立,求实数k 的取值范围.20.(本小题满分12分)中国“一带一路”战略构思提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x 台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x (万元);当年产量不小于80台时,c (x )=101x +8100x-2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21.(本小题满分12分)已知关于x 的函数f (x )=2x+(a -a 2)·4x,其中a ∈R . (1)当a =2时,求满足f (x )≥0的实数x 的取值范围;(2)若当x ∈(-∞,1]时,函数f (x )的图象总在直线y =-1的上方,求a 的整数值.22.(本小题满分12分)函数f (x )=2x -a x(a ∈R )的定义域为(0,1]. (1)当a =-1时,求函数y =f (x )的值域;(2)若函数y =f (x )在定义域上是减函数,求a 的取值范围;(3)求函数y =f (x )在定义域上的最大值及最小值,并求出函数取得最值时x 的值.单元检测(二) 函数1.答案:C解析:由题意得⎩⎪⎨⎪⎧x +12∈[0,2],x -12∈[0,2],即⎩⎪⎨⎪⎧x ∈⎣⎢⎡⎦⎥⎤-12,32,x ∈⎣⎢⎡⎦⎥⎤12,52,所以x ∈⎣⎢⎡⎦⎥⎤12,32. 2.答案:B解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R .所以定义域与值域相同的函数是①④,共有2个.3.答案:A解析:因为二次函数f (x )=ax 2+bx +5的图象的对称轴是直线x =1,所以-b2a=1 ①.又f (-1)=a -b +5=11,所以a -b =6 ②.联立①②,解得a =2,b =-4,所以a +b =-2.4.答案:A解析:因为函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).因为f (8)=log 3(8+1)=2,所以f (-8)=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 3(2+1)=-1.5.答案:A解析:因为x <0时,f (x )=x 2e x -x =-x e x>0,所以排除选项C 、D.因为x >0时,f (x )=x 2e x x=x e x ,所以f ′(x )=e x +x e x =e x (x +1)>0,所以f (x )在(0,+∞)上单调递增,排除选项B.6.答案:D解析:因为函数y =f (x +1)是定义域为R 的偶函数,所以函数f (x )的图象关于直线x =1对称.又因为f (x )在[1,+∞)上单调递减,所以不等式f (2x -1)>f (x +2)等价于|2x -1-1|<|x +2-1|,两边平方整理得3x 2-10x +3<0,解得13<x <3.7.答案:B解析:根据题意,函数f (x )满足:对任意的x 1,x 2∈[0,+∞)且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,则f (x )在[0,+∞)上为减函数,又f (x )为定义域R 上的奇函数,所以函数f (x )在(-∞,0)上为减函数,所以函数f (x )在R 上为减函数.因为c =log 278<0,a =⎝ ⎛⎭⎪⎫67-14=⎝ ⎛⎭⎪⎫7614,而b =⎝ ⎛⎭⎪⎫7615,所以a >b >0,所以f (c )>f (b )>f (a ).8.答案:C解析:由题意知,拟定函数应满足:①是单调递增函数,且增长速度先快后慢再快;②在x =50左右增长速度较慢,最小值为500.A 中,函数y =(x -50)2+500先减后增,不符合要求;B 中,函数y =10x25+500是指数型函数,增长速度越来越快,不符合要求;D 中,函数y =50[10+lg (2x +1)]是对数型函数,增长速度越来越慢,不符合要求;而C 中,函数y =11000(x -50)3+625是由函数y =x 3经过平移和伸缩变换得到的,符合要求.9.答案:C解析:由已知得1⊕x =⎩⎪⎨⎪⎧1,x ≤1,x 2,x >1,2⊕x =⎩⎪⎨⎪⎧2,x ≤2,x 2,x >2,所以f (x )=⎩⎪⎨⎪⎧x -2,x ≤1,x 3-2,1<x ≤2,x 3-x 2,x >2.当x ≤1时,函数的最大值是f (1)=-1;当1<x ≤2时,函数的最大值是f (2)=6.所以当x ∈[-2,2]时,函数f (x )=(1⊕x )·x -(2⊕x )的最大值等于6.10.答案:A解析:由题意可知g (0)=0,设x >0,则-x <0,g (x )=-g (-x )=-x 2-2x +5.∵f [g (a )]≤2,f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,∴g (a )≥-2, ∴⎩⎪⎨⎪⎧a <0,a 2-2a -5≥-2或⎩⎪⎨⎪⎧a >0,-a 2-2a +5≥-2或a =0, 解得a ≤-1或0≤a ≤22-1. 11.答案:D解析:函数f (x )=2x +11+2x -13=53-21+2x ∈⎝ ⎛⎭⎪⎫-13,53,当-13<f (x )<0时,y =[f (x )]=-1;当0≤f (x )<1时,y =[f (x )]=0;当1≤f (x )<53时,y =[f (x )]=1,所以函数y =[f (x )]的值域是{-1,0,1}.12.答案:D解析:令x =-2,由f (x +4)=f (x )+f (2),得f (-2)=0,因为函数y =f (x )是R 上的偶函数,所以f (2)=f (-2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的周期函数.所以f (2017)=f (504×4+1)=f (1).因为f (3)=-1,所以f (-3)=-1,所以f (1)=f (-3)=-1,从而f (2017)=-1;因为函数y =f (x )的图象关于y 轴对称,周期为4,所以函数y =f (x )图象的一条对称轴方程为x =-4;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,设x 1<x 2,则f (x 1)<f (x 2),故函数y =f (x )在[0,2]上是增函数.根据对称性,易知函数y =f (x )在[-2,0]上是减函数,再根据周期性,可知函数y =f (x )在[-6,-4]上为减函数;f (2)=f (-2)=0,结合单调性及周期性,可知在[-6,6]上有且仅有f (2)=f (-2)=f (6)=f (-6)=0,即方程f (x )=0在[-6,6]上有4个根.综上所述,4个命题都正确.13.答案:9解析:函数y =log a (x -1)+4的图象恒过点P ,则P (2,4),设幂函数f (x )=x α,则2α=4,解得α=2,所以f (x )=x 2,所以f (3)=32=9.14.答案:5解析:∵函数f (x )=⎩⎪⎨⎪⎧log 2(2-x ),x <1,2x ,x ≥1,∴f (-2)=log 24=2,f (log 23)=2log 23=3,∴f (-2)+f (log 23)=2+3=5.15.答案:9解析:∵f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,则m =13,n =3,此时log 3n =1,满足题意;同理,若log 3n =2,则n =9,m =19,此时-log 3m 2=4>2,不满足题意.综上可知,m =13,n =3,此时nm=9.16.答案:(2+22,+∞)解析:设点(m ,n )(m >0)是函数y =f (x )的一个“伙伴点组”中的一个点,则其关于原点的对称点(-m ,-n )必在该函数图象上,故⎩⎪⎨⎪⎧n =m 2+1,-n =k (-m +1),消去n ,整理得m 2-km +k +1=0.若函数f (x )有两个“伙伴点组”,则该方程有两个不相等的正实数根,即⎩⎪⎨⎪⎧Δ=k 2-4(k +1)>0,k >0,k +1>0,解得k >2+2 2.故实数k 的取值范围是(2+22,+∞). 17.解析:(1)因为函数的定义域为R ,所以ax 2-x +3>0恒成立, 当a =0时,-x +3>0不恒成立,不符合题意; 当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=1-12a <0,解得a >112.综上所述,a ∈⎝ ⎛⎭⎪⎫112,+∞.(2)由题意可知,ax 2-x +3=9在[1,3]上有解, 即a =6x 2+1x在[1,3]上有解.设t =1x ,t ∈⎣⎢⎡⎦⎥⎤13,1,则a =6t 2+t .因为y =6t 2+t 在⎣⎢⎡⎦⎥⎤13,1上单调递增,所以y ∈[1,7].所以a ∈[1,7].18.解析:(1)x <0时,-x >0,f (-x )=-(-x )2-2x =-x 2-2x 又f (x )为R 上的奇函数,∴f (x )=-f (-x )=x 2+2x 又∵当x =0时,f (0)=0∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2+2x ,x <0.(2)由(1)知:f (x )=-x 2+2x (x ≥0)在[0,1]上单调递增.f (x )=x 2+2x (x <0)在[-1,0)上单调递增,∴f (x )在[-1,1]上单调递增,又f (x )在[-1,a -2]上单调递增,∴[-1,a -2]⊆[-1,1],∴-1<a -2≤1,1<a ≤3. 即a 的取值范围是(1,3].19.解析:(1)∵f (x )是R 上的奇函数,∴f (0)=0,可得b =1. 又f (-1)=-f (1),∴1-2-12-1+a =-1-22+a,解得a =1.经检验,当a =1且b =1时,f (x )=1-2x2x +1,满足f (x )是R 上的奇函数.(2)由(1)得f (x )=1-2x2x +1=-1+22x +1.任取实数x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=22x 1+1-22x 2+1=2(2x 2-2x 1)(2x 1+1)(2x 2+1).∵x 1<x 2,∴2x 1<2x 2,且(2x 1+1)(2x 2+1)>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴函数f (x )在R 上为减函数.(3)由(1)和(2)知,函数f (x )是奇函数且在R 上为减函数, ∴不等式f (t 2-2t )+f (-2t 2+k )<0恒成立, 即f (t 2-2t )<-f (-2t 2+k )=f (2t 2-k )恒成立, 故t 2-2t >2t 2-k 对任意的t ∈[-2,2]恒成立, 即k >t 2+2t 对任意的t ∈[-2,2]恒成立, 令h (t )=t 2+2t =(t +1)2-1,t ∈[-2,2], 易知当t =2时,h (t )取得最大值8,∴k >8. 故实数k 的取值范围是(8,+∞).20.解析:(1)当0<x <80时,y =100x -⎝ ⎛⎭⎪⎫12x 2+40x -500=-12x 2+60x -500;当x ≥80时,y =100x -⎝⎛⎭⎪⎫101x +8100x-2180-500=1680-⎝ ⎛⎭⎪⎫x +8100x . ∴y =⎩⎪⎨⎪⎧-12x 2+60x -500,0<x <80,x ∈N *,1680-⎝ ⎛⎭⎪⎫x +8100x ,x ≥80,x ∈N *.(2)当0<x <80时,y =-12(x -60)2+1300,∴当x =60时,y 取得最大值,最大值为1300万元;当x ≥80时,y =1680-⎝⎛⎭⎪⎫x +8100x ≤1680-2x ·8100x =1500,当且仅当x =8100x,即x =90时,y 取得最大值,最大值为1500万元.11 综上,当年产量为90台时,该企业在这一电子设备生产中所获利润最大,最大利润为1500万元.21.解析:(1)当a =2时,f (x )=2x -2·4x ≥0,即2x ≥22x +1,所以x ≥2x +1,解得x ≤-1.故实数x 的取值范围是(-∞,-1].(2)由题意知f (x )>-1在x ∈(-∞,1]上恒成立, 即a -a 2>-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x 在x ∈(-∞,1]上恒成立. 因为函数y =⎝ ⎛⎭⎪⎫14x 和y =⎝ ⎛⎭⎪⎫12x在x ∈(-∞,1]上均单调递减, 所以y =-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x 在(-∞,1]上单调递增, 最大值为-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫141+⎝ ⎛⎭⎪⎫121=-34. 因此a -a 2>-34,解得-12<a <32.故实数a 的整数值是0,1. 22.解析:(1)由题意知,f (x )=2x +1x ≥22,当且仅当2x =1x ,即x =22时等号成立,所以函数y =f (x )的值域为[22,+∞).(2)若函数y =f (x )在定义域上是减函数,则任取x 1,x 2∈(0,1],且x 1<x 2,都有f (x 1)>f (x 2)成立,即f (x 1)-f (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫2+a x 1x 2=(x 1-x 2)·a +2x 1x 2x 1x 2>0成立,只要a +2x 1x 2<0,即a <-2x 1x 2成立.由x 1,x 2∈(0,1],得-2x 1x 2∈(-2,0),所以a ≤-2,故a 的取值范围是(-∞,-2].(3)当a ≥0时,函数y =f (x )在(0,1]上单调递增,无最小值,当x =1时取得最大值2-a ;由(2)知,当a ≤-2时,y =f (x )在(0,1]上单调递减,无最大值,当x =1时取得最小值2-a ;当-2<a <0时,函数y =f (x )在⎝ ⎛⎭⎪⎫0,-2a 2上单调递减,在⎝ ⎛⎦⎥⎤-2a 2,1上单调递增,无最大值,当x =-2a 2时,取得最小值2-2a .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元检测二 不等式(时间:120分钟 满分:150分) 第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(·宁波九校联考)已知a >b ,则下列不等式成立的是( ) A.1a <1bB .2-a <2-bC .a 2>b 2D .ac ≥bc答案 B解析 A 中,当a =2,b =-3时,1a <1b不成立;B 中,由a >b ,得-a <-b ,所以2-a <2-b ,故B 正确;C 中,当a =1,b =-1时,a 2>b 2不成立;D 中,当c <0时,ac ≥bc 不成立,故选B.2.(·杭州质检)若关于x 的不等式mx -2>0的解集是{x |x >2},则实数m 等于( ) A .-1B .-2C .1D .2 答案 C解析 当m >0时,由mx -2>0得x >2m;当m <0时,由mx -2>0得x <2m;当m =0时,不等式显然不成立, 因为不等式的解集为{x |x >2}, 所以m >0且2m=2,解得m =1,故选C.3.(·诸暨模拟)已知|x -a |<h ,|y -a |<2h ,则下列结论正确的是( ) A .|x -y |<h B .|x -y |<3h C .|x +y |<h D .|x +y |<3h答案 B解析 依题意得|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<h +2h =3h ,即|x -y |<3h ,故选B.4.(·嘉兴第五高级中学期中)不等式x -2y +6>0表示的区域在直线x -2y +6=0的( ) A .右上方B .右下方C .左上方D .左下方 答案 B解析 点(0,0)满足x -2y +6>0,且点(0,0)在直线x -2y +6=0的右下方,所以不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的右下方,故选B.5.(·湖州、衢州、丽水三地市质检)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,则2y -x 的最大值是( )A .-2B .-1C .1D .2 答案 C解析 在平面直角坐标系内画出题中的不等式组表示的平面区域如图中阴影部分所示(包含边界),由图易得当目标函数z =2y -x 经过平面区域内的点A (1,1)时,z =2y -x 取得最大值,所以2y -x 的最大值为2×1-1=1,故选C.6.已知集合M ={(x ,y )|x -y ≤0,x +y ≥0,y ≤a },其中a >0,若平面点集N ={(x +y ,x -y )|(x ,y )∈M }所表示的平面区域的面积为2,则a 的值为( )A .1B .2C .3D .4 答案 A解析 设x +y =X ,x -y =Y ,所以平面点集N 可化为{(X ,Y )|Y ≤0,X ≥0,X -Y ≤2a },它所表示的平面区域如图所示,其为一个等腰直角三角形,腰长为2a (a >0),故其面积S =2=12×2a ×2a ,解得a =1.7.已知a >1,x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≤0,ax -y ≥0,x +y -1≤0,若目标函数z =ayax +1的最大值小于1,则实数a 的取值范围为() A .(1,2)B .(1,1+2)C .(1+2,+∞)D .(2,+∞)答案 B解析 由已知约束条件作出可行域如图中阴影部分(含边界)所示,而目标函数z =ayax +1=y x +1a的几何意义为可行域内的点与C ⎝ ⎛⎭⎪⎫-1a,0连线的斜率,连接AC ,此时直线的斜率最大,可得A ⎝ ⎛⎭⎪⎫1a +1,a 1+a ,由k AC =a1+a 11+a +1a=a 21+2a <1,a >1,则1<a <1+2,故选B.8.已知正数x ,y 满足x +2y =xy ,则x +2y -1x 2+4xy +4y 2-1的最大值是( )A.19B.110C.18D.24 答案 A解析 方法一 x +2y =xy 可化为2x +1y=1,x +2y =(x +2y )·⎝ ⎛⎭⎪⎫2x +1y =4+x y +4y x≥4+2x y ·4y x =8,当且仅当x =2y =4时等号成立,令t =x +2y -1(t ≥7),则x +2y -1x 2+4xy +4y 2-1=x +2y -1(x +2y )2-1=t (t +1)2-1=1t +2≤19.故选A. 方法二 xy =x +2y ≥2x ·2y ,得xy ≥8, 当且仅当x =2y =4时等号成立,x +2y -1x 2+4xy +4y 2-1=x +2y -1(x +2y )2-1=xy -1(xy )2-1=1xy +1≤19,故选A.9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2,x -y ≥0,x +ay ≥0,若z =x 2+y 2+4y 有最小值-45,则a 等于( )A.165B .±2C.-2D .2 答案 D解析 由于目标函数z =x 2+y 2+4y =x 2+(y +2)2-4,故当x 2+(y +2)2(即点A (0,-2)到可行域内点的距离)取得最小值时,z 取得最小值,即x 2+(y +2)2的最小值为45.当-1≤a ≤0时,作出不等式组所表示的平面区域,如图(1)中阴影部分所示,点A (0,-2)在可行域内,所以x 2+(y +2)2的最小值为0,不符合题意. 当a <-1时,作出不等式组所表示的平面区域,如图(2)中阴影部分所示,点A (0,-2)在可行域内,所以x 2+(y +2)2的最小值为0,不符合题意.当a >0时,作出不等式组所表示的平面区域,如图(3)中的阴影部分所示,过A 作AB 垂直于直线x +ay =0,垂足为B ,此时x 2+(y +2)2的最小值为|AB |, 根据题意,|AB |=45,由点到直线的距离公式得,|AB |=|0+a ×(-2)|1+a 2=45,所以a =±2, 又a >0,所以a =2.故选D.10.已知实数x >0,y >0,x +4y =22,若1x +1+1my +1(m >0)的最小值为1,则m 等于( ) A .1B.2C .2D .2 2 答案 C解析 ∵x +4y =22,x +4y =(x +1)+4m(my +1)-⎝ ⎛⎭⎪⎫1+4m ,∴(x +1)+4m(my +1)=22+⎝ ⎛⎭⎪⎫1+4m >0,∴由[(x +1)+4m (my +1)]⎝ ⎛⎭⎪⎫1x +1+1my +1=1+4m +x +1my +1+4m ·my +1x +1≥1+4m+24m(当且仅当m (x +1)2=4(my +1)2时取等号),得1x +1+1my +1≥1+4m +4m 22+⎝ ⎛⎭⎪⎫1+4m . 根据题意,知1+4m+4m22+⎝ ⎛⎭⎪⎫1+4m =1,得m =2.第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分.把答案填在题中横线上)11.不等式组⎩⎪⎨⎪⎧ |x 2-2x -3|>x 2-2x -3,x 2+|x |-2>0的解集为________.答案 {x |1<x <3} 解析 根据题意,因为不等式组⎩⎪⎨⎪⎧|x 2-2x -3|>x 2-2x -3,x 2+|x |-2>0,则可知x 2-2x -3<0等价于-1<x <3,同时x 2+|x |-2>0等价于(|x |+2)(|x |-1)>0等价于|x |>1, 根据绝对值不等式以及二次不等式,可知1<x <3.12.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥2,2x -y ≤4,x -y ≥0,则2x +y 的最大值为________,x 2+(y +1)2的取值范围是________.答案 12 ⎣⎢⎡⎦⎥⎤92,41解析 作出不等式组表示的平面区域,如图中的△ABC 区域(含边界),其中点A (2,0),B (1,1),C (4,4),当2x +y 过点C (4,4)时,取得最大值2×4+4=12.而z =x 2+(y +1)2表示可行域内的点(x ,y )到点M (0,-1)的距离的平方. ∵点M 到直线x +y -2=0的距离为d =|-1-2|12+12=32, ∴z min =d 2=92.观察△ABC ,可以发现,z max =|MC |2=42+[4-(-1)]2=41,∴x 2+(y +1)2的取值范围是⎣⎢⎡⎦⎥⎤92,41. 13.(·金华质检)设函数f (x )=⎩⎪⎨⎪⎧3+x 3-x ,x ≤0,4x (1-x ),x >0,则f (f (1))=____________;不等式f (f (x ))≤0的解集为____________.答案 1 ⎩⎨⎧⎭⎬⎫0,12∪⎣⎢⎡⎭⎪⎫32,+∞解析 由已知得f (1)=0,所以f (f (1))=f (0)=1. 作出函数f (x )的图象(如图),令u =f (x ),若f (u )≤0,则u ≤-3或u ≥1,由f (x )的图象知,f (x )的最大值为1,且当x =0或x =12时,取到最大值,所以满足u ≥1的x 值有0和12;u ≤-3可转化为⎩⎪⎨⎪⎧3+x 3-x ≤-3,x ≤0或⎩⎪⎨⎪⎧4x (1-x )≤-3,x >0,第一个不等式组无解,第二个不等式组的解集为⎣⎢⎡⎭⎪⎫32,+∞. 综上,不等式f (f (x ))≤0的解集为⎩⎨⎧⎭⎬⎫0,12∪⎣⎢⎡⎭⎪⎫32,+∞.14.在平面直角坐标系中,x ,y 满足不等式组⎩⎪⎨⎪⎧2x ≥π,2x +y ≤3π,2x -2y ≤3π,其表示的平面区域的面积为__________,sinx +y2的取值范围为____________.答案 32π2 ⎣⎢⎡⎦⎥⎤-22,1解析 画出不等式组表示的可行域如图中阴影部分(含边界)所示,易知A ⎝⎛⎭⎪⎫π2,2π,B ⎝ ⎛⎭⎪⎫π2,-π,C ⎝ ⎛⎭⎪⎫3π2,0,所以平面区域的面积S △ABC =12×|2π-(-π)|×π=32π2.令z =x +y ,作出直线x +y =0,平移该直线,则当直线过点B 时,z 取得最小值,当直线过点A 时,z 取得最大值,所以-π2≤z ≤5π2,-π4≤x +y 2≤5π4,所以-22≤sin x +y 2≤1, 即sinx +y2的取值范围为⎣⎢⎡⎦⎥⎤-22,1. 15.设实数x ,y 满足4x 2-2xy +y 2=8,则4x 2+y 2的取值范围为____________,2x +y 的最大值为________. 答案 ⎣⎢⎡⎦⎥⎤163,16 4 2解析 令4x 2+y 2=t ,则4x 2+y 2=t ≥24x 2y 2=4|xy |=2|t -8|,解关于t 的不等式t ≥2|t -8|,可得t ∈⎣⎢⎡⎦⎥⎤163,16,所以4x 2+y 2的取值范围为⎣⎢⎡⎦⎥⎤163,16.方法一 令2x +y =m ,将y =m -2x 代入方程4x 2-2xy +y 2=8可得 4x 2-2x (m -2x )+(m -2x )2=8, 整理可得12x 2-6mx +m 2-8=0, 由Δ=(-6m )2-4×12(m 2-8)≥0, 得-42≤m ≤42, 所以2x +y 的最大值为4 2.方法二 由4x 2-2xy +y 2=8配方可得⎝ ⎛⎭⎪⎫2x -y 22+34y 2=8,利用三角换元可令⎩⎪⎨⎪⎧2x -y2=22cos θ,32y =22sin θ,则⎩⎪⎨⎪⎧x =23sin θ+2cos θ,y =423sin θ,则2x +y =2⎝⎛⎭⎪⎫23sin θ+2cos θ+423sin θ=623sin θ+22cos θ=42sin(θ+φ)⎝ ⎛⎭⎪⎫其中tan φ=33, 当sin(θ+φ)=1时2x +y 取得最大值,最大值为4 2.16.已知a ,b ,c ∈R ,若|a cos 2x -b sin x +c |≤1对x ∈R 恒成立,则|a cos x -b |的最大值为________. 答案 2解析 取x =0,得|a +c |≤1, 取x =-π2,得|b +c |≤1,取x =π2,得|b -c |≤1.由绝对值不等式知,|a -b |=|a +c -b -c |≤|a +c |+|b +c |≤2, |a +b |=|a +c +b -c |≤|a +c |+|b -c |≤2, |a cos x -b |max =max{|a -b |max ,|a +b |max }=2.17.已知⎝⎛⎭⎪⎫x -1x 2+⎝ ⎛⎭⎪⎫y -2y 2=4,则x 2+y 2的最大值为________.答案 3解析 由⎝⎛⎭⎪⎫x -1x 2+⎝ ⎛⎭⎪⎫y -2y 2=4,得x 2+y 2+1x 2+4y 2=10,即1x 2+4y2=10-(x 2+y 2),则(x 2+y 2)[10-(x 2+y 2)]=(x 2+y 2)·⎝ ⎛⎭⎪⎫1x2+4y 2=5+y 2x 2+4x 2y 2≥9,当且仅当y 2x 2=4x 2y2时等号成立.令x 2+y 2=t ,得t 2-10t +9≤0, 解得1≤t ≤9,所以1≤x 2+y 2≤3, 即x 2+y 2的最大值为3.三、解答题(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤) 18.(14分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b ; (2)解不等式x -cax -b>0(c 为常数). 解 (1)由题意知1,b 为方程ax 2-3x +2=0的两根, 即⎩⎪⎨⎪⎧b =2a ,1+b =3a,∴a =1,b =2.(2)不等式等价于(x -c )(x -2)>0, 当c >2时,解集为{x |x >c 或x <2}; 当c <2时,解集为{x |x >2或x <c }; 当c =2时,解集为{x |x ≠2,x ∈R }.19.(15分)设函数f (x )=|2x -a |+5x ,其中a >0.(1)当a =3时,求不等式f (x )≥5x +1的解集; (2)若不等式f (x )≤0的解集为{x |x ≤-1},求a 的值. 解 (1)当a =3时,f (x )≥5x +1可化为|2x -3|≥1. 由此可得x ≥2或x ≤1.故不等式f (x )≥5x +1的解集为{x |x ≤1或x ≥2}. (2)由f (x )≤0得|2x -a |+5x ≤0, 此不等式化为不等式组⎩⎪⎨⎪⎧x ≥a 2,2x -a +5x ≤0或⎩⎪⎨⎪⎧x <a 2,-(2x -a )+5x ≤0,即⎩⎪⎨⎪⎧x ≥a2,x ≤a7或⎩⎪⎨⎪⎧x <a 2,x ≤-a3,因为a >0,所以不等式组的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤-a3. 由题设可得-a3=-1,故a =3.20.(15分)(·温州调研)已知函数f (x )=x +|x +2|. (1)求不等式f (x )≥6的解集M ;(2)记(1)中集合M 中元素最小值为m ,若a ,b 是正实数,且a +b =m ,求⎝ ⎛⎭⎪⎫1a+1⎝ ⎛⎭⎪⎫1b+1的最小值.解 (1)f (x )≥6,即为x +|x +2|≥6,∴⎩⎪⎨⎪⎧x ≤-2,x -x -2≥6或⎩⎪⎨⎪⎧x >-2,x +x +2≥6,解得x ≥2,∴M ={x |x ≥2}.(2)由(1)知m =2,即a +b =2,且a ,b 是正实数,∴⎝ ⎛⎭⎪⎫1a +1⎝ ⎛⎭⎪⎫1b +1=⎝ ⎛⎭⎪⎫a +b 2a +1⎝ ⎛⎭⎪⎫a +b 2b +1=⎝⎛⎭⎪⎫b 2a +32⎝ ⎛⎭⎪⎫a 2b +32=52+34⎝ ⎛⎭⎪⎫b a +a b≥52+34×2b a ×ab=4,当且仅当a b =b a ,即a =b =1时,⎝ ⎛⎭⎪⎫1a +1⎝ ⎛⎭⎪⎫1b +1取得最小值4. 21.(15分)已知函数f (x )=(3x -1)a -2x +b .(1)若f ⎝ ⎛⎭⎪⎫23=203,且a >0,b >0,求ab 的最大值; (2)当x ∈[0,1]时,f (x )≤1恒成立,且2a +3b ≥3,求z =a +b +2a +1的取值范围. 解 (1)因为f (x )=(3a -2)x +b -a ,f ⎝ ⎛⎭⎪⎫23=203, 所以a +b -43=203,即a +b =8. 因为a >0,b >0,所以a +b ≥2ab ,即4≥ab ,所以ab ≤16,当且仅当a =b =4时等号成立,所以ab 的最大值为16.(2)因为当x ∈[0,1]时,f (x )≤1恒成立,且2a +3b ≥3,所以⎩⎪⎨⎪⎧ f (0)≤1,f (1)≤1,且2a +3b ≥3,即⎩⎪⎨⎪⎧ b -a ≤1,b +2a ≤3,2a +3b ≥3,作出此不等式组表示的平面区域,如图阴影部分所示(含边界).由图可得经过可行域内的点(a ,b )与点(-1,-1)的直线的斜率的取值范围是⎣⎢⎡⎦⎥⎤25,2, 所以z =a +b +2a +1=b +1a +1+1的取值范围是⎣⎢⎡⎦⎥⎤75,3. 22.(15分)已知数列{x n }满足x 1=1,x n +1=2x n +3,求证:(1)0<x n <9;(2)x n <x n +1;(3)x n ≥9-8·⎝ ⎛⎭⎪⎫23n -1. 证明 (1)(数学归纳法)当n =1时,因为x 1=1,所以0<x 1<9成立.假设当n =k 时,0<x k <9成立, 则当n =k +1时,x k +1=2x k +3. 因为x k >0,所以2x k +3>0,即x k +1>0, 由x k +1-9=2x k -6=2(x k -3)<0,得x k +1<9, 所以0<x k +1<9也成立.故0<x n <9.(2)因为0<x n <9,所以0<x n <3, 所以x n +1-x n =-x n +2x n +3 =-(x n -2x n )+3=-(x n -1)2+4>0. 所以x n <x n +1.(3)因为0<x n <9,所以x n >x n 3.从而x n +1=2x n +3>23x n +3.所以x n +1-9>23(x n -9),即9-x n +1<23(9-x n ).所以9-x n <⎝ ⎛⎭⎪⎫23n -1(9-x 1)(n ≥2).又x 1=1,故x n >9-8·⎝ ⎛⎭⎪⎫23n -1(n ≥2).当n =1时,x 1=1=9-8×⎝ ⎛⎭⎪⎫230=1,综上,x n ≥9-8·⎝ ⎛⎭⎪⎫23n -1.。

相关文档
最新文档