Chapter0-大数据技术原理与应用-课程介绍-pdf

合集下载

大数据技术原理与应用

大数据技术原理与应用

大数据技术原理与应用【大数据技术原理与应用(上)】一、前言近年来,由于信息技术的迅猛发展,数据的规模和种类不断增加,给我们带来了各种新的机遇和挑战。

而大数据技术就应运而生,成为当今IT领域的热门话题之一。

本文将介绍大数据技术的原理和应用,希望对读者有所帮助。

二、大数据技术的定义大数据技术是一种应对海量、高维、异构、分布式数据的计算机技术。

由于大数据的特点如上所述,传统的单机计算和数据库技术已经无法满足需求,因此需要采用一些新的技术和方法。

三、大数据技术的原理1. 分布式存储传统的文件系统和数据库都是采用单机存储的方式,无法处理海量数据。

大数据技术采用分布式存储的方式,将数据分散存储在多个节点上,通过网络协议进行通信,实现数据的共享和管理。

2. 分布式计算分布式计算是大数据处理的核心技术之一。

它充分利用多个计算节点的计算能力,将任务划分为多个子任务进行并行计算,大大提高了处理效率和性能。

3. 数据挖掘与机器学习大数据中存在着大量的隐含信息和暗示规律,挖掘这些信息和规律对于数据分析和应用具有重要的价值。

数据挖掘和机器学习技术可以帮助人们从大数据中发现隐含的知识和规律。

4. 数据可视化数据可视化是将数据以图形、表格等视觉化的方式表达出来,使得人们更加直观地理解数据。

在大数据领域,数据可视化技术可以帮助人们快速了解数据的特点和趋势,方便决策和管理。

四、大数据技术的应用1. 营销大数据技术可以用来分析用户的行为和习惯,了解用户的需求和偏好,从而制定出更加精准的营销策略。

2. 医疗健康大数据技术可以应用于医疗健康领域,通过分析患者的健康记录和医疗数据,为医生提供更加精准的诊断和治疗方案。

3. 金融大数据技术可以用来分析金融市场的趋势和规律,预测股市波动趋势,帮助投资者做出更明智的投资决策。

4. 物流大数据技术可以用来分析物流企业的运营情况,预测货物运输时间,优化货物运输路线和运输模式,提高物流效率和质量。

五、总结大数据技术的出现,为我们提供了解决海量数据处理问题的新途径。

大数据的技术原理与应用pdf

大数据的技术原理与应用pdf

大数据的技术原理与应用1. 什么是大数据•大数据是指规模庞大、类型多样的数据集合,难以使用传统的数据库和处理工具进行处理和管理。

•大数据主要包括结构化数据、半结构化数据和非结构化数据。

•大数据具有“3V特性”,即数据量大(Volume)、数据速度快(Velocity)和数据多样性(Variety)。

2. 大数据的技术原理大数据的处理和管理需要借助以下技术原理:2.1 分布式存储大数据通常存储在分布式文件系统中,比如Hadoop的HDFS(Hadoop Distributed File System)。

分布式存储可以实现数据的高可靠性和高扩展性。

2.2 分布式计算大数据的计算需要借助分布式计算框架,比如Apache Spark、Hadoop MapReduce等。

分布式计算可以实现大规模数据的并行计算,提高计算速度和效率。

2.3 数据清洗与预处理由于大数据的来源多样,数据质量通常较差。

因此,在进行数据分析之前需要对数据进行清洗和预处理,包括数据去重、数据过滤、数据格式转换等操作。

2.4 数据挖掘与机器学习大数据中蕴藏着大量的有价值信息,通过数据挖掘和机器学习算法可以从中发现隐藏的模式和规律,提供决策支持和商业价值。

3. 大数据的应用大数据的技术原理为以下领域的应用提供了支持:3.1 金融行业大数据可以用于金融风控、投资分析、反洗钱等领域,通过对海量数据的分析,可以提高风险管控能力和决策效率。

3.2 医疗健康大数据可以用于医疗数据分析、疾病预测、药物研发等领域,帮助医药行业提供个性化医疗和精准健康管理。

3.3 零售行业大数据可以用于用户画像、推荐系统、供应链管理等领域,实现精确的营销策略和优化的供应链运作。

3.4 交通运输大数据可以用于交通流量预测、智能交通管理、车辆调度等领域,提高交通运输的安全性和效率。

3.5 媒体与广告大数据可以用于用户行为分析、媒体内容推荐、广告精准投放等领域,提供个性化的媒体服务和精准的广告投放。

《大数据技术原理与应用》课程标准

《大数据技术原理与应用》课程标准

《大数据技术原理与应用》课程标准一、课程信息课程名称:大数据技术原理与应用课程类型:考查课课程代码:授课对象:物联网工程专业本科班,物联网创新班学分:先修课:物联网导论、操作系统教程、编程学时:后续课:智能家居、智能物流、云计算制定人:理艳荣、张海兰制定时间:二、课程性质《大数据技术》是一门专业选修课,大数据技术入门课程,为学生搭建起通向“大数据知识空间”的桥梁和纽带,以“构建知识体系、阐明基本原理、引导初级实践、了解相关应用”为原则,为学生在大数据领域“深耕细作”奠定基础、指明方向。

课程将系统讲授大数据的基本概念、大数据处理架构、分布式文件系统、分布式数据库、数据库、云数据库、分布式并行编程模型、流计算、图计算、数据可视化以及大数据在互联网、生物医学和物流等各个领域的应用。

在、、和等重要章节,安排了入门级的实践操作,让学生更好地学习和掌握大数据关键技术。

三、课程设计1.课程目标设计(1)能力目标总体目标:通过学习大数据相关理论知识,掌握大数据的系统架构及关键技术以及具体应用场景,并结合具体设计实例,培养学生创新意识和实践能力。

件系统的重要概念、体系结构、存储原理和读写过程,并熟练掌握分布式文件系统的使用方法;()能够了解分布式数据库的访问接口、数据模型、实现原理和运行机制,并熟练掌握的使用方法;()能够了解数据库与传统的关系数据库的差异、数据库的四大类型以及数据库的三大基石;基本掌握、等数据库的使用方法;具体目标:(2)知识目标2.课程内容设计()设计的整体思路:面向实践,以理论知识与具体应用相结合的方式介绍大市聚。

理论结合实际,由浅入深,加强对大数据概念及技术的理解与巩固。

此课程划分为下列模块。

()模块设计表:3.教学进度表设计四、教材《大数据技术原理与应用——概念、存储、处理、分析与应用》第二版林子雨编著,人民邮电出版社,年月教材官网:参考书籍[]《大数据基础编程、实验和案例教程》林子雨主编,清华大学出版社年月[] 《实战》. 陆嘉恒.主编,机械工业出版社. 年.[] 《权威指南中文版》曾大聃, 周傲英(译).,清华大学出版社,. 年.[] 《实战中文版》迪米达克( ),卡拉纳( ),谢磊. 人民邮电出版社; 第版,年月日实施建议1、教学评价与考核考核方式考试:开卷大作业成绩计算:平时成绩占(包括课堂考勤,课堂表现和作业),期末考试成绩占。

大数据技术原理与应用 课程简介

大数据技术原理与应用 课程简介

大数据技术原理与应用课程简介大数据技术原理与应用是一门涵盖了大数据技术的基本原理和应用案例的课程。

随着互联网的快速发展和信息技术的不断进步,大数据已经成为了当今社会中一个重要的话题。

本课程旨在帮助学生理解大数据技术的基本原理,并了解其在各个领域的应用。

本课程将介绍大数据技术的基本原理。

学生将学习如何有效地收集、存储和处理大规模数据。

课程将涵盖分布式系统、数据管理、数据挖掘和机器学习等方面的知识。

学生将学习如何使用Hadoop、Spark和NoSQL等工具和技术来处理大数据。

本课程将介绍大数据技术在各个领域的应用。

大数据技术已经被广泛应用于金融、医疗、交通、能源和零售等领域。

学生将学习如何利用大数据技术来分析金融市场、预测疾病爆发、优化交通流量、提高能源利用效率和改进零售营销策略。

课程将通过实际案例和项目来帮助学生理解大数据技术在实际应用中的价值和挑战。

本课程还将介绍大数据技术的发展趋势和未来发展方向。

学生将了解到大数据技术在人工智能、物联网和区块链等新兴领域的应用潜力。

课程将引导学生思考大数据技术对社会和个人的影响,并讨论与之相关的伦理和法律问题。

在课程的教学过程中,将采用多种教学方法和资源。

除了传统的课堂讲授,还将组织实践活动、案例分析和小组讨论。

学生将有机会参与到真实的大数据项目中,锻炼数据分析和解决问题的能力。

通过学习本课程,学生将获得以下几方面的收益。

首先,他们将掌握大数据技术的基本原理,了解大数据处理和分析的方法和工具。

其次,他们将了解大数据技术在各个领域的应用案例,培养对大数据应用的思维和创新能力。

最后,他们将了解大数据技术的发展趋势和未来潜力,为自己的职业发展做好准备。

大数据技术原理与应用是一门重要的课程,它将帮助学生了解大数据技术的基本原理和应用案例。

通过学习本课程,学生将获得大数据技术的基本知识和实践经验,为将来在大数据领域的工作和研究打下坚实的基础。

同时,学生还将培养数据分析和解决问题的能力,为未来的职业发展做好准备。

大数据技术原理与应用(第2版)

大数据技术原理与应用(第2版)

作者介绍
这是《大数据技术原理与应用(第2版)》的读书笔记模板,暂无该书作者的介绍。
谢谢观看
读书笔记
天呐,我居然看完了。
这是一本偏专业的书籍。
值得一看,个中内容,源代码及实践部门太专业而!作为半业务半技术的数据分析师,值得好好了解,体会开发和大数据同行的处理思 维!。
四颗星。
大数据技术发展日新月异,这本书中的一些内容已经有点过时了,不过通篇读下来还是能对大数据领域有一 个整体认识。
15.1大数据在物流领域中的应用 15.2大数据在城市管理中的应用 15.3大数据在金融行业中的应用 15.4大数据在汽车行业中的应用 15.5大数据在零售行业中的应用 15.6大数据在餐饮行业中的应用 15.7大数据在电信行业中的应用 15.8大数据在能源行业中的应用 15.9大数据在体育和娱乐领域中的应用
第3章分布式文件系 统HDFS
第4章分布式数据库 HBase
第5章 NoSQL数据库 第6章云数据库
3.1分布式文件系统 3.2 HDFS简介 3.3 HDFS的相关概念 3.4 HDFS体系结构 3.5 HDFS的存储原理 3.6 HDFS的数据读写过程 3.7 HDFS编程实践 3.8本章小结 3.9习题
4.1概述 4.2 HBase访问接口 4.3 HBase数据模型 4.4 HBase的实现原理 4.5 HBase运行机制 4.6 HBase编程实践 4.7本章小结 4.8习题 实验3熟悉常用的HBase操作
5.1 NoSQL简介 5.2 NoSQL兴起的原因 5.3 NoSQL与关系数据库的比较 5.4 NoSQL的四大类型 5.5 NoSQL的三大基石 5.6从NoSQL到NewSQL数据库 5.7本章小结 5.8习题

《大数据技术原理与操作应用》最新版精品课件第1章

《大数据技术原理与操作应用》最新版精品课件第1章

1.2 Hadoop的介绍
Hadoop的发展历史
2003—2004 年,Google 公布部分GFS 、MapReduce 思想的细节, Doug Cutting 等人用两年的业余时间实现了DFS 和MapReduce 机制,使 Nutch 性能飙升。
2005 年,Hadoop 作为Lucene 的子项目Nutch的一部分正式引入 Apache 基金会。由于NDFS 和MapReduce 在Nutch 引擎中有着很好的应用。
1.2 Hadoop的介绍
Hadoop 的生态体系
Hadoop 是一个能够对大量数据进行分布式处理的软件框架,目前 Hadoop 已经发展成为包含很多项目的集合。Hadoop 的核心是HDFS 和 MapReduce,Hadoop 2. 0 还包括YARN。随着Hadoop 的兴起,其框架下的 开发工具也逐渐丰富。
11
1.2 Hadoop的介绍
Hadoop的由来
Apache Hadoop 项目是一款可靠、可扩展的分布式计算开源软件。 Hadoop 软件库是一个框架,该框架的两个核心模块是分布式文件系统(HDFS) 和数据计算MapReduce。
MapReduce 允许用户在不了解分布式系统底层知识的情况下,以可靠 、容错的方式灵活地并行处理大型计算机集群(数千个节点)上的大量数据。用 户可以轻松地搭建和使用Hadoop 分布式计算框架,并充分地利用集群的运算 和存储能力,完成海量数据的计算与存储。
(二)大数据预处理技术
大数据的预处理包括对数据的抽取和清洗等方面。由于大数据的数据类 型是多样化的,不利于快速分析处理,数据抽取过程可以将数据转化为单一的 或者便于处理的数据结构。
9
(三)大数据存储及管理技术

大数据技术及应用教学课件第1章-大数据技术概述

大数据技术及应用教学课件第1章-大数据技术概述

大数据技术及应用
Big Data Technology and Application
目录
CONCENTS
第1章 大数据技术概述 第2章 大数据采集与预处理 第3章 大数据存储技术 第4章 大数据分析挖掘-分类 第5章 大数据分析挖掘-回归
目录
CONCENTS
cont.
第6章 大数据分析挖掘-聚类 第7章 大数据分析挖掘-关联规则 第8章 大数据可视化技术 第9章 电信行业大数据应用 第10章 其他行业大数据应用
的纷繁复杂,而不再追求精确性;最后,不再探
求难以捉摸的因果关系,转而关注事物的相关关
系。
• —— Viktor Mayer-Schönberger
2 大数据技术
ห้องสมุดไป่ตู้
用户
企业
政府机构
科研部门
数据展现
数据分析
数据存储 与管理
数据可视化
传统技 术
数据挖掘
机器学习
数理统计
云计算技 术
并行计算
实时计算与流式计算
第1章
大数据技术概述
主要内容
01
什么是大数据
02
大数据技术
03
大数据应用
1 什么是大数据?
大数据是需要新处
大数据是指大小超 出传统数据库工具
01
理模式才能具有更 强的决策力、洞察
的获取、存储、管
发现力和流程优化
理和分析能力的数 据集。 —麦肯锡
04
能力的海量、高增
02
长率和多样化的信 息资产。 —Gartner
数据规约
在不损害挖掘结果准确性的前 提下, 通过有效的数据采样和 属性选择, 缩小数据集的规模, 提高数据挖掘的效率。

Chapter0-厦门大学-林子雨-大数据技术原理与应用-课程介绍资料

Chapter0-厦门大学-林子雨-大数据技术原理与应用-课程介绍资料
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
主讲教师和助教
主讲教师:林子雨
单位:厦门大学计算机科学系 E-mail: ziyulin@ 个人网页:/linziyu 数据库实验室网站:
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
课程特色大 数 据 Fra bibliotek 门搭建起通向“大数据知识空间”的桥梁和纽带 构建知识体系、阐明基本原理 引导初级实践、了解相关应用 为学生在大数据领域“深耕细作”奠定基础、指明方向
《大数据技术原理与应用》
厦门大学计算机科学系
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
内容提要
• 本课程系统介绍了大数据相关知识,共有13章 • 系统地论述了大数据的基本概念、大数据处理架构 Hadoop、分布式文件系统HDFS、分布式数据库HBase、 NoSQL数据库、云数据库、分布式并行编程模型 MapReduce、流计算、图计算、数据可视化以及大数据 在互联网、生物医学和物流等各个领域的应用 • 在Hadoop、HDFS、HBase和MapReduce等重要章节, 安排了入门级的实践操作,让学生更好地学习和掌握大数 据关键技术
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
篇章安排
第一篇:大数据基础篇 第二篇:大数据存储篇 第三篇:大数据处理与分析篇 第四篇:大数据应用篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
第一篇:大数据基础篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨

大数据技术原理与应用教学大纲

大数据技术原理与应用教学大纲

大数据技术原理与应用教学大纲一、课程介绍本课程主要介绍大数据技术的基本原理和常见应用。

学生将通过本课程掌握大数据处理的基本方法与技术,了解大数据在不同领域的应用案例,并能够使用相关工具和技术进行大数据处理和分析。

二、课程目标1.理解大数据的基本概念、背景和发展趋势。

2.掌握大数据处理的基本方法和技术,包括数据获取、存储、处理、分析和可视化等。

3.了解大数据在不同领域的应用案例,包括商业、金融、医疗、社交网络、智能交通等。

4. 学习使用大数据处理和分析的相关工具和技术,如Hadoop、Spark、SQL、Python等。

三、教学内容1.大数据概述1.1大数据定义和特点1.2大数据的发展背景和趋势2.大数据处理方法2.1数据获取与清洗2.2数据存储与管理2.3数据处理与分析2.4数据可视化与展示3.大数据应用案例3.1商业与金融领域的大数据应用3.2医疗与健康领域的大数据应用3.3社交网络与推荐系统的大数据应用3.4智能交通与城市管理的大数据应用4.大数据处理与分析工具与技术4.1 Hadoop与MapReduce4.2 Spark与分布式计算4.3SQL与关系型数据库4.4 Python与数据分析5.大数据安全与隐私保护5.1大数据安全的挑战与问题5.2大数据隐私保护的方法与技术四、教学方法1.理论课讲授:通过课堂讲解,介绍大数据的基本理论知识和相关技术。

2.实验操作:通过实验操作,学生亲自使用大数据处理和分析工具,加深对大数据技术的理解和掌握。

3.案例研究:通过实际的大数据应用案例,引导学生分析和解决实际问题,提高实际应用能力。

五、考核方式1.平时成绩(包括参与讨论、实验报告等)占40%。

2.期末考试占60%。

六、教材与参考资料教材:1.《大数据导论》,王磊著,清华大学出版社。

2. 《Hadoop权威指南》,Tom White著,人民邮电出版社。

参考资料:1. 《Spark快速大数据分析》2. 《Python数据分析实战》3.《数据孤岛》4.《深入理解计算机系统》七、教学进度安排第一周:课程介绍、大数据概述第二周:数据获取与清洗第三周:数据存储与管理第四周:数据处理与分析第五周:数据可视化与展示第六周:商业与金融领域的大数据应用第七周:医疗与健康领域的大数据应用第八周:社交网络与推荐系统的大数据应用第九周:智能交通与城市管理的大数据应用第十周:Hadoop与MapReduce第十一周:Spark与分布式计算第十二周:SQL与关系型数据库第十三周:Python与数据分析第十四周:大数据安全与隐私保护第十五周:复习备考以上为《大数据技术原理与应用教学大纲》的大致内容,主要涵盖了大数据的基本概念、处理方法和应用领域,以及相关工具和技术的学习。

大数据技术原理与应用 课程教学大纲

大数据技术原理与应用 课程教学大纲

大数据技术原理与应用课程教学大纲课程名称:大数据技术原理与应用课程类型:专业选修课课程学时:60学时课程教学目标:本课程旨在介绍大数据技术的原理和应用,使学生了解大数据技术的基本概念、关键技术和应用场景,并具备基本的大数据技术分析和应用能力。

通过本课程的学习,学生将能够掌握大数据技术的基本原理、企业级大数据技术体系结构、大数据分析方法和工具、大数据应用案例等知识,为学生未来从事大数据相关职业提供良好的基础。

授课内容和教学安排:第一章:大数据技术概述1.1 大数据技术的定义和特点1.2 大数据对社会和企业的影响1.3 大数据技术的发展历程1.4 大数据技术体系结构和组成部分第二章:大数据存储和处理技术2.1 大数据存储技术概述2.2 关系型数据库和NoSQL数据库2.3 Hadoop分布式文件系统2.4 大数据处理技术概述2.5 大数据处理框架:Hadoop MapReduce第三章:大数据挖掘和分析技术3.1 数据挖掘概述3.2 数据预处理和特征选择3.3 分类和聚类算法3.4 关联规则挖掘和推荐系统3.5 大数据分析工具概述:Spark、Flink等第四章:大数据应用实践4.1 电商大数据分析实践4.2 社交媒体数据分析实践4.3 金融数据分析实践4.4 健康医疗数据分析实践第五章:大数据技术发展趋势和展望5.1 大数据技术的发展趋势5.2 大数据技术在人工智能和物联网中的应用5.3 大数据伦理和安全问题教学方法:本课程采用多种教学方法,包括理论讲解、实例分析、案例研究和实践操作等。

通过理论讲解,学生将了解大数据技术的基本概念和原理;通过实例分析,学生将掌握大数据技术在实际场景中的应用方法;通过案例研究,学生将学会分析和解决大数据相关问题;通过实践操作,学生将运用所学知识完成大数据分析任务。

同时,教师将引导学生参与小组讨论和项目实践,促进学生的合作能力和创新思维。

评估方式:本课程的评估方式包括平时成绩和期末考试成绩两部分。

《Hadoop大数据技术原理与应用》课程教学大纲

《Hadoop大数据技术原理与应用》课程教学大纲

《Hadoop大数据技术原理与应用》课程教学大纲课程编号:3250578学分:4学分学时:72学时(其中:讲课学时36上机学时:36)先修课程:《Linux基础》、《关系数据库基础》、《程序设计基础》、《Java面向对象编程》后续课程:Spark,《Python编程基础》、《Python数据分析与应用》适用专业:大数据应用技术一、课程的性质与目标《大数据应用开发》本课程是软件技术专业核心课程,大数据技术入门课程。

通过学习课程使得学生掌握大数据分析的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对Hadoop平台应用与开发的一般理论有所了解,如分布式数据收集、分布式数据存储、分布式数据计算、分布式数据展示。

开设本学科的目的是让学生掌握如何使用大数据分析技术解决特定业务领域的问题。

完成本课程学习后能够熟练的应用大数据技术解决企业中的实际生产问题。

二、教学条件要求操作系统:CenterOSHadoop版本:Hadoop2.7.4开发工具:Eclipse三、课程的主要内容及基本要求第I章初识Hadoop第3章HDFS分布式文件系统本课程为考试课程,期末考试采用百分制的闭卷考试模式。

学生的考试成绩由平时成绩(30%)和期末考试(70%)组成,其中,平时成绩包括出勤(5%)、作业(5%)、上机成绩(20%)o六、选用教材和主要参考书本大纲是参考教材《Hadoop大数据技术原理与应用》所设计的。

七、大纲说明本课程的授课模式为:课堂授课+上机,其中,课堂主要采用多媒体的方式进行授课,并且会通过测试题阶段测试学生的掌握程度;上机主要是编写程序,要求学生动手完成指定的程序设计或验证。

大数据技术原理与应用PDF

大数据技术原理与应用PDF

大数据:世界的思维引擎
随着计算机技术的不断发展,数据已成为我们日常生活中无法避
免的存在。

而现今的大数据时代,数据的规模和种类更是空前庞大。

大数据技术的出现,不仅仅是一种技术手段,更是推动着全球各个领
域的发展与变革的思维引擎。

大数据技术的原理,主要是基于数据的存储、处理和分析等多个
方面。

其中,对于数据的存储,目前主流的方式包括关系型数据库、NoSQL数据库、文件存储等;对于数据的处理,主要是利用各种算法来完成分类、聚类、回归、关联规则挖掘等任务;至于数据分析,通过
数据的可视化、报表展示等方式,帮助人们理解数据、分析数据、发
掘数据背后的价值。

应用方面,大数据技术无处不在。

在金融领域,大数据分析已经
成为风险控制、投资决策等方面必不可少的工具;在医疗健康领域,
大数据技术有助于分析人群健康状况、研究医学新知识等;在能源领域,大数据技术有助于实现能源效率的提升和能源资源的合理利用等;在城市规划和智慧城市建设方面,大数据技术有助于实现交通、安全、环保、物流等多方面的精细化管理等。

可见,大数据技术已经深入到
我们生活的各个领域,为我们的生活带来了诸多便利与福利。

总的来说,大数据技术的丰富应用和广泛推广,为我们带来了巨
大的机遇与挑战。

我们需要加强对大数据技术原理的理解和学习,紧
跟时代步伐,积极拥抱大数据时代,用数据科技推动社会的发展与进步,创造更加美好的未来。

《大数据技术原理与操作应用》最新版精品课件第1章

《大数据技术原理与操作应用》最新版精品课件第1章
Spark 作为一个研究项目, Spark 扩展了广泛使用的MapReduce 计算 模型,高效地支撑更多计算模式,包括交互式查询和流处理。Spark 的一个主 要特点是能够在内存中进行计算,即使依赖磁盘进行复杂的运算,Spark 依然 比MapReduce 更加高效。
22
(七)HIVE
最初,Hive 是由Facebook 开发,后来由Apache 软件基金会开发,并 将它作为其名下的一个开源项目,名为“Apache Hive”,它是一个数据仓库基 础工具在Hadoop 中用来处理结构化数据,可以将结构化的数据文件映射为一 张数据库表,并提供完整的SQL 查询功能,可以将SQL语句转换为 MapReduce 任务进行运行。Hive 的优点是:学习成本低,可以通过类SQL 语句 转换为MapReduce 任务进行运行,不必开发专门的MapReduce 应用,十分适 合数据仓库的统计分析工作。
支持Java 和C 两种编程语言接口。
20
(五)HBASE
HBase 是一个分布式的、面向列的开源数据库,它参考了Google 的 BigTable 建模进行开源实现,实现的编程语言为Java。HBase 是Apache 软件 基金会的Hadoop 项目的一个子项目,运行于HDFS 文件系统之上,为Hadoop 提供类似于BigTable 规模的服务。因此,它可以容错地存储海量稀疏的数据。
(四)ZooKeeper
ZooKeeper 是一个为分布式应用所设计的开源协调服务。它可以为用户
提供同步、配置、管理、分组和命名等服务。用户可以使用ZooKeeper 提供的
接口方便地实现一致性、组管理等协议。ZooKeeper 提供了一种易于编程的环
境,它的文件系统使用了目录树结构。ZooKeeper是使用Java 编写的,但是它

大数据的原理及应用pdf

大数据的原理及应用pdf

大数据的原理及应用1. 概述在当今信息时代,大数据成为了各行各业必不可少的一部分。

本文将详细介绍大数据的原理及其在各领域的应用。

2. 大数据的原理大数据的原理涉及到数据的采集、存储、处理和分析等方面,下面将分别进行介绍。

2.1 数据的采集大数据时代,各种传感器和设备不断产生着海量的数据。

数据的采集包括传感器数据、用户行为数据、网络数据等。

这些数据多格式多样,需要进行统一的收集和整理。

在数据的采集过程中,需要考虑数据的实时性、可靠性和准确性,以及数据保护和隐私安全等问题。

2.2 数据的存储大数据的存储是指将采集到的大量数据进行存储和管理。

常见的存储方式包括分布式文件系统、分布式数据库、Hadoop等。

这些存储系统能够提供高性能、高可扩展性和高可靠性的存储服务。

数据的存储需要考虑到数据的安全性、可用性和成本等因素。

2.3 数据的处理和分析大数据的处理和分析是指对存储的大量数据进行处理和分析,提取有价值的信息和知识。

常见的数据处理和分析技术包括数据挖掘、机器学习、深度学习等。

数据的处理和分析需要考虑到数据的规模、数据的复杂性和计算资源的需求等因素。

3. 大数据在各领域的应用大数据在众多领域中都有广泛的应用,下面将介绍几个典型的领域。

3.1. 金融行业大数据在金融行业中的应用非常广泛,包括风险管理、信用评估、投资决策等。

通过分析大数据,可以快速准确地进行风险评估和信用评估,提高金融机构的决策效率和业务风险控制能力。

3.2. 零售行业大数据在零售行业中的应用可以帮助企业了解消费者的购买行为和消费偏好,提供个性化的产品和服务,从而提高销售额和客户满意度。

通过对大数据的分析,可以发现潜在的市场机会和消费趋势。

3.3. 交通运输行业大数据在交通运输行业中的应用可以帮助交通管理部门进行交通流量预测和拥堵状况监测,提供交通实时信息和导航服务,优化交通运输的效率和安全性。

3.4. 医疗健康行业大数据在医疗健康行业中的应用可以帮助医疗机构实现精准医疗和个性化治疗,提高诊断准确率和治疗效果。

大数据技术的原理与应用pdf

大数据技术的原理与应用pdf

大数据技术的原理与应用1. 介绍大数据技术是指用于处理和分析大规模数据集合的一系列技术和方法。

随着互联网和传感器技术的发展,大量的数据被不断地产生和积累,如何高效地获取、存储、处理、分析和应用这些海量的数据成为了一个挑战。

本文档将介绍大数据技术的原理和应用。

2. 大数据技术的原理大数据技术的原理主要包括以下几个方面:2.1 数据获取与存储•数据获取:大数据技术的基础是获取数据,包括从各种数据源获取数据、数据抓取和爬取等。

•数据存储:对于大规模数据的存储,传统的存储方式已经无法满足需求,因此需要采用分布式存储技术,如Hadoop的分布式文件系统HDFS。

2.2 数据处理与分析•数据清洗:大数据中存在很多不准确、不完整甚至是冗余的数据,因此需要对数据进行清洗和预处理,以提高数据质量。

•数据挖掘:通过数据挖掘技术,可以从大数据中发现隐藏的模式、关联规则和趋势,挖掘出有价值的信息。

•机器学习:通过机器学习算法,可以对大数据进行训练和学习,从而实现对未知数据的预测和分类。

2.3 数据可视化与展示•数据可视化:通过图表、图形等方式将大数据转化为可视化的形式,使得数据更加直观和易于理解。

•数据展示:将处理和分析后的数据展示给用户,提供直观的数据分析结果和洞察。

3. 大数据技术的应用大数据技术在各个领域都有广泛的应用,以下是几个典型的应用场景:3.1 金融行业•银行风控:通过大数据技术可以对用户的信用风险进行评估和预测,提供更加精准的风控服务。

•股票交易:通过对大量的市场数据进行分析,帮助投资者制定交易策略和预测股票价格的波动。

3.2 电商行业•个性化推荐:通过对用户的历史行为和购买记录进行分析,实现个性化的商品推荐,提高用户体验和销售额。

•库存管理:通过对销售数据进行分析,预测不同商品的需求量,优化库存管理,降低成本。

3.3 医疗行业•疾病预测:通过分析大量的医疗数据,可以预测疾病的发展趋势和危险因素,提前干预和治疗。

大数据技术原理与应用

大数据技术原理与应用

图10-9 2008年世界各国GDP数据
10.2.3 地图工具
• 1. Google Fusion Tables Google Fusion Tables让一般使用者也可以轻松制作出专业的统计地图。该 工具可以让数据表呈现为图表、图形和地图,从而帮助发现一些隐藏在数 据背后的模式和趋势。 • 2. Modest Maps Modest Maps是一个小型、可扩展、交互式的免费库,提供了一套查看卫 星地图的API,只有10KB大小,是目前最小的可用地图库,它也是一个开 源项目,有强大的社区支持,是在网站中整合地图应用的理想选择。 • 3. Leaflet Leaflet是一个小型化的地图框架,通过小型化和轻量化来满足移动网页的 需要。
(3)辅助理解数据
图10-5 微软“人立方”展示的人物关系图
10.1.3 可视化的重要作用
(4)增强数据吸引力
图10-6 一个可视化的图表新闻实例
10.2 可视化工具
10.2.1 入门级工具 10.2.2 信息图表工具 10.2.3 地图工具 10.2.4 时间线工具 10.2.5 高级分析工具
10.1.2 可视化的发展历程
• 20世纪50年代,随着计算机的出现和计算机图形学的发展,人们可 以利用计算机技术在电脑屏幕上绘制出各种图形图表,可视化技术开 启了全新的发展阶段。最初,可视化技术被大量应用于统计学领域, 用来绘制统计图表,比如圆环图、柱状图和饼图、直方图、时间序列 图、等高线图、散点图等,后来,又逐步应用于地理信息系统、数据 挖掘分析、商务智能工具等,有效促进了人类对不同类型数据的分析 与理解 • 随着大数据时代的到来,每时每刻都有海量数据在不断生成,需要 我们对数据进行及时、全面、快速、准确的分析,呈现数据背后的价 值,这就更需要可视化技术协助我们更好地理解和分析数据,可视化 成为大数据分析最后的一环和对用户而言最重要的一环

大数据技术原理与应用-完整版

大数据技术原理与应用-完整版

1.8.1云计算
2. 云计算关键技术
云计算关键技术包括:虚拟化、分布式存储、分布式计算、 多租户等
1.8.1云计算
3. 云计算数据中心
云计算数据中心是一整套复杂的设施,包括刀片服务器、宽 带网络连接、环境制设备、监控设备以及各种安全装置等
数据中心是云计算的重要载体,为云计算提供计算、存储、 带宽等各种硬件资源,为各种平台和应用提供运行支撑环境
1.3大数据的影响
图灵奖获得者、著名数据库专家Jim Gray 博士观察并总 结人类自古以来,在科学研究上,先后历经了实验、理论 、计算和数据四种范式
实验
理论
计算
数据
1.3大数据的影响
在思维方式方面,大数据完全颠覆了传统的思维方 式: 全样而非抽样 效率而非精确 相关而非因果
1.3大数据的影响
利用分布式文件系统、数据仓库、关系数据库、NoSQL数据库 、云数据库等,实现对结构化、半结构化和非结构化海量数据 的存储和管理
利用分布式并行编程模型和计算框架,结合机器学习和数据挖 掘算法,实现对海量数据的处理和分析;对分析结果进行可视 化呈现,帮助人们更好地理解数据、分析数据
在从大数据中挖掘潜在的巨大商业价值和学术价值的同时,构 建隐私数据保护体系和数据安全体系,有效保护个人隐私和数 据安全
“谷歌流感趋势”,通 过跟踪搜索词相关数据 来判断全美地区的流感 情况
1.5大数据关键技术
技术层面 数据采集
数据存储和 管理
数据处理与 分析
数据隐私和 安全
表1-5 大数据技术的不同层面及其功能
功能
利用ETL工具将分布的、异构数据源中的数据如关系数据、平 面数据文件等,抽取到临时中间层后进行清洗、转换、集成, 最后加载到数据仓库或数据集市中,成为联机分析处理、数据 挖掘的基础;或者也可以把实时采集的数据作为流计算系统的 输入,进行实时处理分析

大数据技术原理与应用

大数据技术原理与应用

大数据技术原理与应用在当今这个信息爆炸的时代,大数据技术已经成为推动社会进步和商业创新的关键力量。

大数据技术原理与应用涵盖了数据的采集、存储、处理、分析和可视化等多个方面,旨在从海量数据中提取有价值的信息,以支持决策制定和业务优化。

首先,大数据技术的核心在于数据的采集。

随着物联网、社交网络和移动设备的普及,数据的来源变得多样化,包括文本、图片、视频、传感器数据等。

数据采集技术需要能够处理这些不同格式的数据,并确保数据的完整性和准确性。

其次,数据存储是大数据技术的基础。

传统的关系型数据库在处理大规模数据集时面临性能瓶颈,因此,分布式存储系统如Hadoop应运而生。

Hadoop通过HDFS(Hadoop Distributed File System)提供高可靠性和高吞吐量的存储解决方案,同时支持数据的快速读写。

数据处理是大数据技术中的关键环节。

由于数据量巨大,传统的数据处理方法无法满足需求,因此需要采用分布式计算框架,如Apache Spark。

Spark通过内存计算和优化的执行引擎,大大提高了数据处理的效率和速度。

数据分析是大数据技术中最为重要的部分。

数据分析的目标是从数据中发现模式、趋势和关联性,从而为决策提供支持。

数据分析方法包括统计分析、机器学习、数据挖掘等。

机器学习算法,如分类、聚类、回归等,能够自动从数据中学习规律,预测未来趋势。

数据可视化是将数据分析结果以直观的方式呈现给用户,帮助用户理解数据的含义。

数据可视化工具如Tableau、Power BI等,能够将复杂的数据集转化为图表、地图和仪表板,使得数据更加易于理解和分析。

在应用层面,大数据技术已经被广泛应用于各个领域。

在商业领域,大数据技术可以帮助企业进行市场分析、客户细分、产品推荐等,提高营销效率和客户满意度。

在医疗领域,通过分析患者的医疗记录和基因数据,可以进行疾病预测和个性化治疗。

在政府管理中,大数据技术可以用于城市规划、交通管理、公共安全等领域,提高城市管理的智能化水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
主讲教师和助教
主讲教师:林子雨 单位:厦门大学计算机科学系 E-mail: ziyulin@ 个人网页:/linziyu 数据库实验室网站:
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
课程特色
大 数 据 之 门
搭建起通向“大数据知识空间”的桥梁和纽带 构建知识体系、阐明基本原理 引导初级实践、了解相关应用 为学生在大数据领域“深耕细作”奠定基础、指明方向
《大数据技术原理与应用》
厦门大学计算机科学系
厦门大学计算机科学系
林子雨
ziyulin@
第二篇:大数据存储篇
《大数据技术原理与应用》
厦门大学计算机科学系
ห้องสมุดไป่ตู้
林子雨
ziyulin@
第三篇:大数据处理与分析篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
第四篇:大数据应用篇
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
内容提要
• 本课程系统介绍了大数据相关知识,共有13章 • 系统地论述了大数据的基本概念、大数据处理架构 Hadoop、分布式文件系统HDFS、分布式数据库HBase、 NoSQL数据库、云数据库、分布式并行编程模型 MapReduce、流计算、图计算、数据可视化以及大数据 在互联网、生物医学和物流等各个领域的应用 • 在Hadoop、HDFS、HBase和MapReduce等重要章节, 安排了入门级的实践操作,让学生更好地学习和掌握大数 据关键技术
助教:蔡珉星
单位:厦门大学计算机科学系数据库实验室2013级硕士研究生(导师:林子雨) E-mail: caiminxing@
欢迎访问《大数据技术原理与应用——概念、存储、处理、分析与应用》 教材官方网站:/post/bigdata
《大数据技术原理与应用》
林子雨
ziyulin@
教材介绍
《大数据技术原理与应用——大数据概念、存储、处理、分析与应用》
厦门大学 林子雨编著,人民邮电出版社,2015年6月第1版第1次印刷 21世纪高等教育计算机规划教材 ISBN:978-7-115-39287-9 260页,41万6千字
内容简介: (1) 概念篇:介绍当前紧密关联的最新IT领域 技术云计算、大数据和物联网。 (2) 大数据存储篇:介绍分布式数据存储的概 念、原理和技术,包括HDFS、HBase、NoSQL 数据库、云数据库。 (3) 大数据处理与分析篇:介绍MapReduce 分布式编程框架、图计算、流计算。 (4) 大数据应用篇:介绍基于大数据技术的推 荐系统。
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
篇章安排
第一篇:大数据基础篇 第二篇:大数据存储篇 第三篇:大数据处理与分析篇 第四篇:大数据应用篇
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
第一篇:大数据基础篇
《大数据技术原理与应用》
《大数据技术原理与应用》
/post/bigdata
温馨提示:编辑幻灯片母版,可以修改每页PPT的厦大校徽和底部文字
课程介绍
(PPT版本号:2015年6月第1.0版)
林子雨
厦门大学计算机科学系 E-mail: ziyulin@ 主页:/linziyu
《大数据技术原理与应用》 厦门大学计算机科学系
厦门大学计算机科学系
林子雨
2015年版 ziyulin@
提纲
1.课程特色 2.教材介绍 2.内容提要 3.篇章安排 4.主讲教师和助教
本PPT是如下教材的配套讲义: 21世纪高等教育计算机规划教材 《大数据技术原理与应用 ——概念、存储、处理、分析与应用》 (2015年6月第1版) 厦门大学 林子雨 编著,人民邮电出版社 ISBN:978-7-115-39287-9 欢迎访问《大数据技术原理与应用》教材官方网站: /post/bigdata
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
ziyulin@
各章内容
第一章 大数据概述 第二章 大数据处理架构Hadoop 第三章 分布式文件系统HDFS 第四章 分布式数据库HBase 第五章 NoSQL数据库 第六章 云数据库 第七章 MapReduce 第八章 流计算 第九章 图计算 第十章 数据可视化 第十一章 大数据在互联网领域的应用 第十二章 大数据在生物医学领域的应用 第十三章 大数据的其他应用
厦门大学计算机科学系
林子雨
ziyulin@
Department of Computer Science, Xiamen University, June, 2015
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
相关文档
最新文档