Quantum entanglement of unitary operators on bi-partite systems
时空编码超表面涡旋
时空编码超表面涡旋
时空编码超表面(Spatiotemporal Encoded Metasurface,简称STEMS)是一种具有特殊电磁响应特性的人工结构表面。
涡旋(Vortex)是一种在流体、等离子体和光场等系统中广泛存在的现象,具有独特的拓扑性质。
时空编码超表面涡旋是指在时空编码超表面上产生的涡旋现象。
这种现象通常通过调整超表面的电磁参数来实现。
在时空编码超表面上,涡旋表现为表面电流或表面电磁场的分布特征。
由于时空编码超表面的独特性质,涡旋现象在光子学、等离子体物理学、流体力学等领域具有重要的研究和应用价值。
时空编码超表面涡旋的应用举例:
1. 光学:涡旋光束在光学通信、光学陷阱、光学传感和光学镊子等领域具有广泛应用。
2. 流体力学:涡旋在流体力学中起着关键作用,如旋涡脱落、湍流生成等,对流体的稳定性、传热和传质过程产生影响。
3. 等离子体:等离子体涡旋在等离子体物理、空间物理学和能源领
域具有重要作用,如磁约束聚变、太阳能电池等。
4. 天文学:在天文学中,涡旋现象在星系形成和演化过程中起到关键作用,如恒星的形成和银河系的演化。
5. 无线通信:时空编码超表面可以用于实现高效的无线通信技术,如空间复用、波束成形和指向性天线等。
总之,时空编码超表面涡旋是一种具有广泛研究和应用前景的现象,其在多个领域都发挥着重要作用。
环磷酰胺致大鼠神经管畸形神经上皮细胞黏附分子和微管相关蛋白doublecortin的表达变化
化 , 一 步探 讨 其 致 畸 作 用 的分 子 机 制 , 预 防 人 类 神 经 管 畸 形 的 发 生 提 供 理 论 依 据 。方 法 : 孕 鼠 随机 分 实 验 组 和 对 照 进 为 将
组 , 用 免 疫 荧 光 技 术 检 测 N AM 和 DC 在 NT 发 生 中 的表 达 变 化 。 结 果 : 药 后 4 , 验 组 NC 应 C X D 给 、8h 实 AM 和 DC 阳性 X
分 子机 制 尚不 清楚 。因此 , 讨 神 经 管 畸形 的 发 生 机 探 制 及其 预 防 措 施 是 当今 实 验 畸 形 学 领 域 的研 究 热 点 。
神 经 管 畸形 发 生 中 的 表 达 变 化 , 一 步 探 讨 神 经 管 进
畸 形 发 生 的 分 子 机 制 , 预 防 人 类 神 经 管 畸 形 的 发 为
— —
63 3
Hale Waihona Puke — —腹 腔注射 以生理 盐水 配制 的 环磷 酰胺 ( 5mg k , 苏 1 / g 江
恒瑞 医药 股份 有 限公 司 生 产 , 照组 注 射 等 量 生 理 盐 对 水 。实验 组和对 照组 孕 鼠各 分成 5组 , 组 5只 。分别 每
陈 燕春 管英俊 刘焕 彩 赵 春艳 杜 红梅 高海玲 △
( 坊 医学 院 ,1组 织 学 与 胚 胎 学 教 研 室 ,2附 属 医 院 , 坊 潍 潍 215) 6 0 3
摘 要 目的 : 环 磷 酰 胺 致 大 鼠 神 经 管 畸 形 ( TD 模 型 基 础 上 , 究 NC 在 N ) 研 AM 和 DC X在 大 鼠胚 胎 神经 上 皮 细 胞 中 的 表 达 变
神 经 管 畸 形 ( e rl u edfc,NT 是 胚 胎 发 n ua tb eet D)
用于抗细胞内病原体的治疗的包含固体纳米颗粒和至少一种抗原的药
专利名称:用于抗细胞内病原体的治疗的包含固体纳米颗粒和至少一种抗原的药物组合物
专利类型:发明专利
发明人:D.贝特贝德,I.迪迈尔-波伊森,C.杜考瑙
申请号:CN201910132580.2
申请日:20130913
公开号:CN110075286A
公开日:
20190802
专利内容由知识产权出版社提供
摘要:本发明涉及用于在患者中抗细胞内病原体的预防性治疗的药物组合物,所述组合物包含固体纳米颗粒和从所述病原体获得的至少一种抗原,其中所述固体纳米颗粒包含多孔阳离子‑多糖固体核心,该核心装载有至少一种阴离子磷脂并且所述核心不被任何磷脂层包围。
申请人:里尔大学,图尔弗朗索瓦拉伯雷大学,里尔大学地区医疗中心
地址:法国里尔
国籍:FR
代理机构:北京市柳沈律师事务所
代理人:曹立莉
更多信息请下载全文后查看。
Quantum Computing for Computer Scientists
More informationQuantum Computing for Computer ScientistsThe multidisciplinaryfield of quantum computing strives to exploit someof the uncanny aspects of quantum mechanics to expand our computa-tional horizons.Quantum Computing for Computer Scientists takes read-ers on a tour of this fascinating area of cutting-edge research.Writtenin an accessible yet rigorous fashion,this book employs ideas and tech-niques familiar to every student of computer science.The reader is notexpected to have any advanced mathematics or physics background.Af-ter presenting the necessary prerequisites,the material is organized tolook at different aspects of quantum computing from the specific stand-point of computer science.There are chapters on computer architecture,algorithms,programming languages,theoretical computer science,cryp-tography,information theory,and hardware.The text has step-by-stepexamples,more than two hundred exercises with solutions,and program-ming drills that bring the ideas of quantum computing alive for today’scomputer science students and researchers.Noson S.Yanofsky,PhD,is an Associate Professor in the Departmentof Computer and Information Science at Brooklyn College,City Univer-sity of New York and at the PhD Program in Computer Science at TheGraduate Center of CUNY.Mirco A.Mannucci,PhD,is the founder and CEO of HoloMathics,LLC,a research and development company with a focus on innovative mathe-matical modeling.He also serves as Adjunct Professor of Computer Sci-ence at George Mason University and the University of Maryland.QUANTUM COMPUTING FORCOMPUTER SCIENTISTSNoson S.YanofskyBrooklyn College,City University of New YorkandMirco A.MannucciHoloMathics,LLCMore informationMore informationcambridge university pressCambridge,New York,Melbourne,Madrid,Cape Town,Singapore,S˜ao Paulo,DelhiCambridge University Press32Avenue of the Americas,New York,NY10013-2473,USAInformation on this title:/9780521879965C Noson S.Yanofsky and Mirco A.Mannucci2008This publication is in copyright.Subject to statutory exceptionand to the provisions of relevant collective licensing agreements,no reproduction of any part may take place withoutthe written permission of Cambridge University Press.First published2008Printed in the United States of AmericaA catalog record for this publication is available from the British Library.Library of Congress Cataloging in Publication dataYanofsky,Noson S.,1967–Quantum computing for computer scientists/Noson S.Yanofsky andMirco A.Mannucci.p.cm.Includes bibliographical references and index.ISBN978-0-521-87996-5(hardback)1.Quantum computers.I.Mannucci,Mirco A.,1960–II.Title.QA76.889.Y352008004.1–dc222008020507ISBN978-0-521-879965hardbackCambridge University Press has no responsibility forthe persistence or accuracy of URLs for external orthird-party Internet Web sites referred to in this publicationand does not guarantee that any content on suchWeb sites is,or will remain,accurate or appropriate.More informationDedicated toMoishe and Sharon Yanofskyandto the memory ofLuigi and Antonietta MannucciWisdom is one thing:to know the tho u ght by which all things are directed thro u gh allthings.˜Heraclitu s of Ephe s u s(535–475B C E)a s quoted in Dio g ene s Laertiu s’sLives and Opinions of Eminent PhilosophersBook IX,1. More informationMore informationContentsPreface xi1Complex Numbers71.1Basic Definitions81.2The Algebra of Complex Numbers101.3The Geometry of Complex Numbers152Complex Vector Spaces292.1C n as the Primary Example302.2Definitions,Properties,and Examples342.3Basis and Dimension452.4Inner Products and Hilbert Spaces532.5Eigenvalues and Eigenvectors602.6Hermitian and Unitary Matrices622.7Tensor Product of Vector Spaces663The Leap from Classical to Quantum743.1Classical Deterministic Systems743.2Probabilistic Systems793.3Quantum Systems883.4Assembling Systems974Basic Quantum Theory1034.1Quantum States1034.2Observables1154.3Measuring1264.4Dynamics1294.5Assembling Quantum Systems1325Architecture1385.1Bits and Qubits138viiMore informationviii Contents5.2Classical Gates1445.3Reversible Gates1515.4Quantum Gates1586Algorithms1706.1Deutsch’s Algorithm1716.2The Deutsch–Jozsa Algorithm1796.3Simon’s Periodicity Algorithm1876.4Grover’s Search Algorithm1956.5Shor’s Factoring Algorithm2047Programming Languages2207.1Programming in a Quantum World2207.2Quantum Assembly Programming2217.3Toward Higher-Level Quantum Programming2307.4Quantum Computation Before Quantum Computers2378Theoretical Computer Science2398.1Deterministic and Nondeterministic Computations2398.2Probabilistic Computations2468.3Quantum Computations2519Cryptography2629.1Classical Cryptography2629.2Quantum Key Exchange I:The BB84Protocol2689.3Quantum Key Exchange II:The B92Protocol2739.4Quantum Key Exchange III:The EPR Protocol2759.5Quantum Teleportation27710Information Theory28410.1Classical Information and Shannon Entropy28410.2Quantum Information and von Neumann Entropy28810.3Classical and Quantum Data Compression29510.4Error-Correcting Codes30211Hardware30511.1Quantum Hardware:Goals and Challenges30611.2Implementing a Quantum Computer I:Ion Traps31111.3Implementing a Quantum Computer II:Linear Optics31311.4Implementing a Quantum Computer III:NMRand Superconductors31511.5Future of Quantum Ware316Appendix A Historical Bibliography of Quantum Computing319 by Jill CirasellaA.1Reading Scientific Articles319A.2Models of Computation320More informationContents ixA.3Quantum Gates321A.4Quantum Algorithms and Implementations321A.5Quantum Cryptography323A.6Quantum Information323A.7More Milestones?324Appendix B Answers to Selected Exercises325Appendix C Quantum Computing Experiments with MATLAB351C.1Playing with Matlab351C.2Complex Numbers and Matrices351C.3Quantum Computations354Appendix D Keeping Abreast of Quantum News:QuantumComputing on the Web and in the Literature357by Jill CirasellaD.1Keeping Abreast of Popular News357D.2Keeping Abreast of Scientific Literature358D.3The Best Way to Stay Abreast?359Appendix E Selected Topics for Student Presentations360E.1Complex Numbers361E.2Complex Vector Spaces362E.3The Leap from Classical to Quantum363E.4Basic Quantum Theory364E.5Architecture365E.6Algorithms366E.7Programming Languages368E.8Theoretical Computer Science369E.9Cryptography370E.10Information Theory370E.11Hardware371Bibliography373Index381More informationPrefaceQuantum computing is a fascinating newfield at the intersection of computer sci-ence,mathematics,and physics,which strives to harness some of the uncanny as-pects of quantum mechanics to broaden our computational horizons.This bookpresents some of the most exciting and interesting topics in quantum computing.Along the way,there will be some amazing facts about the universe in which we liveand about the very notions of information and computation.The text you hold in your hands has a distinctflavor from most of the other cur-rently available books on quantum computing.First and foremost,we do not assumethat our reader has much of a mathematics or physics background.This book shouldbe readable by anyone who is in or beyond their second year in a computer scienceprogram.We have written this book specifically with computer scientists in mind,and tailored it accordingly:we assume a bare minimum of mathematical sophistica-tion,afirst course in discrete structures,and a healthy level of curiosity.Because thistext was written specifically for computer people,in addition to the many exercisesthroughout the text,we added many programming drills.These are a hands-on,funway of learning the material presented and getting a real feel for the subject.The calculus-phobic reader will be happy to learn that derivatives and integrals are virtually absent from our text.Quite simply,we avoid differentiation,integra-tion,and all higher mathematics by carefully selecting only those topics that arecritical to a basic introduction to quantum computing.Because we are focusing onthe fundamentals of quantum computing,we can restrict ourselves to thefinite-dimensional mathematics that is required.This turns out to be not much more thanmanipulating vectors and matrices with complex entries.Surprisingly enough,thelion’s share of quantum computing can be done without the intricacies of advancedmathematics.Nevertheless,we hasten to stress that this is a technical textbook.We are not writing a popular science book,nor do we substitute hand waving for rigor or math-ematical precision.Most other texts in thefield present a primer on quantum mechanics in all its glory.Many assume some knowledge of classical mechanics.We do not make theseassumptions.We only discuss what is needed for a basic understanding of quantumxiMore informationxii Prefacecomputing as afield of research in its own right,although we cite sources for learningmore about advanced topics.There are some who consider quantum computing to be solely within the do-main of physics.Others think of the subject as purely mathematical.We stress thecomputer science aspect of quantum computing.It is not our intention for this book to be the definitive treatment of quantum computing.There are a few topics that we do not even touch,and there are severalothers that we approach briefly,not exhaustively.As of this writing,the bible ofquantum computing is Nielsen and Chuang’s magnificent Quantum Computing andQuantum Information(2000).Their book contains almost everything known aboutquantum computing at the time of its publication.We would like to think of ourbook as a usefulfirst step that can prepare the reader for that text.FEATURESThis book is almost entirely self-contained.We do not demand that the reader comearmed with a large toolbox of skills.Even the subject of complex numbers,which istaught in high school,is given a fairly comprehensive review.The book contains many solved problems and easy-to-understand descriptions.We do not merely present the theory;rather,we explain it and go through severalexamples.The book also contains many exercises,which we strongly recommendthe serious reader should attempt to solve.There is no substitute for rolling up one’ssleeves and doing some work!We have also incorporated plenty of programming drills throughout our text.These are hands-on exercises that can be carried out on your laptop to gain a betterunderstanding of the concepts presented here(they are also a great way of hav-ing fun).We hasten to point out that we are entirely language-agnostic.The stu-dent should write the programs in the language that feels most comfortable.Weare also paradigm-agnostic.If declarative programming is your favorite method,gofor it.If object-oriented programming is your game,use that.The programmingdrills build on one another.Functions created in one programming drill will be usedand modified in later drills.Furthermore,in Appendix C,we show how to makelittle quantum computing emulators with MATLAB or how to use a ready-madeone.(Our choice of MATLAB was dictated by the fact that it makes very easy-to-build,quick-and-dirty prototypes,thanks to its vast amount of built-in mathematicaltools.)This text appears to be thefirst to handle quantum programming languages in a significant way.Until now,there have been only research papers and a few surveyson the topic.Chapter7describes the basics of this expandingfield:perhaps some ofour readers will be inspired to contribute to quantum programming!This book also contains several appendices that are important for further study:Appendix A takes readers on a tour of major papers in quantum computing.This bibliographical essay was written by Jill Cirasella,Computational SciencesSpecialist at the Brooklyn College Library.In addition to having a master’s de-gree in library and information science,Jill has a master’s degree in logic,forwhich she wrote a thesis on classical and quantum graph algorithms.This dualbackground uniquely qualifies her to suggest and describe further readings.More informationPreface xiii Appendix B contains the answers to some of the exercises in the text.Othersolutions will also be found on the book’s Web page.We strongly urge studentsto do the exercises on their own and then check their answers against ours.Appendix C uses MATLAB,the popular mathematical environment and an es-tablished industry standard,to show how to carry out most of the mathematicaloperations described in this book.MATLAB has scores of routines for manip-ulating complex matrices:we briefly review the most useful ones and show howthe reader can quickly perform a few quantum computing experiments with al-most no effort,using the freely available MATLAB quantum emulator Quack.Appendix D,also by Jill Cirasella,describes how to use online resources to keepup with developments in quantum computing.Quantum computing is a fast-movingfield,and this appendix offers guidelines and tips forfinding relevantarticles and announcements.Appendix E is a list of possible topics for student presentations.We give briefdescriptions of different topics that a student might present before a class of hispeers.We also provide some hints about where to start looking for materials topresent.ORGANIZATIONThe book begins with two chapters of mathematical preliminaries.Chapter1con-tains the basics of complex numbers,and Chapter2deals with complex vectorspaces.Although much of Chapter1is currently taught in high school,we feel thata review is in order.Much of Chapter2will be known by students who have had acourse in linear algebra.We deliberately did not relegate these chapters to an ap-pendix at the end of the book because the mathematics is necessary to understandwhat is really going on.A reader who knows the material can safely skip thefirsttwo chapters.She might want to skim over these chapters and then return to themas a reference,using the index and the table of contents tofind specific topics.Chapter3is a gentle introduction to some of the ideas that will be encountered throughout the rest of the ing simple models and simple matrix multipli-cation,we demonstrate some of the fundamental concepts of quantum mechanics,which are then formally developed in Chapter4.From there,Chapter5presentssome of the basic architecture of quantum computing.Here one willfind the notionsof a qubit(a quantum generalization of a bit)and the quantum analog of logic gates.Once Chapter5is understood,readers can safely proceed to their choice of Chapters6through11.Each chapter takes its title from a typical course offered in acomputer science department.The chapters look at that subfield of quantum com-puting from the perspective of the given course.These chapters are almost totallyindependent of one another.We urge the readers to study the particular chapterthat corresponds to their favorite course.Learn topics that you likefirst.From thereproceed to other chapters.Figure0.1summarizes the dependencies of the chapters.One of the hardest topics tackled in this text is that of considering two quan-tum systems and combining them,or“entangled”quantum systems.This is donemathematically in Section2.7.It is further motivated in Section3.4and formallypresented in Section4.5.The reader might want to look at these sections together.xivPrefaceFigure 0.1.Chapter dependencies.There are many ways this book can be used as a text for a course.We urge instructors to find their own way.May we humbly suggest the following three plans of action:(1)A class that provides some depth might involve the following:Go through Chapters 1,2,3,4,and 5.Armed with that background,study the entirety of Chapter 6(“Algorithms”)in depth.One can spend at least a third of a semester on that chapter.After wrestling a bit with quantum algorithms,the student will get a good feel for the entire enterprise.(2)If breadth is preferred,pick and choose one or two sections from each of the advanced chapters.Such a course might look like this:(1),2,3,4.1,4.4,5,6.1,7.1,9.1,10.1,10.2,and 11.This will permit the student to see the broad outline of quantum computing and then pursue his or her own path.(3)For a more advanced class (a class in which linear algebra and some mathe-matical sophistication is assumed),we recommend that students be told to read Chapters 1,2,and 3on their own.A nice course can then commence with Chapter 4and plow through most of the remainder of the book.If this is being used as a text in a classroom setting,we strongly recommend that the students make presentations.There are selected topics mentioned in Appendix E.There is no substitute for student participation!Although we have tried to include many topics in this text,inevitably some oth-ers had to be left out.Here are a few that we omitted because of space considera-tions:many of the more complicated proofs in Chapter 8,results about oracle computation,the details of the (quantum)Fourier transforms,and the latest hardware implementations.We give references for further study on these,as well as other subjects,throughout the text.More informationMore informationPreface xvANCILLARIESWe are going to maintain a Web page for the text at/∼noson/qctext.html/The Web page will containperiodic updates to the book,links to interesting books and articles on quantum computing,some answers to certain exercises not solved in Appendix B,anderrata.The reader is encouraged to send any and all corrections tonoson@Help us make this textbook better!ACKNOLWEDGMENTSBoth of us had the great privilege of writing our doctoral theses under the gentleguidance of the recently deceased Alex Heller.Professor Heller wrote the follow-ing1about his teacher Samuel“Sammy”Eilenberg and Sammy’s mathematics:As I perceived it,then,Sammy considered that the highest value in mathematicswas to be found,not in specious depth nor in the overcoming of overwhelmingdifficulty,but rather in providing the definitive clarity that would illuminate itsunderlying order.This never-ending struggle to bring out the underlying order of mathematical structures was always Professor Heller’s everlasting goal,and he did his best to passit on to his students.We have gained greatly from his clarity of vision and his viewof mathematics,but we also saw,embodied in a man,the classical and sober ideal ofcontemplative life at its very best.We both remain eternally grateful to him.While at the City University of New York,we also had the privilege of inter-acting with one of the world’s foremost logicians,Professor Rohit Parikh,a manwhose seminal contributions to thefield are only matched by his enduring com-mitment to promote younger researchers’work.Besides opening fascinating vis-tas to us,Professor Parikh encouraged us more than once to follow new directionsof thought.His continued professional and personal guidance are greatly appre-ciated.We both received our Ph.D.’s from the Department of Mathematics in The Graduate Center of the City University of New York.We thank them for providingus with a warm and friendly environment in which to study and learn real mathemat-ics.Thefirst author also thanks the entire Brooklyn College family and,in partic-ular,the Computer and Information Science Department for being supportive andvery helpful in this endeavor.1See page1349of Bass et al.(1998).More informationxvi PrefaceSeveral faculty members of Brooklyn College and The Graduate Center were kind enough to read and comment on parts of this book:Michael Anshel,DavidArnow,Jill Cirasella,Dayton Clark,Eva Cogan,Jim Cox,Scott Dexter,EdgarFeldman,Fred Gardiner,Murray Gross,Chaya Gurwitz,Keith Harrow,JunHu,Yedidyah Langsam,Peter Lesser,Philipp Rothmaler,Chris Steinsvold,AlexSverdlov,Aaron Tenenbaum,Micha Tomkiewicz,Al Vasquez,Gerald Weiss,andPaula Whitlock.Their comments have made this a better text.Thank you all!We were fortunate to have had many students of Brooklyn College and The Graduate Center read and comment on earlier drafts:Shira Abraham,RachelAdler,Ali Assarpour,Aleksander Barkan,Sayeef Bazli,Cheuk Man Chan,WeiChen,Evgenia Dandurova,Phillip Dreizen,C.S.Fahie,Miriam Gutherc,RaveHarpaz,David Herzog,Alex Hoffnung,Matthew P.Johnson,Joel Kammet,SerdarKara,Karen Kletter,Janusz Kusyk,Tiziana Ligorio,Matt Meyer,James Ng,SeverinNgnosse,Eric Pacuit,Jason Schanker,Roman Shenderovsky,Aleksandr Shnayder-man,Rose B.Sigler,Shai Silver,Justin Stallard,Justin Tojeira,John Ma Sang Tsang,Sadia Zahoor,Mark Zelcer,and Xiaowen Zhang.We are indebted to them.Many other people looked over parts or all of the text:Scott Aaronson,Ste-fano Bettelli,Adam Brandenburger,Juan B.Climent,Anita Colvard,Leon Ehren-preis,Michael Greenebaum,Miriam Klein,Eli Kravits,Raphael Magarik,JohnMaiorana,Domenico Napoletani,Vaughan Pratt,Suri Raber,Peter Selinger,EvanSiegel,Thomas Tradler,and Jennifer Whitehead.Their criticism and helpful ideasare deeply appreciated.Thanks to Peter Rohde for creating and making available to everyone his MAT-LAB q-emulator Quack and also for letting us use it in our appendix.We had a gooddeal of fun playing with it,and we hope our readers will too.Besides writing two wonderful appendices,our friendly neighborhood librar-ian,Jill Cirasella,was always just an e-mail away with helpful advice and support.Thanks,Jill!A very special thanks goes to our editor at Cambridge University Press,HeatherBergman,for believing in our project right from the start,for guiding us through thisbook,and for providing endless support in all matters.This book would not existwithout her.Thanks,Heather!We had the good fortune to have a truly stellar editor check much of the text many times.Karen Kletter is a great friend and did a magnificent job.We also ap-preciate that she refrained from killing us every time we handed her altered draftsthat she had previously edited.But,of course,all errors are our own!This book could not have been written without the help of my daughter,Hadas-sah.She added meaning,purpose,and joy.N.S.Y.My dear wife,Rose,and our two wondrous and tireless cats,Ursula and Buster, contributed in no small measure to melting my stress away during the long andpainful hours of writing and editing:to them my gratitude and love.(Ursula is ascientist cat and will read this book.Buster will just shred it with his powerful claws.)M.A.M.。
量子计算 低温器件
量子计算低温器件
【实用版】
目录
1.量子计算的概述
2.低温器件在量子计算中的应用
3.低温器件的发展现状
4.低温器件在量子计算领域的未来发展趋势
正文
量子计算是一种基于量子力学原理的计算模型,利用量子比特(qubit)作为信息的基本单位,以量子门为操作基础,实现对信息的编码、存储和处理。
与传统计算机不同,量子计算机可以在同一时刻处理多个问题,从而实现计算速度的大幅度提升。
在量子计算领域,低温器件扮演着至关重
要的角色。
低温器件是指在低温环境下工作的电子器件,通常工作在液氦温度(77 K)以下。
由于量子计算需要在极低温度下进行,低温器件在量子计算中的应用十分广泛。
它们可以用于制作超导电路、超导磁体、低温放大器等关键部件,为量子计算机的稳定运行提供支持。
近年来,随着量子计算研究的深入,低温器件技术取得了显著进展。
例如,超导材料的性能得到了很大提升,使得低温磁体和电路的性能得到
了显著改善。
此外,新型低温传感器和低温放大器的研发也取得了重要突破,为量子计算的精确测量和信号处理提供了有力保障。
展望未来,低温器件在量子计算领域的发展前景十分广阔。
随着量子
计算机向实用化方向迈进,对低温器件的性能和可靠性提出了更高的要求。
因此,未来低温器件的研究重点将集中在提高性能、降低噪声、提高可靠性等方面。
此外,新型低温器件的开发也将成为量子计算领域的重要研究
方向,例如,基于拓扑绝缘体、量子点等新材料的低温器件。
总之,低温器件在量子计算领域的应用具有重要意义。
随着量子计算研究的不断深入,低温器件将迎来更广阔的发展空间。
白质纤维束成像在颅内肿瘤中的初步应用
矩 阵 18×18 层厚 5m 间隔 1m N X 1 2 2, m, m, E 。
的改变 以移位为 主。而 1 2例胶 质瘤所 致 白质纤 维束 的改变 既 可表现为单纯破坏 、 位、 移 浸润 , 也可表现为两种以上类型。
值显著减少 、 D A C值显著增加 , 而方 向和位置正 常。该型经常 在
血管源性水肿区域观 察到 , 是否 为血管 源性 水肿 的特征 表现 尚
需进一步研究 ( 2 。( ) 图 ) 3 浸润 ( Ⅲ型 ) 指病 侧 白质纤 维 的 F : A
值显著减少 、 D A C值显著增加 , 且位置和形态异 常。该型 主要 见 于浸润性星形细胞瘤 ( 3 。( ) 图 ) 4 破坏 ( Ⅳ型) 是指肿瘤所在 部 : 位 白质纤维消失 , 为肿瘤组织所 占据或各 向异性 明显 降低 , 能 不 辨认 ( 4 。该型对术前计划 的意 义在于手 术时不必 保 留那 些 图 ) 经DI T 显示 已被肿瘤破坏 的纤维束 。l 0例脑膜瘤所致 白质纤 维
中华 临 床 医师 杂 志 ( 电子 版 )0 2年 2月 第 6卷 第 4期 21
C i JCii as Eet ncE io ) Fb r 52 1 . o. . o4 hn l c n( l r i dt n .ema ni co i v1 . 2 V 16 N . 0
・
临床 经 验 ・
散张量纤 维束 成像 ( iui no atgah , T" 在颅 内肿 df s nt sr rc rp y D I o e t o ) 瘤 中的应用价值 , 根据彩 色编码 图对脑 肿瘤 引起 的 白质 纤维束 改变进行分类 , 显示颅 内肿 瘤与周围 白质 的关 系 , 助制定术前 帮
翻译控制肿瘤相关蛋白
翻译 控 制肿 瘤相 关 蛋 白( t h e t r a n s l a t i o n a l l y c o n t r o l l e d
t u m o u r p r o t e i n , T C T P ) 又称 P 2 1 、 Q 2 3 、 P 2 3 、 组胺 释 放 因子 、 Mm i l p 、 T m a l 9 p 或f o r t i l i n 。翻译 控 制肿 瘤 蛋 白与肿 瘤 、 凋 亡、 炎症 、 过敏 、 细胞 因子 调控等 多方 面相关 。该蛋 白表 达 广泛 , 结 构保守 , 是 调 整 真核 生 物结 构 与 功 能 的基 础性 蛋白, 在胞 内及胞 外均 起 作 用 , 它 属 于分 子 伴 侣家 族 的一 员, 在 嗜酸性 粒细胞 、 嗜碱性 粒细 胞 、 T淋 巴细 胞 等炎 症 细
白线粒 体产 生相互作 用并结 合 B c l — X 1 , 在 轻度 氧化 应激 的 环 境 中起到抗 凋亡 和诱 导凋 亡 的双 重 作 用 。复制 老 化 或 者c d c 4 8的突变 可导致 T C T P 从 细胞浆 分泌 到线粒 体 的外
膜 表面并 被蛋 白酶 K水解 。T C T P与 微管 蛋 白结合 , 参 与 细胞形 态 的维 持并导 致生 长和分 裂 的延 迟 ; 敲 除该 基 因后 细胞容 易进入 静止期 , 同样可 导致生 长 的迟 缓 。
能 。非结 构环 上 的标 记 序 列 与核 蛋 白 Ms s 4和 D s s 4结 构
相似 , 属 同一蛋 白家族 。 2 T C T P的生 物学功 能 2 . 1 细胞 内作用 T C T P调 节 细 胞 的 生 长发 育 、 转化 、 细 胞 周 期 以 及 凋
微等离子束对豚鼠皮肤超微结构分析和羟脯氨酸测定
【 b tat Obet e T vs gt teeet f i opama ai—eun yo e lat e r f k o a A src】 jci oi et a f c o c —l d f q ec nt t s ut eo si cl — v n i eh m r s r or h ur r u n l
定 , 讨 微 等 离 子 束 的作 用 机 理 。 方 法 选 择 1 探 5只 豚 鼠 , 只 豚 鼠 背 部 划 分 为 实 验 侧 和 空 白 对 照 侧 2个 等 分 区 每 域 , 予 6 W/Ok 微 等 离 子 束 照 射 , 给 0 l J 于作 用 后 即 刻 、 周 后 和 1月 后 分 别 切 取 实 验 侧 及 空 白对 照 部 位 皮 肤 行 组 织 1 病 理 维 多 利 亚 . 春 红 染 色 , 射 电 镜 分 析 和 羟 脯 氨 酸 检 测 试 剂 盒 进 行 含 量 测 定 。 结 果 6 I J即 刻 表 现 为 立 透 0 W/ Ok 表 皮 局 灶性 出 现 点 阵 状 改 变 , 分 表 皮 出 现 汽 化 缺 失 或 者 坏 死 变 性 , 皮 浅 层 胶 原 组 织 出 现 点 阵 化 表 现 和 明 显 均 部 真 质 化 ; 殊 染 色 显 示 微 等 离 子 束 主 要 影 响 真 皮 胶 原 纤 维 , 成 局 灶 性 胶 原 纤 维凝 集 和 变 性 。1 后 皮 肤 浅 层 胶 原 组 特 形 周
义 ( 0 0 ) 1月后 羟 脯 氨 酸 含 量 要 明显 高 于作 用 前 , 异 性 具 有 统 计 学 意 义 ( < .5 。 结 论 微 等 离 子 束 对 P> .5 ; 差 P 00 ) 豚 鼠 皮 肤 胶 原 组 织 作 用 有 明显 的刺 激 效应 , 主要 靶 组 织 为 真 皮 胶 原 组 织 , 以 明 显 促 进 皮 肤 新 生 胶 原 的增 生 。 其 可
弥散张量成像在检测颅内肿瘤与周围脑白质神经纤维束解剖关系中的临床应用价值
·1125·· 论著 ·弥散张量成像在检测颅内肿瘤与周围脑白质神经纤维束解剖关系中的临床应用价值李虹,韩奕勃,呼虹宇,李婷,王帅,王义宝,仇波(中国医科大学附属第一医院神经外科,沈阳 110001) 摘要 目的 应用弥散张量成像 (DTI ) 技术检测颅内肿瘤与周围脑白质神经纤维束的解剖关系,探讨其对手术的指导作用及临床应用。
方法 采用Siemens 3.0T 磁共振成像 (MRI ) 系统,对79例颅内幕上肿瘤患者进行常规MRI 及DTI 扫描,应用DSI -Studio 软件进行后处理成像,分析颅内肿瘤与周围脑白质神经纤维束间的解剖关系。
分别获取肿瘤脑白质纤维区、肿瘤周围的水肿区、肿瘤周围脑白质纤维区、肿瘤对侧正常脑白质纤维区的各向异性 (FA ) 分数值。
结果 所有患者的脑白质神经纤维束均有不同程度移位;肿瘤周围脑白质神经纤维束呈浸润或破坏者,肿瘤病理结果恶性程度高;脑白质神经纤维束破坏范围及程度与肿瘤的良恶性程度有关。
在肿瘤脑白质纤维区,高级别胶质瘤FA 值与低级别胶质瘤有统计学差异 (P < 0.05)。
在肿瘤周围水肿区、肿瘤周围脑白质纤维区、肿瘤对侧正常脑白质纤维区,FA 值均无统计学差异 (P > 0.05)。
结论 DTI 能在活体无创、直观地显示颅内肿瘤与周围脑白质神经纤维束的解剖关系,对神经外科医生为颅内肿瘤患者术前制定手术方案、预测手术风险具有重要指导意义。
关键词 弥散张量成像; 脑白质神经纤维束; 颅内肿瘤; 胶质瘤; 神经影像学中图分类号 R739.41 文献标志码 B 文章编号 0258-4646 (2020) 12-1125-05网络出版地址 https:///kcms/detail/21.1227.R.20201202.1244.028.html DOI:10.12007/j.issn.0258‐4646.2020.12.014Clinical value of diffusion tensor imaging in intracranial tumor anatomy and peripheral white matter nerve fiber bundlesLI Hong,HAN Yibo,HU Hongyu,LI Ting,WANG Shuai,WANG Yibao,QIU Bo (Department of Neurosurgery,The First Hospital,China Medical University,Shenyang 110001,China ) Abstract Objective To detect the anatomical relationship between intracranial tumors and the white matter nerve fiber tracts around tumors with diffusion tensor imaging (DTI ),and explore the guiding role and clinical application of DTI in surgery. Methods A magnetic resonance imaging (MRI ) system was used to scan 79 patients with intracranial supratentorial tumors using conventional MRI and DTI. DSI -studio software was used to process and display the anatomical relationship between tumors and white matter fiber tracts,as well as to measure the fractional anisotropy (FA ) value of the designated area. Results The white nerve fiber tracts of all patients were shifted or destroyed to varying degrees,depending on whether the tumors were benign or malignant according to pathological results. The mean FA value of high -grade glioma (0.236±0.029) was significantly less than that of high -grade glioma (0.185±0.026,P < 0.05) . Conclusion DTI can non -invasively and intuitively display the anatomical relationship between tumors and white fiber tracts,allowing neurosurgeons to formulate surgical plans and accurately predict surgical risks.Keywords diffusion tensor imaging; white matter nerve fiber bundles; intracranial tumors; gliomas; neuroimaging颅内肿瘤的种类、级别、生长部位决定患者的预后[1]。
共振腔微阵列高效率发光二极管芯片[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010964882.9(22)申请日 2020.09.15(71)申请人 北京工业大学地址 100124 北京市朝阳区平乐园100号(72)发明人 李建军 杨启伟 (74)专利代理机构 北京思海天达知识产权代理有限公司 11203代理人 刘萍(51)Int.Cl.H01L 33/10(2010.01)H01L 33/14(2010.01)H01L 33/36(2010.01)H01L 27/15(2006.01)(54)发明名称共振腔微阵列高效率发光二极管芯片(57)摘要共振腔微阵列高效率发光二极管芯片,属于半导体光电子领域。
包括透明导电层ITO,SiO 2隔离层,上布拉格反射镜,谐振腔,下布拉格反射镜,电流扩展上电极,衬底,下电极,位于谐振腔上方的侧向氧化层,所述谐振腔中含有光辐射有源区。
上布拉格反射镜由厚度各为1/4入射光波长的低折射率材料层和高折射率材料层交替组成。
下布拉格反射镜由厚度各为1/4入射光波长的低折射率材料层和高折射率材料层交替组成。
本发明提高了光从芯片上表面的出光效率,并且能够有效提取侧壁出射的光,从而增大光提取效率并增加其外量子效率,实现共振腔微阵列高效率发光二极管芯片。
权利要求书1页 说明书4页 附图3页CN 112259653 A 2021.01.22C N 112259653A1.一种基于共振腔的微阵列高效率发光二极管芯片,其特征在于:采用微阵列结构,由m ×n个水平方向尺度在1至50微米之间的共振腔发光二极管芯片微单元101组成阵列;每一个共振腔发光二极管芯片微单元包括透明导电层ITO(120),SiO 2隔离层(130),上布拉格反射镜(210),谐振腔(220),下布拉格反射镜(230),电流扩展上电极(111),衬底(240),下电极(250),位于谐振腔(220)上方的侧向氧化层(140),且谐振腔(220)中含有光辐射有源区(221);上布拉格反射镜(210)由厚度各为1/4入射光波长的低折射率材料层(211)和高折射率材料层(212)交替组成,下布拉格反射镜(230)由厚度各为1/4入射光波长的低折射率材料层(232)和高折射率材料层(231)交替组成。
量子纠缠纯化和纠缠浓缩(1)
DEPP:
一纠缠光子对经噪声信道传输后,可以纯化为一对最大纠 缠光子态
Yu-Bo Sheng, Fu-Guo Deng, Phys. Rev. A 81, 032307 (2010)
Hyperentanglement state
量子中继器
Entanglement:
a) Generation b) Distribution c) Purification d) Swapping e) Storage
H. Briegel et al., Phys. Rev. Lett. 81, 5932 (1998)
L.M. Duan et al., Nature 414, 413,(2001)
(a1 b a b a b a b H 1H 1V 1V 2H 2H 2V 2V ) 0
2 (a1 b a b a b a b H 1H 1V 1V 2H 2H 2V 2V ) 0
Yu-Bo Sheng, Fu-Guo Deng, Hong-Yu Zhou, Phys. Rev. A 77, 042308 (2008)
Entanglement purification and entanglement concentration
纠缠纯化与浓缩
提纲
研究背景 量子纠缠纯化概念 量子纠缠浓缩概念 量子纠缠纯化和浓缩的物理系统实现 量子中继 总结
1.
2.
3. 4. 5. 6.
研究背景
量子调控
比特 初始化
比特 操控
i ( ) b
A bit-flip error on one of the two pairs:
一步式的新型肿瘤检测芯片
一步式的新型肿瘤检测芯片最近,来自美国德克萨斯大学阿灵顿分校(UT-Arlington)的研究人员,开发出了一种新的癌细胞检测方法,这种方法是基于芯片表面癌细胞行为的实时跟踪。
一种合成的RNA分子被涂覆在芯片表面上,以识别癌细胞。
这个表面上“平静和安定”的细胞,在它们的膜受体与表面RNA分子相匹配时,就表现出有趣的舞蹈行为。
研究人员使用有趣的图像处理技术,对这种行为进行了量化。
经证明,癌细胞表现出显着不同于正常健康细胞的行为。
这种现象有可能检测到桌面设置中的肿瘤,从而能够让医生进行频繁而经济的检测,获得更快的结果以及更好的疾病预测。
相关研究结果发表在2015年十二月份的《TECHNOLOGY》杂志。
细胞运动性(cellmotility)是一种现象,其中细胞通过突起和收缩细胞膜的部分,而进行移动。
这是一个复杂的过程,是通过内部细胞骨架结构和细胞膜蛋白之间复杂的平衡来完成的。
众所周知,癌细胞比健康细胞异常的灵活,主要是由于其固有的脆弱结构。
细胞骨架和细胞表面蛋白之间的力量,在癌细胞和健康细胞之间有所差异。
在癌细胞表面上的表面受体也异常的多。
在RNA功能芯片上的人胶质母细胞瘤(hGBM)细胞,从而表现出明显增强的细胞运动和活性。
本论文的主要研究人员、UTArlington的SamirIqbal教授指出:“这项研究的初步结果,显示很大的潜力,用于癌症之类的筛查。
一个多芯片为基础的设备——靶定几种蛋白质,可以带来一个通用的癌症诊断平台。
与其他技术相比,该技术的优势是,它非常适合快速诊断。
一旦成熟,该方法就具有潜力作为一种额外的方式,根据肿瘤细胞的物理行为——来自于血液样本或直接取材于患者的活检标本,来识别肿瘤细胞。
”。
具有极大潜力的微光学元件
具有极大潜力的微光学元件
Cart.,YA;徐长林
【期刊名称】《光机情报》
【年(卷),期】1991(000)010
【总页数】5页(P28-32)
【作者】Cart.,YA;徐长林
【作者单位】不详;不详
【正文语种】中文
【中图分类】TH74
【相关文献】
1.印后加工具有极大发展潜力 [J], 杨福馨
2.掺钛蓝宝石激光器一种具有极大潜力的新型的激光器 [J], 徐长林;任廷同
3.微光学元件宽带光源照明下无色散边界条件探讨 [J], 黄燕燕; 张旭琳; 杨伟; 王笑冰; 雷蕾; 彭文达; 徐平
4.离子束刻蚀辅助飞秒激光加工制备碳化硅微光学元件 [J], 于磊;杨双宁;刘学青;李德辉
5.一个具有极大潜力的稀土应用领域 [J], 贾秀馥
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E (U ) = 1 − Tr1 ρ2 U , ρU = Tr2 |U U |.
(1)
HS Note that Tr and tr denote the trace over Hd 2 and Hd , respectively. Using the identity tr12 [(A ⊗ B )T12 ] =tr1 (AB ), one can easily obtain [4]
II. OPERATOR ENTANGLEMENT
arXiv:quant-ph/0207007v1 1 Jul 2002
product between two operators is given by the HilbertSchmidt product A, B :=tr(A† B ), and ||A||HS = tr(A† A). We denote this d2 -dimensional Hilbert space HS as Hd and the bra-ket notations will be used for oper2 ators. Let Tij be the permutation (swap) operator between the Hilbert space Hdi ⊗ Hdj (di = dj ) and denote ˆij its adjoint action, i.e., T ˆij (X ) = Tij XTij . We also by T ± define the projectors Pij = 2−1 (1 ± Tij ) over the totally symmetric (antisymmetric) subspaces of Hdi ⊗ Hdj . In this section, following Ref. [1], we shall adopt as an entanglement measure of (normalized) unitary |U ∈ HS HS Hd ⊗ Hd , the linear entropy, 2 2
Quantum entanglement plays a key role in quantum information theory. In recent years, there has been a lot of efforts to characterize the entanglement of quantum states both qualitatively and quantitatively. Entangled states can be generated from disentangled states by the action of a non-local Hamitonians. That means these Hamiltonians have the ability to entangle quantum states. It is therefore natural to investigate the entangling abilities of non-local Hamiltonians and the corresponding unitary evolution operators. The first steps along this direction have been performed [1,2] recently. In Ref. [1] it has been analyzed the entangling capabilities of unitary operators on a d1 × d2 systems and introduced an entangling power measure given by the mean linear entropy produced by acting with the unitary operator on a given distribution of product states. D¨ ur et al. [2] investigated the entanglement capability of an arbitrary two-qubit non-local Hamiltonian and designed an optimal strategy for entanglement production. Cirac et al. [3] studied which physical operations acting on two spatially separated systems are capable of producing entanglement and shows how one can implement certain nonlocal operations if one shares a small amount of entanglement and is allowed to perform local operations and classical communications. The notion of entanglement of quantum evolutions e.g., unitary operators, has been introduced in Ref. [4] and there quantified by linear entropy [4]. As discussed in that paper, this notion arises in a very natural way once one recalls that unitary operators of a multipartite system belong to a multipartite state space as well, the socalled Hilbert-Schmidit space. It follow that one can lift all the notions developed for entanglement of quantum states to that of quantum evolutions. In this report we shall make a further step by studying the entanglement of a class of useful unitary operators e.g., quantum gates, on general i.e., d1 × d2 bipartite quantum systems.
Quantum entanglement of unitary operators on bi-partite systems
Xiaoguang Wang and Paolo Zanardi
Institute for Scientific Interchange (ISI) Foundation, Viale Settimio Severo 65, I-10133 Torino, Italy (February 1, 2008) We study the entanglement of unitary operators on d1 × d2 quantum systems. This quantity is closely related to the entangling power of the associated quantum evolutions. The entanglement of a class of unitary operators is quantified by the concept of concurrence. PACS numbers: 03.67.Lx, 03.65.Fd I. INTRODUCTION
ep0 (U ) = 1 −
4 d1 (d1 + 1)d2 (d2 + 1) (3)
+ + †⊗2 ×tr(U ⊗2 P13 P24 U T13 ).
By comparing Eqs.(3) and (2), after some straightforward algebra, we find ep0 (U ) = d1 d2 (d1 + 1)(d2 + 1) ˜ (U ) + × E (U ) + E 1 −1 , d1 d2 (4)
E (U ) = 1 −
1 ˆ 2 Tr13 [(ρU ⊗ ρU )T13 ] d2 1 d2 1 ˆ13 (U ⊗2 ) = 1 − 2 2 U ⊗2 , T d1 d2 1 = 1 − 2 2 tr(U ⊗2 T13 U †⊗2 T13 ). d1 d2
(2)
2 The term 1/(d2 1 d2 ) is nothing but the normalization fac⊗2 tor of U . Now we a give a relation between the entanglement of unitaries and the entangling power introduced in Ref. [1] that extends the analogous oen given in [4]. The entangling power ep (U ) of a unitary U is defined over H⊗2 as an the average of the entanglement E (U |Ψ ), where the |Ψ ′ s are product states generated according to some given probability distribution p. By choosing for E the linear entropy and using the uniform distribution p0 , one find [1]