二次函数知识点总结——题型分类总结

合集下载

二次函数题型分类总结

二次函数题型分类总结

二次函数题型分类总结一、顶点在坐标轴上的二次函数方程当二次函数的顶点坐标为(0,a)或(b,0)时,可以得到以下两种形式的二次函数方程。

1. 顶点在y轴上的二次函数方程:y = ax^2这种形式的二次函数方程对称轴为y轴,开口向上或向下。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

2. 顶点在x轴上的二次函数方程:y = a(x-b)^2这种形式的二次函数方程对称轴为x = b,开口向上或向下。

当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。

二、顶点不在坐标轴上的二次函数方程当二次函数的顶点坐标为(h,k)时,可以得到以下两种形式的二次函数方程。

1. 一般形式的二次函数方程:y = ax^2 + bx + c这种形式的二次函数方程对称轴为x = -b/2a,开口向上或向下。

根据a的正负值可知抛物线的开口方向。

2. 完全平方形式的二次函数方程:y = a(x-h)^2 + k这种形式的二次函数方程对称轴为x = h,开口向上或向下。

根据a的正负值可知抛物线的开口方向。

三、特殊形式的二次函数方程除了以上分类外,还存在一些特殊形式的二次函数方程。

1. 平移后的二次函数方程:y = a(x-p)(x-q)在一般形式的二次函数方程中,平移抛物线的顶点至(p,q)处即可得到平移后的二次函数方程。

2. 平方差公式:y = (x-h)^2 - k^2这种形式的二次函数方程本质上是一个完全平方公式,可利用平方差公式进行求解。

其对称轴为x = h,开口向上或向下。

四、应用题型除了基本形式的二次函数方程外,还存在一些应用题型,需要根据题目给出的条件进行分析和求解。

1. 求最值问题:通过求二次函数的极值点来解决。

2. 求交点问题:将两个二次函数方程相等,解方程得到交点坐标。

3. 求解区间问题:通过对二次函数方程进行开口方向和对称轴的分析,确定函数的定义域或值域。

人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解

人教版九年级上册  第22章 二次函数复习知识点总结和题型讲解

二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。

(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

二次函数考点和题型归纳

二次函数考点和题型归纳

二次函数考点和题型归纳一、基础知识1.二次函数解析式的三种形式 一般式:f (x )=ax 2+bx +c (a ≠0); 顶点式:f (x )=a (x -h )2+k (a ≠0); 两根式:f (x )=a (x -x 1)(x -x 2)(a ≠0). 2.二次函数的图象与性质二次函数系数的特征(1)二次函数y =ax 2+bx +c (a ≠0)中,系数a 的正负决定图象的开口方向及开口大小; (2)-b2a的值决定图象对称轴的位置; (3)c 的取值决定图象与y 轴的交点;(4)b 2-4ac 的正负决定图象与x 轴的交点个数. 解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在⎣⎡⎭⎫-b2a ,+∞上单调递增;在⎝⎛⎦⎤-∞,-b 2a 上单调递减在⎝⎛⎦⎤-∞,-b2a 上单调递增;在⎣⎡⎭⎫-b 2a ,+∞上单调递减奇偶性 当b =0时为偶函数,当b ≠0时为非奇非偶函数顶点 ⎝⎛⎭⎫-b 2a,4ac -b 24a 对称性 图象关于直线x =-b2a成轴对称图形二、常用结论1.一元二次不等式恒成立的条件(1)“ax 2+bx +c >0(a ≠0)恒成立”的充要条件是“a >0,且Δ<0”. (2)“ax 2+bx +c <0(a ≠0)恒成立”的充要条件是“a <0,且Δ<0”. 2.二次函数在闭区间上的最值设二次函数f (x )=ax 2+bx +c (a >0),闭区间为[m ,n ]. (1)当-b2a≤m 时,最小值为f (m ),最大值为f (n );(2)当m <-b 2a ≤m +n2时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (n ); (3)当m +n 2<-b2a≤n 时,最小值为f ⎝⎛⎭⎫-b 2a ,最大值为f (m ); (4)当-b2a >n 时,最小值为f (n ),最大值为f (m ).考点一 求二次函数的解析式求二次函数的解析式常利用待定系数法,但由于条件不同,则所选用的解析式不同,其方法也不同.[典例] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.[解] 法一:利用二次函数的一般式 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:利用二次函数的顶点式 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+(-1)2=12.∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:利用零点式由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值y max =8,即4a (-2a -1)-a 24a =8.解得a =-4或a =0(舍去),故所求函数解析式为f (x )=-4x 2+4x +7.[题组训练]1.已知二次函数f (x )的图象的顶点坐标是(-2,-1),且图象经过点(1,0),则函数的解析式为f (x )=________.解析:法一:设所求解析式为f (x )=ax 2+bx +c (a ≠0).由已知得⎩⎪⎨⎪⎧ -b2a=-2,4ac -b24a =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法二:设所求解析式为f (x )=ax 2+bx +c (a ≠0).依题意得⎩⎪⎨⎪⎧-b2a=-2,4a -2b +c =-1,a +b +c =0,解得⎩⎪⎨⎪⎧a =19,b =49,c =-59,所以所求解析式为f (x )=19x 2+49x -59.法三:设所求解析式为f (x )=a (x -h )2+k . 由已知得f (x )=a (x +2)2-1, 将点(1,0)代入,得a =19,所以f (x )=19(x +2)2-1,即f (x )=19x 2+49x -59.答案:19x 2+49x -592.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则函数的解析式f (x )=____________.解析:∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象被x 轴截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0). 又∵f (x )的图象经过点(4,3), ∴3a =3,a =1.∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3. 答案:x 2-4x +3考点二 二次函数的图象与性质考法(一) 二次函数图象的识别[典例]若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()[解析]因为一次函数y=ax+b的图象经过第二、三、四象限,所以a<0,b<0,所以二次函数的图象开口向下,对称轴方程x=-b2a<0,只有选项C适合.[答案]C考法(二)二次函数的单调性与最值问题[典例](1)已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时,有最大值2,则a的值为________.(2)设二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,且f(m)≤f(0),则实数m的取值范围是________.[解析](1)函数f(x)=-x2+2ax+1-a=-(x-a)2+a2-a+1,对称轴方程为x=a.当a<0时,f(x)max=f(0)=1-a,所以1-a=2,所以a=-1.当0≤a≤1时,f(x)max=a2-a+1,所以a2-a+1=2,所以a2-a-1=0,所以a=1±52(舍去).当a>1时,f(x)max=f(1)=a,所以a=2.综上可知,a=-1或a=2.(2)依题意a≠0,二次函数f(x)=ax2-2ax+c图象的对称轴是直线x=1,因为函数f(x)在区间[0,1]上单调递减,所以a>0,即函数图象的开口向上,所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m≤2.[答案](1)-1或2(2)[0,2][解题技法]1.二次函数最值问题的类型及解题思路 (1)类型:①对称轴、区间都是给定的; ②对称轴动、区间固定; ③对称轴定、区间变动.(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三点”是指区间两个端点和中点,“一轴”指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想解决问题.2.二次函数单调性问题的求解策略(1)对于二次函数的单调性,关键是开口方向与对称轴的位置,若开口方向或对称轴的位置不确定,则需要分类讨论求解.(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过二次函数的对称性转化到同一单调区间上比较.考法(三) 与二次函数有关的恒成立问题[典例] (1)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________;(2)已知函数f (x )=x 2+2x +1,f (x )>x +k 在区间[-3,-1]上恒成立,则k 的取值范围为________.[解析] (1)作出二次函数f (x )的草图如图所示,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0. (2)由题意得x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1.故k 的取值范围为(-∞,1). [答案] (1)⎝⎛⎭⎫-22,0 (2)(-∞,1)[解题技法]由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[题组训练]1.(2019·杭州模拟)已知f (x )=-4x 2+4ax -4a -a 2在[0,1]内的最大值为-5,则a 的值为( )A.54 B .1或54C .-1或54D .-5或54解析:选D f (x )=-4⎝⎛⎭⎫x -a 22-4a ,对称轴为直线x =a 2. ①当a2≥1,即a ≥2时,f (x )在[0,1]上单调递增,∴f (x )max =f (1)=-4-a 2.令-4-a 2=-5,得a =±1(舍去).②当0<a2<1,即0<a <2时,f (x )max =f ⎝⎛⎭⎫a 2=-4a . 令-4a =-5,得a =54.③当a2≤0,即a ≤0时,f (x )在[0,1]上单调递减,∴f (x )max =f (0)=-4a -a 2.令-4a -a 2=-5,得a =-5或a =1(舍去). 综上所述,a =54或-5.2.若函数y =x 2-3x +4的定义域为[0,m ],值域为⎣⎡⎦⎤74,4,则m 的取值范围为( ) A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C y =x 2-3x +4=⎝⎛⎭⎫x -322+74的定义域为[0,m ],显然,在x =0时,y =4,又值域为⎣⎡⎦⎤74,4,根据二次函数图象的对称性知32≤m ≤3,故选C. 3.已知函数f (x )=a 2x +3a x -2(a >1),若在区间[-1,1]上f (x )≤8恒成立,则a 的最大值为________.解析:令a x =t ,因为a >1,x ∈[-1,1],所以1a ≤t ≤a ,原函数化为g (t )=t 2+3t -2,显然g (t )在⎣⎡⎦⎤1a ,a 上单调递增,所以f (x )≤8恒成立,即g (t )max =g (a )≤8恒成立,所以有a 2+3a -2≤8,解得-5≤a ≤2,又a >1,所以a 的最大值为2.答案:2[课时跟踪检测]A 级1.(2019·重庆三校联考)已知二次函数y =ax 2+bx +1的图象的对称轴方程是x =1,并且过点P (-1,7),则a ,b 的值分别是( )A .2,4B .-2,4C .2,-4D .-2,-4解析:选C ∵y =ax 2+bx +1的图象的对称轴是x =1,∴-b2a =1. ①又图象过点P (-1,7),∴a -b +1=7,即a -b =6. ② 由①②可得a =2,b =-4.2.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( ) A .-1 B .0 C .1D .-2解析:选D 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a 在[0,1]上单调递增,则当x =0时,f (x )的最小值为f (0)=a =-2.3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C 若a >0,则一次函数y =ax +b 为增函数,二次函数y =ax 2+bx +c 的图象开口向上,故可排除A ;若a <0,一次函数y =ax +b 为减函数,二次函数y =ax 2+bx +c 的图象开口向下,故可排除D ;对于选项B ,看直线可知a >0,b >0,从而-b2a <0,而二次函数的对称轴在y 轴的右侧,故可排除B.故选C.4.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c ,若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0D .a <0,2a +b =0解析:选A 由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选A.5.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是( ) A .(-∞,-2) B .(-2,+∞) C .(-6,+∞)D .(-∞,-6)解析:选A 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4), 所以f (x )<f (4)=-2,所以a <-2.6.已知函数f (x )=x 2+2ax +3,若y =f (x )在区间[-4,6]上是单调函数,则实数a 的取值范围为________.解析:由于函数f (x )的图象开口向上,对称轴是x =-a , 所以要使f (x )在[-4,6]上是单调函数, 应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. 答案:(-∞,-6]∪[4,+∞)7.已知二次函数y =f (x )的顶点坐标为⎝⎛⎭⎫-32,49,且方程f (x )=0的两个实根之差等于7,则此二次函数的解析式是________.解析:设f (x )=a ⎝⎛⎭⎫x +322+49(a ≠0), 方程a ⎝⎛⎭⎫x +322+49=0的两个实根分别为x 1,x 2, 则|x 1-x 2|=2-49a=7, 所以a =-4,所以f (x )=-4x 2-12x +40. 答案:f (x )=-4x 2-12x +408.(2018·浙江名校协作体考试)y =2ax 2+4x +a -1的值域为[0,+∞),则a 的取值范围是________.解析:当a =0时,y =4x -1,值域为[0,+∞),满足条件;当a ≠0时,要使y =2ax 2+4x +a -1的值域为[0,+∞),只需⎩⎪⎨⎪⎧2a >0,Δ=16-8a (a -1)≥0,解得0<a ≤2.综上,0≤a ≤2.答案:[0,2]9.求函数f (x )=-x (x -a )在x ∈[-1,1]上的最大值.解:函数f (x )=-⎝⎛⎭⎫x -a 22+a 24的图象的对称轴为x =a 2,应分a 2<-1,-1≤a 2≤1,a2>1,即a <-2,-2≤a ≤2和a >2三种情形讨论.(1)当a <-2时,由图①可知f (x )在[-1,1]上的最大值为f (-1)=-1-a =-(a +1). (2)当-2≤a ≤2时,由图②可知f (x )在[-1,1]上的最大值为f ⎝⎛⎭⎫a 2=a24.(3)当a >2时,由图③可知f (x )在[-1,1]上的最大值为f (1)=a -1.综上可知,f (x )max=⎩⎪⎨⎪⎧-(a +1),a <-2,a24,-2≤a ≤2,a -1,a >2.10.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图象恒在函数y =2x +m 的图象的上方,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +1(a ≠0), 由f (x +1)-f (x )=2x ,得2ax +a +b =2x . 所以,2a =2且a +b =0,解得a =1,b =-1,因此f (x )的解析式为f (x )=x 2-x +1.(2)因为当x ∈[-1,1]时,y =f (x )的图象恒在y =2x +m 的图象上方, 所以在[-1,1]上,x 2-x +1>2x +m 恒成立;即x 2-3x +1>m 在区间[-1,1]上恒成立.所以令g (x )=x 2-3x +1=⎝⎛⎭⎫x -322-54, 因为g (x )在[-1,1]上的最小值为g (1)=-1,所以m <-1.故实数m 的取值范围为(-∞,-1).B 级1.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的是( )A .②④B .①④C .②③D .①③解析:选B 因为图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b 2a=-1,2a -b =0,②错误; 结合图象,当x =-1时,y >0,即a -b +c >0,③错误;由对称轴为x =-1知,b =2a .又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.2.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13B.12C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,因为x ∈⎣⎡⎦⎤-2,-12,所以f (x )min =f (-1)=0,f (x )max =f (-2)=1,所以m ≥1,n ≤0,m -n ≥1.所以m -n 的最小值是1.3.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解:(1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴为x =-32∈[-2,3], ∴f (x )min =f ⎝⎛⎭⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴函数f (x )的值域为⎣⎡⎦⎤-214,15. (2)∵函数f (x )的对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13,满足题意; ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1,满足题意.综上可知,a =-13或-1. 4.求函数y =x 2-2x -1在区间[t ,t +1](t ∈R)上的最大值.解:函数y =x 2-2x -1=(x -1)2-2的图象的对称轴是直线x =1,顶点坐标是(1,-2),函数图象如图所示,对t 进行讨论如下:(1)当对称轴在闭区间右边,即当t +1<1,即t <0时,函数在区间[t ,t +1]上单调递减,f (x )max =f (t )=t 2-2t -1.(2)当对称轴在闭区间内时,0≤t ≤1,有两种情况:①当t +1-1≤1-t ,即0≤t ≤12时, f (x )max =f (t )=t 2-2t -1;②当t +1-1>1-t ,即12<t ≤1时, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.(3)当对称轴在闭区间左侧,即当t >1时,函数在区间[t ,t +1]上单调递增, f (x )max =f (t +1)=(t +1)2-2(t +1)-1=t 2-2.综上所述,t ≤12时,所求最大值为t 2-2t -1;t >12时,所求最大值为t 2-2.。

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。

二次函数题型分类总结

二次函数题型分类总结

二次函数题型分类总结二次函数是高中数学中一个重要的内容,也是学生们经常接触到的数学题型之一。

在学习二次函数的过程中,我们会遇到各种不同类型的题目,这些题目涵盖了二次函数的基本概念、性质、图像、方程、不等式等多个方面。

为了帮助大家更好地理解和掌握二次函数的相关知识,本文将对二次函数题型进行分类总结,以便学生们能够更系统地学习和应用这一知识点。

一、基本概念题型。

1. 求二次函数的顶点、对称轴、开口方向等基本性质;2. 确定二次函数的增减性、最值等相关问题;3. 根据二次函数的图像特点进行分析和判断。

二、方程与不等式题型。

1. 解二次函数的方程,包括一元二次方程和二元二次方程;2. 求二次函数不等式的解集,包括一元二次不等式和二元二次不等式。

三、图像与性质题型。

1. 根据给定的二次函数,绘制其图像;2. 根据图像,确定二次函数的各种性质,如开口方向、顶点坐标、对称轴等;3. 利用二次函数的图像进行相关问题的分析和解决。

四、应用题型。

1. 利用二次函数解决实际问题,如抛物线运动、优化问题等;2. 利用二次函数的性质解决相关的数学问题,如几何问题、物理问题等。

五、综合题型。

1. 将多个知识点进行综合运用,解决复杂的二次函数问题;2. 考察学生对二次函数整体理解和运用能力的题目。

通过以上分类总结,我们可以清晰地了解到二次函数题型的多样性和复杂性。

在学习和解答二次函数题目时,我们需要全面掌握二次函数的基本概念和性质,灵活运用相关的解题方法,善于将不同的知识点进行整合和应用。

同时,我们也要注重实际问题的应用,将抽象的数学知识与实际生活相结合,更好地理解和掌握二次函数的相关内容。

希望通过本文的总结,能够帮助大家更好地理解和掌握二次函数的相关知识,提高解答二次函数题目的能力和水平。

同时,也希望大家能够在学习数学的过程中保持耐心和积极性,不断提升自己的数学素养,为将来的学习和发展打下坚实的数学基础。

最新二次函数知识点总结和题型总结

最新二次函数知识点总结和题型总结

二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 。

二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。

(完整版)二次函数知识点与题型总结.doc

(完整版)二次函数知识点与题型总结.doc

二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

注意: x 轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用a, b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当 a b 时,a,b和b, a是两个不同点的坐标。

知识点二、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y,如果对于 x 的每一个值,y都有唯一确定的值与它对应,那么就说 x 是自变量,y 是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如y ax2bx c( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。

二次函数的定义域是全体实数.2. 、二次函数y ax2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量⑵ a ,b ,c 是常数, a 是二次项系数,x 的二次式,x 的最高次数是b 是一次项系数,c 是常数项.2.3、二次函数的基本形式(平移规律:左加右减,上加下减)(1) y ax2的性质: a 的绝对值越大,抛物线的开口越小。

2021二次函数知识点总结及中考题型总结(精华版)

2021二次函数知识点总结及中考题型总结(精华版)

二次函数知识点总结及中考题型 ,易错题总结(一)二次函数知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y axbx c ( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。

这里需要强调: 和一元二次方程类似, 二次项系数 0 ,而b ,c a 可以为零.二次函数的定义域是全体实数. 2. 二次函数 bx c 的结构特征:2yax⑴ 等号左边是函数,右边是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数, c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2ax的性质:y a 的绝对值越大,抛物线的开口越小。

开口方 顶点坐 对称a 的符 性质号向标轴x 0 时, y 随x 的增大而增大; x 0 时, y 随 x 的增大而减小; 0 时,向上0 ,0y 轴 a 0xy 有最小值 0 .x 0 时, y 随x 的增大而减小; x 0 时, y 随 x 的增大而增大; 0 时,y 轴 向下0 ,0a 0x2.y 有最大值 0 .2y axc的性质: 上加下减。

开口方 顶点坐 对称a 的符性质号向标轴0 时, y 随x 的增大而增大; x x 0 向上时, y 随 x 的增大而减小; 0 时,0 ,cy 轴a 0x y 有最小值 c .x 0 时, y 随x 的增大而减小; x 0 时, y 随 x 的增大而增大; 0 时,向下0 ,cy 轴 a 0x3.y 有最大值 c .2y a x h的性质:左加右减。

a 的符开口方 顶点坐 对称性质号向标轴h 时,y 随 x 的增大而增大; x x h y 随向上时, x 的增大而减小; h 时,h ,0x X=ha 0y有最小值 0 .h 时,y 随 x 的增大而减小; x x h y 随向下h ,0X=h时, x 的增大而增大; h 时,x a 0y 有最大值 0.2y a x hk的性质 :4.a 的符 开口方 顶点坐 对称性质号 向 标 轴h 时, y 随x 的增大而增大; x x h y 随向上时, x 的增大而减小; h 时,h ,kX=hx a 0y 有最小值 k.h 时,y 随 x 的增大而减小; x x h y 随向下时, x 的增大而增大; h 时,h ,kX=hx a 0y有最大值 k .三、二次函数图象的平移 1. 平移步骤:2y a x hk方法一:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标h ,k;2h ,ky ax ⑵ 保持抛物线 的形状不变,将其顶点平移到处,具体平移方法如下:向上 (k>0)【或向下 (k<0)】平移 |k|个单位y=ax 2y=ax 2+k向右 ( h>0) 【或左 ( h<0) 】平移 |k|个单位向右 (h>0)【或左 (h<0)】平移 |k| 个单位向右 (h>0)【或左 (h<0)】平移 |k| 个单位向上 ( k>0) 【或下 ( k<0) 】 平移 |k|个单位2 y=a( x-h)y=a (x-h)2+k向上 (k>0) 【或下 (k<0)】平移 |k|个单位2. 平移规律h 值正右移,负左移; k 值正上移,负下移”. 在原有函数的基础上“ 概括成八个字“左加右减,上加下减” .方法二:22c 沿 y 轴平移 :向上(下)平移 y ax bx y axbx c 变成m 个单位, ⑴y ax 2ax2bx c m (或 y bx c m )22y ax bx c 沿轴平移:向左(右)平移 y axbx c 变成m 个单位, ⑵22y a( x m)b(x m) c (或 y a(x m)b( x m) c )22y a x hky ax bx c 的比较 四、二次函数与22y a x h ky axbx c 是两种不同的表达形式, 从解析式上看,与后者通过222b 2 a4ac 4ab b 2a4ac 4ab y a x,kh配方可以得到前者,即 ,其中.2yaxbx c 图象的画法五、二次函数 22y ax bx c 化为顶点式 y a(x h)k五点绘图法: 利用配方法将二次函数 ,确 定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画0,c 0 ,c 顶点、与 y 轴的交点 图.一般我们选取的五点为:、以及 关于对称轴 2h ,c x 1 ,0 x 2 ,0 对称的点 、与 x 轴的交点 , (若与 x 轴没有交点,则取两组关于对称轴对称的点) .y 轴 画草图时应抓住以下几点: 的交点 . 开口方向, 对称轴, 顶点,与 x 轴的交点, 与2yaxbx c 的性质六、二次函数 2b ,4ac b b2a ,顶点坐标为x2a 4a0 时,抛物线开口向上,对称轴为.当a 1. b2a b2 a 时,y 随 b 2axxx时,y 随 x 的增大而减小; 当当x 的增大而增大; 当24ac 4aby 有最小值时, .2b4ac b b2a ,顶点坐标为, x2a 4a 0 时,抛物线开口向下, 对称轴为.当当a 2. b2 a 时,b2a b2 a 时,xx x y 随 x 的增大而增大;当 y 随x 的增大而减小;当 时, 24ac 4 aby 有最大值.七、二次函数解析式的表示方法 2y axbx c ( a , b , c 为常数, 0 );0 );1. 一般式:2. 顶点式:3. 两根式: a 2ya( x h) k(a , h , k 为常数, a ya( x x 1)( x x 2) (a 0 , x 1 , x 2 是抛物线与 x 轴两交点的横坐标) . 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次2函数都可以写成交点式,只有抛物线与 x 轴有交点,即 0 时,抛物 b 4ac 线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互 化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数 a2y axbx c 中, a 作为二次项系数,显然 二次函数 a 0 .0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,⑴ 当 a开口越大;0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,⑵ 当 a开口越大.a 总结起来, a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,的大小决定开口的大小. 一次项系数 b2. a 确定的前提下, b 决定了抛物线的对称轴. 在二次项系数 0 的前提下,⑴ 在 ab2a 0y 轴左侧;当b 0时,,即抛物线的对称轴在 b2a 0,即抛物线的对称轴就是y 轴;当b 0时,b2a,即抛物线对称轴在 y 轴的右侧.当b 0时, ⑵ 在 a 0 的前提下,结论刚好与上述相反,即b2a 0y轴右侧;当b 0时,,即抛物线的对称轴在 b2a 0,即抛物线的对称轴就是y 轴;当b 0时,b2a,即抛物线对称轴在 y 轴的左侧.当b 0时,总结起来,在 a 确定的前提下, b 决定了抛物线对称轴的位置.b2a 在 y 轴左边则 x0 ,在 y 轴的右侧则 ab 的符号的判定: 对称轴ab ab 0 ,概括的说就是“左同右异” 总结: 3. 常数项 c0 时,抛物线与 y 轴的交点在 x 轴上方, 即抛物线与 y 轴交点的纵坐⑴ 当 c标为正;0 时,抛物线与 y 轴的交点为坐标原点,即抛物线与y 轴交点的纵⑵ 当 c坐标为 0 ;0 时,抛物线与 y 轴的交点在 x 轴下方, 即抛物线与 y 轴交点的纵坐 ⑶ 当 c标为负.c 决定了抛物线与 y 轴交点的位置. 总结起来,a ,b ,c 都确定,那么这条抛物线就是唯一确定的.总之,只要二次函数解析式的确定 :根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求 二次函数的解析式必须根据题目的特点, 选择适当的形式, 才能使解题简便. 一 般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; x 轴的两个交点的横坐标,一般选用两根式;3. 已知抛物线与4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达x 轴对称 1. 关于 22ya xb x关cyaxbx c; x 轴对称后,得到的解析式是 22y a x hk ya x h k关于x 轴对称后,得到的解析式是 ;y 轴对称2. 关于 22ya xb x关cy 轴对称后,得到的解析式是 y axbx c; 22y a x hky a x h ky 轴对称后,得到的解析式是关于 ;3. 关于原点对称22y a xb x关c于原点对称后,得到的解析式是y ax bx c ;22h y a x 关k 于原点对称后,得到的解析式是y a x h k ; 4. 关于顶点对称(即:抛物线绕顶点旋转 180°)2b2y axbx c2y a xb x 关c 于顶点对称后,得到的解析式是 ;2a 22y a x hky a x hk关于顶点对称后,得到的解析式是.m ,n 对称5. 关于点22m ,n y a x hk关于点 ya x h 2m2n k对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生 a 变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或 方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方 向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与 x 轴交点情况):2ax2y bx c y 0一元二次方程 0 是二次函数 当函数值 时的特殊情况 .axbx c 图象与 x 轴的交点个数: A x 1 ,0 ,B x 2 ,0 2x 1 ,x 2(x 1x 2 ) ,其中的 ① 当0 时,图象与 x 轴交于两点 b4ac 2axbx c 0 a 0是一元二次方程的两根.这两点间的距离2b4ac aABx 2x 1.② 当 0 时,图象与 x 轴只有一个交点; ③ 当0 时,图象与 x 轴没有交点 .y 0 ; 0 时,图象落在 x 轴的上方,无论 x 为任何实数,都有 当 a 1' y 0 .0 时,图象落在 x 轴的下方,无论 x 为任何实数,都有 当 a 2'2y axbx c 的图象与 y 轴一定相交,交点坐标为(0, c) ;2. 抛物线3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式;2y axbx c中⑶ 根据图象的位置判断二次函数a ,b ,c 的符号,或由二次函 数中a ,b ,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标 .2axbx c(a 0) 本身就是所⑸ 与二次函数有关的还有二次三项式,二次三项式 含字母 x 的二次函数;下面以0 时为例,揭示二次函数、二次三项式和一元a二次方程之间的内在联系:抛物线与x 轴二次三项式的值一元二次方程有两个不相等实根有两个交点可正、可零、可负0抛物线与x 轴二次三项式的值一元二次方程有两个相等的实数根只有一个交为非负点抛物线与x 轴二次三项式的值一元二次方程无实数根.无交点恒为正二次函数图像参考:y=2x 2y=x 2x 2 22y=2x 2y=2(x-4)y=y=2(x-4) 2-3y=2 x 2 +22y=3(x+4)2y=3x x2y=2y=3(x-2) 2 y=2 x 2-4x22y= -y=-2(x+3) 2y= -x 2y=-2(x-3) 2y=-2x 22y=-2x刹车距离 何时获得最大利润最大面积是多少十一、函数的应用(二) 二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中 ,如:22y (m 2) x mm 2 的图像经过原点,已知以 x 为自变量的二次函数 则m 的值 是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是 在同一直角坐标系内考查两个函数的图像,试题类型为选择题, 如:kx y(k 0)2y kx k 如图,函数 和在同一直角坐标系中图象可能是图中的()3.考查用待定系数法求二次函数的解析式, 有关习题出现的频率很高, 习题类型 有中档解答题和选拔性的综合题,如:53 ,求这条抛物线的解析式。

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 .①y=x 2-4x+1; ②y=2x 2; ③y=2x 2+4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2+nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2+2t ,则t =4秒时,该物体所经过的路程为 。

3、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围为 。

[4、若函数y=(m -2)x m-2+5x+1是关于x 的二次函数,则m 的值为 。

6、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

二、二次函数的对称轴、顶点、最值}记忆:如果解析式为顶点式:y=a(x -h)2+k ,则对称轴为: ,最值为: ;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ; 如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。

1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 (4y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结

二次函数知识点总结——题型分类总结一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 .①142+-=x x y ; ②22x y =; ③x x y 422+=; ④x y 3-=;⑤12--=x y ; ⑥p nx mx y ++=2; ⑦()x y ,4=; ⑧x y 5-=。

2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为t t s 252+=,则t =4秒时,该物体所经过的路程为 _________ 。

3、若函数()547222++-+=x x m m y 是关于x 的二次函数,则m 的取值范围为 。

4、若函数()1522++-=-x x m y m 是关于x 的二次函数,则m 的值为 。

6、已知函数()35112-+-=+x x m y m 是二次函数,求m 的值。

二、二次函数的对称轴、顶点、最值记忆:如果解析式为顶点式:()k h x a y +-=2,则对称轴为: _ , 最值为: ;如果解析式为一般式:c bx ax y ++=2,则对称轴为: __ ,最值为: ; 如果解析式为交点式:()()21x x x x a y --=, 则对称轴为: ,最值为: 。

1.抛物线m m x x y -++=2242经过坐标原点,则m 的值为 。

2.抛物线c bx x y ++=2的顶点坐标为(1,3),则b = ,c = .3.已知抛物线()4112--+=x m x y 的顶点的横坐标是2,则m 的值是 . 4.抛物线322-+=x x y 的对称轴是 。

5.若二次函数332-+=mx x y 的对称轴是直线x =1,则m = 。

6.已知二次函数3222++-=a ax x y ,当a = 时,该函数y 的最小值为0.7.已知二次函数342-+-=m x x y 的最小值为3,则m = 。

三、函数c bx ax y ++=2的图象和性质1.抛物线942++=x x y 的对称轴是 。

专题07二次函数的概念(1个知识点2种题型)(原卷版)

专题07二次函数的概念(1个知识点2种题型)(原卷版)

专题07二次函数的概念(1个知识点2种题型)【目录】倍速学习四种方法【方法一】 脉络梳理法 知识点1.二次函数的概念 【方法二】 实例探索法 题型1.二次函数的概念题型2.据实际问题列二次函数解析式 【方法三】 成果评定法【倍速学习四种方法】【方法一】脉络梳理法知识点1.二次函数的概念一般地,解析式形如2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的函数叫做二次函数. 二次函数2y ax bx c =++的定义域为一切实数.而在具体问题中,函数的定义域根据实际意义来确定. 【例1】判断下列函数是否是二次函数.(1)23y x =; (2)2112y x =-+;(3)21y x=; (4)()2y x x =-; (5)()212y x =+-;(6)()222y x x =+-.【方法二】实例探索法题型1.二次函数的概念1.设12y y y =-,1y 与1x成反比例,2y 与2x 成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .反比例函数 C .二次函数 D .一次函数2.()()222231y m m x m x m =--+-+是关于x 的二次函数需要满足的条件是_____________.3.二次函数()22y x =-+的二次项系数为a ,一次项系数为b ,常数项为c ,则24b ac -=_____. 4.已知二次函数2253y x x =-+.(1)当12x =-时,求函数值;(2)当x 取何值时,函数值为0?5.下列函数中(x ,t 为自变量),哪些是二次函数?如果是二次函数,请指出二次项、一次项系数及常数项.(1)2132y x =-+;(2)()()23422y x x x =--+;(3)23s t ++;(4)26y x =-.6.已知函数()()22932y m x m x =---+.(1)当m 为何值时,这个函数是二次函数? (2)当m 为何值时,这个函数是一次函数?题型2.据实际问题列二次函数解析式x<)的纸条,7.如图,有一矩形纸片,长、宽分别为8厘米和6厘米,现在长宽上分别剪去宽为x厘米(6则剩余部分(图中阴影部分)的面积y关于x的函数关系式为____________.x>),6月份的营收为y万元,8.某公司4月份的营收为80万元,设每个月营收的增长率相同,且为x (0写出y关于x的函数解析.9.用长为15米的篱笆,一面靠墙(墙的长度超过15米),围成一个矩形花圃.设花圃的宽为x米,面积为y平方米,求y与x的函数解析式及函数的定义域.10.三角形的两边长的和为10厘米,它们的夹角为30°,设其中一条边长为x厘米,三角形的面积为y平方厘米,试写出y与x之间的函数解析式及定义域.11.已知正方形的周长是C 厘米,面积是S 平方厘米.(1)求S 关于C 的函数关系式;(2)当S =1平方厘米,求正方形的边长.【方法三】 成果评定法一、单选题2.(2023秋·湖北武汉·九年级校考阶段练习)若函数2y x bx c =++的图象经过点1,2,则c b -=( ) A .3-B .3C .1-D .13.(2021·上海·九年级专题练习)若函数()2211mm y m x --=+是关于x 的二次函数,则m 的值是( )4.(2020秋·九年级校考课时练习)在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( ) A .216y x ππ=-+ B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+5.(2023·上海·一模)下列各点中,在二次函数289y x x =--图象上的点是( ) A .()1,16--B .()1,16-C .()3,8--D .()3,246.(2023秋·安徽淮南·九年级统考阶段练习)对于关于x 的函数2(1)3m m y m x x -=++,下列说法错误的是( )A .当1m =-时,该函数为正比例函数B .当21m m -=时,该函数为一次函数C .当该函数为二次函数时,2m =或1m =-D .当该函数为二次函数时,2m =二、填空题7.(2022秋·上海·九年级上海市格致初级中学校考阶段练习)如图是一个矩形花圃的平面图,花圃由一堵旧墙(旧墙的长度不小于30m)和总长为28m的篱笆围成,中间用篱笆分隔成两个小矩形.设大矩形的垂三、解答题。

二次函数题型总结

二次函数题型总结

二次函数题型总结
二次函数题目类型总结
二次函数是高中数学中重要的内容之一,它在许多数学问题的解决中起着重要
的作用。

下面将对常见的二次函数题目类型进行总结:
1. 平移与缩放:给定二次函数的标准形式y = ax^2 + bx + c,可以通过将图像
向左右平移或上下平移,以及拉伸或压缩图像来求解问题。

2. 求解函数的零点:要计算二次函数的零点,即使得y等于零的x值。

我们可
以通过因式分解、配方法或求根公式来找到函数的零点。

3. 最值问题:对于给定的二次函数,我们可能需要找到该函数的最大值或最小值。

通过求解顶点坐标或应用求最值的相关知识,可以有效地解决这类问题。

4. 描述图像:给定二次函数的函数式,我们可以根据a的正负、平移与缩放等
信息来描述图像的凹凸性、开口方向、顶点坐标等。

5. 解析几何问题:通过建立二次函数与几何图形之间的关系,我们可以解决与
抛物线、弧线等几何图形相关的问题。

6. 实际问题:二次函数的应用非常广泛,我们可以通过建立实际问题与二次函
数之间的关系,解决与抛物线或曲面相关的物理、经济等实际问题。

总结起来,二次函数题目类型多种多样,包括平移与缩放、求解零点、最值问题、图像描述、解析几何问题和实际问题等。

通过理解不同题型的解题思路和方法,我们能够更好地应用二次函数解决实际问题。

二次函数知识点总结和经典题型

二次函数知识点总结和经典题型

二次函数知识点总结和经典题型第一部分 二次函数基础知识✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数2ax y =的性质✧ 二次函数2y ax c =+的性质✧ 二次函数y a x h =-的性质:✧ 二次函数()2y a x h k =-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x . 顶点坐标坐标:),(ab ac a b 4422--顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. ✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大 小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba -<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴;当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb a ca b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+- 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结第一篇:二次函数基础知识一、什么是二次函数二次函数是具有一般式y=ax²+bx+c的函数,其中a、b、c为常数,且a不为0。

二、二次函数的图像1.开口向上的二次函数当a>0时,函数图像开口向上,其中x=-b/2a为函数的对称轴,抛物线的最低点为(x,-Δ/4a),其中Δ=b²-4ac为判别式。

2.开口向下的二次函数当a<0时,函数图像开口向下,其中x=-b/2a为函数的对称轴,抛物线的最高点为(x,-Δ/4a),其中Δ=b²-4ac为判别式。

三、二次函数的性质1.对于一般形式的二次函数y=ax²+bx+c,a称为二次项系数,b称为一次项系数,c称为常数项。

2.二次函数的图像为抛物线,对称轴方程为x=-b/2a。

3.当a>0时,二次函数抛物线开口向上,当a<0时,二次函数抛物线开口向下。

4.当a≠0时,二次函数与x轴最多有一个交点。

5.二次函数的解析式y=ax²+bx+c与顶点式y=a(x-p)²+q之间的关系为y=a(x-p)²+q=ax²-2apx+ap²+q,所以q=c+ap²,p=-b/2a。

6.当a>0时,二次函数的取值范围为[y(x)>= Δ/4a](其中x为实数);当a<0时,二次函数的取值范围为[y(x)<=Δ/4a](其中x为实数),其中Δ=b²-4ac为判别式。

四、二次函数的应用1.利用二次函数模型求最值问题。

2.用二次函数解决物理运动中的问题,如自由落体、抛体等。

3.用二次函数理解和解决概率问题,如正态分布等。

4.用二次函数解决经济问题、金融问题等。

以上就是二次函数的基础知识,通过学习这些知识可以帮助我们更好地理解和应用二次函数。

接下来,我们将深入了解二次函数的相关内容。

第二篇:二次函数进阶知识一、变形1.左右平移:y=a(x-h)²+k,其中(h,k)为顶点坐标,顶点向左平移h个单位,向右平移-h个单位。

二次函数知识点总结

二次函数知识点总结

二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4.()2y a x h k=-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx axy +++=2(或m c bx axy -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a<-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2b x a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴ab x 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=-2x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

二次函数知识点总结及相关题型

二次函数知识点总结及相关题型

二次函数知识点总结及相关典型题目第一部分基础知识1.定义:一般地,如果 y =ax 2+bx+c(a,b,c 是常数,a#0)2.二次函数y=ax 2的性质(1)抛物线y = ax 2的顶点是坐标原点,对称轴是 y 轴.(2)函数y =ax 2的图像与a 的符号关系.①当a>0时u 抛物线开口向上 u 顶点为其最低点; ②当a <0时u 抛物线开口向下 u 顶点为其最局点. (3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为3.二次函数 y =ax 2 +bx + c 的图像是对称轴平行于(包括重合)4.二次函数y=ax 2+bx+c 用配方法可化成:y = a(x —h ,+k 的形式,其中h =, k = 4ac -b2a4a5.二次函数由特殊到一般, 可分为以下几种形式:①y = ax 2 ;②y=ax 2+k ;③y = a(x - h )2 ;④y = a(x - h f + k ;⑤ y = ax 2 bx c .6. 抛物线的三要素:开口方向、对称轴、顶点①a 的符号决定抛物线的开口方向:当 a >0时,开口向上;当 a<0时,开口向下;相等,抛物线的开口大小、形状相同②平行于y 轴(或重合)的直线记作 x = h .特别地,y 轴记作直线x = 0. 7. 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(2) 配方法:运用配方的方法,将抛物线的解析式化为(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对那么y 叫做x 的二次函数.y 轴的抛物线.(1)公式法:y = ax 2 + bx + c = a x2 2b 4ac - b …口/ + — I + -------- ,.顶点是(-2a 4a2a 4ab 4ac - b 2、,,——; -- ),对称轴是直线 x2ay = a(x — hf + k 的形式,得到顶点为(h , k ),对称轴是直线称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失^9.抛物线y =ax2 +bx + c中,a,b, c的作用(1) a决定开口方向及开口大小,这与y=ax2中的a完全一样.(2) b和a共同决定抛物线对称轴的位置 .由于抛物线y = ax2+ bx十c的对称轴是直线x = —2,故:①b = 0时,对称轴为y轴;②->0 (即a、b同号)时,对称轴在y轴左侧;③-< 0 (即a、2a a a b异号)时,对称轴在y轴右侧.(3) c的大小决定抛物线y=ax2+bx+c与y轴交点的位置.当x=0时,y=c, ■抛物线y=ax2+bx+c与y轴有且只有一个交点(0, c ):①c=0,抛物线经过原点;②c>0,与y轴交于正半轴;③ c<0,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,贝U - <0.a11. 用待定系数法求二次函数的解析式(1) 一般式:y =ax2 +bx+c.已知图像上三点或三对x、y的值,通常选择一般式.(2) 顶点式:y =a(x -h 2 + k.已知图像的顶点或对称轴,通常选择顶点式.(3) 交点式:已知图像与x轴的交点坐标x〔、x2,通常选用交点式:y = a(x - x1 (x -x2).12. 直线与抛物线的交点(1) y轴与抛物线y=ax2+bx+ c得交点为(0, c).(2) 与y 轴平行的直线x = h 与抛物线y=ax 1 2+bx+ c 有且只有一个交点(h , ah 2 +bh+c ). (3) 抛物线与x 轴的交点二次函数y = ax 2 +bx + c 的图像与x 轴的两个交点的横坐标 x 1、x 2,是对应一元二次方程 ax 2 + bx + c = 0的两 个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ① 有两个交点 = A 〉0u 抛物线与x 轴相交;② 有一个交点(顶点在 x 轴上)=A = 0u 抛物线与x 轴相切; ③ 没有交点 u A < 0 u 抛物线与x 轴相离.(4) 平行于x 轴的直线与抛物线的交点同(3) 一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是ax 2 +bx + c =k 的两个实数根.(5) 一次函数y=kx+ n(k 。

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结

二次函数知识点及题型归纳总结知识点精讲一、二次函数解析式的三种形式及图像 1. 二次函数解析式的三种形式(1)一般式:2()(0)f x ax bx c a =++≠;(2)顶点式:2()()(0)f x a x m n a =-+≠;其中,(,)m n 为抛物线顶点坐标,x m =为对称轴方程. (3)零点式:12()()()(0)f x a x x x x a =--≠,其中,12,x x 是抛物线与x 轴交点的横坐标. 2.二次函数的图像二次函数2()(0)f x ax bx c a =++≠的图像是一条抛物线,对称轴方程为2bx a=-,顶点坐标为24(,)24b ac b a a--. (1) 单调性与最值①当0a >时,如图2-8所示,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时, 2min 4()4ac b f x a -=;②当0a <时,如图2-9所示,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)b -+∞上递减,当bx =-时,;24()4ac b f x a -=.(2) 当240b ac ∆=->时,二次函数2()(0)f x ax bx c a =++≠的图像与x 轴有两个交点11(,0)M x 和22(,0)M x ,1212||||||M M x x a =-==. 二、二次函数在闭区间上的最值闭区间上二次函数最值的取得一定是在区间端点或顶点处.对二次函数2()(0)f x ax bx c a =++≠,当0a >时,()f x 在区间[,]p q 上的最大值是M ,最小值是m ,图2-9令02p qx +=: (1) 若2bp a-≤,则(),()m f p M f q ==;(2) 若02b p x a <-<,则(),()2bm f M f q a =-=;(3) 若02b x q a ≤-<,则(),()2bm f M f p a =-=;(4) 若2bq a-≥,则(),()m f q M f p ==.三、一元二次方程与二次函数的转化1.实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120c x x a=< 2.一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1) 开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表2-5所示.四、二次不等式转化策略1. 二次不等式的解集与系数的关系若二次不等式2()0f x ax bx c =++≤的解集是0(,][,)a b a c a αβαβαβ⎧⎪<⎪⎪-∞+∞⇔+=-⎨⎪⎪⋅=⎪⎩二次不等式解集的构成是与二次函数图像的开口方向及与x 轴交点横坐标有关的.2. 二次函数恒大于零或恒小于零的转化策略已知二次函数2()(0)f x ax bx c a =++≠.()0f x >恒成立00a >⎧⇔⎨∆<⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩.注 若表述为“已知函数2()f x ax bx c =++”,并未限制为二次函数,则应有()0f x >恒成立00a >⎧⇔⎨∆<⎩或00a b c ==⎧⎨>⎩;()0f x <恒成立00a <⎧⇔⎨∆<⎩或00a b c ==⎧⎨<⎩. 五、二次函数有关问题的求解方法与技巧有关二次函数的问题,关键是利用图像.(1) 要熟练掌握二次函数在某区间上的最值或值域的求法,特别是含参数的两类问 题——动轴定区间和定轴动区间,解法是抓住“三点一轴”,三点指的是区间两个端点和区间中点,一轴指对称轴.即注意对对称轴与区间的不同位置关系加以分类讨论,往往分成:①轴处在区间的左侧;②轴处在区间的右侧;③轴穿过区间内部(部分题目还需讨论轴与区间中点的位置关系),从而对参数值的范围进行讨论.(2) 对于二次方程实根分布问题,要抓住四点,即开口方向、判别式、对称轴位置及区间端点函数值正负.题型归纳及思路提示题型1 二次函数、一元二次方程、二次不等式的关系思路提示 二次函数、二次方程、二次不等式都是利用二次函数的图像及性质进行解答,利用数形结合思想进行分析.例2.41 “0a <”是“方程2210ax x ++=至少有一个负数根”的( )A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件解析 由于0a <,则方程2210ax x ++=的判别式440a ∆=->,设12,x x 为方程的两根,则12122010x x ax x a ⎧+=->⎪⎪⎨⎪=<⎪⎩,故12,x x 异号,因此方程有一个负数根;但反之,若方程2210ax x ++=有负数根,当0a =时,即210x +=有负数根12x =-,那么方程2210ax x ++=有负数根⇒0a <.因此“0a <”是方程“2210ax x ++=至少有一个负数根”的充分不必要条件.故选B.变式1 已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A m f m =<,则( ). A. m A ∀∈ ,都有(3)0f m +> B. m A ∀∈ ,都有(3)0f m +<C. 0m A ∃∈,使得0(3)0f m +=D. 0m A ∃∈,使得0(3)0f m +<变式2 已知函数2()24(03)f x ax ax a =++<<,若12x x <,121x x a +=-,则( ).A. 12()()f x f x <B. 12()()f x f x =C. 12()()f x f x >D. 1()f x 与2()f x 的大小不能确定例 2.42 (2012江苏13)已知函数2()(,)f x x ax b a b R =++∈的值域为[0,)+∞,若关于x 的不等式()f x c <的解集为(,6)m m +,则实数c 的值为_____________. 解析 将二次不等式转化为二次方程求解.由题意知2()f x x ax b =++的值域为[0,)+∞,得240a b ∆=-=.不等式()f x c < ()0f x c ⇔-<,即20x ax b c ++-<的解集为(,6)m m +,设方程20x ax b c ++-=的两根为12,x x ,则1212x x ax x b c +=-⎧⎨=-⎩,12||x x -==6==,得9c =.评注 本题的关键在于将二次不等式转化为二次方程求解.即不等式2x ax b c ++<的解集为(,6)m m +与方程2x ax b c ++=的实根12,x x 之间的联系,即12||6x x -=.变式1 (2012浙江理17)设a R ∈,若0x >时均有2[(1)1](1)0a x x ax ----≥,则______a =. 变式2 (2012北京理14)已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0g x <;②(,4),()()0x f x g x ∃∈-∞-<,则m 的取值范围是________. 题型2 二次方程20(0)ax bx c a ++=≠的实根分布及条件思路提示 结合二次函数2()f x ax bx c =++的图像分析实根分布,得到其限定条件,列出关于参数的不等式,从而解不等式求参数的范围.例2.43 已知,αβ是方程2(21)420x m x m +-+-=的两个根,且2αβ<<,求实数m 的取值范围. 分析 根据二次方程根的分布结合图像求解.解析 根据题意,如图2-10所示,对于2()(21)42f x x m x m =+-+-,由图像知2αβ<<,得(2)0f <,故2(2)2(21)2420f m m =+-⨯+-<,解得3m <-,所以m 的取值范围是(,3)-∞-.图2-10评注 利用图像法研究二次方程根的分布问题,会起到事半功倍的效果.变式1 关于x 的方程22(1)210m x mx -+-=的两个根,一个小于0,一个大于1.求实数m 的取值范围. 变式2 已知二次函数2()2(,)f x x bx c b c R =++∈满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--和(0,1)内,求实数b 的取值范围.例2.44 已知方程32230(,,)x ax bx c a b cR +++=∈的三个实根可分别作为一个椭圆、一个双曲线、一个).A. )+∞ B.)+∞ C.)+∞ D. )+∞ 解析 由方程32230(,,)x ax bx c a b c R +++=∈有三个实根123,,x x x ,且满足12301,1,1x x x <<=>.则231a b c ++=-,得123c a b =---.32232310x ax bx a b ++---=, (*)由1x =是方程的根,可知方程(*)可写成:2(1)[(231)]0x x mx a b -++++=,展开并与方程(*)对照系数可得21m a =+.所以2(21)(231)0x a x a b +++++=. 令2()(21)(231)f x x a x a b =+++++,(0)2310(1)4330f a b f a b =++>⎧⎨=++<⎩,如图2-11,(,)a b 所在的区域如阴影部分所示,点1(1,)3A -)+∞.故选A.图2-11变式1 设直线2y x m =-+与y 轴相交于点P ,与曲线22:33(1)C x y x -=≥相交于Q ,R ,且|PQ|<|PR |,求||||PR PQ 的取值范围. 题型3 二次函数“动轴定区间”、“定轴动区间”问题思路提示 根据二次函数图像,分析对称轴与区间的位置关系.例2.45 函数2()23f x x ax =--在区间[1,2]上是单调函数,则( ). A. (,1)a ∈-∞ B. (2,)a ∈+∞ C. [1,2) D. (,1][2,)a ∈-∞+∞ 分析 利用区间[1,2]在对称轴的左侧和右侧分别作图.解析 作出函数在[1,2]上符合单调区间的图像,如图2-12(a ),(b)所示的情况均满足要求.故选D.图2-12(b)(a)x评注 在处理“动轴定区间”问题时,首先应确定不定量,即区间一定,然后根据题目要求分类讨论对称轴与区间的相对位置关系,求解参数的范围.变式1 函数2()23f x x kx =-+在[1,)-+∞上是增函数,求实数k 的取值范围. 例2.46 求函数2()21f x x ax =--在[0,2]上的值域.分析 解答本题可结合二次函数的图像及对称轴与区间的位置关系. 解析 2()21f x x ax =--,抛物线()y f x =开口向上,对称轴x a =.(1) 当0a ≤时,函数在区间[0,2]上为增函数,故min max (0)1,(2)34y f y f a ==-==-,所以函数的值域为[1,34]a --.(2) 当2a ≥时,函数在区间[0,2]上为减函数,故min max (2)34,(0)1y f a y f ==-==-,所以函数的值域为[34,1]a --.(3) 当01a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(2)34y f a a y f a ==-+==-,所以函数的值域为2[(1),34]a a -+-.(4) 当12a <≤时,函数在区间[0,]a 上为减函数,在区间[,2]a 上为增函数,故2min max ()(1),(0)1y f a a y f ==-+==-,所以函数的值域为2[(1),1]a -+-.评注 在求二次函数的最值时,要注意定义域是R 还是区间[,]m n ,若是区间[,]m n ,最大(小)值不一定在对称轴处取得,而应该看对称轴是在区间[,]m n 内还是在 区间的左边或右边.在区间的某一边时,应该利用函数的单调性求解,最值不在对称轴处取得,而在区间的端点处取得.变式1 已知函数22()4422f x x ax a a =-+-+在区间[0,2]上有最小值3,求实数a 的值.例2.47 已知二次函数2()23f x x x =--,若()f x 在[,1]t t +上的最小值为()g t ,求()g t 的表达式. 分析 本题考查“定轴动区间”问题,求给定的二次函数在动区间上的最值,利用数形结合及分类讨论思想求解.解析 根据二次函数的解析式知1x =为其对称轴,分析对称轴与区间的位置关系,如图2-13所示.(b)(c)图2-13(a )x(1) 当1t >时,如图2-13(a )所示,2()()23g t f t t t ==--;(2) 当11t +<,即0t <时,如图2-13(b )所示,2()(1)4g t f t t =+=-; (3) 当11t t ≤≤+,即01t ≤≤时,如图2-13(c )所示,()(1)4g t f ==-.因此224(0)()4(01)23(1)t t g t t t t t ⎧-<⎪=-≤≤⎨⎪-->⎩.变式1 已知二次函数()f x 满足(1)(1)f x f x +=-,且(0)0,(1)1f f ==,若()f x 在区间[,]m n 上的值域是[,]m n ,求,m n 的值.变式2 (2012北京东城期末理8)已知函数2()1f x x =+的定义域为[,]()a b a b <,值域为[1,5],则在平面直角坐标系内,点(,)a b 的运动轨迹与两坐标轴围成的图形面积为A.8B.6C.4D.2最有效训练1.函数2263,[1,1]y x x x =-+∈-,则y 的最小值是( ).A. 32-B. 3C. 1-D.不存在 2.已知,,a b c 成等比数列,则函数2y ax bx c =++的图像与x 轴的交点个数为( ). A. 0 B. 1 C. 2 D. 0或13. 函数y =x 2+mx +1的图像关于直线x =1对称的充要条件是( ). A. m =-2 B. m =2 C. m =-1 D. m =14. 已知函数ƒ(x )=ax 2+bx +c ,且a >b >c ,a +b +c =0,则( ). A. ∀x ∈(0,1),都有ƒ(x )>0 B. ∀x ∈(0,1),都有ƒ(x )<0 C. ∃x 0∈(0,1),都有ƒ(x 0)=0 D. ∃x 0∈(0,1),都有ƒ(x 0)>05. 已知点A(0,2),B(2,0),若点C在函数y=x2的图像上,则使得∆ABC的面积为2的点C的个数为( ).A. 4B. 3C. 2D. 16. 已知函数ƒ(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任意实数x,ƒ(x)与g(x)的值至少有一个为正数,则实数m的取值范围是( ).A. [-4,4]B. (-4,4)C. (-∞,4)D. (-∞,-4)7. 若函数ƒ(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则ƒ(x)max=________.8. 关于x的方程2x2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是________.9. 当x∈[0,2]时,函数ƒ(x)=ax2+4(a-1)x-3在x=2时取得最大值,则a的取值范围是________.10.已知二次函数ƒ(x)=ax2-x+c(x∈R)的值域为[0,+∞),则c aa c+++22的最小值为________.11.已知定义域为R的函数ƒ(x)满足ƒ(ƒ(x)-x2+x)=ƒ(x)-x2+x.(1)若ƒ(2)=3,求ƒ(1),又若ƒ(0)=a,求ƒ(a);(2)设有且仅有一个实数x0,使得ƒ(x0)=x0,求函数ƒ(x)的解析式.12.已知二次函数ƒ(x)=x2+mx+1(x∈Z),且关于x的方程ƒ(x)=2在区间(-3,12)内有两个不同的实根.(1)求ƒ(x)的解析式;(2)若x∈[1,t](t>1)时,总有ƒ(x-4)≤4x成立,求t的最大值.。

二次函数常见题型知识点

二次函数常见题型知识点

二次函数常见题型知识考点一:掌握二次函数的图像和性质以及抛物线的平移规律;会确定抛物线的顶点坐标、对称轴及最值等。

【例1】二次函数c bx ax y ++=2的图像如图所示,那么abc 、ac b 42-、b a +2、c b a +-24这四个代数式中,值为正的有( )A 、4个B 、3个C 、2个D 、1个解析:∵abx 2=<1 ∴b a +2>0答案:A评注:由抛物线开口方向判定a 的符号,由对称轴的位置判定b 的符号,由抛物线与y 轴交点位置判定c 的符号。

由抛物线与x 轴的交点个数判定ac b 42-的符号,若x 轴标出了1和-1,则结合函数值可判定b a +2、c b a ++、c b a +-的符号。

【例2】已知0=++c b a ,a ≠0,把抛物线c bx ax y ++=2向下平移1个单位,再向左平移5个单位所得到的新抛物线的顶点是(-2,0),求原抛物线的解析式。

分析:①由0=++c b a 可知:原抛物线的图像经过点(1,0);②新抛物线向右平移5个单位,再向上平移1个单位即得原抛物线。

解:设新抛物线的解析式为2)2(+=x a y ,则原抛物线的解析式为1)52(2+-+=x a y ,又易知原抛物线过点(1,0) ∴1)521(02+-+=a ,解得41-=a ∴原抛物线的解析式为:1)3(412+--=x y 评注:解这类题的关键是深刻理解平移前后两抛物线间的关系,以及所对应的解析式间的联系,并注意逆向思维的应用。

另外,还可关注抛物线的顶点发生了怎样的移动,常见的几种变动方式有:①开口反向(或旋转1800),此时顶点坐标不变,只是a 反号;②两抛物线关于x 轴对称,此时顶点关于x 轴对称,a 反号;③两抛物线关于y 轴对称,此时顶点关于y 轴对称; 练习一、选择题:1、二次函数c bx ax y ++=2的图像如图所示,OA =OC ,则下列结论: ①abc <0; ②24b ac <; ③1-=-b ac ; ④02<+b a ;⑤ac OB OA -=⋅; ⑥024<+-c b a 。

二次函数基础知识点总结

二次函数基础知识点总结

二、掌握二次函数的图像和性质①y=ax2(a是常数,且a≠0)的图像和性质②y=ax2+bx(a是常数,且a≠0,b是常数,b≠0)的图像和性质③y=ax2+c(a是常数,且a≠0,c是常数,c≠0)的图像和性质④y=ax 2+bx +c (a 是常数,且a ≠0,b 是常数,b ≠0,c 是常数,c ≠0)的性质 a >0时 ,开口向上;a <0时,开口向下顶点坐标是(-a b 2,a b ac 442-),对称轴是直线x=-ab2。

当a >0时 ,函数有最小值,y=a b ac 442-;a <0时,函数有最大值,y=ab ac 442-;性质,当a >0时,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大;当a <0时,在对称轴的左边,y 随x 的增大而增大,在对称轴的右边,y 随x 的增大而减小.三、会结合图像确定y= 2ax +bx +c (a 是常数,且a ≠0,b 是常数,b ≠0,c 是常数,c ≠0)的四种符号a 的符号:看抛物线的开口方向:开口向上,a >0;开口向下a <0; b 的符号:有对称轴的位置和的a 符号确定: 对称轴是y 轴,b=0;对称轴在原点的左侧:02 a b-,对称轴在原点的右侧,02 ab-;c 的符号:看抛物线与y 轴交点的位置: 交点在原点,c=0;交点在原点以上,c >o ;交点在原点以下,c<0。

b2-4ac的符号:看抛物线与x轴交点的个数:抛物线与x轴有两个交点 b2-4ac>0;抛物线与x轴有一个交点 b2-4ac=0,抛物线与x轴没有交点 b2-4ac<0,四、掌握确定二次函数关系式的基本条件确定二次函数的关系式,要具备的基本条件是:对于表达式是y=ax2(a≠0)的,要确定出待定字母a的值的基本条件是:知道图像上一个点的坐标。

对于表达式是y=ax2+bx(a≠0)的, 要确定出待定字母a、b的值的基本条件是:知道图像上两个点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课教师学生姓名上课时间学科数学年级九年级课时计划第次共次提交时间学管师教学主管课题名称二次函数知识点总结——题型分类总结教学目标:1. 掌握二次函数表达式的三种形式,能灵活选用三种形式提高解题效率。

2. 掌握二次函数的图像与性质,结合解析式确定图像顶点、对称轴和开口方向;熟练掌握其与一元二次方程和一元二次不等式的关系;能通过基本性质解决图像的系数符号问题、共存问题、对称性问题、以及应用问题。

教学重难点:教学重点:1、二次函数的三种解析式形式2、二次函数的图像与性质教学难点:1、二次函数与其他函数共存问题2、根据二次函数图像,确定解析式系数符号3、根据二次函数图像的对称性、增减性解决相应的综合问题。

教学过程【回顾与思考】一、二次函数的定义定义:一般地,如果cbacbxaxy,,(2++=是常数,)0≠a,那么y叫做x的二次函数.(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)精典例题:例1:在下列关系式中,y是x的二次函数的关系式是()A.2xy+x2=1 B.y2-ax+2=0 C.y+x2-2=0 D.x2-y2+4=0 考点:.分析:根据二次函数的定义对四个选项进行逐一分析即可,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.解答:解:A、2xy+x2=1当x≠0时,可化为的形式的形式,不符合一元二次方程的一般形式,故本选项错误;B、y2-ax+2=0可化为y2=ax-2不符合一元二次方程的一般形式,故本选项错误;C、y+x2-2=0可化为y=x2+2,符合一元二次方程的一般形式,故本选项正确;D、x2-y2+4=0可化为y2=x2+4的形式,不符合一元二次方程的一般形式,故本选项错误.故选C.点评:本题考查的是二此函数的一般形式,即一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a 是二次项系数,b是一次项系数,c是常数项.y=ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.例2:函数y=(m+3)x m2+m-4,当m= 时,它的图象是抛物线.考点:.分析:二次函数的图象是抛物线的,由二次函数的定义列出方程与不等式解答即可.解答:解:∵它的图象是抛物线,∴该函数是二次函数,∴,解得m=2或-3,m≠-3,∴m=2.点评:用到的知识点为:二次函数的图象是抛物线;二次函数中自变量的最高次数是2,二次项的系数不为0.例3:若y=x m-2是二次函数,则m=考点:.分析:根据二次函数的定义列出关于m的方程,求出m的值即可.解答:解:∵函数y=x m-2是二次函数,∴m-2=2,∴m=4.故答案为4.点评:本题考查了二次函数的定义,比较简单,属于基础题.学以致用:1、下列函数中,是二次函数的是 .①y=x2-4x+1;②y=2x2;③y=2x2+4x;④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p;⑦y =;⑧y=-5x。

2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为。

3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为。

4、若函数y=(m-2)x m -2+5x+1是关于x的二次函数,则m的值为。

二、二次函数的对称轴、顶点、最值考点连接:如果解析式为顶点式:y=a(x-h)2+k,则对称轴为:,最值为:;如果解析式为一般式:y=ax 2+bx+c ,则对称轴为: ,最值为: ;如果解析式为交点式:y=(x-x 1)(x-x 2), 则对称轴为: ,最值为: 。

精典例题:例1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

考点:.分析:利用二次函数图象的性质.解答:解:经过原点,说明(0,0)适合这个解析式.那么m 2+2m-3=0,(m+3)(m-1)=0.解得:m 1=-3,m 2=1.点评:本题应用的知识点为:在函数图象上的点一定适合这个函数解析式.例2.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14考点:.分析:由抛物线y=ax 2-6x 经过点(2,0),求得a 的值,再求出函数顶点坐标,求得顶点到坐标原点的距离.解答:解:由于抛物线y=ax 2-6x 经过点(2,0),则4a-12=0,a=3,抛物线y=3x 2-6x ,变形,得:y=3(x-1)2-3,则顶点坐标M (1,-3), 抛物线顶点到坐标原点的距离|OM|=故选B .点评:本题考查了二次函数图象上点的坐标特征,先求解析式,再求顶点坐标,最后求距离.学以致用:1.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴2.当n =______,m =______时,函数y =(m +n)x n+(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________.3.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。

三、函数y=ax 2+bx+c 的图象和性质知识点:(1)①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点. ③|a |越大,开口越小。

(2)顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=(3)①当0>a 时,在对称轴左边,y 随x 的增大而减小;在在对称轴右边,y 随x 的增大而增大;②当0<a 时,在对称轴左边,y 随x 的增大而增大;在在对称轴右边,y 随x 的增大而减小。

(4) y 轴与抛物线c bx ax y ++=2得交点为(0,c )精典例题:例1:(2002?十堰)抛物线y=-x 2+2x+1的顶点坐标是____________,开口方向是____________ ,对称轴是___________.考点:.分析:根据二次函数的性质解题.解答:解:∵y=-x 2+2x+1=-(x 2-2x )+1=-(x 2-2x+1-1)+1=-(x-1)2+2,∴抛物线y=-x 2+2x+1的顶点坐标是(1,2),开口方向是向下,对称轴是x=1.点评:此题考查了二次函数的性质,顶点坐标、对称轴及开口方向.例2:(2010?兰州)抛物线y=x 2+bx+c 图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x 2-2x-3,则b 、c 的值。

考点:.分析:易得新抛物线的顶点,根据平移转换可得原抛物线顶点,根据顶点式及平移前后二次项的系数不变可得原抛物线的解析式,展开即可得到b ,c 的值.解答:解:由题意得新抛物线的顶点为(1,-4),∴原抛物线的顶点为(-1,-1),设原抛物线的解析式为y=(x-h )2+k 代入得:y=(x+1)2-1=x 2+2x , ∴b=2,c=0. 故选B .点评:抛物线平移不改变二次项的系数的值;讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.学以致用:1.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。

2.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x 2-2x+1 ; (2)y=-3x 2+8x -2; (3)y=-14 x 2+x -43.把抛物线y=-2x 2+4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。

4.某商场以每台2500元进口一批彩电。

如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?四、函数y=a(x -h)2的图象与性质知识点回顾:填表:抛物线 开口方向 对称轴 顶点坐标典型例题:例1:抛物线y=x 2-4x-3的图象开口 ,对称轴是 ,顶点坐标 ,函数y 有最 。

考点:。

分析:二次函数的二次项系数a >0,可以确定抛物线开口方向和函数有最小值,然后利用y=ax 2+bx+c 的顶点坐标公式就可以得到对称轴,顶点坐标.解答:解:∵二次函数的二次项系数a >0,∴抛物线开口向上,函数有最小值, ∵y=x 2-4x-3,∴根据y=ax 2+bx+c 的顶点坐标公式为,,对称轴是,代入公式求值就可以得到对称轴是x=2,顶点坐标是(2,-7).故抛物线y=x 2-4x-3的图象开口向上,对称轴是x=2,顶点坐标(2,-7),函数y 有最小值. 故填空答案:向上,x=2,(2,-7),小.点评:本题主要是对抛物线一般形式中对称轴,顶点坐标的考查,是中考中经常出现的问题.学以致用:1.已知函数y=2x 2,y=2(x -4)2,和y=2(x+1)2。

(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。

(2)分析分别通过怎样的平移。

可以由抛物线y=2x 2得到抛物线y=2(x -4)2和y=2(x+1)2? 2.试写出抛物线y=3x 2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。

(1)右移2个单位;(2)左移23 个单位;(3)先左移1个单位,再右移4个单位。

3.二次函数y=a(x -h)2的图象如图:已知a=12,OA =OC ,试求该抛物线的解析式。

五、二次函数的增减性知识点:(1). 0a >,当2b x a <-时,y 随x 的增大而减小;当2bx a >-时,y 随x 的增大而增大。

(2). 0a <,当2b x a <-时,y 随x 的增大而增大;当2bx a>-时,y 随x 的增大而减小。

典型例题:例1:已知二次函数y=ax 2+bx+c 的图象如图:(1)求函数解析式;(2)写出对称轴,回答x 为何值时,y 随着x 的增大而减少? 考点:;. 分析:(1)根据图示知函数经过三点:(-1,0)、(4,0)、(0,-4),将其代入函数解析式,列出关于a 、b 、c 的三元一次方程组,然后解方程组即可;(2)根据图象求得该函数图象的对称轴,然后根据对称轴、函数图象回答问题. 解答:解:(1)根据图示知,该函数图象经过点(-1,0)、(4,0)、(0,-4),∴二次函数的解析式是:y=x 2-3x-4;(2)根据图象知,二次函数y=x 2-3x-4与x 轴的交点是(-1,0)、(4,0), ∴对称轴是x=,∴根据图象知,当时,y 随着x 的增大而减小.点评:本题考查了待定系数法求二次函数的解析式、二次函数的性质.解答该题时,采用了“数形结合”的数学思想,要求学生具备一定的读图能力,能从图形中寻取关键性信息.例2:(2010?呼和浩特)已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数图象上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .无法确定考点:.分析:对,由x1<0<x2<x3知,A点位于第二象限,y1最大,第四象限,y随x增大而增大,y2<y3,故y2<y3<y1.解答:解:∵中k=-3<0,∴此函数的图象在二、四象限,∵点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数图象上的三点,且x1<0<x2<x3,∴A点位于第二象限,y1>0,B、C两点位于第四象限,∵0<x2<x3,∴y2<y3,∴y2<y3<y1.故选B.点评:本题考查了反比例函数图象上点的坐标特征,要学会比较图象上点的坐标.学以致用:1.二次函数y=3x2-6x+5,当x>1时,y随x的增大而;当x<1时,y随x的增大而;当x=1时,函数有最值是。

相关文档
最新文档