l298驱动直流或步进电机
电机驱动l298n原理
电机驱动l298n原理
L298N是一种常见的电机驱动器,可用于控制直流电机或步
进电机。
它使用了H桥电路的原理。
H桥电路是由四个开关(晶体管或MOSFET)组成的,它们
按特定的方式连接在一起,形成了一个桥形结构。
这种结构可以控制电流的流向和电机的旋转方向。
L298N中的H桥电路分为两个部分,分别用于控制电机的两
个端口。
每个部分都由一个上半H桥和一个下半H桥组成。
当上半H桥的两个开关关闭时,与电机连接的两个端口之间
的电流会开始流动,电机会顺时针旋转。
当下半H桥的两个
开关关闭时,电流改变方向,电机会逆时针旋转。
L298N通过控制这些开关的状态来实现电机的速度和方向控制。
它具有使能信号(ENA, ENB)和方向信号(IN1, IN2,
IN3, IN4)的输入引脚,通过改变这些输入信号的状态,可以
控制电机的转速和转向。
例如,当ENA引脚为高电平,IN1为高电平,IN2为低电平时,上半H桥的两个开关会关闭,电流会从ENA引脚流入
IN1引脚,然后流入电机的一个端口,然后返回到IN2引脚,
最后回到GND。
这样,电机会以某个速度顺时针旋转。
通过改变ENA、IN1和IN2的电平状态,可以控制电机的转
速和方向。
类似地,通过控制ENB、IN3和IN4的电平状态,
可以控制电机的另一个端口。
总之,L298N电机驱动器采用H桥电路的原理,通过控制开关的状态来控制电流的流向和电机的转速和方向。
L298N的详细资料驱动直流电机和步进电机
L298N的详细资料驱动直流电机和步进电机电机驱动电路;电机转速控制电路(PWM信号)主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图为驱动原理图--------------------------------------------------------L298N电机驱动模块图•••1.1 实物图••1.2 原理图•••1.3 各种电机实物接线图•••1.4 各种电机原理图•••1.5 模块接口说明•••L298N电机驱动模块图1.1 实物图正面背面1.2 原理图1.3 各种电机实物接线图直流电机实物接线图4相步进电机实物接线图3相步进电机实物接线图1.4各种电机原理图直流电机原理图步进电机原理图1.5 模块接口说明+5V:芯片电压5V。
VCC:电机电压,最大可接50V。
GND:共地接法。
A-~D-:输出端,接电机。
A~D+ :为步进电机公共端,模块上接了VCC。
EN1、EN2:高电平有效,EN1、EN2分别为IN1和IN2、IN3和IN4的使能端。
IN1~ IN4:输入端,输入端电平和输出端电平是对应的。
1和15和8引脚直接接地,4管脚VS接2.5到46的电压,它是用来驱动电机的,9引脚是用来接4.5到7V的电压的,它是用来驱动L298芯片的,记住,L298需要从外部接两个电压,一个是给电机的,另一个给L298芯片的6和11引脚是它的使能端,一个使能端控制一个电机,至于那个控制那个你自己焊接,你可以把它理解为总开关,只有当它们都是高电平的时候两个电机才有可能工作,5,7,10,12是298的信号输入端和单片机的IO口相连,2,3,13,14是输出端,输入5和7控制输出2和3, 输入的10,12控制输出的13,14L298N型驱动器的原理及应用L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
教大家使用L298N电机驱动模块,电机控制正反转、调速很轻松!
教大家使用L298N电机驱动模块,电机控制正反转、调速很轻松!普及数电模电知识,科教兴国。
大家好,今天和大家来学习L298N电机驱动模块。
L298N是双H 桥电机驱动芯片,可以驱动两个直流电机或者一个步进电机,能实现电机的正反转以及调速。
先来看看L298N芯片实物:上图是15脚Multiwatt封装的L298N。
L298N兼容标准的TTL逻辑,是一款高电压、高电流双全桥驱动器,能够驱动感性负载,例如继电器、电磁阀、直流电机、步进电机等。
两个独立的使能信号用于使能或禁能设备,每一个桥的下管射极相连,射极引脚可以连接相应的采样电阻,用以过流保护,芯片的逻辑供电与负载供电分离,以使芯片可以工作在更低的逻辑电压下。
这个芯片那么多引脚,对于各引脚的功能定义,我们可以通过数据手册来了解:从下往上数,按照序号,1脚和15脚是:电机电流(或叫桥驱动电流)检测引脚;2、3脚是A桥输出引脚,可接一个直流电机;4脚是负载驱动供电引脚,这个引脚和地之间必须要接一个100nF的无感电容;5脚和7脚是A桥信号输入,兼容TTL电平;6脚和11脚是使能输入,兼容TTL,低电平禁能,高电平使能;8脚是地,GND;9脚是逻辑供电,该引脚到地必须连接一个100nF的电容;10脚和12脚是B 桥信号输入,同样兼容TTL逻辑电平;13脚和14脚是B桥输出,可接一个直流电机。
在这里需要提一下,是关于1脚和15脚:当需要对电机电流进行检测时,分别在sense A、B两个引脚上串接个小电阻,当A、B两个桥的电流(电机电流)流过两个电阻时转换成电压,这个电压被送到控制L298工作的上位机(或控制电路),上位机就根椐这个电压的高低判断L298是否工作正常。
如果这个电压超过设计上限时,上位机就判L298有故障,可采取如下保护措施:1、停止步进脉冲输出,关断电机电流。
2、给EN脚一个低电平,关闭L298。
如sense不用,就直接将sense A、B两脚接地。
Arduino实验笔记1:L298N Arduino 控制直流电机和步进电机
一。控制直流电机正反转
上代码来自
intKp; intdir1PinA=4; intdir2PinA=7;
intdir1PinB=8; intdir2PinB=12;
voidsetup(){ pinMode(4,OUTPUT);//IO pinMode(7,OUTPUT);//IO pinMode(8,OUTPUT);//IO pinMode(12,OUTPUT);//IO pinMode(10,OUTPUT);//PWM引脚 pinMode(11,OUTPUT);//PWM引脚 } voidloop(){
连线图,手画的看起来差点,但很清楚。
二。步进电机实验
上代码来自的朋友
/* 作者:极客工坊 时间:2012年5月24日 IDE版本号:1.0.1 发布地址:[url][/url] 作用:当你按下按钮后1秒钟,灯会亮,然后维持5秒钟,熄灭 */ voidsetup() { pinMode(4,INPUT);//将4号数字口设置为输入状态,13号数字口设置为输出状态 pinMode(11,OUTPUT); } voidloop() { intn=digitalRead(4);//创建一个变量n,将4号数字口的状态采集出来赋值给 他。
digitalWrite(dir2PinB,HIGH); analogWrite(10,map(Kp,500,0,0,255)); analogWrite(11,map(Kp,500,0,0,255)); }
//>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>后退-------
l298n
L298NL298N 是一种双 H-桥电机驱动芯片,可用于控制直流电机或步进电机。
它广泛应用于机器人、小车、无人机和其他需要精确控制电机的项目中。
本文将详细介绍L298N 的工作原理、连接方式以及一些常见问题的解决方法。
工作原理L298N 由两个 H-桥组成,每个 H-桥由四个开关管组成。
这些开关管由输入信号控制,以控制电机的转向和速度。
当两个开关管打开时,电机就会沿着一个方向旋转;当两个开关管关闭时,电机会沿着另一个方向旋转。
通过改变开关管的开闭状态和输入信号的时序,可以实现电机的精确控制。
连接方式L298N 的引脚功能如下所示:•EN1:使能电机1,用于控制电机1的转速。
•IN1、IN2:控制电机1的方向。
•EN2:使能电机2,用于控制电机2的转速。
•IN3、IN4:控制电机2的方向。
•VM:电机供电电源(4.8-35V)。
•GND:地。
•OUT1、OUT2:电机1输出。
•OUT3、OUT4:电机2输出。
以下是连接 L298N 的步骤:1.将VM连接到电机的正极,将地线连接到电机的负极。
2.将电机1的正极连接到OUT1,负极连接到OUT2。
3.将电机2的正极连接到OUT3,负极连接到OUT4。
4.使用导线将EN1连接到微控制器的输出引脚,以控制电机1的转速。
5.使用导线将IN1和IN2连接到微控制器的输出引脚,以控制电机1的转向。
6.使用导线将EN2连接到微控制器的输出引脚,以控制电机2的转速。
7.使用导线将IN3和IN4连接到微控制器的输出引脚,以控制电机2的转向。
常见问题与解决方法1. 电机运转不稳定这可能是由于电源供电不稳定或驱动芯片过热导致的。
解决方法包括:•使用稳定的电源供电。
确保电源电压在规定范围内。
•添加散热器以降低驱动芯片的温度。
•降低电机的负载,避免过度功率消耗。
2. 电机转向错误这可能是由于输入信号控制错误或引脚连接错误导致的。
解决方法包括:•检查输入信号的时序和引脚连接是否正确。
l298n工作原理
l298n工作原理
L298N是一种双H桥驱动芯片,常用于驱动直流电机或步进
电机。
它具有以下工作原理:
1. 在正向旋转时,使IN1和IN2两个输入端分别提供不同的
控制信号,如IN1为高电平,IN2为低电平。
这将使输出的OUT1和OUT2两个端口分别提供正向电流给电机的两个线圈,从而使电机顺时针旋转。
2. 在反向旋转时,需要改变控制信号。
这时,使IN1输入为
低电平,IN2输入为高电平。
这将使输出的OUT1和OUT2两
个端口分别提供反向电流给电机的两个线圈,从而使电机逆时针旋转。
3. 如果需要制动电机停止旋转,可以将IN1和IN2都设置为
低电平。
此时,电机的两个线圈将被短路,产生制动效果,电机停止旋转。
4. L298N还提供了使得电机速度可以进行调节的PWM控制功能。
使用PWM信号可以控制电机的平均电压大小,从而控制
电机的转速。
通过调节PWM信号的占空比,可以使电机以不
同的速度旋转。
总的来说,L298N的工作原理是根据输入的控制信号,控制
输出的电流方向和大小,从而驱动电机按照预定的方式旋转。
L298N电机驱动模块详解
L298N电机驱动器使用说明书注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。
5、可单独控制两台直流电机6、可单独控制一台步进电机7、PWM脉宽平滑调速8、可实现正反转9、采用光电隔离六、有详细使用说明书七、提供相关软件八、提供例程及其学习资料驱动器结构详解1.信号电源引入端2.控制信号输入端3.直流电机调速PWM脉宽信号输入端。
(控制步进电机或者控制直流电机无需调速时,保持此状态)4.控制信号指示灯5.光电隔离(抗干扰) 6.核心芯片(L298N)7.二极管桥式续流保护8.电源滤波9.端子接线实例一:步进电机的控制实例步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
一、步进电机最大特点是:1、它是通过输入脉冲信号来进行控制的。
2、电机的总转动角度由输入脉冲数决定。
3、电机的转速由脉冲信号频率决定。
二、步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
(或者其他信号源)如图:按CTRL并点击(L298N驱动器与直流电机接线图)三、基本原理作用如下:两相四拍工作模式时序图:(1)控制换相顺序1、通电换相这一过程称为脉冲分配。
例如:1、两相四线步进电机的四拍工作方式,其各相通电顺序为(A-B-A’-B’)依次循环。
《例一、步进电机正转两相四拍程序》(通电控制脉冲必须严格按照这一顺序分别控制A,B相的通断。
)2、两相四线步进电机的四拍工作方式,其各相通电顺序为:(A-AB-B-BA’-A’-A’B’-B’-B’A)例二、步进电机正转两相八拍程序》依次循环。
(出于对力矩、平稳、噪音及减少角度等方面考虑。
往往采用八拍工作方式)(2)控制步进电机的转向如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
L298N的详细资料驱动直流电机和步进电机(最全版)大总结
L298N的详细资料驱动直流电机和步进电机电机驱动电路;电机转速控制电路(PWM信号)主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图为驱动原理图L298N电机驱动模块图•••1.1 实物图••1.2 原理图•••1.3 各种电机实物接线图•••1.4 各种电机原理图•••1.5 模块接口说明•••L298N电机驱动模块图1.1 实物图正面背面1.2 原理图1.3 各种电机实物接线图直流电机实物接线图4相步进电机实物接线图3相步进电机实物接线图1.4各种电机原理图直流电机原理图步进电机原理图1.5 模块接口说明+5V:芯片电压5V。
VCC:电机电压,最大可接50V。
GND:共地接法。
A-~D-:输出端,接电机。
A~D+ :为步进电机公共端,模块上接了VCC。
EN1、EN2:高电平有效,EN1、EN2分别为IN1和IN2、IN3和IN4的使能端。
IN1~ IN4:输入端,输入端电平和输出端电平是对应的。
1和15和8引脚直接接地,4管脚VS接2.5到46的电压,它是用来驱动电机的,9引脚是用来接4.5到7V的电压的,它是用来驱动L298芯片的,记住,L298需要从外部接两个电压,一个是给电机的,另一个给L298芯片的6和11引脚是它的使能端,一个使能端控制一个电机,至于那个控制那个你自己焊接,你可以把它理解为总开关,只有当它们都是高电平的时候两个电机才有可能工作,5,7,10,12是298的信号输入端和单片机的IO口相连,2,3,13,14是输出端,输入5和7控制输出2和3, 输入的10,12控制输出的13,14L298N型驱动器的原理及应用L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
是一种二相和四相电机的专用驱动器,即内含二个H桥的高电压大电流双全桥式驱动器,接收标准TTL逻辑电平信号,可驱动46V、2A以下的电机。
l298n驱动电路
l298n驱动电路L298N驱动电路是一种常用的双H桥驱动电路,常用于控制直流电机,例如步进电机,直流无刷电机等。
以下是L298N驱动电路的基本示意图和操作说明:1. L298N驱动电路示意图:```+---------+IN1 -| |-IN2 -| L298N |- OUT1IN3 -| |-IN4 -| |- OUT2ENA(PWM)| |-| |+---------+```- IN1 ~ IN4:控制输入端,控制电机的转向和速度。
- OUT1 ~ OUT2:电机输出端。
- ENA:使能控制输入端,可以通过PWM调节电机的速度。
2. 操作说明:- 在控制输入端(IN1~IN4)中,通过控制高低电平来控制电机的转向,以下是一些常用的输入组合:- IN1=HIGH, IN2=LOW:电机正转。
- IN1=LOW, IN2=HIGH:电机反转。
- IN1=HIGH, IN2=HIGH:电机刹车。
- IN1=LOW, IN2=LOW:电机停止。
- 如果需要控制电机的速度,在ENA输入端接入一个PWM信号,通过调节PWM的占空比来控制电机的速度。
- 根据电机的额定电压和电流,选择合适的电源电压供电给L298N驱动芯片。
- 连接电机到OUT1和OUT2端口,通过控制输入端的电平来控制电机的转向和速度。
- 注意:在接线之前,确保所有电路和电源都已正确连接,以避免损坏电机和其他电子元件。
总结:L298N驱动电路是一种常用的双H桥驱动电路,通过控制输入端的高低电平来控制电机的转向和速度,可以通过ENA端口接入PWM信号来控制电机的速度。
L298N步进电机驱动器使用说明
L298N电机驱动器使用说明兴创科技xchuangkj.taobao.L298N是ST公司生产的一种高电压、大电流电机驱动芯片。
该芯片采用15脚封装。
主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。
含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。
使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。
宝贝简介:一、尺寸:65mmX41mm X28mm二、主要芯片:L298N、光电耦合器三、工作电压:控制信号直流4.5~5.5V;驱动电机电压5~30V四、可驱动直流(5~30V之间电压的电机)五、最大输出电流2A (瞬间峰值电流3A)六、最大输出功率25W七、特点:1、具有信号指示2、转速可调3、抗干扰能力强4、具有续流保护5、可单独控制两台直流电机6、可单独控制一台步进电机7、PWM脉宽平滑调速(可使用PWM信号对直流电机调速)8、可实现正反转9、采用光电隔离实例一:步进电机的控制实例步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
一、步进电机最大特点是:1、它是通过输入脉冲信号来进行控制的。
2、电机的总转动角度由输入脉冲数决定。
3、电机的转速由脉冲信号频率决定。
二、步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
(或者其他信号源) 三、基本原理作用如下:步进电机控制:将IN1,IN2和IN3,IN4两对引脚分别接入单片机的某个端口,输出连续的脉冲信号。
l98n的详细资料
大总结L298N的详细资料驱动直流电机和步进电机电机驱动电路;电机转速控制电路(PWM信号)主要采用L298N,通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的操作,输入引脚与输出引脚的逻辑关系图为驱动原理图--------------------------------------------------------L298N电机驱动模块图••1.1 实物图••1.2 原理图•••1.3 各种电机实物接线图•••1.4 各种电机原理图•••1.5 模块接口说明•••L298N电机驱动模块图1.1 实物图正面背面1.2 原理图1.3 各种电机实物接线图直流电机实物接线图4相步进电机实物接线图3相步进电机实物接线图1.4各种电机原理图直流电机原理图步进电机原理图1.5 模块接口说明+5V:芯片电压5V。
VCC:电机电压,最大可接50V。
GND:共地接法。
A-~D-:输出端,接电机。
A~D+ :为步进电机公共端,模块上接了VCC。
EN1、EN2:高电平有效,EN1、EN2分别为IN1和IN2、IN3和IN4的使能端。
IN1~ IN4:输入端,输入端电平和输出端电平是对应的。
我正在用L298N驱动我的小车的两个直流减速电机,其实它很好用,1和15和8引脚直接接地,4管脚VS接2.5到46的电压,它是用来驱动电机的,9引脚是用来接4.5到7V的电压的,它是用来驱动L298芯片的,记住,L298需要从外部接两个电压,一个是给电机的,另一个给L298芯片的6和11引脚是它的使能端,一个使能端控制一个电机,至于那个控制那个你自己焊接,你可以把它理解为总开关,只有当它们都是高电平的时候两个电机才有可能工作,5,7,10,12是298的信号输入端和单片机的IO口相连,2,3,13,14是输出端,输入5和7控制输出2和3, 输入的10,12控制输出的13,14L298N型驱动器的原理及应用L298N是SGS公司的产品,内部包含4通道逻辑驱动电路。
L298N说明及应用
恒压恒流桥式驱动芯片L298NL298是SGS公司的产品,比较常见的是15脚Multiwatt封装的L298N,内部同样包含4通道逻辑驱动电路。
可以方便的驱动两个直流电机,或一个两相步进电机。
L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号;而且电路简单,使用比较方便。
L298N可接受标准TTL逻辑电平信号V SS,V SS可接4.5~7 V电压。
4脚V S接电源电压,V S电压范围V IH为+2.5~46 V。
输出电流可达2.5 A,可驱动电感性负载。
1脚和15脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。
L298可驱动2个电动机,OUT1,OUT2和OUT3,OUT4之间可分别接电动机, 5(IN1),7(IN2),10(IN3),12(IN4)脚接输入控制电平,控制电机的正反转,这四个引脚输入PWM脉冲,假设IN1输入一个PWM 脉冲,IN2输入与IN1相反的PWM脉冲电机正转,相反的PWM可以由程序设置或者在IN2的输入前加一个反相器也可实现,建议使用程序设置方便简单,以减少硬件电路避免出现更多问题,若要实现电机的反转,则IN1、IN2输入与正转相反的脉冲即可实现, EN1、EN2接控制使能端,控制电机的停转。
当使能端为低电平时,芯片不会工作。
L298使能端为高电平使能,使能端EN1、EN2可以接I/O口控制也可直接接电源正一直使能,至于使能端是接固定电平还是接I/O口,是具体情况而定,若I/O口资源够用可接I/O口控制,若I/O口不够用,可直接接高电平,同时,控制电机的PWM脉冲也可以从两个使能端输入,那么四个输入引脚IN1、IN2、IN3、IN4只需设置为相应的高低电平可以控制电机的正反转,假如IN1给固定高电平,IN2给固定低电平电机正传,那么IN1给低IN2给高就可实现反转,IN3、IN4同理。
L298N步进电机驱动器使用说明
L298N电机驱动器使用说明兴创科技是ST公司生产的一种高电压、大电流电机驱动芯片。
该芯片采用15脚封装。
主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。
内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。
使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。
宝贝简介:一、尺寸:65mmX41mm X28mm二、主要芯片:L298N、光电耦合器三、工作电压:控制信号直流~;驱动电机电压5~30V四、可驱动直流(5~30V之间电压的电机)五、最大输出电流2A (瞬间峰值电流3A)六、最大输出功率25W七、特点:1、具有信号指示2、转速可调3、抗干扰能力强4、具有续流保护5、可单独控制两台直流电机6、可单独控制一台步进电机7、PWM脉宽平滑调速(可使用PWM信号对直流电机调速)8、可实现正反转9、采用光电隔离实例一:步进电机的控制实例步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
一、步进电机最大特点是:1、它是通过输入脉冲信号来进行控制的。
2、电机的总转动角度由输入脉冲数决定。
3、电机的转速由脉冲信号频率决定。
二、步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
(或者其他信号源)三、基本原理作用如下:步进电机控制:将IN1,IN2和IN3,IN4两对引脚分别接入单片机的某个端口,输出连续的脉冲信号。
L298N 中文说明
L298N是专用驱动集成电路,属于H桥集成电路,与L293D的差别是其输出电流增大,功率增强。
其输出电流为2A,最高电流4A,最高工作电压50V,可以驱动感性负载,如大功率直流电机,步进电机,电磁阀等,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。
当驱动直流电机时,可以直接控制步进电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。
为了避免电机对单片机的干扰,本模块加入光耦,进行光电隔离,从而使系统能稳定可靠的工作。
本模块具有体积小,控制方便的特点。
采用此模块定会使您的电机控制自如,可以应对需要大功率步进电机的题目。
本模块具有6个指示灯,能指示步进电机的控制运行状态,便于步进电机初学者学习步进的编程,同时在教学中,也便于演示步进的运行状态。
本模块可控制两相、三相、四相的步进电机。
使用说明:板上的EN1与EN2为高电平时有效,这里的电平指的是TTL电平。
EN1为IN1和IN2的使能端,EN2为IN3和IN4的使能端。
POWER接直流电源,注意正负,电源正端为VCC,电源地为GND。
步进电机控制逻辑如下所示,其中A、B、C、D为步进电机的四个线圈,为1表示有电流通过,为0表示没有电流流过。
线圈连线图如下图所示(以四相步进电机为例)。
EN1 EN2 IN4 IN3 IN2 IN1 A B C D1 0 0 0 0 1 1 0 0 01 0 0 0 1 0 0 1 0 00 1 0 1 0 0 0 0 1 00 1 1 0 0 0 0 0 0 1原理图:L298Jenuary 2000DUAL FULL-BRIDGE DRIVERMultiwatt15ORDERING NUMBERS : L298N (Multiwatt Vert.)L298HN (Multiwatt Horiz.)L298P (PowerSO20)BLOCK DIAGRAM.OPERATING SUPPLY VOLTAGE UP TO 46 V .TOTAL DC CURRENT UP TO 4 A .LOW SATURATION VOLTAGE.OVERTEMPERATURE PROTECTION.LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)DESCRIPTIONThe L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver de-signed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to enable or disable the device independently of the in-put signals. The emitters of the lower transistors of each bridge are connected together and the corre-sponding external terminal can be used for the con-nection of an external sensing resistor. An additional supply input is provided so that the logic works at a lower voltage.PowerSO20®1/13PIN CONNECTIONS (top view)GND Input 2VSS N.C.Out 1V SOut 2Input 1Enable A Sense AGND1089765432131415161719182012111GNDD95IN239Input 3Enable B Out 3Input 4Out 4N.C.Sense B GND ABSOLUTE MAXIMUM RATINGSSymbol ParameterValue Unit V S Power Supply 50V V SS Logic Supply Voltage7V V I ,V en Input and Enable Voltage–0.3 to 7V I OPeak Output Current (each Channel)– Non Repetitive (t = 100µs)–Repetitive (80% on –20% off; t on = 10ms)–DC Operation 32.52A A A V sens Sensing Voltage–1 to 2.3V P tot Total Power Dissipation (T case = 75°C)25W T op Junction Operating Temperature –25 to 130°C T stg , T jStorage and Junction Temperature–40 to 150°CTHERMAL DATASymbol ParameterPowerSO20Multiwatt15Unit R th j-case Thermal Resistance Junction-case Max.–3°C/W R th j-ambThermal Resistance Junction-ambient Max.13 (*)35°C/W(*) Mounted on aluminum substrate1234567910118ENABLE B INPUT 3LOGIC SUPPLY VOLTAGE V SS GND INPUT 2ENABLE A INPUT 1SUPPLY VOLTAGE V S OUTPUT 2OUTPUT 1CURRENT SENSING ATAB CONNECTED TO PIN 813141512CURRENT SENSING B OUTPUT 4OUTPUT 3INPUT 4D95IN240AMultiwatt15PowerSO20PIN FUNCTIONS (refer to the block diagram)MW.15PowerSO Name Function1;152;19Sense A; Sense B Between this pin and ground is connected the sense resistor tocontrol the current of the load.2;34;5Out 1; Out 2Outputs of the Bridge A; the current that flows through the loadconnected between these two pins is monitored at pin 1.46V S Supply Voltage for the Power Output Stages.A non-inductive 100nF capacitor must be connected between thispin and ground.5;77;9Input 1; Input 2TTL Compatible Inputs of the Bridge A.6;118;14Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A(enable A) and/or the bridge B (enable B).81,10,11,20GND Ground.912VSS Supply Voltage for the Logic Blocks. A100nF capacitor must beconnected between this pin and ground.10; 1213;15Input 3; Input 4TTL Compatible Inputs of the Bridge B.13; 1416;17Out 3; Out 4Outputs of the Bridge B. The current that flows through the loadconnected between these two pins is monitored at pin 15.–3;18N.C.Not ConnectedELECTRICAL CHARACTERISTICS (V S = 42V; V SS = 5V, T j = 25°C; unless otherwise specified)Symbol Parameter Test Conditions Min.Typ.Max.Unit V S Supply Voltage (pin 4)Operative Condition V IH +2.546V V SS Logic Supply Voltage (pin 9) 4.557VI S Quiescent Supply Current (pin 4)V en = H; I L = 0 V i = LV i = H 13502270mAmAV en = L V i = X4mAI SS Quiescent Current from V SS (pin 9)V en = H; I L = 0 V i = LV i = H 2473612mAmAV en = L V i = X6mA V iL Input Low Voltage(pins 5, 7, 10, 12)–0.3 1.5VV iH Input High Voltage(pins 5, 7, 10, 12)2.3VSS VI iL Low Voltage Input Current(pins 5, 7, 10, 12)V i = L–10µAI iH High Voltage Input Current(pins 5, 7, 10, 12)Vi = H ≤ V SS –0.6V30100µA V en = L Enable Low Voltage (pins 6, 11)–0.3 1.5V V en = H Enable High Voltage (pins 6, 11) 2.3V SS V I en = L Low Voltage Enable Current(pins 6, 11)V en = L–10µAI en = H High Voltage Enable Current(pins 6, 11)V en = H ≤ V SS –0.6V30100µAV CEsat (H)Source Saturation Voltage I L = 1AI L = 2A 0.95 1.3521.72.7VVV CEsat (L)Sink Saturation Voltage I L = 1A (5)I L = 2A (5)0.85 1.21.71.62.3VVV CEsat Total Drop I L = 1A (5)I L = 2A (5)1.80 3.24.9VVV sens Sensing Voltage (pins 1, 15)–1 (1)2VFigure 1 : Typical Saturation Voltage vs. OutputCurrent.Figure 2 : Switching Times Test Circuits.Note :For INPUT Switching, set EN = HFor ENABLE Switching, set IN = H1) 1)Sensing voltage can be –1 V for t ≤ 50 µsec; in steady state V sens min ≥ – 0.5 V.2) See fig. 2.3) See fig. 4.4) The load must be a pure resistor.ELECTRICAL CHARACTERISTICS (continued)Symbol ParameterTest ConditionsMin.Typ.Max.Unit T 1 (V i )Source Current Turn-off Delay 0.5 V i to 0.9 I L (2); (4) 1.5µs T 2 (V i )Source Current Fall Time 0.9 I L to 0.1 I L (2); (4)0.2µs T 3 (V i )Source Current Turn-on Delay 0.5 V i to 0.1 I L (2); (4)2µs T 4 (V i )Source Current Rise Time 0.1 I L to 0.9 I L (2); (4)0.7µs T 5 (V i )Sink Current Turn-off Delay 0.5 V ito 0.9 I L (3); (4)0.7µs T 6 (V i )Sink Current Fall Time 0.9 I L to 0.1 I L (3); (4)0.25µs T 7 (V i )Sink Current Turn-on Delay 0.5 V i to 0.9 I L (3); (4) 1.6µs T 8 (V i )Sink Current Rise Time 0.1 I L to 0.9 I L (3); (4)0.2µs fc (V i )Commutation Frequency I L = 2A2540KHz T 1 (V en )Source Current Turn-off Delay 0.5 V en to 0.9 I L (2); (4)3µs T 2 (V en )Source Current Fall Time 0.9 I L to 0.1 I L (2); (4)1µs T 3 (V en )Source Current Turn-on Delay 0.5 V en to 0.1 I L (2); (4)0.3µs T 4 (V en )Source Current Rise Time 0.1 I L to 0.9 I L (2); (4)0.4µs T 5 (V en )Sink Current Turn-off Delay 0.5 V en to 0.9 I L (3); (4) 2.2µs T 6 (V en )Sink Current Fall Time 0.9 I L to 0.1 I L (3); (4)0.35µs T 7 (V en )Sink Current Turn-on Delay 0.5 V en to 0.9 I L (3); (4)0.25µs T 8 (V en )Sink Current Rise Time0.1 I L to 0.9 I L (3); (4)0.1µsFigure 3 : Source Current Delay Times vs. Input or Enable Switching.Figure 4 : Switching Times Test Circuits.Note :For INPUT Switching, set EN = HFor ENABLE Switching, set IN = LFigure 5 : Sink Current Delay Times vs. Input 0 V Enable Switching.Figure 6 :Bidirectional DC Motor Control.L = Low H = High X = Don’t careInputsFunction V en = HC = H ;D = L Forward C = L ; D = H Reverse C = DFast Motor Stop V en = LC = X ;D = XFree RunningMotor StopFigure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4 and channel 2 with channel 3.APPLICATION INFORMATION (Refer to the block diagram)1.1. POWER OUTPUT STAGEThe L298 integrates two power output stages (A ; B). The power output stage is a bridge configuration and its outputs can drive an inductive load in com-mon or differenzial mode, depending on the state of the inputs. The current that flows through the load comes out from the bridge at the sense output : an external resistor (R SA ; R SB.) allows to detect the in-tensity of this current.1.2. INPUT STAGEEach bridge is driven by means of four gates the in-put of which are In1 ; In2 ; EnA and In3 ; In4 ; EnB. The In inputs set the bridge state when The En input is high ; a low state of the En input inhibits the bridge. All the inputs are TTL compatible.2. SUGGESTIONSA non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. When the large ca-pacitor of the power supply is too far from the IC, a second smaller one must be foreseen near the L298.The sense resistor, not of a wire wound type, must be grounded near the negative pole of Vs that must be near the GND pin of the I.C.Each input must be connected to the source of the driving signals by means of a very short path. Turn-On and Turn-Off : Before to Turn-ON the Sup-ply Voltage and before to Turn it OFF, the Enable in-put must be driven to the Low state.3. APPLICATIONSFig 6 shows a bidirectional DC motor control Sche-matic Diagram for which only one bridge is needed. The external bridge of diodes D1 to D4 is made by four fast recovery elements (trr≤ 200 nsec) that must be chosen of a VF as low as possible at the worst case of the load current.The sense output voltage can be used to control the current amplitude by chopping the inputs, or to pro-vide overcurrent protection by switching low the en-able input.The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must never be overcome.When the repetitive peak current needed from the load is higher than 2 Amps, a paralleled configura-tion can be chosen (See Fig.7).An external bridge of diodes are required when in-ductive loads are driven and when the inputs of theIC are chopped ; Shottky diodes would be preferred.This solution can drive until 3 Amps In DC operation and until 3.5 Amps of a repetitive peak current.On Fig 8 it is shown the driving of a two phase bipolar stepper motor ; the needed signals to drive the in-puts of the L298 are generated, in this example, from the IC L297.Fig 9 shows an example of P.C.B. designed for the application of Fig 8.Fig 10 shows a second two phase bipolar stepper motor control circuit where the current is controlled by the I.C. L6506.Figure 8 : Two Phase Bipolar Stepper Motor Circuit.This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.R S1 = R S2 = 0.5 ΩD1 to D8 = 2 A Fast diodes{V F≤ 1.2 V @ I = 2 Atrr ≤200 nsFigure 9 : Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).Figure 10 : Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.R R and R sense depend from the load currentMultiwatt15 VDIM.mminch MIN.TYP.MAX.MIN.TYP.MAX.A 50.197B 2.650.104C 1.60.063D 10.039E 0.490.550.0190.022F 0.660.750.0260.030G 1.02 1.27 1.520.0400.0500.060G117.5317.7818.030.6900.7000.710H119.60.772H220.20.795L 21.922.222.50.8620.8740.886L121.722.122.50.8540.8700.886L217.6518.10.6950.713L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L7 2.65 2.90.1040.114M 4.25 4.55 4.850.1670.1790.191M1 4.63 5.08 5.530.1820.2000.218S 1.9 2.60.0750.102S1 1.9 2.60.0750.102Dia13.653.850.1440.152OUTLINE ANDMECHANICAL DATADIM.mminch MIN.TYP.MAX.MIN.TYP.MAX.A 50.197B 2.650.104C 1.60.063E 0.490.550.0190.022F 0.660.750.0260.030G 1.14 1.27 1.40.0450.0500.055G117.5717.7817.910.6920.7000.705H119.60.772H220.20.795L 20.570.810L118.030.710L2 2.540.100L317.2517.517.750.6790.6890.699L410.310.710.90.4060.4210.429L5 5.280.208L6 2.380.094L7 2.65 2.90.1040.114S 1.9 2.60.0750.102S1 1.9 2.60.0750.102Dia13.653.850.1440.152Multiwatt15 HOUTLINE ANDMECHANICAL DATAJEDEC MO-166PowerSO20ea2AEa1PSO20MECDETAIL ATD11120E1E2h x 45DETAIL Aleadsluga3SGage Plane0.35LDETAIL BRDETAIL B(COPLANARITY)GC- C -SEATING PLANEe3bcNN HBOTTOM VIEWE3D1DIM.mm inch MIN.TYP.MAX.MIN.TYP.MAX.A 3.60.142a10.10.30.0040.012a2 3.30.130a300.10.0000.004b 0.40.530.0160.021c 0.230.320.0090.013D (1)15.8160.6220.630D19.49.80.3700.386E 13.914.50.5470.570e 1.270.050e311.430.450E1 (1)10.911.10.4290.437E2 2.90.114E3 5.8 6.20.2280.244G 00.10.0000.004H 15.515.90.6100.626h 1.10.043L 0.81.10.0310.043N 10˚ (max.)S T100.394(1) "D and F" do not include mold flash or protrusions.- Mold flash or protrusions shall not exceed 0.15 mm (0.006").- Critical dimensions: "E", "G" and "a3"OUTLINE AND MECHANICAL DATA8˚ (max.)10Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-croelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics© 2000 STMicroelectronics – Printed in Italy – All Rights ReservedSTMicroelectronics GROUP OF COMPANIESAustralia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.。
L298N电机驱动模块详解
L298N电机驱动器使用说明书注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。
L298N是ST公司生产的一种高电压、大电流电机驱动芯片。
该芯片采用15脚封装。
主要特点是:工作电压高,最高工作电压可达46V;输出电流大,瞬间峰值电流可达3A,持续工作电流为2A;额定功率25W。
内含两个H桥的高电压大电流全桥式驱动器,可以用来驱动直流电动机和步进电动机、继电器线圈等感性负载;采用标准逻辑电平信号控制;具有两个使能控制端,在不受输入信号影响的情况下允许或禁止器件工作有一个逻辑电源输入端,使内部逻辑电路部分在低电压下工作;可以外接检测电阻,将变化量反馈给控制电路。
使用L298N芯片驱动电机,该芯片可以驱动一台两相步进电机或四相步进电机,也可以驱动两台直流电机。
简要说明:一、尺寸:80mmX45mm二、主要芯片:L298N、光电耦合器三、工作电压:控制信号直流5V;电机电压直流3V~46V(建议使用36伏以下)四、最大工作电流:2.5A五、额定功率:25W特点:1、具有信号指示。
2、转速可调3、抗干扰能力强4、具有过电压和过电流保护5、可单独控制两台直流电机6、可单独控制一台步进电机7、PWM脉宽平滑调速8、可实现正反转9、采用光电隔离六、有详细使用说明书七、提供相关软件八、提供例程及其学习资料驱动器结构详解1.信号电源引入端2.控制信号输入端3.直流电机调速PWM脉宽信号输入端。
(控制步进电机或者控制直流电机无需调速时,保持此状态)5.7.二极管桥式续流保护8.电源滤波9.端子接线实例一:步进电机的控制实例步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
一、步进电机最大特点是:1、它是通过输入脉冲信号来进行控制的。
2、电机的总转动角度由输入脉冲数决定。
L298N控制直流电机正反转
L298N控制直流电机正反转一、概述在现代工业自动化和机械设备中,直流电机因其控制简单、响应迅速等特点而被广泛应用。
直流电机的控制并非一件简单的事情,特别是要实现其正反转功能,就需要一种可靠的电机驱动器。
L298N是一款常用的电机驱动器模块,它基于H桥驱动电路,可以有效地控制直流电机的正反转,并且具备过载保护和使能控制功能,使得电机控制更为安全、可靠。
L298N模块内部集成了两个H桥驱动电路,可以同时驱动两个直流电机,且每个电机的驱动电流可达2A,使得它适用于驱动大多数中小型的直流电机。
L298N模块的控制逻辑简单明了,只需通过控制其输入逻辑电平,即可实现电机的正反转、停止等功能。
掌握L298N 模块的使用方法,对于熟悉和掌握直流电机的控制具有重要的意义。
在接下来的内容中,我们将详细介绍L298N模块的工作原理、控制逻辑、驱动电路连接方法以及在实际应用中的使用技巧,以帮助读者更好地理解和应用L298N模块,实现直流电机的正反转控制。
1. 简述直流电机在工业和生活中的重要性直流电机,作为一种重要的电能转换和传动设备,在工业和生活中发挥着至关重要的作用。
它们广泛应用于各种机械设备中,成为驱动各种工业设备和家用电器运行的核心动力源。
在工业领域,直流电机的重要性无可替代。
它们被广泛应用于各种生产线上的机械设备,如机床、泵、风机、压缩机、传送带等。
这些设备需要稳定、可靠的动力源来驱动,而直流电机正好满足这些需求。
它们具有高效、稳定、易于控制等优点,能够实现精确的速度和位置控制,从而提高生产效率和产品质量。
直流电机还在交通运输领域发挥着重要作用。
例如,电动汽车、电动火车、无人机等新型交通工具都采用了直流电机作为动力源。
这些交通工具需要高效、环保的动力系统来驱动,而直流电机正是满足这些需求的理想选择。
在生活中,直流电机也无处不在。
它们被广泛应用于各种家用电器中,如电扇、吸尘器、洗衣机、冰箱、空调等。
这些家电需要稳定、可靠的动力源来运行,而直流电机正是这些家电的核心动力源。
L298N电机驱动模块详解
L298N电机驱动器使用说明书注意:本说明书中添加超链接的按CTRL并点击连接,即可看到内容。
1.信号电源引入端2.控制信号输入端3.直流电机调速PWM脉宽信号输入端。
(控制步进电机或者控制直流电机无需调速时,保持此状态)4.控制信号指示灯5.光电隔离(抗干扰) 6.核心芯片(L298N)7.二极管桥式续流保护8.电源滤波9.端子接线实例一:步进电机的控制实例步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机可分为反应式步进电机(简称VR)、永磁式步进电机(简称PM)和混合式步进电机(简称HB)。
一、步进电机最大特点是:1、它是通过输入脉冲信号来进行控制的。
2、电机的总转动角度由输入脉冲数决定。
3、电机的转速由脉冲信号频率决定。
二、步进电机的驱动电路根据控制信号工作,控制信号由单片机产生。
(或者其他信号源)三、基本原理作用如下:两相四拍工作模式时序图:(1)控制换相顺序1、通电换相这一过程称为脉冲分配。
例如:1、两相四线步进电机的四拍工作方式,其各相通电顺序为(A-B-A’-B’)通电控制脉冲必须严格按照这一顺序分别控制A,B相的通断。
)2、两相四线步进电机的四拍工作方式,其各相通电顺序为:(A-AB-B-BA’-A’-A’B’-B’-B’依次循环。
(出于对力矩、平稳、噪音及减少角度等方面考虑。
往往采用八拍工作方式)(2)控制步进电机的转向如果给定工作方式正序换相通电,步进电机正转,如果按反序通电换相,则电机就反转。
如:正转通电顺序是:(A-B-A’-B’依次循环。
)则反转的通电顺序是:(B‘-A’-B-A依次循环。
)参考下例:(3)控制步进电机的速度如果给步进电机发一个控制脉冲,它就转一步,再发一个脉冲,它会再转一步。
两个脉冲的间隔越短,步进电机就转得越快。
调整单片机发出的脉冲频率,就可以对步进电机进行调速。
(注意:如果脉冲频率的速度大于了电机的反应速度,那么步进电机将会出现失步现象)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L298N直流\步进两用驱动器典型应用电路
驱动器尺寸:宽42mm、长78mm、最大高度23mm
主要元件:恒压恒流桥式2A驱动芯片L298N、光电耦合器TLP521-4
工作电压方式:直流
工作电压:信号端4~6V、控制端5~36V
调速方式:直流电动机采用PWM信号平滑调速。
特点:
1、可实现电机正反转及调速。
2、启动性能好,启动转矩大。
3、工作电压可达到36V,4A。
4、可同时驱动两台直流电机。
5、适合应用于机器人设计及智能小车的设计中。
实例一:用L298驱动两台直流减速电机的电路。
引脚A,B可用于PWM控制。
如果则可将IN1,IN2和IN3,IN4两对引脚分别接高电平和低电平PWM信号控制A,B即可实现直行、转弯、加减速等动作。
实例二:用L298实现二相步进电机控制。
将IN1,IN2和IN3,IN4两对引脚分别接脉冲信号。
信号的快慢决定了电机的转速。
改变绕组脉冲信号的顺序即可
实例三:IN1,IN2和IN3,IN4分别由四路光耦隔离后,连接在单片机的四个端口。
EN-A和EN-B由PWM
下载 (66.63 KB)
2009-5-21 15:08。