【KS5U推荐】第13题+函数的图像-2018精品之高中数学(理)黄金100题系列+Word版含解析

合集下载

高考数学 函数的图象(教师版)

高考数学 函数的图象(教师版)

专题2 函数的图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c【解析】由导函数的图象知,()f x 在(1,2)递增;在(2,)+∞上递减,所以当2x =时取得极大值, 极大值为:f (2)84a b c =++,则函数()f x 的极大值是84a b c ++故选B2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .【解析】根据()y f x =的图象可知其定义域为{|0}x x ≠,故其导函数的定义域也为{|0}x x ≠,又从原函数()y f x =的图象可知,函数()y f x =的单调性是:函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正, 根据选项中的函数()f x 的单调性知选D .故选D 3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .【解析】函数sin 21cos x y x =-,可知函数是奇函数,排除选项B ,当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选C4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =【解析】函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||xf x ln x =无意义,排除A ,故选D 5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D .【解析】因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D ,因为f (1)0=,01x <<时,()0f x <,所以排除B .故选A6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .【解析】若0x >,则0x -<,则2()()1xlnxf x f x x --==-+,若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+,综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选A 7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .【解析】|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选B8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .【解析】11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C , 故选D 9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .【解析】由2211()sin()cos 424f x x x x x π=++=+,1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D .又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<,故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C .故选A10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选B11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>, 当(1,1)x ∈-时,()0f x '<.由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩②解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞,故选D12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-,22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-.则2221212124416()2939x x x x x x +=+-=+=,故选C 13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,故选A 14.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <,当0x =时,()0f x <,所以20bc<,所以0b <,根据函数图象,当x →∞时,0ax b +>,故0a >,故选B 15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c <【解析】函数2()()ax bf x x c +=+,x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ;当0x =时,(0)f b =,结合函数图象得0b >,排除C .故选A16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <【解析】由图可知,(0)0f d =>,32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++,从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba->,△2(2)430b a c =->,(0)0f '>,0a ∴>,0b <,0c >.故选A 17.函数22||(2)sin x x y x e x=-在[2-,2]的图象大致为( )A .B .C .D .【解析】根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D ,f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选A18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选B19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A .故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =-【解析】由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可,且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x ,当(0,)2x ∈时,()0f x '>,()f x 单调递增;当(2x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x <,符合题意;同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选A21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】选项A ,f (1)1=-与图象矛盾,故A 错误;选项C ,1()10f e e =-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误.故选B 22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ;故选B23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e =B .()||xf x e ln x = C .||()ln x f x x =D .()(1)||f x x ln x =- 【解析】由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足,对于C :当x →-∞时,()||0x f x e ln x =→,不满足,对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足,故选A 24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立. 0x =,函数没有意义,所以选项C 的函数不成立;1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选B25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )11A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+ 【解析】由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选D26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin 2x f x e x π=B .1||()cos 2x f x e x π=C .()||sin 2f x ln x x π=D .()||cos 2f x ln x x π= 【解析】由图可知,函数()f x 为偶函数,可排除选项A 和C ;对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos 02x f x ex π=>,与函数图象不符;()||cos 02f x ln x x π=<,与函数图象符合,所以选项B 错误.故选D。

高中函数图像大全

高中函数图像大全

高中必考函数大全指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a>0,a≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表. 图 象 a >1a <1性 (1)x >0(2)当x=1时,y=0质(3)当x>1时,y>00<x<1时,y<0 (3)当x>1时,y<0 0<x<1时,y>0(4)在(0,+∞)上是增函数(4)在(0,+∞)上是减函数补充性质设y1=log a x y2=log b x其中a>1,b>1(或0<a<1 0<b<1)当x>1时“底大图低”即若a>b则y1>y2当0<x<1时“底大图高”即若a>b,则y1>y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比名称指数函数对数函数一般形式y=a x(a>0,a≠1) y=log a x(a>0,a≠1)定义域(-∞,+∞) (0,+∞)值域(0,+∞) (-∞,+∞)函数值变化情况当a>1时,⎪⎩⎪⎨⎧<<==>>)0(1)0(1)0(1xxxa x当0<a<1时,⎪⎩⎪⎨⎧<>==><)0(1)0(1)0(1xxxa x当a>1时⎪⎩⎪⎨⎧<<==>>)1(0)1(0)1(0logxxxxa当0<a<1时,⎪⎩⎪⎨⎧<>==><)1(0)1(0)1(0logxxxxa单调性当a>1时,a x是增函数;当0<a<1时,a x是减函数. 当a>1时,log a x是增函数;当0<a<1时,log a x是减函数.图像y=a x的图像与y=log a x的图像关于直线y=x对称.幂函数幂函数的图像与性质幂函数ny x=随着n的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握ny x=,当112,1,,,323n=±±±的图像和性质,列表如下.从中可以归纳出以下结论:①它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.n y x =奇函数偶函数非奇非偶函数1n >01n <<0n <定义域 R R R奇偶性奇奇奇非奇非奇OxyOxyOxyOxyOxyOx yOxyOxyOxy偶在第Ⅰ象限的增减性在第Ⅰ象限单调递增在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递增 在第Ⅰ象限单调递减幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质: (1)图象都通过点)1,1(),0,0(;(2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

高中数学函数图像及性质

高中数学函数图像及性质

高中数学函数图像及性质1.一次函数(包括正比例函数) 最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R 值域:R 奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式): ①ax+by+c=0[一般式] ②y=kx+b[斜截式] (k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式] (k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式] ((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式] (a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式] ⑴a≠0 ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac, Δ>0,图象与x 轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式] 此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

高中数学三角函数的图像与性质优秀课件

高中数学三角函数的图像与性质优秀课件

1
2 3
2
2
1 2
3 2
2
y cos x,x R
3 2
2
正、余弦函数的性质
y
2
sin
1 2
x
4
④周期性:形如y Asin x 或y Aco1sx 的
函数的周期T 2 .
2 1
3 2 5 3 7 4
2
2
2
2
y sin 2x 1
1
2 3 2
2 1
2
3 2
例1:已知函数y
Asin x A
0,
0,
2
,x
R
的部分图像,求函数解析式.
解:由图知A 2.
又 T 3 1 2,故T 8, 即 2 8, .
4
4
令 1 = 得= .
4
2
4
综上得,y
2sin
4
x
4
.
例2:函数f
x
Asin
x
0,
2
,x
R
的部分图像如图,则函数表达式为(
x
0
4
3
2
4
2x
0
3
2
2
2
y sin 2x
0
1
0
1
0
五点:0,0, 4 ,1, 2 ,0,
3
4
,1,,0.
1
3 2
2 1 2
2
五点作图法
例1:用“五点法”作y
2sin
1 2
x
4
,x
2
,7 2
的图像.
x
3
5
7
2
2

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

2018衡水名师原创理科数学专题卷:专题四《函数的图象、函数的应用》(含答案解析)

2018衡水名师原创理科数学专题卷:专题四《函数的图象、函数的应用》(含答案解析)

2019届高三一轮复习理科数学专题卷 专题四函数的图象、函数的应用考点10:函数的图象(1-5题,13题,17,18题) 考点11:函数与方程(6-10题,14,15题,19-21题) 考点12:函数模型及其应用(11,12题,16题,22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是最符合题目要求的。

)1.【来源】2017届山东潍坊中学高三上学期开学考试 考点10中难已知函数f (X )对任意的R 有f(x ) f(-x ) =0,且当x 0时,f (x ) = ln (x • 1),则已知函数y = f (1—x )的图象如下,则 y=|f (x + 2)的图象是(函数f x2- -1 cosx 的图象的大致形状是( +e x 丿2.[来源】2017届黑龙江双鸭山一中高三上学期质检一考点10中难中难考点10 3.[来源】2017届河北衡水中学高三上学期一调考试正实数m 的取值范围是(A 0,11U 2.3(B )O,11J3,= (C )0, :2 J 2「3, = ( D ) 0,-,2 U 13,-5. 【来源】2017届广东省仲元中学高三 9月月考 考点10难 如图,周长为1的圆的圆心C 在y 轴上,顶点A (0,1),一动点M 从A 开始逆时针绕圆运动 一周,记走过的弧长 AB 二x ,直线AM 与x 轴交于点N (t,0),则函数t = f (x )的图像大 致为()6.【来源】2017届广西河池课改联盟高三上联考二 考点11易 1函数f x x _log 4 x 的零点所在的区间是()4A.0,1B. — C.1,2D.2,42 27.【来源】2016-2017学年河北故城县高级中学期中考点11易已知x 0是函数f x =2x -丄 的一个零点,若x 「 3,X 。

高一上学期函数专题:函数的图像(含答案解析)

高一上学期函数专题:函数的图像(含答案解析)

高一上学期函数专题:函数的图像学校:___________姓名:___________班级:___________考号:___________一、单选题 1.函数241xy x =+的图象大致为( ) A . B .C .D .2.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .3.如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其 中,注满为止.用下面对应的图象显示该容器中水面的高度h 和时间t 之间的关系,其中不正确的有( )A.1个B.2个C.3个D.4个4.如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A.B.C.D.5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.已知定义在()(),00,-∞⋃+∞上的奇函数()f x 在(),0-∞上单调递增,且满足()12f -=-,则关于x 的不等式()2sin f x x xπ<+的解集为( ). A .()(),11,-∞-+∞B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()()1,00,1-7.已知定义在R 上的函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,且()()2f x f x +=,若方程()20f x kx --=有三个不相等的实数根,则实数k 的取值范围是A .1,13⎛⎫⎪⎝⎭B .11,34⎛⎫-- ⎪⎝⎭C .111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭D .1111,,3443⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭8.已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(]0,1x ∈时,2()log f x x =-,若函数()()()sin π=-F x f x x ,在区间[]1-,m 上有10个零点,则m 的取值范围是( )A .[)3.54,B .(]3.5,4C .(]5,5.5D .[)55.5,9.函数()218x f x +⎛⎫= ⎪⎝⎭的部分图象大致为A .B .C .D .10.设函数21,2()5,2x x f x x x ⎧-⎪=⎨-+>⎪⎩,若互不相等的实数,,a b c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .(16,32) B .(18,34) C .(17,35) D .(6,7)二、多选题11.已知直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,则下列结论正确的是 A .122x x += B .122x x e e e +>C .1221ln ln 0x x x x +<D .12x x >三、填空题12.设方程24x x +=的根为m ,方程2log 4x x +=的根为n ,则m n +=________;参考答案1.A 【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象. 【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项. 2.A 【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象. 【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、3.A 【分析】结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断. 【详解】A 、因正方体的底面积是定值,故水面高度的增加是均匀的,即图象是直线型的,故A 不对;B 、因几何体下面窄上面宽,且相同的时间内注入的水量相同,所以下面的高度增加的快,上面增加的慢,即图象应越来越平缓,故B 正确;C 、球是个对称的几何体,下半球因下面窄上面宽,所以水的高度增加的越来越慢;上半球恰相反,所以水的高度增加的越来越快,则图象先平缓再变陡;故C 正确;D 、图中几何体两头宽、中间窄,所以水的高度增加的越来越慢后再越来越慢快,则图象先平缓再变陡,故D 正确. 故选A . 【点睛】本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h 和时间t 之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想. 4.A 【分析】分析当单位圆向x 轴正向滚动π个单位长度时A 的纵坐标,由此判断出A 点形成的轨迹. 【详解】如图所示,记,,B C D 为圆上的三个四等分圆周的点,由题意可知:圆是逆时针滚动的,因为圆的周长为2π,所以2AB BC CD AD π====,且圆上点的纵坐标最大值为2,当圆逆时针滚动π单位长度时,此时,A C 的相对位置互换,所以A 的纵坐标为2,排除BCD , 故选:A.关键点点睛:解答本题的关键是通过特殊位置(向右滚动π个单位长度)分析对应A 点的纵坐标,通过排除法判断出轨迹. 5.B 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力. 6.C 【分析】令()()2g x f x x=-,利用奇偶性定义可知()g x 为奇函数,并可确定()g x 在(),0-∞,()0,∞+上单调递增,由()10g -=知()10g =,结合55sin 22g π⎛⎫< ⎪⎝⎭不成立可确定()g x 与sin y x =π大致图象,由图象可确定解集. 【详解】()f x 为()(),00,-∞⋃+∞上的奇函数,()()f x f x ∴-=-, 令()()2g x f x x =-,则()()()()22g x f x f x g x x x-=-+=-+=-,()g x ∴为()(),00,-∞⋃+∞上奇函数;()f x 在(),0-∞上单调递增,2y x=-在(),0-∞上单调递增,()g x ∴在(),0-∞上单调递增,由奇函数性质知:()g x 在()0,∞+上单调递增;()12f -=-,()()1120g f ∴-=-+=,则()10g =,又()()51122f f f ⎛⎫>=--= ⎪⎝⎭,当52x =时,2459sin sin525x x ππ+=+=, ∴当52x =时,()2sin f x x x π<+不成立,即55sin 22g π⎛⎫< ⎪⎝⎭不成立,由此可在坐标系中画出()g x 与sin y x =π大致图象如下图所示:由图象可知:当()(),10,1x ∈-∞-时,()sin g x x π<,即当()(),10,1x ∈-∞-时,()2sin f x x xπ<+. 故选:C. 【点睛】关键点点睛:本题考查函数不等式的求解,解题关键是能够通过构造函数的方式,结合奇偶性和单调性的知识确定函数的大致图象,利用数形结合的方式求得结果.7.C 【分析】由()()2f x f x +=可得函数周期为2,结合函数在[]1,1-上的解析式,利用周期作出()f x 的函数图象,根据()y f x =和2y kx =+图象交点个数判断k 的范围. 【详解】方程()20f x kx --=有三个不相等的实数根, 等价于()y f x =和2y kx =+图象有三个不同交点, 因为()()2f x f x +=,所以()f x 的周期为2,由函数()[)[)222,0,12,1,0x x f x x x ⎧+∈⎪=⎨-∈-⎪⎩,利用周期性作出()f x 的函数图象,如图所示: 不妨设0,k >当直线2y kx =+过()()3,1,1,1--时,k 的值分别为13与1,由图可知,113k <<时直线2y kx =+与()f x 的图象有三个交点,113k ∴<<时, 方程()20f x kx --=有三个不相等的实数根, 同理,若0k <,可得113k -<<-时,方程()20f x kx --=有三个不相等的实数根,所以实数k 的取值范围是111,,133⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本题主要考查函数的周期与函数图象的应用,考查了函数零点与方程根的关系,同时考查了转化思想与数形结合思想的应用,属于难题. 函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.8.A 【分析】由()()20f x f x -+=得出函数()y f x =的图象关于点()1,0成中心对称以及函数()y f x =的周期为2,由函数()y f x =为奇函数得出()00f =,并由周期性得出()2f = ()40f =,然后作出函数()y f x =与函数()sin y x π=的图象,列举前10个交点的横坐标,结合第11个交点的横坐标得出实数m 的取值范围. 【详解】由()()20f x f x -+=可知函数()y f x =的图象关于点()1,0成中心对称, 且()()()2f x f x f x -=-=-,所以,()()2f x f x +=, 所以,函数()y f x =的周期为2,由于函数()y f x =为奇函数,则()00f =,则()()240f f ==, 作出函数()y f x =与函数()sin y x π=的图象如下图所示:211log 122f ⎛⎫=-= ⎪⎝⎭,则11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-、12-、0、12、1、32、2、52、3、72,第11个交点的横坐标为4, 因此,实数m 的取值范围是[)3.5,4,故选A .【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题.9.B【分析】根据函数的定义域以及单调性求解.【详解】由题意得,()f x 的定义域为R ,排除C,D ;当2x ≥-时,()218x f x +⎛⎫= ⎪⎝⎭,∵1018<<,∴()f x 在[)2,-+∞上单调递减,排除A , 故选B.【点睛】 本题考查了已知函数表达式,识别函数图象,涉及了函数的定义域以及指数函数的单调性;从函数的定义域可以判断函数图象的“左右”位置,以及是否有断点;单调性可以判断函数的变化趋势.10.B【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得45c <<,从而可得结果.【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=.结合图象可得45c <<,故16232c <<.∴1822234a b c <++<.故选:B .【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质. 11.ABC【分析】根据互为反函数的性质可得()()1122,,,A x y B x y 的中点坐标为()1,1,从而可判断A ;利用基本不等式可判断B 、D ;利用零点存在性定理以及对数的运算性质可判断C.【详解】函数x y e =与ln y x =互为反函数,则x y e =与ln y x =的图象关于y x =对称,将2y x =-+与y x =联立,则1,1x y ==,由直线2y x =-+分别与函数x y e =和ln y x =的图象交于点()()1122,,,A x y B x y ,作出函数图像:则()()1122,,,A x y B x y 的中点坐标为()1,1,对于A ,由1212x x +=,解得122x x +=,故A 正确; 对于B,122x x e e e ≥=+=,因为12x x ≠,即等号不成立,所以122x x e e e +>,故B 正确;对于C ,将2y x =-+与x y e =联立可得2x x e -+=,即20x e x +-=,设()2x f x e x =+-,且函数为单调递增函数,()010210f =+-=-<,112211320222f e e ⎛⎫=+-=-> ⎪⎝⎭, 故函数的零点在10,2⎛⎫ ⎪⎝⎭上,即1102x <<,由122x x +=,则212x <<, 122112211ln ln ln ln x x x x x x x x +=- ()1222122ln ln ln 0x x x x x x x <-=-<,故C 正确;对于D,由12x x +≥,解得121x x ≤,由于12x x ≠,则121x x <,故D 错误;故选:ABC【点睛】本题考查了互为反函数的性质、基本不等式的应用、零点存在性定理以及对数的运算性质,考查了数形结合的思想,属于难题.12.4【详解】由题意,方程24x x +=的根为m ,方程2log 4x x +=的根为n ,24m m ∴+=……①,24n log n += …… ②由①得24m m =-,24m log m ∴=-( )令4t m =- ,代入上式得24t log t -=24t log t ∴+= 与②式比较得t n =于是44m n m n -=∴+= 故答案为4.【点睛】本题主要考查方程的根,即为相应函数图象交点的横坐标,解题的关键是利用设而不求的思想,充分利用题设条件得到m n +的值.。

高考常见函数图像总结归纳

高考常见函数图像总结归纳

高考常见函数图像总结归纳函数是数学中的重要概念,而函数图像则是高中数学中常见的考点之一。

在高考中,学生需要熟练掌握各类函数的图像特征,以便正确解题。

本文将对高考常见函数的图像进行总结归纳,帮助学生快速理解和记忆各类函数的图像。

1. 线性函数图像线性函数的图像是一条直线,具有以下特征:- 函数方程:y = kx + b,其中k为斜率,b为截距;- 斜率与截距的取值范围确定了直线的倾斜方向和位置;- 当k > 0时,直线右斜;当k < 0时,直线左斜;- 当b > 0时,直线与y轴的交点在y轴上方;当b < 0时,直线与y 轴的交点在y轴下方;当b = 0时,直线经过原点;- 当k = 1时,图像为45°直线;当k > 1时,图像陡峭;当0 < k < 1时,图像平缓。

2. 平方函数图像平方函数的图像是一条抛物线,具有以下特征:- 函数方程:y = ax^2 + bx + c,其中a、b、c为常数;- a确定了抛物线的开口方向,当a > 0时,开口向上;当a < 0时,开口向下;- 抛物线在x轴上的交点称为零点,即函数方程的解;- 当a > 0时,抛物线在零点两侧均大于0;当a < 0时,抛物线在零点两侧均小于0;- 抛物线的对称轴为x = -b/2a,顶点坐标为(-b/2a, f(-b/2a))。

3. 绝对值函数图像绝对值函数的图像是一条V形曲线,具有以下特征:- 函数方程:y = |x|;- 函数的定义域为整个实数集,值域为非负实数;- 抛物线在原点处有一个尖点,称为顶点;- 当x > 0时,函数值与自变量相等;当x < 0时,函数值等于自变量的相反数;- 函数图像以y轴为对称轴,对称于原点。

4. 指数函数图像指数函数的图像是一条光滑的曲线,具有以下特征:- 函数方程:y = a^x,其中a为底数;- 当a > 1时,函数图像递增;当0 < a < 1时,函数图像递减;- 若a > 1,则函数图像在y轴右侧无上界;若0 < a < 1,则函数图像在y轴右侧无下界;- 函数图像在点(0, 1)处与x轴相交;- 当x > 0时,函数图像在x轴上方;当x < 0时,函数图像在x轴下方。

经典数学函数图像(大全)

经典数学函数图像(大全)

经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。

当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。

2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。

正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。

正切函数图像是一条周期性振荡的曲线。

4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。

当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。

5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。

当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。

6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。

双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。

7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。

当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。

8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。

当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。

经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。

(全优试卷)江西师范大学附属中学高三10月月考数学(理)试题Word版含答案

(全优试卷)江西师范大学附属中学高三10月月考数学(理)试题Word版含答案

江西师大附中高三年级数学(理)月考试卷命题人:蔡卫强 审题人:郑永盛 2017年10月第Ⅰ卷(选择题部分,共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12|>=xx A ,{}2log 0B x x =<,则A C B =( ) A.()0,1B.(]0,1C. [)1,+∞D.()1,+∞ 2.若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+<B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥D. 存在x R ∈,使得3210x x -+≥ 3.已知角θ的终边经过点()(),30P x x <且cos 10x θ=,则x 等于( ) A .1-B .13-C .3-D.3-4. 为了得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A. 向左平移512π个单位 B. 向右平移512π个单位 C. 向右平移6π个单位 D. 向左平移6π个单位 5.已知()()()()1231ln 1a x ax f x xx -+<⎧⎪=⎨≥⎪⎩ 的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)6. 已知函数()2tan 2(0,1)1xxa f xb x x a a a =++>≠+,若()12f =,则()1f -等于( )A. 3B. 3-C. 0D. 1-7.函数2ln x x y x=的图象大致是( )AB C D8.已知3tan 44πα⎛⎫+= ⎪⎝⎭,则2cos 4πα⎛⎫-= ⎪⎝⎭( ) A.725B.925 C. 1625D.24259.已知偶函数2f x π⎛⎫+ ⎪⎝⎭,当,22x ππ⎛⎫∈- ⎪⎝⎭时, ()13sin f x x x =+. 设()1a f =,()2b f =, ()3c f =,则( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<10.已知三角形ABC 内的一点D 满足2D A D B D B D C D C D A ===-,且|||||D A D B D C ==,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .494B .434C.D 11. 已知函数()2sin(2)(||)f x x ϕϕπ=-+<,若5(,)58ππ是()f x 的一个单调递增区间,则ϕ的取值范围是( ) A. 93[,]1010ππ-- B. 29[,]510ππ C. [,]104ππD. [,](,)104ππππ--U12.已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,则实数a 的取值范围为( )A. [)1,0- B.[]1,0- C. 3,2⎡⎫-+∞⎪⎢⎣⎭D. 3,2⎛⎤-∞- ⎥⎝⎦第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答. 第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.平行四边形ABCD 中,M 为BC 的中点,若AB AM DB λμ=+,则λμ-=______. 14.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭,其中0ω>.若()12f x f π⎛⎫≤⎪⎝⎭对x R ∈恒成立,则ω的最小值为____.15.设锐角ABC 的三内角,,A B C 所对边的边长分别为,,a b c ,且1,2a B A ==,则b 的取值范围为 . 16. 给出下列命题中①非零向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② ⋅>0是 a b 、的夹角为锐角的充要条件; ③若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则ABC ∆必定是直角三角形;④△ABC 的外接圆的圆心为O ,半径为1,若2AB AC AO +=,且OA CA =,则向量BA 在向量BC 方向上的投影为32. 以上命题正确的是 (注:把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a , b ,c 分别是角A ,B ,C 的对边,且2cos A cos C (1-tan A tan C )=1. (1)求B 的大小;(2)若b =3,求△ABC 面积的最大值. 18.(本小题满分12分)已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)若关于x 的方程()10f x a -+=在x ∈⎣⎡⎦⎤0,π2上有两个不同的实根,求实数a 的取值范围. 19.(本小题满分12分)如图所示的几何体是由棱台111ABC A B C -和棱锥11D AA C C -拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且60BAD ∠=︒,1BB ⊥平面ABCD ,11122BB A B ==.(1)求证:平面1AB C ⊥平面1BB D ; (2)求二面角11A BD C --的余弦值. 20.(本小题满分12分)设离心率为 的椭圆2222:1x y E a b+= 的左、右焦点为12F F 、,点P 是E 上一点,12PF PF ⊥ , 12PF F ∆内切圆的半径为1 .(1)求E 的方程;(2)矩形ABCD 的两顶点C 、D 在直线2y x =+上,A 、B 在椭圆E 上,若矩形ABCD 的周长为 , 求直线AB 的方程.21.(本小题满分12分) 已知函数()22ln f x x x ax =--.(1)若曲线()y f x =在点()()1,1f 处的切线方程为30x y b ++=,求a ,b 的值; (2)如果()1212,x x x x <是函数()f x 的两个零点,()'f x 为函数()f x 的导数, 证明:122'03x x f +⎛⎫< ⎪⎝⎭请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xoy 中,已知圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩()θ为参数,直线l 的参数方程为523x ty t =-⎧⎨=-⎩()t 为参数,定点()1,1P .(1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程;(2)已知直线l 与圆C 相交于,A B 两点,求PA PB -的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()1()0f x x a x a a=+++>.(1)当2a =时,求不等式()3f x >的解集; (2)求证:1()()4f m f m+-≥.江西师大附中高三年级数学(理)月考试卷命题人:蔡卫强 审题人:郑永盛 2017年10月第Ⅰ卷(选择题部分,共60分)一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12|>=xx A ,{}2log 0B x x =<,则A C B =( ) A.()0,1B.(]0,1C. [)1,+∞D.()1,+∞ 【答案】C2.若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+<B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥D. 存在x R ∈,使得3210x x -+≥ 【答案】D3.已知角θ的终边经过点()(),30P x x <且cos x θ=,则x 等于( ) A .1- B .13-C .3-D.3-【答案】A4. 为了得到函数sin 23y x π⎛⎫=-⎪⎝⎭的图像,可以将函数cos 2y x =的图像( ) A. 向左平移512π个单位 B. 向右平移512π个单位C. 向右平移6π个单位D. 向左平移6π个单位 【答案】B5.已知()()()()1231ln 1a x a x f x xx -+<⎧⎪=⎨≥⎪⎩ 的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12)D .(0,12)【答案】C6. 已知函数()2tan 2(0,1)1xxa f xb x x a a a =++>≠+,若()12f =,则()1f -等于( )A. 3B. 3-C. 0D. 1-【答案】A7.函数2ln x xy x=的图象大致是( )AB C D【答案】D8.已知3tan 44πα⎛⎫+= ⎪⎝⎭,则2cos 4πα⎛⎫-= ⎪⎝⎭( ) A.725B. 925C. 1625D.2425【答案】B9.已知偶函数2f x π⎛⎫+ ⎪⎝⎭,当,22x ππ⎛⎫∈- ⎪⎝⎭时, ()13sin f x x x =+. 设()1a f =,()2b f =, ()3c f =,则( )A. a b c <<B. b c a <<C. c b a <<D. c a b <<【答案】D10.已知三角形ABC 内的一点D 满足2D A D B D B D C D C D A ===-,且|||||D A D B D C ==,平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( ) A .494B .434C. 3763+D 37233+ 【答案】A11. 已知函数()2sin(2)(||)f x x ϕϕπ=-+<,若5(,)58ππ是()f x 的一个单调递增区间,则ϕ 的取值范围是( ) A. 93[,]1010ππ-- B. 29[,]510ππ C. [,]104ππD. [,](,)104ππππ--U【答案】C12.已知函数()()()221ln ,,1xf x ax a x x a Rg x e x =-++∈=--,若对于任意的()120,,x x R ∈+∞∈,不等式()()12f x g x ≤恒成立,,则实数a 的取值范围为( )A. [)1,0-B. []1,0-C. 3,2⎡⎫-+∞⎪⎢⎣⎭D. 3,2⎛⎤-∞-⎥⎝⎦【答案】B解:()()12f x g x ≤Q 恒成立 ∴只需()()1min f x g x ≤由()1xg x e x =--得:()'1xg x e =-,令()'0g x >解得:0x >()g x ∴在(),0-∞单调递减,在()0,+∞单调递增 ()()min 00g x g ∴==()10,x ∴∀∈+∞,()211121ln 0ax a x x -++≤恒成立 即只需()max 0f x ≤()()()()2'22112111221ax a x ax x f x ax a x x x-++--=--+== 当0a >时,令21a x a += 则21211ln ln 20a a f a a a ++⎛⎫⎛⎫⎛⎫==+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,与()0f x ≤矛盾当0a ≤时,210ax -< ()'0f x ∴>解得1x < ()f x ∴在()0,1单调递增,在()1,+∞单调递减()()()max 1211f x f a a a ∴==-+=-- 101a a ∴--≤⇒≥-综上所述:[]1,0a ∈-第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答.第22题~第23题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分,共20分.13.平行四边形ABCD 中,M 为BC 的中点,若AB AM DB λμ=+,则λμ-=__________.【答案】1314.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭,其中0ω>.若()12f x f π⎛⎫≤⎪⎝⎭对x R ∈恒成立,则ω的最小值为____.【答案】415.设锐角ABC 的三内角,,A B C 所对边的边长分别为,,a b c ,且1,2a B A ==,则b 的取值范围为____.【答案】16. 给出下列命题中① 非零向量 a b 、满足a b a b ==-,则与a a b +的夹角为030; ② a ⋅b >0是 a b 、的夹角为锐角的充要条件; ③若2,AB AB AC BA BC CA CB =⋅+⋅+⋅则ABC ∆必定是直角三角形;④△ABC 的外接圆的圆心为O ,半径为1,若2AB AC AO +=,且OA CA =,则向量BA在向量BC 方向上的投影为32. 以上命题正确的是 (注:把你认为正确的命题的序号都填上) 【答案】①③④三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2cos A cos C (1-tan A tan C )=1. (1)求B 的大小;(2)若b =3,求△ABC 面积的最大值.解:(1)由2cos A cos C (1-tan A tan C )=1, 得sin sin 2cos cos 11cos cos A C A C A C ⎛⎫-= ⎪⎝⎭.∴()2cos cos sin sin 1A C A C -=. ∴()1cos 2A C +=. ∴ 1cos 2B =-. 又 0B <<π, ∴23B π=. (2)222222cos 3,b a c ac B a c ac ac =+-=++≥又b =3, ∴ 3ac ≤. 1s i n 2ABC S ac B ∆∴=≤所以当且仅当a c ==ABC S有最大值为418.(本小题满分12分)已知函数f (x )=2cos x cos ⎝⎛⎭⎫x -π6-3sin 2x +sin x cos x . (1)求f (x )的最小正周期;(2)若关于x 的方程()10f x a -+=在x ∈⎣⎡⎦⎤0,π2上有两个不同的实根,求实数a 的取值范围.解析:(1)f (x )=2cos x cos(x -π6)-3sin 2x +sin x cos x =3cos 2x +sin x cos x -3sin 2x +sin x cos x =3cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π3, ∴T =π. (2)()()101f x a a f x -+=⇔-=画出函数()f x 在x ∈⎣⎡⎦⎤0,π212a <-<或01a <-<故a 的取值范围为1)()31,3+.19.(本小题满分12分)如图所示的几何体是由棱台111ABC A B C -和棱锥11D AA C C -拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且60BAD ∠=︒,1BB ⊥平面ABCD ,11122BB A B ==.(1)求证:平面1AB C ⊥平面1BB D ; (2)求二面角11A BD C --的余弦值. 解:(1)∵1BB ⊥平面ABCD ∴1BB ⊥AC在菱形ABCD 中,BD ⊥AC 又1BD BB B ⋂=∴AC ⊥平面1BB D ∵AC ⊂平面1AB C ∴平面1AB C ⊥平面1BB D(2)连接BD 、AC 交于点O ,以O 为坐标原点,以OA以OD 为y 轴,如图建立空间直角坐标系.1(0,1,0),(0,1,0),(0,1,2),B D B A --11111,2)22B A BA A =⇒-,同理11(2C -131(,2)2BA =,(0,2,0)BD =,11(,2BC =-设平面1A BD 的法向量),,(z y x n =∴100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩,则(n =- 设平面DCF 的法向量),,(z y x =10BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩,则m = 设二面角11A BD C --为θ,13cos 19m n m nθ⋅==20.(本小题满分12分)设离心率为 2的椭圆2222:1x y E a b+= 的左、右焦点为12F F 、, 点P 是E 上一点,12PF PF ⊥ , 12PF F ∆内切圆的半径为 1 .(1)求E 的方程;(2)矩形ABCD 的两顶点C 、D 在直线2y x =+上,A 、B 在椭圆E 上,若矩形ABCD 的周长为, 求直线AB 的方程. 解:(1)直角三角形12PF F 内切圆的半径12121(||||||)2r PF PF F F a c =+-=- 依题意有1a c -=又2c a =,由此解得1a c ==,从而1b =故椭圆E 的方程为2212x y += (2)设直线AB 的方程为y x m =+,代入椭圆E 的方程,整理得2234220x mx m ++-=,由0∆>得m <<设1122(,),(,)A x y B x y ,则21212422,33m m x x x x -+=-=21|||AB x x =-=而||AC =m <<知||AC =所以由已知可得||||6AB AC +=,即36=, 整理得24130710m m +-=,解得1m =或()7141m =-增根,舍去 所以直线AB 的方程为1y x =+.21.(本小题满分12分) 已知函数()22ln f x x x ax =--.(1)若曲线()y f x =在点()()1,1f 处的切线方程为30x y b ++=,求a ,b 的值; (2)如果()1212,x x x x <是函数()f x 的两个零点,()'f x 为函数()f x 的导数, 证明:122'03x x f +⎛⎫<⎪⎝⎭解:(1)a =3,b =1 (2)()121212262'2323x x f x x a x x +⎛⎫=-+-⎪+⎝⎭ ()1212,x x x x <是函数()f x 的两个零点()()21111222222ln 02ln 0fx x x ax fx x x ax ⎧=--=⎪∴⇒⎨=--=⎪⎩()2121212lnx x a x x x x =-+- ()()212112211212212ln26261'232323x x x x f x x a x x x x x x x x +⎛⎫∴=-+-=--- ⎪++-⎝⎭()221103x x --< ∴只需证()2212112211212ln6602ln 022x x x x x x x x x x x x --<⇔-<+-+21221131ln 012x x x x x x ⎛⎫- ⎪⎝⎭⇔-<+ ,令()21,1,x t t x =∈+∞则设()()31ln 12t h t t t -=-+ 下面证()0h t < ()10,h =()()()()2141'21t t h t t t --=-+ ()1,'0t h t >∴<恒成立 ()h t ∴在()1,+∞单调递减,()()10h t h ∴<= 即122'03x x f +⎛⎫< ⎪⎝⎭请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上.22.(本题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xoy 中,已知圆C 的参数方程为12cos 2sin x y θθ=+⎧⎨=⎩()θ为参数,直线l 的参数方程为523x t y t =-⎧⎨=-⎩()t 为参数,定点()1,1P . (1)以原点O 为极点,x 轴的非负半轴为极轴,单位长度与平面直角坐标系下的单位长度相同建立极坐标系,求圆C 的极坐标方程; (2)已知直线l 与圆C 相交于,A B 两点,求PA PB -的值.解:(1)依题意得圆C 的一般方程为()2214x y -+=,将cos ,sin x y ρθρθ==代入上式得22cos 30ρρθ--=,所以圆C 的极坐标方程为22cos 30ρρθ--=;(2)依题意得点()1,1P 在直线l 上,所以直线l 的参数方程又可以表示为121x t y t=-⎧⎨=-⎩()t 为参数,代入圆C 的一般方程为()2214x y -+=得25230t t --=, 设点,A B 分别对应的参数为12,t t ,则1212230,055t t t t +=>=-<, 所以12,t t 异号,不妨设120,0t t ><,所以2,PA PB ==,所以)125PA PB t t -=+=.23.(本小题满分10分)选修4-5:不等式选讲已知函数()1()0f x x a x a a=+++>. (1)当2a =时,求不等式()3f x >的解集;(2)求证:1()()4f m f m+-≥.解:(1)当a =2时,1()|2|||,2f x x x =+++原不等式等价于 112222111232323222x x x x x x x x x ⎧⎧<--≤≤->-⎧⎪⎪⎪⎪⎪⎨⎨⎨---->⎪⎪⎪+-->+++>⎩⎪⎪⎩⎩或或 解得11144x x <-∅>或或故不等式()3f x >的解集是111{|},(5)44x x x <->或分 (2)证明:11111(m)()||||||||f f m a m a m a m m a +-=++++-++-+ 1111||||||||m a a m m a m a =++-++++-+ 112|m |2(||)4||m m m ≥+=+≥ 当且仅当1,1m a =±=时等号成立。

(完整版)高中各种函数图像画法与函数性质

(完整版)高中各种函数图像画法与函数性质
05
a>1时,在定义域内单调递增;0<a<1时,在定义域内单 调递减。
06
值域为(0, +∞)。
对数函数图像及性质
对数函数定义:形如y=log_a(x)(a>0且a≠1)的函数称 为对数函数。
对数函数性质
对数函数图像:当a>1时,图像在x轴上方,且随着x的 增大,y值无限增大;当0<a<1时,图像在x轴上方, 且随着x的增大,y值无限减小。
正弦函数、余弦函数图像及性质
图像特点
正弦函数$y = sin x$和余弦函数$y = cos x$的图像都是周期性的波浪形曲线,振幅为1,周期为$2pi$。正弦函 数图像关于原点对称,余弦函数图像关于$y$轴对称。
性质
正弦函数和余弦函数都是周期函数,具有周期性、奇偶性和有界性等性质。其中,正弦函数是奇函数,余弦函数 是偶函数。
变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
运算规则
复合函数的运算遵循“由内到外”的原则,即先求出内层函数的值,再代入外层函数中 计算。
复合函数图像变换规律
平移变换
若f(x)的图像向左(右)平移a个单位得到g(x)的图像,则g(x)=f(x+a)(a>0向左,a<0向 右)。
奇偶性
设函数y = f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=f(x),则这个函数叫做奇函数;如果对D内的任意一个x,都有x∈D,且f(-x)=f(x) ,则这个函数叫做偶函数。
函数周期性
周期函数的定义
对于函数y = f(x),如果存在一个不为零的常数T,使得当 x取定义域内的每一个值时,f(x + T) = f(x)都成立,那 么就把函数y = f(x)叫做周期函数,不为零的常数T叫做这 个函数的周期。

高中13种函数图像汇总

高中13种函数图像汇总

高中13种函数图像汇总函数图像是数学教学中的重要知识点,在高中阶段,学生要掌握常见的13种函数图像的概念、性质、特征,本文将对13种函数图像进行汇总,为学生深入学习提供参考。

一、直线函数图像直线函数的图像是一条直线,它的函数表达式为y=kx+b,其中k是斜率,b是y轴截距,如果k=0,则表示水平线;如果b=0,则表示垂直线。

二、平方函数图像平方函数的图像是一个U型函数曲线,它的函数表达式为y=x^2。

正定平方函数的图像会向上钝化,而负定平方函数的图像会向下钝化,当x=0时,y取得最大值。

三、立方函数图像立方函数的图像是一条U型函数曲线,它的函数表达式为y=x^3,正定立方函数的图像会向上钝化,而负定立方函数的图像会向下钝化,当x=0时,y取得最大值。

四、正弦函数图像正弦函数的图像是一条具有一定周期的曲线,它的函数表达式为y=A*sin(Bx+C),其中A表示振幅,B表示周期,C表示初相。

五、余弦函数图像余弦函数的图像与正弦函数的图像大致相同,它的函数表达式为y=A*cos(Bx+C),其中A表示振幅,B表示周期,C表示初相。

六、指数函数图像指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^x,其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

七、反指数函数图像反指数函数的图像是一条上升或下降的曲线,它的函数表达式为y=A*B^(-x),其中A是振幅,B是指数,当B>1时,图像会向上钝化;当B<1时,图像会向下钝化。

八、对数函数图像对数函数的图像是一条上升曲线,它的函数表达式为y=A*ln (x),A表示振幅,此时x的取值范围是大于0的正数。

九、反对数函数图像反对数函数的图像也是一条上升曲线,它的函数表达式为y=A*ln(1/x),A表示振幅,此时x的取值范围是大于0的正数。

十、双曲线函数图像双曲线的图像是一条上升或下降的曲线,它的函数表达式为y=A*sinh(Bx+C),其中A表示振幅,B表示周期,C表示初相。

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

高一数学期末试题分类:函数的图像

高一数学期末试题分类:函数的图像

高一数学期末试题分类:函数的图像(河北省新高考2018-2019学年高一第一次模拟选科调研考试数学试题)10.函数的部分图像大致为()A. B. C. D.【答案】A【解析】【分析】本题主要采用排除法,当时,,可排除B,C选项;当时,,可排除D选项,故可得结果.【详解】∵,当时,,,∴,则B,C不正确;当时,,,∴,则D不正确;综上可得选项为A.【点睛】本题考查函数的图象的判断与应用,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括等.(河北省武邑中学2018-2019学年高一上学期期末考试数学试题)12.形如的函数因其函数图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数(且)有最小值,则当时的“囧函数”与函数的图象交点个数为A. B. C. D.【答案】C【解析】当时,,而有最小值,故.令,,其图像如图所示:共4个不同的交点,选C.点睛:考虑函数图像的交点的个数,关键在于函数图像的正确刻画,注意利用函数的奇偶性来简化图像的刻画过程.(海南省海口市龙华区2018-2019学年高一第一学期期末学业质量监测试卷数学试题)5.函数()的图象可能是( )A. B.C. D.【答案】D【解析】【分析】先判断函数的单调性,在判断函数恒过点,问题得以截距.【详解】当时,函数为减函数,当时,函数为增函数,且当时,,即函数恒过点,故选D.【点睛】本题主要考查了指数函数的图象与性质,其中解答中根据指数函数的单调性分类讨论和判定函数恒过定点是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.(安徽省宿州市埇桥区2018-2019学年高一上学期期末考试数学试题)11.二次函数与指数函数的图象只可能是()A. B.C. D.【答案】A【解析】解:因为解:根据指数函数y=(b a )x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴-b2a <0,排除B,D,然后选项C,a-b>0,a<0,∴b a >1,则指数函数单调递增,错误,选A (浙江省“温州十校联合体”2018-2019学年高一上学期期末考试数学试题)4.函数的部分图象可能是()A. B.C. D.【答案】C【解析】【分析】由奇偶性排除,由特殊点排除,从而可得结果.【详解】因为,所以是偶函数,图象关于轴对称,可排除选项;取,则,可排除,故选C.【点睛】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.(湖北省宜昌市协作体2018-2019学年高一上学期期末考试数学试题)6.下列图像表示的函数能用二分法求零点的是()A. B.C. D.【答案】C【解析】【分析】根据二分法的定义,对四个选项逐一判断即可.【详解】A,中函数没有零点,因此不能用二分法求零点;B,中函数的图象不连续,因此不能用二分法求零点;D,中函数在x轴下方没有图象,因此不能用二分法求零点,故选C.【点睛】本题主要考查二分法的定义与应用,属于简单题. 利用二分法求函数的零点必须满足两个条件:(1)函数的图象连续;(2)函数的图象在x轴上方、下方都有有图象.(河南省商丘市九校2018-2019学年高一上学期期末联考数学试题)5.已知函数在内的值域是,则函数的图像大致是()【答案】B【解析】试题分析:函数值域为可知函数单调递增,所以,所以图像B正确考点:指数函数性质(四川省攀枝花市2018-2019学年高一上学期期末教学质量监测数学试题)4.如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数的图象可能是()A. ①B. ②C. ③D. ④【答案】D【解析】【分析】由幂函数的图象与性质可得.【详解】幂函数y为增函数,且增加的速度比价缓慢,只有④符合.故选:D.【点睛】本题考查了幂函数的图象与性质,属于基础题.(江苏省南京市2018-2019学年高一上学期期末调研数学试题)12.函数f(x)=x sinx,x∈[-π,π]的大致图象是()A. B.C. D.【解析】【分析】判断函数的奇偶性排除选项,然后利用特殊点的位置判断即可.【详解】解:f(﹣x)=(﹣x)sin(﹣x)=x sin x=f(x),所以f(x)为偶函数,即图象关于y轴对称,则排除B,C,当x时,f()sin0,故排除D,故选:A.【点睛】本题考查函数的图象的判断,函数的奇偶性以及函数的特殊点的位置的应用,考查计算能力.(吉林省白山市2018-2019学年高一上学期期末联考数学试题)10.函数f(x)=的部分图象大致是()A. B.C. D.【答案】A【解析】【分析】判断函数的奇偶性,排除选项,利用特殊值以及函数的图象的变化趋势判断即可【详解】解:令函数f(﹣x)f(x),所以函数f(x)是奇函数,故排除选项B,D,又f()=0,f()0,故排除C【点睛】本题考查函数的图象的判断,函数的奇偶性以及函数的特殊点的位置,变换趋势是常用方法.(湖南省张家界市2019高一第一学期期末联考数学试题)12.已知函数图象上关于轴对称的点至少有5对,则实数的取值范围是()A. B. C. D.【答案】A【解析】【分析】求出函数f(x)=sin(x)﹣1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.【详解】若x>0,则﹣x<0,∵x<0时,f(x)=sin(x)﹣1,∴f(﹣x)=sin(x)﹣1=﹣sin(x)﹣1,则若f(x)=sin(x)﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin(x)﹣1=f(x),即y=﹣sin(x)﹣1,x>0,设g(x)=﹣sin(x)﹣1,x>0作出函数g(x)的图象,要使y=﹣sin(x)﹣1,x>0与f(x)=log a x,x>0的图象至少有5个交点,则0<a<1且满足f(9)<g(9),即﹣2<log a9,即log a9>log a a﹣2,则9,解得0<a,故选:A.【点睛】本题主要考查分段函数的应用,作出函数关于y轴对称的图象,利用数形结合的思想是解决本题的关键.综合性较强,有一定的难度.(广西南宁市第三中学2018-2019学年高一上学期期末考试数学试题)8.如图,矩形的三个顶点,,分别在函数,,,的图像上,且矩形的边分别平行于两坐标轴,若点的纵坐标为,则点的坐标为().A. B. C. D.【答案】C【解析】由图可知点在函数上,又点的纵坐标为,所以将代入对数函数解析式可求得点的坐标为,所以点的横坐标为,点的纵坐标为,点在幂函数的图像上,所以点的坐标为,所以点的横坐标为,点的指数函数的图像上,所以点的坐标为,所以点的纵坐标为,所以点的坐标为.故选:.(黑龙江省鸡西市龙东南七校联考2018-2019学年高一上学期期末数学试题)8.函数的图像大致为( )A. B.C. D.【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(湖南省衡阳市第一中学2018-2019学年高一上学期期末考试数学试题)9.我们从这个商标中抽象出一个图像如图,其对应的函数可能是( )A. B. C. D.【答案】D【解析】【分析】由图像分析得函数为偶函数,排除法即可.【详解】由图像得函数的定义域为,排除B,C.图像关于y轴对称,所以函数为偶函数,排除C.故选:D.【点睛】本题考查的是利用函数的图像分析判断出函数是偶函数的问题,属于基础题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第13题函数的图像I .题源探究·黄金母题【例1】下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.【解析】图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.精彩解读 【试题来源】人教版A 版必修1第23页练习第2题 【母题评析】本题考查了函数的表示法之一—图像法,意在培养学生的数形结合思想,也考察了学生的分析问题和解决问题的能力,同时告诉了学生生活之中处处有数学,数学来源于生活又应用与生活。

【思路方法】数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图像是强有力的工具,这种思想是近几年高考试题常常采用的命题形式。

【例2】函数()r f p =的图象如图所示. (1)函数()r f p =的定义域是什么? (2)函数()r f p =的值域是什么?精彩解读【试题来源】人教版A 版必修1第25页(3)r 取何值时,只有唯一的p 值与之对应?【解析】(1)函数()r f p =的定义域是[5,0][2,6)-; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.习题1.2B 组第1题 【母题评析】本题以分段函数的图像为载体考察了函数定义域、值域的求法,加强学生对函数概念及函数三要素的理解,这对以后学习函数的性质有很大的帮助。

【思路方法】函数图像解决函数问题是强有力的工具,因此培养学生的读图、识图能力很重要。

【例3】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.【解析】3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下精彩解读 【试题来源】人教版A 版必修1第25页习题1.2B 组第3题 【母题评析】本题是一道信息给予题,通过定义新函数,考查了学生对分段函数概念的理解及函数解析式的求法,同时培养学生阅读能力和理解能力。

【思路方法】数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图像是强有力的工具,这种思想是近几年高考试题常常采用的命题形式。

【例4】画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数. (1)256y x x =--;(2)29y x =-.【解析】(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.精彩解读 【试题来源】人教版A 版必修1第39页习题1.3A 组第1题【母题评析】本题以画图的方式让学生去寻找函数的单调区间,培养学生的作图、读图、识图的能力,。

【思路方法】利用函数图像求函数的单调区间是一种常用的方法,数形结合思想是高中数学中主要的解题思想之一,提别是在解决函数的问题中,函数图像是强有力的工具,这种思想是近几年高考试题常常采用的命题形式。

【例5】出函数3log y x =及13log y x =的图象,并且说明这两个函数的相同点和不同点,如右图所示.【解析】画出函数3log y x =及13log y x =的图象,如下图所示:相同点:图象都在y 轴的右侧,都过点(1,0)不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.精彩解读 【试题来源】人教版A 版必修1第73页练习第1题 【母题评析】本题以3log y x=和13log y x=的图像为载体,让同学们再次认识对数函数01,1a a <<>图像的异同,加强学生对对数函数图像的认识。

【思路方法】利用图像解决函数的问题,形象直观,过程简练,语言简洁。

【例6】利用函数图像判断下列方程有没有根,有几个根: (1)-x 2+3x +5=0;(2)2x (x -2)=-3;(3)x 2=4x -4;(4)5x 2+2x =3x 2+5【解析】(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根. (2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根.(3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)),它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根.精彩解读 【试题来源】人教版A 版必修1第88页练习第1题 【母题评析】本题以通过图像然学生去探究方程根的分布情况,意在培养学生的数形结合思想,同时也渗透了函数与(4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)),它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.方程思想。

【思路方法】本题为研究方程根的分布指明了方向,即转化为判断函数图像与x 轴交点个数问题。

【例7】设函数2()32f x x x =---,若2()2[()]g x f x =-, (1)求()g x 的解析式;(2)借助计算机或计算器,画出函数()g x 的图像;(3)求出函数()g x 的零点(精确度0.1).【解析】(1)由题设有g (x )=2-[f (x )]2=2-(x 2+3x +2)2=-x 4-6x 3-13x 2-12x -2. (2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g (x )分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x 1=-2.5,用计算器可算得g (-2.5)=0.187 5.因为g (-3)·g (-2.5)<0,所以x 0∈(-3,-2.5).再取(-3,-2.5)的中点x 2=-2.75,用计算器可算得g (-2.75)≈0.28.因为g (-3)·g (-2.75)<0,所以x 0∈(-3,-2.75).同理,可得x 0∈(-2.875,-2.75),x 0∈(-2.812 5,-2.75). 由于|-2.75-(-2.8125)|=0.0625<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.精彩解读 【试题来源】人教版A 版必修1第93页习题3.1B 组第3题 【母题评析】本题是一道求复合函数解析式与函数零点相结合的问题,同时考查了如何利用零点分段法去求函数的零点。

【思路方法】本题为研究函数的零点指明了方向,即转化为判断函数图像与x 轴交点个数问题。

解决这类需要我们利用图象所提供的信息来分析解决问题的题目的常用方法有:①定性分析法,也就是通过对问题所以函数g(x)精确到0.1的零点约为-2.8或-0.2.进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.分段函数的函数值时,应首先确定所给自变量的取值属于哪一个范围,然后选取相应的对应关系.若自变量值为较大的正整数,一般可考虑先求函数的周期.若给出函数值求自变量值,应根据每一段函数的解析式分别求解,但要注意检验所求自变量的值是否属于相应段自变量的范围;II.考场精彩·真题回放【命题意图】识别辨【例1】【2017高考新课标I 卷】函数sin21cos xy x=-的部分图像大致为()A .B .C .D . 【答案】C【解析】由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A .故选C .【例2】【2017高考新课标III 卷】函数2sin 1xy x x=++的部分图像大致为()A B C D 【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .【例3】【2017高考山东卷】已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m 的取值范围是()A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()0,223,⎤⎡+∞⎦⎣D .([)0,23,⎤+∞⎦【答案】B【解析】当01m <≤时,11m>,()21y mx =-单调递减,且()()2211,1y mx m ⎡⎤=-∈-⎣⎦,y x m =+单调递增,且y x m =+[],1m m ∈+,此时有且仅有一个交点;当1m >时,101m<<,析函数的图象,实质就是分析函数的性质,主要观察以下几点:①函数的定义域;②函数图象的最高点(最大值)和最低点(最小值); ③与坐标轴的交点(即()0f x =或0x =的点);④图象的对称性(函数的奇偶性); ⑤函数图象在某段上的变化趋势(即函数的单调性); ⑥图象的变化规律(即函数的周期性); ⑦函数图象的凸凹性.【考试方向】高考试题的考查角度有两种:一种是给出函数解析式判断函数图象;一种是函数图象的应用.图象的判断以及函数图象的应用、数形结合的数学思想方法及利用函()21y mx =-在1,1m ⎡⎤⎢⎥⎣⎦上单调递增,所以要有且仅有一个交点,需()211,3m m m -≥+∴≥,故选B .【例4】【2017高考北京卷】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q 1为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是_________.②记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是_________.【答案】1Q ;2.p【解析】试题分析:作图可得11A B 中点纵坐标比2233,A B A B 中点纵坐标大,所以第一位选1Q分别作123,,B B B 关于原点的对称点123,,B B B ''',比较直线112233,,A B A B A B '''斜率,可得22A B '最大,所以选2.p 数图象研究函数性质、方程、不等式等问题仍将是高考的主要考查内容,备考时应加强针对性的训练.【难点中心】本类试题主要考查幂、指、对函数图像与性质、二次函数函数的图象与性质、函数与方程、分段函数的概念.解答此类问题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.这类题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向;(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f ”,即将函数值的大小转化自变量大小关系III .理论基础·解题原理考点一由式定图:即根据函数的解析式确定函数的图象 此类问题实质就是分析函数的性质,主要观察以下几点:①函数的定义域;②函数图象的最高点(最大值)和最低点(最小值);③与坐标轴的交点(即()0f x =或0x =的点);④图象的对称性(函数的奇偶性); ⑤函数图象在某段上的变化趋势(即函数的单调性);⑥图象的变化规律(即函数的周期性); ⑦函数图象的凸凹性.解决这类需要我们利用图象所提供的信息来分析解决问题的题目的常用方法有:①定性分析法,也就是通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题. 考点二利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程()0f x =的根就是函数()f x 图象与x 轴的交点的横坐标,方程()()f x g x =的根就是函数()f x 与()g x 图象交点的横坐标. 考点三、函数图象变换设函数()y f x =,其它参数均为正数 (1)平移变换:()f x a +:()f x 的图像向左平移a 个单位;()f x a -:()f x 的图像向右平移a 个单位 ()f x b +:()f x 的图像向上平移a 个单位;()f x b -:()f x 的图像向下平移a 个单位(2)对称变换:()f x -:与()f x 的图像关于y 轴对称;()f x -:与()f x 的图像关于x 轴对称 ()f x --:与()f x 的图像关于原点对称(3)伸缩变换:()f kx :()f x 图像纵坐标不变,横坐标变为原来的1101k k k >⎧⎨<<⎩:收缩:拉伸 ()kf x :()f x 图像横坐标不变,纵坐标变为原来的101k k k >⎧⎨<<⎩:拉伸倍:收缩(4)翻折变换:()f x :()()(),0,0f x x f x f x x ≥⎧⎪=⎨-<⎪⎩即正半轴的图像不变,负半轴的原图像不要,换上与正半轴图像关于y 轴对称的图像()f x :()()()()(),0,0f x f x f x f x f x ≥⎧⎪=⎨-<⎪⎩即x 轴上方的图像不变,下方的图像沿x 轴对称的翻上去。

相关文档
最新文档