氨氮废水常用处理方法
氨氮废水常用处理方法
![氨氮废水常用处理方法](https://img.taocdn.com/s3/m/fb6495f564ce0508763231126edb6f1aff00710e.png)
氨氮废水常用处理方法氨氮废水是指废水中含有氨氮化合物的废水。
氨氮废水的处理是保护环境、减少对生活水源、地下水和环境的污染的重要过程。
以下是常用的氨氮废水处理方法。
一、化学法处理1. 氧化法氧化法是将含有氨氮化合物的废水中的氨氮氧化为硝酸盐,进而使得氨氮被转化为无害物质。
常用的氧化剂有氯和臭氧。
此外,还可以利用高锰酸钾氧化废水中的氨氮。
2. 硫酸铵沉淀法硫酸铵沉淀法是一种将氨氮转化为与之反应生成固体沉淀的方法。
该方法中,硫酸铵与废水中的氨氮发生反应,生成可溶性的硫酸铵、硫酸铁、硫酸铵铁等盐类沉淀,从而将氨氮从废水中去除。
二、生物法处理1. 厌氧处理法厌氧处理法是利用厌氧条件下的微生物,将有机废物和氨氮一起去除。
在厌氧生物反应器中,废水中的氨氮会被微生物利用作为能源和氮源,通过微生物代谢的产物来将氨氮去除掉。
2. 高效曝气活性污泥法高效曝气活性污泥法是一种通过生物氧化反应将氨氮去除的方法。
在高效曝气活性污泥法中,通过添加活性污泥,在适宜的温度和pH条件下,利用曝气设备对污水进行充分曝气,促使废水中的氨氮通过厌氧-好氧反应达到去除的目的。
三、物理法处理1. 吸附法吸附法是通过吸附剂表面的孔隙结构和化学性质,将废水中的氨氮物质吸附到吸附剂上,使氨氮物质从废水中转移到吸附剂上,并通过后续的处理将吸附剂中的氨氮去除。
2. 膜分离法膜分离法是利用半透膜将废水中的氨氮物质分离出来的方法。
通过调整操作条件,如压力差、温度等,使得废水中的氨氮物质能够透过半透膜,从而达到去除的目的。
四、辅助方法1. 灭活法灭活法是指通过添加酸、碱等化学物质,改变废水中的pH值,使得废水中的氨氮化合物发生离子化反应,从而改变其活性,达到去除氨氮的目的。
2. 稀释法稀释法是指通过将废水与其他水源进行混合,降低废水中氨氮的浓度,以达到减少氨氮的目的。
上述是常用的氨氮废水处理方法,具体选择何种方法应根据废水中氨氮浓度、处理效果要求和经济成本等多方面因素综合考虑。
氨氮废水处理方法汇总
![氨氮废水处理方法汇总](https://img.taocdn.com/s3/m/fec70082eefdc8d377ee329c.png)
氨氮废水处理方法汇总氨氮废水处理有折点氯化法、化学沉淀法、离子交换法、吹脱法和生物脱氨法等多种方法,这些技术可分为物理化学法和生物脱氮技术两大类。
1生物脱氮法微生物去除氨氮过程需经两个阶段。
第一阶段为硝化过程,亚硝化菌和硝化菌在有氧条件下将氨态氮转化为亚硝态氮和硝态氮的过程。
第二阶段为反硝化过程,污水中的硝态氮和亚硝态氮在无氧或低氧条件下,被反硝化菌(异养、自养微生物均有发现且种类很多)还原转化为氮气。
在此过程中,有机物(甲醇、乙酸、葡萄糖等)作为电子供体被氧化而提供能量。
常见的生物脱氮流程可以分为3类,分别是多级污泥系统、单级污泥系统和生物膜系统。
1.1多级污泥系统此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长、构筑物多、基建费用高、需要外加碳源、运行费用高、出水中残留一定量甲醇等。
1.2单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。
前置反硝化的生物脱氮流程,通常称为A/O流程与传统的生物脱氮工艺流程相比,A/O工艺具有流程简单、构筑物少、基建费用低、不需外加碳源、出水水质高等优点。
后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果可高于前置式,理论上可接近100%的脱氮。
交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。
该系统本质上仍是A/O系统,但其利用交替工作的方式,避免了混合液的回流,因而脱氮效果优于一般A/O流程。
其缺点是运行管理费用较高,且一般必须配置计算机控制自动操作系统。
1.3生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。
此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。
2物化除氮物化除氮常用的物理化学方法有折点氯化法、化学沉淀法、离子交换法、吹脱法、液膜法、电渗析法和催化湿式氧化法等。
氨氮的预处理方法
![氨氮的预处理方法](https://img.taocdn.com/s3/m/f8f0e4b4c9d376eeaeaad1f34693daef5ff7135f.png)
氨氮的预处理方法氨氮是指水中所含的游离氨和铵离子的浓度。
由于氨氮具有较高的毒性和对水体生态环境的负面影响,因此在水体环境保护和污水处理过程中,需要对氨氮进行预处理以降低其浓度。
1.生物法预处理:生物法预处理是将含氨水体通过微生物活性池进行处理的一种方法。
常见的生物法预处理方法包括活性污泥法、人工湿地法和微生物滤床法。
-活性污泥法:活性污泥法是一种将含氨废水中的氨氮转化为氮气通过空气中的氧气释放出去的方法。
废水经过曝气槽,利用活性污泥中的硝化细菌进行氨氮的氨化转化为亚硝酸盐,再经过好氧池中的硝化细菌进行亚硝酸盐的硝化转化为硝酸盐。
这样,废水中的氨氮就被转化为氮气,从而达到降低氨氮浓度的目的。
-人工湿地法:人工湿地法是一种通过植物和土壤微生物降解氨氮的方法。
水体通过人工湿地,植物的根系和湿地土壤中的微生物可以吸附、分解和转化废水中的氨氮,使其减少。
这种方法具有结构简单、运行成本低的优点,并且可以同时去除其他污染物。
-微生物滤床法:微生物滤床法是将含氨水体通过填充了微生物滤料的滤床进行处理的方法。
废水通过滤床时,微生物滤料上的微生物能够将废水中的氨氮降解为无毒的亚硝酸盐、硝酸盐和氮气。
这种方法具有处理效果稳定、装置结构简单的特点。
2.物化预处理:物化预处理是通过一些物化方法将废水中的氨氮与其他物质发生反应,从而降低氨氮的浓度。
-化学沉淀法:化学沉淀法是利用化学反应将废水中的氨氮转变为不溶性物质,通过沉淀的方式从废水中除去的方法。
常用的化学沉淀剂有氢氧化钙、氢氧化镁等。
-活性炭吸附法:活性炭具有较高的比表面积和吸附性能,可以将废水中的氨氮吸附在其表面上,从而达到去除氨氮的目的。
-化学氧化法:化学氧化法是通过氧化剂将废水中的氨氮氧化为无毒的物质,如亚硝酸盐、硝酸盐等。
常用的氧化剂有臭氧、高锰酸钾等。
3.综合预处理:综合预处理是将多种预处理方法结合起来,通过联合运用提高氨氮去除效果。
一种常用的综合预处理方法是将生物法与物化法相结合。
水中氨氮的去除方法
![水中氨氮的去除方法](https://img.taocdn.com/s3/m/15a44c95b84ae45c3a358cab.png)
水中氨氮的去除方法废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在.生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。
水中氨氮的去除方法有多种,但目前常见的除氮工艺有生物硝化与反硝化、沸石选择性交换吸附、空气吹脱及折点氯化等。
下面我们详细介绍一下这几种水中氨氮的去除方法:一、生物硝化与反硝化(生物陈氮法)(一)生物硝化在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。
生物硝化的反应过程为:由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4。
57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7。
lg。
影响硝化过程的主要因素有:(1)pH值当pH值为8.0~8。
4时(20℃),硝化作用速度最快。
由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上;(2)温度温度高时,硝化速度快。
亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜;(3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0。
5d-1(温度20℃,pH8.0~8.4)。
为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。
在实际运行中,一般应取>2 ,或>2 ;(4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。
一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上;(5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌.若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。
所以为要充分进行硝化,BOD5负荷应维持在0。
3kg(BOD5)/kg(SS).d以下.(二)生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2——N和NO3--N还原成N2的过程,称为反硝化。
氨氮废水常用处理方法
![氨氮废水常用处理方法](https://img.taocdn.com/s3/m/6ab0c019941ea76e59fa042f.png)
氨氮废水常用处理方法来源:作者:发布时间:2007-11-14过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
污水氨氮去除方法
![污水氨氮去除方法](https://img.taocdn.com/s3/m/e3682d2403020740be1e650e52ea551810a6c921.png)
污水氨氮去除方法
污水中氨氮的去除方法如下:
1、吹脱法
氨吹脱工艺是将水的pH值提到10.5到11.5的范围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。
这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。
2、离子交换法
离子交换实际是不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子的交换反应,是一种特殊的吸附过程。
用离子交换法去除氨氮时,常用离子交换剂沸石、活性炭等,也有研究采用合成树脂。
3、生物处理法
目前,生物法是实际应用中使用最广泛的处理低浓度氨氮废水的方法。
生物脱氮是在微生物的作用下,将有机氮和氨态氮转化为N2和NxO气体的过程,其中包括硝化和反硝化两个反应过程。
氨氮废水的处理方法及案例介绍
![氨氮废水的处理方法及案例介绍](https://img.taocdn.com/s3/m/b8c069f277232f60dccca148.png)
氨氮废水的处理方法氨氮废水主要来源于化肥、焦化、石化、制药、食品等行业废水,由于存在一定的隐患问题,因此人们对于这一废水的处理很重视,传统的处理方法有物理法、化学法、物理化学以及生化法等。
(1)生物法传统的生化法主要用于低浓度氨氮废水处理,它是利用微生物的硝化及反硝化作用使氨氮转变为氮气。
低浓度氨氮废水通常具有比低的特点,有些生产废水甚至不含COD,因此采用生物脱氮的方式处理,需要加入碳源,运行成本很高。
常见工艺有A/O或A2/O)和SBR工艺。
其缺点是处理过程对温度和工业废水中某些组分的干扰非常敏感,需要的反应器体积比较大,而且反硝化过程中会产生N2O,易转化为其它影响臭氧层的氮氧化物,反硝化把NH4+这种有价值的物质转化成N2逸入空气,造成浪费。
在A/O工艺中,为了促使反硝化反应顺利进行,一般要求C/N大于3。
(2)蒸汽汽提法蒸汽汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,其处理机理与吹脱法基本相同,也是一个气液传质过程,即在高pH值时,使废水与蒸汽密切接触,从而降低废水中氨浓度的过程。
传质过程的推动力是气相中氨的分压与废水中氨的浓度对应的平衡分压之间的差值。
蒸汽汽提法由于采用的工作介质是蒸汽,氨自废水进入蒸汽中,然后在塔顶精馏成为浓氨水回收,因此无需增加后处理工序。
蒸汽汽提所需蒸汽体积要比空气吹脱法中所需空气体积小得多,因此设备体积较小,占地面积较少。
汽提法比较适用于处理1000mg/L以上的高浓度氨氮废水,对氨氮的去除率可达99%以上,效率高,技术成熟度好。
但是,常规的汽提废水脱氨技术蒸汽消耗量大,处理废水单耗比较高。
蒸汽汽提废水脱氨技术的普及推广应用需要在节能降耗方面加大研究开发的力度。
(3)离子交换法离子交换法适用于氨离子浓度在10~100mg/L的废水。
其原理是选用阳离子交换树脂,将水中的铵离子与树脂上的钠离子交换,从而达到去除铵的目的。
沸石具有从含钠、镁和钙等离子的溶液中有选择地去除氨离子的特点,因而选其作为交换树脂也叫有选择性的离子交换法,穿透的树脂要用2%的氯化钠溶液再生,再生液经过去氨处理后再循环使用,达一定的循环率后排放。
对污水中氨氮的主要去除方法
![对污水中氨氮的主要去除方法](https://img.taocdn.com/s3/m/13bb2e65011ca300a6c39093.png)
对污水中氨氮的主要去除方法近20 年来, 对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一.生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1 。
进水预处理曝气池二沉池脱氮池图1 生物脱氮工艺流程硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤: 由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌) 的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源) 。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低[11]。
2.传统生物法目前, 国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932 年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification) ,1973年Barnard 结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox (A2/ O) UCT、JBH、AAA 工艺等,这些都是典型的传统硝化反硝化工艺[12]。
给排水工艺中的去除氨氮总氮技术
![给排水工艺中的去除氨氮总氮技术](https://img.taocdn.com/s3/m/b457c980d4bbfd0a79563c1ec5da50e2524dd185.png)
给排水工艺中的去除氨氮总氮技术随着城市发展和人口增长,污水处理成为了一项关键的环保任务。
而其中,去除氨氮和总氮是污水处理过程中的重要指标之一。
本文将介绍几种常用的去除氨氮总氮技术,包括生物法、化学法和物理法。
一、生物法生物法是最常见的去除氨氮总氮的方法之一。
其原理是利用微生物将有机物和氨氮等有害物质转化为无害的固体物或气体。
常用的生物法包括活性污泥法、厌氧氨氧化法和硝化—反硝化法。
1. 活性污泥法活性污泥法利用污水中的微生物菌群,通过细菌的降解作用将氨氮和有机物质转化为沉淀物。
该方法适用于中小型污水处理厂,具有成本低、运行稳定等优点。
2. 厌氧氨氧化法厌氧氨氧化法是利用厌氧菌将氨氮氧化为亚硝酸盐。
该方法适用于高氨氮浓度的废水处理,能够大幅度减少氨氮的去除能耗。
3. 硝化—反硝化法硝化—反硝化法是将氨氮先氧化成硝酸盐,然后通过反硝化将硝酸盐还原为氮气排出。
该方法适用于氨氮浓度较低的废水处理,能够实现氮气的高效去除。
二、化学法化学法是采用化学品与氨氮或总氮发生反应,从而实现去除的方法。
常用的化学法包括硝化—硝化法和氨氮氧化法。
1. 硝化—硝化法硝化—硝化法是利用化学药剂将氨氮转化为亚硝酸盐或硝酸盐,再通过沉淀、吸附等方式进行去除。
该方法适用于废水中氨氮浓度较高的情况,但同时也会产生相应的化学废物。
2. 氨氮氧化法氨氮氧化法是利用高效氧化剂将氨氮氧化为无机氮。
该方法适用于氨氮含量较低的废水处理,但氧化剂的使用会增加运营成本。
三、物理法物理法主要是通过物理手段去除废水中的氨氮和总氮。
常用的物理法包括吸附法和膜分离法。
1. 吸附法吸附法是利用吸附剂吸附污水中的氨氮和总氮物质,从而实现去除。
常用的吸附剂有活性炭、树脂等。
该方法适用于小型污水处理系统,但吸附剂的再生和处理也需要额外考虑。
2. 膜分离法膜分离法是利用膜的筛选作用,通过渗透、过滤等方式将废水中的氨氮和总氮分离出来。
常见的膜分离方法有超滤法、反渗透法等。
水厂去除氨氮的工艺
![水厂去除氨氮的工艺](https://img.taocdn.com/s3/m/4e5a682e001ca300a6c30c22590102020740f2ff.png)
水厂去除氨氮的工艺一、物理法物理法去除氨氮主要包括沉淀法、膜分离技术等。
1. 沉淀法沉淀法是通过向水中投加药剂,使水中悬浮物和胶体物质形成絮凝体,在沉淀池中沉淀分离,以达到去除氨氮的目的。
常用的药剂有氯化钙、氢氧化钙等,这些药剂可以与水中的氨氮反应生成沉淀物,从而降低水中氨氮的含量。
2. 膜分离技术膜分离技术是利用半透膜,使水在压力作用下通过膜过滤,从而去除氨氮。
膜分离技术主要包括反渗透、超滤、纳滤等。
其中反渗透技术去除氨氮的效果最好,但成本较高。
二、化学法化学法去除氨氮主要包括折点氯化法、酸化吹脱法等。
1. 折点氯化法折点氯化法是通过向水中投加氯气,使氯气与氨氮反应生成氮气,以达到去除氨氮的目的。
该方法的优点是去除效率高,操作简单,但需要消耗大量的氯气,成本较高。
2. 酸化吹脱法酸化吹脱法是通过向水中加酸,使水中的氨氮转化为铵离子,再通过吹脱作用将铵离子从水中去除。
该方法的优点是去除效率高,操作简单,成本较低,但会产生酸性废水。
三、生物法生物法去除氨氮是利用微生物的硝化反硝化作用,将水中的氨氮转化为硝酸盐或氮气,以达到去除氨氮的目的。
常用的生物法包括A/O工艺、A2/O工艺等。
生物法去除氨氮的优点是处理效果好,无二次污染,但需要一定的反应时间和反应条件,处理周期较长。
四、高级氧化法高级氧化法去除氨氮是利用强氧化剂将水中的氨氮氧化成硝酸盐或氮气,以达到去除氨氮的目的。
常用的高级氧化法包括芬顿试剂氧化法、臭氧氧化法等。
高级氧化法去除氨氮的优点是反应速度快,处理效果好,但需要投加大量的氧化剂,成本较高。
高浓度氨氮废水处理方法与工艺
![高浓度氨氮废水处理方法与工艺](https://img.taocdn.com/s3/m/1de8fbe9d0f34693daef5ef7ba0d4a7302766c18.png)
高浓度氨氮废水处理方法与工艺1.生物法处理:生物法是指利用微生物来降解和转化高浓度氨氮废水中的氨氮。
其中最常用的方法是厌氧法和好氧法。
-厌氧法:通过控制氧化还原电位,使废水中的氨氮被厌氧菌转化为氨气和亚硝化氢。
-好氧法:利用好氧微生物通过硝化作用将废水中的氨氮转化为硝态氮。
生物法处理的优点是处理效果稳定,处理成本相对较低,适用于大规模处理。
但是需要一定的操作和维护,对水质和温度的要求较高。
2.物化法处理:物化法是利用物理和化学方法将废水中的氨氮转化为无害物质或使其沉淀。
常见的方法有蒸气扩散、氢氧化钠法和氯化铁法等。
-蒸气扩散:通过加热使氨氮气化,并通过扩散将氨气从废水中转移出去。
-氢氧化钠法:利用氢氧化钠与氨氮发生反应生成氨化钠,并沉淀除去。
-氯化铁法:将氯化铁添加到废水中,通过与氨氮发生化学反应生成氯化铵沉淀除去。
物化法处理的优点是处理过程简单,可在短时间内快速去除氨氮。
但是处理副产物比较多,处理成本较高。
3.其他辅助处理方法:除了上述传统的处理方法外,还有一些辅助处理方法可以提高高浓度氨氮废水处理的效果。
-膜分离法:利用半透膜来分离废水中的氨氮,可以有效提高氨氮的去除率。
-离子交换法:通过离子交换剂将废水中的氨氮吸附去除。
-活性炭吸附法:利用活性炭吸附废水中的氨氮。
这些辅助处理方法可以与生物法或物化法相结合,提高处理效果。
综上所述,针对高浓度氨氮废水的处理,可以采用生物法、物化法和其他辅助处理方法。
通过适当选择合适的处理方法和工艺,可以有效去除废水中的高浓度氨氮,保护水环境和人类健康。
氨氮的处理
![氨氮的处理](https://img.taocdn.com/s3/m/dc6f9ee8700abb68a982fb87.png)
物化法1. 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与温度、PH、气液比有关。
2. 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
例如:气水分离膜脱除氨氮。
氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。
根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。
在自然界中一切平衡都是相对的和暂时的。
化学平衡只是在一定条件下才能保持―假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。
‖遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。
当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2+ ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
污水中氨氮的主要去除方法
![污水中氨氮的主要去除方法](https://img.taocdn.com/s3/m/8d129ecf9b89680203d825b6.png)
本文摘自再生资源回收-变宝网()污水中氨氮的主要去除方法近20年来,对氨氮污水处理方面开展了较多的研究。
其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。
一、生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。
因而,污水的生物脱氮包括硝化和反硝化两个阶段。
生物脱氮工艺流程见图1。
硝化反应是将氨氮转化为硝酸盐的过程,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应;由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。
在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。
反硝化过程中的电子供体是各种各样的有机底物(碳源)。
生物脱氮法可去除多种含氮化合物,总氮去除率可达70%—95%,二次污染小且比较经济,因此在国内外运用最多。
但缺点是占地面积大,低温时效率低。
2.传统生物法目前,国内外对氨氮污水实际处理中应用较成熟的生物处理方法是传统的前置反硝化生物脱氮,如A/O、A2/O工艺等,都能在一定程度上去除污水中的氨氮。
传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。
由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。
1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack 和Ettinger于1962年提出了前置反硝化工艺(pre-denitrification),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)UCT、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺。
氨氮废水处理方法及其优缺点
![氨氮废水处理方法及其优缺点](https://img.taocdn.com/s3/m/a6fef09181eb6294dd88d0d233d4b14e84243e7e.png)
氨氮废水处理方法及其优缺点一、生物法生物法是指利用生物体或生物群体来降解废水中的氨氮。
常用的生物法包括活性污泥法、好氧硝化法、厌氧反硝化法和生物膜法等。
1.活性污泥法活性污泥法是将废水与活性污泥混合,通过氨氮的硝化和硝酸盐的还原作用来降解氨氮。
其优点是处理效果稳定、操作简单、能同时去除COD等有机物质,缺点是对负荷波动较敏感,能耗较高。
2.好氧硝化法好氧硝化法是将废水通过好氧菌的作用,将氨氮氧化为硝酸盐。
其优点是操作简单、能耗较低,但硝化速度较慢,对废水中有机负荷波动敏感。
3.厌氧反硝化法厌氧反硝化法是在无氧条件下,利用厌氧菌将废水中的氨氮和硝酸盐共同还原为氮气。
其优点是对废水中COD负荷波动较稳定,能耗较低,但操作技术要求较高。
4.生物膜法生物膜法是通过在载体上负载生物降解菌群来处理废水中的氨氮。
其优点是反应器设计灵活,处理效果稳定,但需要定期清洗和更换载体。
二、物化法物化法是指利用物理和化学方法来去除废水中的氨氮。
常用的物化法包括吸附法、气浮法和化学沉淀法等。
1.吸附法吸附法通过将废水中的氨氮吸附到吸附剂上实现去除。
常用的吸附剂有活性炭、分子筛和天然矿物质等。
其优点是操作简单、去除效果稳定,但吸附剂饱和后需要更换。
2.气浮法气浮法是将废水中的氨氮通过气泡的上浮来实现去除。
其优点是处理效果稳定、适用于高浓度废水,但操作复杂、能耗较高。
3.化学沉淀法化学沉淀法通过添加化学沉淀剂,将废水中的氨氮与沉淀剂反应生成沉淀物并沉淀下来。
其优点是去除效果好、适用范围广,但需要定期处理沉淀物。
三、膜法膜法是利用膜的分离作用来去除废水中的氨氮。
常用的膜法有超滤、反渗透和电渗析等。
1.超滤法超滤法利用孔径较小的膜对废水进行分离,将废水中的氨氮去除。
其优点是操作简单、效果稳定,但需要定期清洗和更换膜。
2.反渗透法反渗透法通过在高压下,使废水透过半透膜,实现对氨氮的去除。
其优点是去除效果好、可以同时去除其他溶解物质,但能耗较高。
氨氮废水处理
![氨氮废水处理](https://img.taocdn.com/s3/m/d3e724e3ac51f01dc281e53a580216fc700a53ea.png)
氨氮废水处理氨氮废水是指含有肯定浓度的氨氮的工业、农业、生活污水,其直接排放对环境产生严重影响。
为了保护环境,削减水污染对人类和生物造成的损害,需要对氨氮废水进行有效处理。
本文将对氨氮废水的生成、特点、影响以及处理方法进行认真介绍。
一、氨氮废水的生成和特点氨氮废水重要来自于人类和动物的排泄物、化肥及农药使用、工业废水、畜禽养殖业等,它的重要特点是呈弱酸性,PH值在6—8之间,不易挥发。
在自然环境中,氨氮会在水体中快速被微生物汲取、化解为亚硝酸盐和硝酸盐,其中氨氮会被微生物利用来合成蛋白质,使氨氮的含量降低,但假如废水中氨氮浓度过高或污染物过多,微生物就无法快速将其降解,从而对环境造成危害。
二、氨氮废水的影响氨氮废水对环境造成的影响重要有以下几点:1. 氨氮会对水体中的鱼类造成危害。
高浓度的氨氮会使鱼体的呼吸系统受到损害,从而引发鱼类死亡。
2. 氨氮会抑制植物生长。
氨氮在高浓度下会引起植物叶片焦枯、萎蔫甚至死亡,从而影响到植物的生长发育。
3. 氨氮会对土壤产生负面影响。
高浓度的氨氮在土壤中累积会导致土壤酸化,影响土壤的肥力和生物活性。
4. 氨氮会对人类健康产生危害。
当氨氮浓度过高时,会对人类的眼睛和呼吸系统造成刺激,引发头痛和感冒等疾病。
三、氨氮废水的处理方法1. 生物法处理在氨氮废水处理中,生物法可以说是最常用的处理方法之一,这是由于生物法处理成本低,处理效率高。
生物法处理废水的方式可以用好氧法处理和厌氧法处理,优点在于处理过程本身不会产生二次污染。
在好氧法处理中,氨氮在氧气的作用下,被微生物氧化为亚硝酸盐和硝酸盐,亚硝酸盐和硝酸盐在水体中的含量被有效地去除。
在厌氧处理中,氨氮在没有氧气的环境中,被厌氧微生物氧化为亚硝酸盐和硝酸盐,和好氧法处理相比,厌氧法处理更适用于含有高浓度氨氮的废水。
2. 化学法处理在氨氮废水处理中,常用的化学处理方法有氧化法和还原法。
氧化法通过氧化氨氮来达到去除氨氮的目的,氧化剂有过氧化氢、臭氧、高锰酸钾等,优点是去除效率高,但需要消耗大量的化学品,成本较高。
废水中氨氮的去除
![废水中氨氮的去除](https://img.taocdn.com/s3/m/cdf8dd16e3bd960590c69ec3d5bbfd0a7956d501.png)
废水中氨氮的去除废水中氨氮的去除废水中氨氮的去除一直是环境保护领域的重要课题之一。
氨氮是指水体中以氨的形式存在的氮,主要来自于工业生产废水、农业养殖废水等。
氨氮的排放对环境造成严重影响,会导致水体富营养化、酸碱平衡破坏、生态系统紊乱等问题。
因此,对废水中的氨氮进行有效去除是非常必要的。
目前,常用的废水中氨氮去除方法主要包括物理法、化学法和生物法。
物理法主要是利用吸附、萃取、蒸发和膜分离等技术手段将氨氮从废水中分离出来。
化学法则是通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
而生物法则是利用微生物的作用将废水中的氨氮转化成无害的氮气,从而达到去除的目的。
物理法中比较常用的方法是吸附。
吸附是指通过固体材料对氨氮的接触和吸附,将其从废水中分离出来。
常用的吸附剂有活性炭、氧化铁等。
活性炭吸附剂有较大的比表面积,能够有效地吸附氨氮。
氧化铁则是一种常见的吸附剂,它能够与氨氮形成络合物,从而实现氨氮的去除。
此外,萃取、蒸发和膜分离等技术也可以用于废水中氨氮的去除,但相比吸附而言,其成本较高。
化学法中,常用的方法是氨氮的沉淀。
氨氮的沉淀是指通过加入一定的化学药剂,使氨氮与其发生反应并形成不可溶于水的化合物,从而实现氨氮的去除。
常用的化学药剂有氢氧化钙、氯化铁等。
氢氧化钙是一种碱性物质,能够与氨氮发生反应,形成氨氮的沉淀物。
氯化铁则是一种常见的混凝剂,能够与氨氮形成沉淀,并与其一同被沉淀下来。
此外,还可以通过氧化、氮化等化学反应将氨氮转化成不可溶于水的化合物,从而实现氨氮的去除。
生物法中,常用的方法是利用微生物将废水中的氨氮转化成无害的氮气。
这类方法主要包括硝化和反硝化。
硝化是指通过一系列的微生物反应,将废水中的氨氮转化成硝态氮。
硝态氮不仅不具有毒性,而且还可以作为植物的肥料,有助于环境的改善。
反硝化是指通过一系列的微生物反应,将硝态氮还原成氮气。
这样即实现了氨氮向氮气的转化,达到了废水中氨氮的去除目的。
氨氮废水处理方法
![氨氮废水处理方法](https://img.taocdn.com/s3/m/efcabbb2f01dc281e53af0f2.png)
氨氮废水处理方法
氨氮的构成:
废水中氨氮的构成主要有两种:一种是氨水形成的氨氮,一种是无机氨形成的氨氮;主要是硫酸铵和氯化铵等等。
氨氮主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。
氨氮废水处理方法:
1.物理法:一般是在废水中加入絮凝剂,然后利用格栅或其它物理隔栅工具把一部分污染物处理下来,带走一部分有机物。
但是这个方法基本上只对浓度上千的氨氮起微少的作用,一般到几百的时候就很难光靠此方法处理了。
2.生物法:在污水处理厂或者大型的废水站中运用得比较多,一般都是靠各种的菌种,活性污泥等生物处理,对其进行好氧厌氧等处理后,形成完整的处理工艺,能有效去除溶解性的和胶体状态的可生化有机物等。
3.化学法:运动化学药剂的氧化作用分解氨氮,这种方法下的氨氮分解效率快,处理时间快。
一般都直接在出水口投加希洁氨氮去除剂SN-1使用,没有过多繁琐的操作。
能在5~6分钟左右降解氨氮,并且浓度好调节,灵活性强,根据不同的浓度投加不同的药剂量就能很好地控制氨氮的浓度了。
废水氨氮处理方法
![废水氨氮处理方法](https://img.taocdn.com/s3/m/e5af7e693069a45177232f60ddccda38366be162.png)
废水氨氮处理方法废水氨氮是一种常见的水质指标,通常是由人类生活、工业和农业废水产生的。
氨氮的高含量对水体生态系统和人类健康造成极大的负面影响。
因此,有效的废水氨氮处理方法对于净化水环境和保障人类健康至关重要。
本文将介绍一些常见的废水氨氮处理方法。
1. 生物处理法生物处理法是一种常见的废水氨氮处理方法,通常通过微生物代谢来将氨氮转化为硝酸盐氮和气态氮。
生物处理法包括活性污泥法、生物膜反应器法、曝气生物滤池法等等。
通常,这些方法都需要微生物及其生长环境、空气和水流等必要的条件来实现氨氮的转化和去除。
毫无疑问,生物处理法是一种效果显著而成本较低的氨氮处理方法。
2. 化学处理法化学处理法是通过化学反应反应来去除废水中的氨氮。
这些方法包括二氧化氯氧化法、氯气氧化法、臭氧氧化法等等。
但这些方法通常需要复杂的设备和高昂的运营成本。
因此,它们不适合中小企业使用。
3. 物理处理法物理处理法是使用物理过程或设备,比如溶液萃取、膜过滤、吸附、离子交换、电解等等来去除氨氮。
这些技术成本相对较高,需要一定的操作技能和高端设备。
但是,这些方法能在处理废水氨氮方面取得表现优异的成果。
4. 组合处理法组合式处理法是借助多种不同的氨氮处理技术,比如物理、化学和生物方法的组合,以减少其缺陷,并加速废水氨氮的去除。
例如,采用生物氧化法与物理与化学处理技术的综合处理方案,这能具有更好的氨氮去除效果和更低的成本。
总结:在对废水氨氮进行处理时,应因地制宜,结合废水水质状况、处理要求和运营成本等因素选择相应的氨氮处理技术。
不同的处理方法各有优缺点,并且在不同的情况下,其效果也可能会有所不同。
只有这样,我们才能找到最具效果和经济可行性的方法来减少废水氨氮的含量,从而实现对水生态环境的保护,提高人们的健康与生活品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氨氮废水常用处理方法来源:作者:发布时间:2007-11-14过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。
因此,废水脱氮处理受到人们的广泛关注。
目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。
消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。
高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
1 物化法1.1 吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。
一般认为吹脱效率与温度、pH、气液比有关。
王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。
在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。
吹脱法在低温时氨氮去除效率不高。
王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。
最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。
为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。
同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。
Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。
而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。
据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。
1.2 沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。
沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。
然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。
小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。
Milan等[5]用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。
增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h 是比较适合的尺寸。
离子交换法受悬浮物浓度的影响较大。
应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。
采用焚烧法时,产生的氨气必须进行处理。
1.3 膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。
这种方法操作方便,氨氮回收率高,无二次污染。
蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。
电渗析法处理氨氮废水2000~3000 mg/L,去除率可在85%以上,同时可获得8.9%的浓氨水。
此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。
PP中空纤维膜法脱氨效率>90%,回收的硫酸铵浓度在25%左右。
运行中需加碱,加碱量与废水中氨氮浓度成正比。
乳化液膜是种以乳液形式存在的液膜具有选择透过性,可用于液-液分离。
分离过程通常是以乳化液膜(例如煤油膜)为分离介质,在油膜两侧通过NH3的浓度差和扩散传递为推动力,使NH3进入膜内,从而达到分离的目的。
用液膜法处理某湿法冶金厂总排放口废水(1000~1200 mgNH4+-N/L,pH为6~9)[7],当采用烷醇酰胺聚氧乙烯醚为表面活性剂用量为4%~6%,废水pH调至10~11,乳水比在1:8~1:12,油内比在0.8~1.5。
硫酸质量分数为10%,废水中氨氮去除率一次处理可达到97%以上。
1.4 MAP沉淀法主要是利用以下化学反应:Mg2 ++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
穆大纲等[8]采用向氨氮浓度较高的工业废水中投加MgCl2·6H2O和Na2HP04·12H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。
结果表明,在pH为8.9l,Mg2+,NH4,P043-的摩尔比为1.25:1:1,反应温度为25 ℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氨质量浓度可由9500 mg/L降低到460 mg/L,去除率达到95%以上。
由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。
海水取之不尽,并且其中含有大量的镁盐。
Kumashiro等[9]以海水做为镁离子源试验研究了磷酸铵镁结晶过程。
盐卤是制盐副产品,主要含MgCl2和其他无机化合物。
Mg2+约为32 g/L为海水的27倍。
Lee等[10]用MgCl2、海水、盐卤分别做为Mg2+源以磷酸铵镁结晶法处理养猪场废水,结果表明,pH是最重要的控制参数,当终点pH≈9.6时,反应在10 min内即可结束。
由于废水中的N/P不平衡,与其他两种Mg2+源相比,盐卤的除磷效果相同而脱氮效果略差。
1.5 化学氧化法利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。
折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
在溴化物存在的情况下,臭氧与氨氮会发生如下类似折点加氯的反应:Br-+O3+H+→HBrO+O2,NH3+HBrO→NH2Br+H2O,NH2Br+HBrO→NHBr2+H2O,NH2Br+NHBr2→N2+3Br-+3H+。
Yang等[11]用一个有效容积32 L的连续曝气柱对合成废水(氨氮600 mg/L)进行试验研究,探讨Br/N、pH以及初始氨氮浓度对反应的影响,以确定去除最多的氨氮并形成最少的NO3-的最佳反应条件。
发现NFR(出水NO3--N与进水氨氮之比)在对数坐标中与Br-/N成线性相关关系,在Br-/N>0.4,氨氮负荷为3.6~4.0 kg/(m3·d)时,氨氮负荷降低则NFR降低。
出水pH=6.0时,NFR和BrO--Br(有毒副产物)最少。
BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
2 生化联合法物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100 mg/L以下)。
而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。
实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。
卢平等[12]研究采用吹脱-缺氧-好氧工艺处理含高浓度氨氮垃圾渗滤液。
结果表明,吹脱条件控制在pH=9 5、吹脱时间为12 h时,吹脱预处理可去除废水中60%以上的氨氮,再经缺氧-好氧生物处理后对氨氮(由1400 mg/L降至19.4 mg/L)和COD的去除率>90%。
Horan等[13]用生物活性炭流化床处理垃圾渗滤液(COD为800~2700 mg/L,氨氮为220~800 mg/L)。
研究结果表明,在氨氮负荷0.71 kg/(m3·d)时,硝化去除率可达90%以上,COD去除率达70%,BOD全部去除。
Fikret等[14]以石灰絮凝沉淀+空气吹脱做为预处理手段提高渗滤液的可生化性,在随后的好氧生化处理池中加入吸附剂(粉末状活性炭和沸石),发现吸附剂在0~5 g/L时COD和氨氮的去除效率均随吸附剂浓度增加而提高。
对于氨氮的去除效果沸石要优于活性炭。
膜-生物反应器技术(MBR)是将膜分离技术与传统的废水生物反应器有机组合形成的一种新型高效的污水处理系统。
MBR处理效率高,出水可直接回用,设备少战地面积小,剩余污泥量少。
其难点在于保持膜有较大的通量和防止膜的渗漏。
李红岩等[15]利用一体化膜生物反应器进行了高浓度氨氮废水硝化特性研究。
研究结果表明,当原水氨氮浓度为2000 mg/L、进水氨氦的容积负荷为2.0 kg/(m3·d)时,氨氮的去除率可达99%以上,系统比较稳定。
反应器内活性污泥的比硝化速率在半年的时间内基本稳定在0.36/d左右。
3 新型生物脱氮法近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。
主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。
3.1 短程硝化反硝化生物硝化反硝化是应用最广泛的脱氮方式。
由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。
短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。
Ruiza等[16]用合成废水(模拟含高浓度氨氮的工业废水)试验确定实现亚硝酸盐积累的最佳条件。
要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。
当DO=0.7 mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。
DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部硝化生成硝酸盐。
刘俊新等[17]对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行了对比分析。
试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。
此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
刘超翔等[18]短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。