小学六年级数学典型例题总结
六年级数学上册典型例题系列之第一单元分数乘法应用题(解析版)
答:略。
3. 厦华希望小学四年级有25名学生,五年级有学生35人,五年级人数比四年级少几分之几?
解析:(35-25)÷25=
答:略。
4. 信誉楼七月份卖出120台冰箱,八月份卖出100台冰箱,八月份比七月份少卖几分之几?
解析:(120-100)÷120=
答:略。
【典型例题3】如果甲数是乙数的 ,那么甲数比乙数少几分之几?乙数比甲数多几分之几?
答:200× =12(万元)
答:略。
2.一套西服原价250元,现价比原价多 。现价比原价多多少元?
答:250× =50(元)
答:略。
3.六年级音乐小组有30人。舞蹈小组的人数比音乐小组多 ,舞蹈小组比音乐小组多多少人?
解析:30× =10(人)
答:略。
【考点四】已知单位“1”,求比一个数多几分之几,是多少?
【对应练习】
1.小华看一本132页的书,第一天看了全书的 ,第二天看了第一天的 ,小华第二天看了多少页?
解析:132× × =11(页)
答:略。
2.学校四月份用电1600千瓦时,五月份用电量是四月份的 ,六月份用电量是五月份的 ,六月份用电多少千瓦时?
解析:1600× × =1120(千瓦时)
答:略。
六年级数学上册典型例题系列之
第一单元分数乘法应用题(解析版)
【考点一】寻找单位“1”和写数量关系式。
【方法点拨】
1.在分率句中分率的前面或“占”、“是”、“比”的后面
2.写数量关系式:
(1)“的” 相当于 “×” ;“占”、“是”、“比”相当于“ ÷ ”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
解析:(1600-1200)÷1200=
六年级上册数学典型例题
六年级上册数学典型例题一、分数的应用题1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米?4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快2/7,两车经过多少小时相遇?7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元?8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只?9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?二、比的应用题1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、一个长方体棱长总和为96厘米,高为4厘米,长与宽的比是3∶2,这个长方体的体积是多少?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克?7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?三、百分数的应用题1、某化肥厂今年产值比去年增加了20%,比去年增加了500万元,今年道值是多少万元?2、果品公司储存一批苹果,售出这批苹果的30%后,又运来160箱,这时比原来储存的苹果多1/10,这时有苹果多少箱?3、一件商品,原价比现价少百分之20,现价是1028元,原价是多少元?4、教育储蓄所得的利息不用纳税。
六年级数学上册典型例题系列之第六单元百分数的计算题部分_1(人教版)
六年级数学上册典型例题系列之第六单元百分数的计算题部分(解析版)编者的话:《六年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结和编辑而成的,其优点在于选题典型,考点丰富,变式多样。
本专题是第六单元百分数的计算题部分,后续内容为《第六单元百分数的应用题基础部分》。
本部分内容主要考察分数、小数、百分数的转化,多以计算题型为主,考察计算能力,题目难度不大,共划分为四个考点,欢迎使用。
【考点一】分数、小数、除法、比、百分数之间的互相转化。
【方法点拨】常见的分数与小数、百分数之间的互化:21=0.5=50% 51=0.2=20% 85=0.625= 62.5% 41=0.25=25% 52=0.4=40% 81=0.125=12.5% 43=0.75=75% 53=0.6=60% 83=1.375=37.5% 161=0.0625=6.25% 54=0.8=80% 87=0.875=87.5% 251=0.04=4﹪ 252=0.08=8﹪ 253=0.12=12﹪ 254 =0.16=16﹪ 【典型例题】1. 153:÷= 120.6()=== % 2.将下面的小数和分数化成百分数,百分数化成小数。
0.35 ; 1.2% ; 45 ;116; 75% ; 1.24 解析:1.9;5;602.35%;0.012;80%;6.25%;0.75;124%【对应练习1】10:80.25()=== %5=÷ 。
解析:2;40;25;20【对应练习2】________÷24= =________%=________(填小数)。
解析:18;75;0.75【考点二】分数、小数、百分数之间的大小比较。
【方法点拨】根据分数、小数、百分数相互转化的方法,将三者统一为一种数后再进行大小比较。
【典型例题】 在67、0.83、83%和0.83中,最大的数是 ,最小的数是 。
解析:76;83% 【对应练习1】 把99%、0.98、9100和0.9按从大到小的顺序排列起来是: > > > 。
小学六年级数学经典题型总结
小学六年级数学经典题型汇总1正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型①141型:中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。
②231型:中间一行3个作侧面,共3种基本图形。
2、和差问题已知两数的和与差,求这两个数。
【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
例:已知两数和是10,差是2,求这两个数。
按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。
3、鸡兔同笼问题【口诀】假设全是鸡,假设全是兔。
多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
例:鸡免同笼,有头36 ,有脚120,求鸡兔数。
求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数 =(4X36-120)/(4-2)=124、浓度问题(1)加水稀释【口诀】加水先求糖,糖完求糖水。
糖水减糖水,便是加糖量。
例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】加糖先求水,水完求糖水。
糖水减糖水,求出便解题。
例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5、路程问题(1)相遇问题【口诀】相遇那一刻,路程全走过。
六年级数学简便运算典型例题
简便运算典型例题简便运算是一般不需要用笔列竖式,而直接用口算就能够算出得数。
它的类型很多,下面列举了二十几个例题,且附有练习,希望认真完成。
运算定律★例1:1.24+0.78+8.76★例2:156+44+135=〔1.24+8.76〕+0.78 =〔156+44〕+135 =10+0.78 =200+135 =10.78 =335【解题关键和提示】运用加法的交换律与结合律,因为1.24与8.76结合起来,和正好是整数10。
有时正好是整百、整千。
练习 :1、0.21+12.3+0.79+7.7 6、653+131+2.4+1312、3.51+2.74+6.49+7.26 7、74+91+73+1983、271+98+29 8、1592+3698+408+3024、142+29+271+3585、96.8+1.29+3.2+3.71★例3:933-157-43★ 例4:65-3.28-6.72=933-〔157+43〕 =65-〔3.28+6.72〕=933-200 =65-10=733 =55【解题关键和提示】根据减法去括号的性质,从一个数里连续减去几个数,可以减去这几个数的和。
此题157与43的和正好是200。
练习:1、896-246-554 6、9.5-2.36-5.642、2021-169-531-209 7、42-1381353、5600-564-436-129-371 8、15.9-11.7-8.34、98-12.6-57.4 9、98.6-74735、500-56.4-43.6-36.9-63.1 10、8.85-3.38-4.62+1.15★例5:4821-998 ★例6:653-102= 4821-〔1000-2〕=653-100-2=4821-1000+2 =553-2=3823 =551【解题关键和提示】此题中的减数998接近1000,我们就把它变成1000-2,根据减法去括号性质,原式=4821-1000+2,这样就可以口算出来了,计算熟练后,998变成1000-2这一步可省略。
小学六年级数学解决问题典型例题
小学六年级数学解决问题典型例题1.___的果园里共种果树500棵,其中是苹果树,求苹果树的数量。
2.某人骑车从甲地到乙地去办事,全程180千米,到达乙地时离乙地还有多少千米?3.油菜籽的出油率是42%,200吨油菜籽可出油多少吨?4.制造一种机器,原来用钢1440千克,改进工艺后,每台比原来节约了多少千克?5.2001年我国手机拥有量大约1.3亿户,根据“十五”规划,2002年我国手机拥有量将比2001年增长20%,2002年我国手机拥有量大约达到多少亿户?6.某种产品原来售价1560元,现在降价15%出售,这种产品现在售价多少元?7.长乐公园计划栽树240棵,第一天栽了总棵树的1/3,第二天栽了总棵树的5/12,第一天比第二天多栽树多少棵?8.___以每枝8.5元购进120枝钢笔,加价20%后卖出,卖完后,可得到利润多少元?9.在一块1680平方米的空地上铺草坪,第一天铺了1/4,第二天铺了25%,余下的在第三天铺完,第三天铺草坪多少平方米?10.甲班有男生25人,女生20人,乙班学生的人数比甲班的少,乙班有多少学生?11.___有50元钱,买书用去15元后,用余下的钱买了一枝笔,这枝笔的价格是多少元?12.___看一本书80页,第一天看了全书的1/3,第二天看了全书的3/8,两天共看了多少页?13.工地运来50吨黄沙,第一周用去1/5,第二周用去的相当于第一周的3/5,第二周用去多少吨?14.某机床厂计划一个月生产机床140台,结果上半月完成了70台,下半月完成的与上半月的同样多,这个月生产的机床比原计划多多少台?15.某化肥厂四月份生产化肥800吨,如果以后每一个月都比前一个月增产10%,六月份生产化肥多少吨?16.某农民承包了一块长方形的地,长150米,宽100米,他准备用这块地的2/5种蔬菜,余下的栽果树,栽果树的面积是多少平方米?17.___五年级和六年级学生栽树,六年级学生栽260棵,五年级植的树比六年级的学生栽树少34棵,五年级学生栽树多少棵?18.一堆煤共150吨,甲车运了总数的1/3,乙车运了总数的4/15,还有多少吨煤没有运走?19.___同学看一本240页的故事书,每天能看总页数的1/6,他看了多少天才能看完整本书?20.修一条公路,甲队有120人,把甲队人数的1/4换成乙队的人数,两队人数相等,乙队有多少人?1.甲打字员24分钟完成,乙打字员36分钟完成,两人合作几分钟完成?甲的打字速度为每分钟 $\frac{1}{24}$,乙的打字速度为每分钟 $\frac{1}{36}$。
小学六年级数学小升初必会的典型题 答案和解题思路,打印下来多练习,考试不丢分!
小升初数学必会的典型题解题思路1.下图是一张长方形纸折起来后的图形。
已知∠1=30°,∠2的度数是多少?思路:若把折起来的纸打开,就可以看到∠1、∠2和∠3组成一个平角,而∠2和∠3相等。
解:∠2=(180°-30°)÷2=75°答:∠2的度数是75°。
2.根据三角形内角和是180°,你能求出下面的四边形和正六边形的内角和吗?思路:(1)四边形可以分成2个三角形,因为一个三角形的内角和是180°,可求四边形的内角和。
解:180°×2=360°思路:(2)正六边形可以分为4个三角形,一个三角形的内角和是180°,可求正六边形的内角和。
解:180°×4=720°3.下图中大平行四边形的面积是48平方厘米。
A、B是上、下两边的中点。
你能求出图中小平行四边形的面积吗?思路:因为A、B分别是上、下两条边的中点,所以这个小平行四边形的底边形的一半。
解:48÷2=24(平方厘米)。
答:小平行四边形面积是24平方厘米。
4.一张边长4厘米的正方形纸,从一边中点到邻边的中点连一条线段,沿这线段剪去一个角,剩下的面积是多少?解:4×4—(4÷2)2÷2=14(平方厘米)答:剩下的面积是14平方厘米。
5.已知右面梯形的上底是20厘米,下底是34厘米,其中阴影部分的面积是340平方厘米。
求这个梯形的面积是多少?思路:阴影部分是一个直角三角形,它的面积和底已知,可以先求出这个三角形的高,也就是这个梯形的高,然后根据梯形面积公式求出梯形的面积。
解:高:340÷34×2=20(厘米)面积:(20+34)×20÷2=540(平方厘米)答:这个梯形的面积是540平方厘米。
6.在下面的梯形中,剪下一个最大的三角形,剩下的是什么图形?剩下的图形的面积是多少平方厘米?思路:以下底为底,以上底上一点为三角形的顶点剪下的三角形都是面积最大的。
六年级必备数学典型应用题练习归纳
六年级必备数学典型应用题练习归纳六年级必备数学典型应用题练习归纳应用题是数学考试中最容易出错的地方,也是占分比例较高的部分。
六年级的同学们多做点数学典型应用题吧。
下面是小编为大家整理的关于六年级必备数学典型应用题练习,欢迎大家来阅读。
六年级数学典型应用题练习1、甲乙两地相距480千米,一辆汽车从甲地开往乙地,每小时行52千米,行驶312千米后遇到从乙地开来的一辆汽车,如果乙地开来的汽车每小时行42千米,算一算,这两辆车是不是同时开出的?2、客轮与货轮同时从相距450千米的两港相向而行,客货每小时行25千米,货轮每小时行30千米,10小时后两轮相距多少千米?3、在一条笔直的公路上,小明和小刚骑自行车从相距400米的A、B两地同时出发。
小明每分钟行240米,小刚每分钟行160米。
如果一直按这样的速度往前行。
他们两人会相遇吗?如果你认为不会相遇,请写出理由;如果认为会相遇,请求出经过几分钟相遇?4、一辆客车从甲地开往乙地,每小时行驶75千米,预计3小时到达,行了1小时,机器发生故障,就地维修了20分钟,要想准时到达而不误事,以后每小时应加快多少千米?5、甲乙两辆汽车同时从两地相向而行,甲车每小时行45千米,乙车每小时行42千米。
两车在距离中点12千米处相遇。
两车同时开出后经过多少小时相遇? 两地相距多少千米?6、甲、乙两车从相距360千米的A、B两地同时相对开出,甲车到达B地要5小时,乙车到达A地要6小时。
当甲车到达B地,乙车距离A地还有多少千米?7、两列火车分别从甲乙两站同时对开,行完全程,快车要6小时,慢车要9小时,两车开出2小时后还相距160千米,甲乙两站相距多少千米?小学六年级数学应用题1、学校有故事书3600本,比科技书的本数多25%,科技书有多少本?2、一条长800米的公路,已经修了,还剩多少米没修?3、市政府修建一座贸易中心,计划投资3500万元,实际比计划节约了,节约多少万元?4、市政府修建一座贸易中心,计划投资3500万元,实际比计划节约了,实际投资多少万元?5、温室里原有100盆鲜花,老王第一天运走了,第二天运走了,还剩多少盆鲜花没有运走?6、果园有梨树450棵,杏树的棵树是梨树的,杏树的棵树也相当于桃树的,果园有桃树多少棵?7、学校有足球和篮球共120个,足球和篮球个数的比是5 :3,足球和篮球各多少个?8、天安门广场的面积是44万平方米,比故宫的面积少。
小学六年级数学--百分数应用题--归纳总结
百分数应用题注:“是”“比”“占”字后都是单位 1,什么“的”几%,的字前是单位1【题型一】A是B的百分之几? A占B的百分之几?【解题方法】①找单位“1”;②其它量÷单位“1”;因为上面两个问题的单位“1”都是B,所以解法是:A÷B【例题】某班男生有20人,女生有25人。
(1)男生人数是女生的百分之几?(2)女生人数是男生的百分之几?(3)男生人数占全班的百分之几?【练习】1、小红家二月份计划支出1500元,实际支出1200元,请求:实际支出是计划的百分之几?计划支出是实际的百分之几?2、把30克盐加入到120克水中,盐占盐水的百分之几?【题型二】求常见的百分率。
比如:合格率、及格率、出油率、出勤率、发芽率、成活率等。
【解题方法】××率=××数÷总数【例题】新华小学在校园里植树,48棵成活了,2棵没有活,成活率是多少?【练习】1、六年级有学生160人,已达到《国家体育炼标准》(儿童组)的有 120人。
六年级学生的达标率是多少?2、榨油厂的李叔叔告诉小静:“2000kg花生仁能榨出花生油760kg。
”这些花生的出油率是多少?【题型三】已知一个数,求它的百分之几是多少?比如:A是60,求A的20%是多少? 60*20%=60*0.2=12【解题方法】①找单位“1”;②单位“1”已知,所以用乘法;③用单位“1”×对应的百分率。
总结:已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,解析:数量关系式和分数乘法解决问题中的关系式相同(1) 百分率前是“的”:单位“1”的量×百分率=百分率对应量(2) 百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量【例题】1、新城市中小学校开展回收废纸活,共回收废纸87.5吨。
用废纸生产再生纸的再生率为80%,这些回收的废纸能生立多少吨再生纸?2、一个果园共有果树480棵,其中苹果树占17%,梨树占25%,桃树占28%。
小学六年级数学经典题型
一、知识点梳理:长方体和正方体的棱长公式:长方体棱长和=4(a+b+h)正方体棱长和=12a长方体和正方体的表面积公式:S长=2(ab+ah+bh) S正=6a2长方体和正方体的体积公式:V长=abh V正=a3二、典型例题,讲授新知识:△表面积的变化(一)基础巩固题例1:把一个长6厘米、宽5厘米、高4厘米的长方体,切成两个长方体。
下图中()的切法增加的表面积最多。
A、 B、 C、1、把3个棱长为1厘米的正方体拼成一个长方体,表面积减少了()平方厘米。
A、2B、4C、62、一根长方体木料长1.5米,宽和高都是2分米,把它锯成4段,表面积增加()平方分米。
A、8B、16C、24D、323、一个长方体的表面积是40平方厘米,正好可以把它平均分成两个相同的正方体,每个正方体的表面积是()平方厘米。
(二)思维拓展题例2:一个长方体的表面积是40平方厘米,正好可以把它平均分成两个相同的正方体,每个正方体的表面积是()平方厘米。
1、将一个横截面是正方形的长方体平均截成3段后,每段长3分米,表面积增加了64平方分米,原来长方体的表面积为()平方分米。
2、把长、宽、高分别为10厘米、8厘米、6厘米的两个长方体木块拼成一个大长方体,拼成的大长方体的表面积比原来两个长方体的表面积之和至少减少了()平方厘米。
3、把一个表面积为48平方分米的正方体,分成两个完全相同的长方体,这两个长方体的表面积之和是()。
4、有一块长方形菜地,长16米,宽8米。
菜地中间留了两条2米宽的路,把菜地平均分成4块,每块地的面积是多少平方米?(单位:米)(三)开放探究题例3:一个长方体长21厘米,宽15厘米,高12厘米,将它截成三个完全一样的小长方体,每个小长方体的表面积最大是多少?最小是多少?(提示:有3种分法,分别算出每一种分法的小长方体的表面积,进行比较。
)1、用3个长6厘米、宽4厘米、高2厘米的长方体,拼成一个较大的长方体,这个长方体表面积最小是多少平方厘米?2、将两个长6厘米、宽5厘米、高4厘米的长方体拼成一个大长方体。
六年级数学典型例题
六年级上册第一单元典型题分析1.小明用一张长32厘米,宽20厘米的长方形纸,最多能剪()个半径是2厘米的圆形纸片。
A.50 B.40 C.160【分析】这张长32厘米,宽20厘米的长方形纸,长能剪32÷(2×2)=8(张)半径是2厘米的圆形纸片,宽能剪20÷(2×2)=5(张),这张纸最多能剪成8×5=40(张)这样的圆形纸片。
【解答】32÷(2×2)=8(张)20÷(2×2)=5(张)8×5=40(张);答:最多能剪成半径是7厘米的圆形纸版40个,故选:B.【点评】注意:不能用长方形纸版的面积除以每张圆形纸版的面积,因为圆不能密铺.2.小明的妈妈要买一块台布盖住家中一张直径1米的圆形桌面,你认为选()种比较合适。
A.120厘米×120厘米B.120厘米×80厘米C.3140平方厘米D.314平方厘米【分析】因为是一张直径1米的圆形桌面,所以需用的台布的边长应大于1米,对照给出的答案进行比较,得出A适合;进而选择即可。
【解答】因为120×120的桌布的边长为120厘米,大于圆桌的直径100厘米,所以选用120×120的桌布比较合适,故选:A。
【点评】解答此题的关键:应明确所需的桌布的边长应大于或等于圆桌的直径。
3.在一个长是10厘米,宽是8厘米的长方形中画一个最大的圆,这个圆的周长是()厘米;如果画一个最大的半圆,这个半圆的周长是()厘米。
【分析】由题意画出下图:根据圆的周长公式C=πd求出圆的周长;根据半圆的周长=πd÷2+d,代入数据解答即可。
【解答】(1)3.14×8=25.12(厘米);(2)3.14×10÷2+10=15.7+10=25.7(厘米)答:在一个长是10厘米,宽是8厘米的圆中画一个最大的圆,这个圆的周长是25.12厘米;如果画一个最大的半圆,这个半圆的周长是25.7厘米。
小学六年级数学解决问题知识点及典型例题
小学六年级数学解决问题知识点及例题一、分数乘除法应用题的一般步骤:1、找出题目中的单位“1”。
2、根据题目给出的条件写出数量关系。
单位“1”×对应分率=对应数量;对应数量÷对应分率=单位“1”3、判断单位“1”是否已知。
若单位“1”已知,根据单位“1”×对应分率=对应数量 算出要求的量 若单位“1”未知,根据 对应数量÷对应分率=单位“1” 算出单位“1”的量典型例题:1、 水果超市运来苹果200kg ,运来柑橘的质量是苹果的54。
这家水果超市运来柑橘多少千克?2、 水果超市运来苹果200kg ,运来柑橘的质量比苹果少51。
这家水果超市运来柑橘多少千克?3、 水果超市运来苹果200kg ,运来柑橘的质量比苹果多41。
这家水果超市运来柑橘多少千克?4、冬季长跑锻炼时,李华每天跑步1800m ,刚好是沈明的109。
沈明每天跑步多少米?5、冬季长跑锻炼时,李华每天跑步1800m ,比沈明每天少跑101。
沈明每天跑步多少米?6、冬季长跑锻炼时,沈明每天跑步2000m ,比李华每天多跑91。
李华每天跑步多少米?二、按比分配应用题的一般类型与解题方法:1、已知两个数的和与这两个数之间的比,求这两个数分别是多少?(先根据两个数的比求出一共有几份,然后求出平均每份是多少,再分别乘相应的份数求出这两个数)典型例题:(1)张叔叔花了340元钱买了一双皮鞋和一件衬衫,买皮鞋和衬衫所花的钱的比是9:8。
他买皮鞋和衬衫各花了多少钱?(2)小君平均每天吃的食物总量是1200克,主食和副食的比是2:3。
小君每天吃的主食和副食分别是多少克?2、已知两个数的差和这两个数之间的比,求这两个数分别是多少?(先根据两个数的比求出两个数相差了几份,然后求出平均每份是多少,再分别乘相应的份数求出这两个数)典型例题:(1)学校图书馆的的故事书比科技书多450本。
已知故事书和科技书的比是5:3,学校图书馆有科技书和故事书多少本?(2)果园里梨树与桃树的比是3:5,已知梨树比桃树少204棵。
小学六年级数学工程问题经典例题解析
6、一项工程,甲单独做需要12小时完成,乙单独做需要18小时完成,若甲先做1小时,然后乙接着做1小时,再由甲接着做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?
小学六年级数学工程问题经典例题解析Байду номын сангаас
工程问题,是小升初常考的知识点,奥数网小编将工程问题知识点及经典例题解析整理如下。
知识要点
1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间表示各单位的工作效率。工作效率与完成工作总量所需时间互为倒数。
2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。
3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。
经典例题解析
1、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
2、师徒二人合作生产一批零件,6天可以完成任务,师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的7/10,如果每人单独做这批零件各需几天?
3、一件工作甲先做6小时,乙接着做12小时可以完成,甲先做8小时,乙接着做6小时也可以完成,如果甲做3小时后由乙接着做,还需要多少小时完成?
4、蓄水池有一条进水管和一排水管,要灌满一池水,单开进水管需要5小时,排光一池水,单开排水管需3小时。现在池内有半池水,如果按进水、排水、进水、排水……的顺序轮流各开1小时,问:多上时间后水池的水刚好排完?(精确到分钟)
六年级数学上册典型例题系列之第三单元分数除法应用题基础部分
六年级数学上册典型例题系列之 第三单元分数除法应用题基础部分(原卷)【考点一】把一个数平均分成几份,平均每份是多少?每份占这个数的几分之几?【方法点拨】该类题型注意区分单位“1”和分量,求平均每份是多少,即总数÷份数=每份数量;求每份占几分之几,即把总数看作单位“1”,用1÷份数=几分之几【典型例题1】把一根54米长的绳子平均分成4段,每段长多少米?每段占全长的几分之几?【对应练习1】一段4米长的钢筋平均锯成5段,每一段长多少米?每一段占全长的几分之几?【对应练习2】 把一根长78米长的绳子平均分成4段,每段长多少米?每段占全长的几分之几?【对应练习3】把一根98米长的绳子平均分成4段,每段长多少米?每段占全长的几分之几?【对应练习4】食堂有2吨大米,如果每天吃它的110,可以吃多少天?如果每天吃110吨,可以吃多少天? 【考点二】分数除法中的归一问题 【方法点拨】该类题型注意根据题目的要求分清总量和份数各是什么,用总量÷份数=单位量 【典型例题】一辆汽车行9千米耗油14千克.照这样计算,每行驶1千米,需要汽油多少千克?1千克汽油可行驶多少千米?【对应练习1】一辆自行车21小时行驶38千米,这辆自行车每小时行驶多少千米?每千米需要多少小时?【对应练习2】一种汽车行32千米用汽油325升,这种汽车行1千米用汽油升,这种汽车用1升汽油可行千米【对应练习3】一种柴油23升重815千克.1升这样的柴油重千克?1千克这样的柴油升?【考点三】求一个数是(占)另一个数的几分之几?【方法点拨】一个数÷另一个数(单位“1”)=分率【典型例题1】三年级一班一共有42名同学,其中参加游泳比赛的有18名,参加游泳比赛的占全班人数的几分之几?【对应练习1】学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?【对应练习2】 21千克是87千克的几分之几?【对应练习3】3米是5米的几分之几?【考点四】已知两个数,求一个数比另一个数多或少几分之几?【方法点拨】口诀:“作差除比后”【典型例题1】学校的果园里有梨树15棵,苹果树20棵。
六年级数学上册典型例题系列之期中复习应用题部分(解析版)
六年级数学上册典型例题系列之期中复习应用题部分(解析版)编者的话:《六年级数学上册典型例题系列》是基于教材知识点和常年考点考题总结和编辑而成的,其优点在于选题典型,考点丰富,变式多样。
本专题是期中复习应用题部分,该部分内容主要是以分数乘除法应用题、比的应用题以及工程问题为主,题例一般以填空、应用题型为主,共分为八大考点,考点多是期中考试常考知识点和易错点,题例较为典型,有部分较难题型,欢迎使用。
【考点一】寻找单位“1”。
【方法点拨】1.在分率句中分率的前面或 “占”、“是”、“比”的后面2.写数量关系式:(1)“的” 相当于 “×” ;“占”、“是”、“比”相当于“ ÷ ” (2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 分率)=分率对应量【典型例题】解析:男生人数;男生人数×53=女生人数2.“九月份用水量比八月份节约了211”单位“1”是( ),九月份用水量相当于八月份的()()。
【对应练习】甲数是乙数的52。
单位“1”是( );数量关系是( )×( )=( ) 解析:乙数;乙数;52;甲数【考点二】分数乘法应用题部分。
【方法点拨】1. 分数乘法应用题部分:(1)类型一:单位“1”×对应的分率=分率所对应的数量(2)类型二:单位“1”×多的分率=多的数量;单位“1”×少的分率=少的数(3)类型三:单位“1”×(1+分率)=一个数;单位“1”×(1-分率)=一个数【典型例题】1. 54公顷的43是( )公顷。
解析:532. 比35的72多9的数是( )。
A.19B.14C.1解析:A3.一桶油重32千克,用去它的43,还剩下( )千克。
如果再用去43千克,还剩( )千克。
解析:8;7414.一个食堂,九月份烧煤770千克,十月份比九月份节约17,十月份烧煤 千克。
六年级数学上册求一个数是另一个数的百分之几的实际问题典型例题解析
×100﹪= 98﹪
答:种子的发芽率是98﹪。
例3、(难点突破)在100克水中,加入25克盐。该盐水的含盐率是多少?
分析与解:含盐率 = ×100﹪,盐的重量已经知道,要先求出盐水的重量。
×100﹪ = 20﹪
答:该盐水含盐率是20﹪。
例4、(考点透视)六(1)班学生的近视率是16﹪,六(2)班学生的近视率是18﹪,六(2)班近视的人数一定比六(1)班多吗?为什么?
材料的利用率 = ×100﹪ = 78.5﹪
答:利用率是78.5﹪。
六年级数学上册
求一个数是另一个数的百分之几的实际问题
典型例题解析
例1、(重点展示)六年级有学生320人,其中男生有180人,男生占百分之几?
分析与解:男生的人数÷六年级的总人数 = 男生人数占百分之几。
180÷320 = 0.5625 = 56.25﹪
答:男生占六年级总人数的56.25﹪。
例2、(重点展示)用300颗种子做发芽试验,结果发芽的有294颗。求种子的发芽率。
分析与解:判断近视人数的多少要看这个班的总人数和近视率。
答:不一定。因为不知道六(1)班和六(2)班的总人数,所以无法比较。
例5、(整理与练习、难点突破)甲数的50﹪和乙数的 相等,甲数和乙数的比是(1 : 2)。
分析与解:根据题目的意思可以写出等式:甲数×50﹪ = 乙数× 。可以得出甲数和乙数的比是 : 50﹪ = 1 : 2。
答:甲数和乙数的比是(1 : 2)。
例6、(考点透视)在一个边长为4分米的正方形铁皮上剪下一个最大的圆,求利用率。
分析与解:材料的利用率 = ×100﹪,先求出最大的圆的面积,再求出正方形的面积。
六年级数学上册知识点和典型例题汇总
一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)5 × 23= 18 × 163= 45 × 10 % = 2 % × 12 % =6 ×65 =2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
53 × 23 = 74 × 167 = 1312 × 1312 = 94 × 43 = 232 × 158= 3、分数与小数相乘:先把小数换成分数,转化为分数与分数的乘法。
0.14 × 213 = 0.25 × 34 = 0.125 × 38 = 0.36 × 811 = 0.39 × 2625=3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
1的数,积大于这个数。
一个数(01的数,积小于这个数。
1的数,积等于这个数。
53×23 ○23 53×45○53 85×85○85 1312×1 ○1312 94 ○94×65(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c)乘法分配律:(a+b )×c=a ×c+b ×c a ×c+b ×c=(a+b )×c 48)672145( ⨯-+ 2112117548⨯⨯⨯ 852368 ⨯ 511913541913⨯+⨯二、倒数1、倒数的意义: 乘积是1的两个数互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学总复习习题设计
一、一组工人检查一批零件,上午查了这批零件的45%,下午比上午多查480个,正好查完。
这批零件共多少个?
二、小英最爱看的动画片每晚播两集,每集十五分钟,中间插3分钟广告,她每晚看完后已是18:23,这部动画片是从()时()分开始播的。
三、林老师的儿子生病挂盐水用去316元,单位报销了40%的医药费。
林老师要自费几元?
四、我国交通法规定:驾驶机动车超过规定时速50%的,处200元以下2000元以下罚款。
在一条限速60千米的公路上,一辆汽车正在以每小时93千米的速度行驶,请问该车主会被罚款吗?请列式计算加以说明。
五、工程队在一个月内修完了一条公路的3/7,在后来的一周内又修了22千米,这时,修完的与未修的比是5:3,这条路共长几千米?
六、在东方大厦圣诞夜商品打折酬宾活动中,儿童服装满98元减40元,老师看中了两条原价分别为198元,188元的裤子,你觉得老师最后会选哪一条?没搞活动之前,这条裤子是打八折出售的,那么与平时相比,老师得到了多少元钱的优惠?
七、一种商品以比原价高20%的价格出售,但因销售情况不理想,又按这个价格降价20%,这时的价格与原价相比()
①提高了②降低了③没有变化。
八、把圆柱体沿高展开后得到一个()形和两个()形。
如果展开后得到的长是
12.56厘米,高是4厘米,把它竖放在地上,它的占地面积是(),占的空间是()。
九、你能很快算出111×888+444×778的结果吗?
十、在一次单元测试中,第一大组6位男生的平均成绩93分,5位女生的平均成绩是82分,第一大组每个人的平均成绩为多少分?
习题说明及答案
第二题:答案:17时50分
第三题:答案:316×(1-40%)=189.6(元) 或316-316×40%=189.6(元)
第四题:
答案:会被罚款。
(93-60)÷60×100%=55% 55%>50%
或60×(1+50%)=90(千米) 93千米>90千米
第五题:
方法一:解:设这条路共长×千米。
方法二:=
×-×=22 =
×=112 22÷(35-24)=2(千米) 2×56=112(千米)
方法三:22÷(-)=112(千米)
第六题:
答案:①第一条:98×2=196(元) 198-40×2=118(元)
第二条:188-40=148 (元)
118(元) 〉148 (元)所以会选第一条。
②198×80%-118=40.4(元)
第七题:答案:(②)
第八题:答案:12.56平方厘米,50.24立方厘米
第九题:
111×888+444×778
=111×(2×444) +444×778
=222×444+444×778
第十题:答案:(93×6+82×5)÷(5+6)=88(分)。