云南省昭通市2010年中考数学模拟试卷
2010年昭通市高中数学2
(第5题图)2011年昭通市高中(中专)招生统一考试模拟试卷 数 学(2)(全卷三个大题,共29个小题,共5页;满分150分,考试用时150分钟) 注意事项:1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共10小题,每小题只有一个正确先项,每小题3分,满分30分) 1.下列计算正确的是( )A .623a a a ÷= B .()122--= C .()236326x x x -=-· D .()0π31-=2.下列图形中,由原图平移得到的图形是( )原图 A . B . C . D . 3.A .3B .3-C .3±D . 9 4.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0B .某个数的相反数等于它本身C .某两个数的和小于0D .某两个负数的积大于0 5如图是一个包装盒的三视图,则这个包装盒的体积是( ) A .3192πcm B .31152πcm C.3D.36.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是( ) A .(3,-2 ) B .(-2,-3 ) C .(2,3 ) D .(3,2)AOBA 'B '(第7题图)7.如图,9030AOB B ∠=∠=°,°,A OB ''△可以 看作是由AOB △绕点O 顺时针旋转α 角度得到的. 若点A '在AB 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90° 8.如图所示,把一个长方形纸片沿EF 折叠后, 点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°, 则∠AED ′等于 ( )A .70°B .65°C . 50°D . 25°9.不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是( )10.二次函数224y x x =--的顶点坐标是A .(1,3)--B .(1,5)-C .(1,3)-D .(1,5)-- 二、填空题(本大题共10小题,每小题3分,满分30分) 11.比较大小:-6 -8.(填“<”、“=”或“>”) 12.= .13.分解因式:227183x x ++= .14.据昆明市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元. 那么7840000万元用科学记数法表示为 万元.15.若代数式26x x b -+可化为2()1x a --,则b a -的值是 .16.如图,AB 是⊙o的直径,弦AB CD ⊥,垂足为E ,如10,8AB CD ==,那么线段OE 的长为 .EDBC′FCD ′A(第8题图) A .B .C .D .……图③图②图① C OA BB 'C 'A '(第17题图)17.如图,ABC △与A B C '''△是位似图形,点O 是位似中心,若9S 2A B C'==∆,AA OA ,则A B C S '''=△________.18.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .19.二次函数2y ax bx c =++的图象如图所示,给出下列说法: ①0ab <;②方程20ax bx c ++=的根为1213x x =-=,; ③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 (请写出所有正确说法的序号). 20.如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第n 个图中,共有________个正三角形.三、解答题(本大题共9小题,满分90分)21.(7分)(1)计算:1012009|6-⎛⎫-+- ⎪⎝⎭(2)(7分)化简:22222369x y x y yx y x xy y x y--÷-++++.16题19题AFCEDB 22题22.(8分)如图,在ABC △中,D E F 、、分别为边AB BC CA 、、的中点.证明:四边形DECF 是平行四边形.23.(9分)某中学对全校学生60秒跳绳的次数进行了统计, 全校平均次数是100次.某班体育委员统计了全班50名 学生60秒跳绳的成绩,列出的频数分布直方图如下 (每个分组包括左端点,不包括右端点): 求:(1)该班60秒跳绳的平均次数至少是多少? 是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是 中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过 校平均次数的概率是多少?24.(8分)我市某县为积极推进节能减排,,计划将城市道路两旁的人行道路灯进行改造.经调查知:若该工程由甲工程队单独做恰好可在规定时间内完成;若该工程由乙工程队单独完成,则所需天数是规定时间的2倍.如果甲、乙两工程队合做6天后,那么余下的工程由甲工程队单独来做还需3天才能完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两工程队合做来完成,该县准备了工程工资款65万元,请问该县准备的工程工资款是否够用? 25.(8分)小明、小芳做一个“配色”的游戏,右图是两个可以自由转动的转盘,每个转同时转动两个转盘,如果转盘A 转出红色,转盘B 转出蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起 配成紫色,这种情况下小芳获胜;同样, 蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负。
2010年中考数学模拟试题卷
2010 年中考数学模拟试题卷(满分 :120 分考试时间 :100 分钟 )一、选择题(共 10 道小题,每题 3 分,共 30 分)1、 2的倒数是 () A.1B . 1C . 2D .2B222、以下各式计算正确的选项是( )AC3262 3524 843A .a +a =aB. ( - a ) =-aC. a ·a =aD. a ÷a =aOx1,第 4 题为解的二元一次方程组是 ( )3、以1yx y 0B .x y 0C .x y 0 D.x y 0 A .x y1x y 2x y2x y 14、如图,把一种量角器搁置在BAC 上边,请你依据量角器上的平分刻度判断BAC 的度数是( )A . 15 B . 20 C . 30 D .455、以下图是同一副扑克中的 4 张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明从中抽出 一张,则抽到偶数的概率是 ( )A .1B .1C .3D .2324 3 6、如图,数轴上点P 表示的数可能是 ( )A .7B .7C . 3.2D .10第 5 题7、一天,小王和爸爸去爬山,已知山底到山顶的 行程为 300 米,小王先走了一段行程, 爸爸才开始出发, 图中两条线段表示小王和爸爸走开山脚爬山的行程 S( 米 ) 与爬山所用时间t( 分钟 ) 的关系s( 从爸爸开始爬山时计时) 依据图像, 以下说300 法错误的选项是()..P-4-3-2-11234第 6 题AA'A .爸爸爬山时,小王已走了 50 米B .爸爸走了 5 分钟时,小王仍在爸爸的前面C .小王比爸爸晚到山顶D .爸爸前 10 分钟爬山的速度比小王慢, 10 分钟后爬山的速度比小王快50 o510第 7 题DtBC(B')C'第 8 题y8、已知:如图,△ABC 的面积为 12,将△ ABC 沿 BC 方向移到△ A ’ B ’C ’ 的地点, 使 B ’与 C 重合,连结 AC ’交 A ’ C 于D ,则△ C ’DC 的面积为( )10 B .8 C .6 D .49、已知,抛物线 y=ax 2+bx+c 的部分图像如图,则以下说法①对称轴是直线 x = 1;②当- 1< x < 3 时, y < 0;-1 o1 x-3第 9 题③ a+b+c =- 4 ; ④方 程 ax 2+bx+c+5=0 无 实数 根其 中正 确的 有 A( )A.1个B .2个C .3个D .4个B10、在一平直河岸 l 同侧有 A 、B 两乡村, A 、 B 到 l 的距离 AM 、BN分别是 3km , 2km ,且 MN 为 3km ,现计划在河岸上建一抽水站 P , 用输水管向两个乡村A 、B 供水,则水管长度最少为 ( )km ( 精 确到 0.1km)A .4.8B .5.2C .5.8D.6.2二、填空题(共 4 道小题,每题4 分,共 16 分)11、2010 年上海世界展览会马上举行,各项准备工作马上达成,此中中国馆计 lMN第 10题划投资 1095600000 元,将 1095600000 保存两个有效数字的近似数应为_________________ .12、某一十字路口的交通讯号灯每分钟红灯亮30 秒,绿灯亮25 秒,黄灯亮 5第 11 题秒,当你仰头看信号灯时,是黄灯的概率为 ________.DC13、如图是圆锥的主视图 ( 单位 cm),则其表面积为 _________cm 2.14、某商铺老板将一件进价为800 元的商品先抬价 50%,再打 8 折卖出,则卖出这件商品所获收益是_______元.15、如图,正方形 ABCD 的面积为1,M 是 AB 的中点,连结 AC 、DM ,AM第15题则图中暗影部分的面积是.16、如图,平面直角坐标系中,A(4,2) 、 B(3,0) 将△ ABC 绕 OA 中点 C逆时针旋转 90°获得△ A ’ B ’ O ’ 则 A ’的坐标为 _________ .三、解答题(共8 道小题)1 117、( 此题 6 分) 计算: 12cos453 .3第 16 题18、( 此题 6 分) 先化简,再求值:(3x 1)x 2 ,此中 x 是方程 x 2 x 0的解 .x 1x 2x19、( 此题 6 分) 已知:如图,在 O 中,弦 AB 、CD 交于点 E , AD CB .求证: AECE .A20、( 此题 8 分) 请阅读以下资料:E我们规定一种运算:a b ad bc , 例 如 :c dOD2 35 3 4 10 12 2 .24 5BCB依据这类运算的规定, 请解答以下问题:( 1)直接写出122的计算结果;0.5( 2)当x取何值时 ,x0.5x12x0 ;0.5x 1y x y ( 3)若30.57,直接写出 x 和y的值.8121、( 此题8 分 ) 如图,在一旗杆AB 上系一活动旌旗C,在某一时辰,旗杆的影子落在平川BD和一坡度为1∶ 3 的斜坡DF 上,拉动旌旗使其影子正好落在斜坡极点 D 处,若测得旗高BC=4m,影长 BD= 8m,影长 DE= 6m, ( 假定旗杆AB与地面垂直, B、D、 G三点共线, AB、BG、 DF 在同一平面内 ) 。
2010年初中数学中考模拟试卷.doc
2010年初三中考模拟(一)数学试卷时间:120分钟 总分:120一、选择题(本大题共有5小题,每小题3分,共15分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1、平面直角坐标系内,点A (-2,-3)在( )A.第一象限 B 第二象限 C.第三象限 D 。
第四象限 2.下列图形中,既是..轴对称图形又是..中心对称图形的是( )3.下列事件中最适合使用普查方式收集数据的是( )A .了解某班同学的身高情况B .了解全国每天丢弃的废旧电池数C .了解一批炮弹的杀伤半径D .了解我国农民的年人均收入情况 4.下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )5、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )二、填空题(共12小题,每小题2分,共24分。
请将答案写在答题卡相应位置.......上)1 2 3 412ys O 1 2 3 4 1 2 y s O s 1 2 3 4 1 2 y sO 1 2 3 4 1 2 y O A B .C .D . DC B A A B C DABC DE 第16题图6计算:2332x x ∙ ,()322x。
7、分解因式:228x -= 。
8、已知数据:2,1-,3,5,6,5,则这组数据的众数是 ,极差是 。
9 函数21+=x y 中,自变量x 的取值范围是 .10.如图5,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=070,则∠AED 的度数是_________________ .第10题 第12题 第13题 11、已知双曲线xky =过点(-2,3),则k = 。
12、AB ∥CD ,AC ⊥BC ,∠BAC =65°,则∠BCD =______________度。
2010年昭通市高中数学模拟(3)
主视图俯视图左视图图1θ图22011年昭通市高中(中专)招生统一考试模拟试卷数学(3)(全卷三个大题,共29个题;满分150分,考试用时150分钟)注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共10小题,每小题只有一个正确先项,每小题3分,满分30分)1.把3222x x y xy-+分解因式,结果正确的是()A.()()x x y x y+-B.22(2)x x xy y-+C.2()x x y+D.2()x x y-2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.下列运算正确的是(▲)A.22aaa=⋅B.33)(abab=C.632)(aa=D.5210aaa=÷4.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为()A.8人B.9人C.10人D.11人5.某几何体的三视图如图1,则该几何体是()A.球 B.圆柱 C.圆锥 D.长方体6.已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图2 所示),则sinθ的值为()A.512B.513C.1013D.1213BADC图31 b图4图5 D图6图77.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,8、如图3,AB AC BD BC ==,,若40A ∠=, 则ABD ∠的度数是( )A .20B .30C .35 D .409、实数a b ,在数轴上的位置如图4所示,则下列结论正确的是( ) A. 0a b +> B. 0a b ->C. ab >0D .0ab>10、如图5,在直角梯形ABCD 中,AB ∥CD ;BC ⊥CD 动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于的函数图象如图6所示,则BCD △的面积是( ) A .3B .4C .5D .6二、填空题(本大题共10小题,每小题3分,满分30分) 11.-5的绝对值的相反数是__________. 12.计算:031)--=__________.13.已知一元二次方程22310x x --=的两根为12x x ,,则=+2111x x ___________. 14.据报道,全球观看广州亚运会开幕式现场直播的观众达16300000000人,该观众人数可用科学记数法表示为____________人.15.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16.如图7,⊙O的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .17.如图8,在菱形ABCD 中,72ADC ∠=,AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连接CP ,则CPB ∠=________度.18.如图9,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是 . 19.一种商品原价120元,按八折(即原价的80%则现售价应为 元. 20.下列图案是晋商大院窗格的一部分,其中“○” 代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .三、解答题(本大题共9个题,满分90分) 21.①(72) ②(7分)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =. 22.(8分)如图所示,ABC △是等边三角形, D 点是AC 的中点,延长BC 到E ,使CE CD =,过D 点作DM BE ⊥,垂足是M求证:BM EM =DCAE P(1)(2) (3)…… …… (第20题)AD第22题图M23.(8分)某区从参加初中八年级数学调研考试的8000名学生成绩中,随机抽取了部分学生的成绩作为样本,为了节省时间,先将样本分成甲、乙两组,分别进行分析,得到表一;随后汇总整个样本数据,得到表二.请根据表一、表二所提供的信息,回答下列问题:(1)样本中,学生数学成绩平均分约为 分(结果精确到0.1);(2)样本中,数学成绩在84≤x <96分数段的频数为 ,等级为A 的人数占抽样学生总数的百分比为 ,中位数所在的分数段为 ;24.(8分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,1tan 422ABO OB OE ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.25.(9分)为实现区域教育均衡发展,我市计划对某县A 、B 两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A 类学校和两所B 类学校共需资金230万元;改造两所A 类学校和一所B 类学校共需资金205万元.(1)改造一所A 类学校和一所B 类学校所需的资金分别是多少万元? (2)若该县的A 类学校不超过5所,则B 类学校至少有多少所?(3)我市计划今年对该县A 、B 两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A 、B 两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?表二表一24题图26.(8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.27.(10分)在云南大理坐落着美丽的大理三塔.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量三塔中一塔的高度,携带的测量工具有:测角仪.皮尺.小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A .B 两点的距离为18.6m,自身的高度为1.6m .请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP 的长为a m (如图2),你能否利用这一数据设计一个测量方案?如果能, 请回答下列问题:①在你设计的测量方案中,选用的测量工具是: ; ②要计算出塔的高,你还需要测量哪些数据? .A 'C B A 28.(11分)阅读下列材料:正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形. 数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC ,使5==AC AB ,2=BC ;小明同学的做法是:由勾股定理,得51222=+==AC AB ,21122=+=BC ,于是画出线段AB 、AC 、BC ,从而画出格点△ABC .(1)请你参考小明同学的做法,在图中的正方形网格(每个小正方形边长为1)中画出格点△C B A '''(A '点位置如图所示),使B A ''=C A ''=5,10=''C B .(直接画出图形,不写过程);(2)观察△ABC 与△C B A '''的形状..,猜想∠BAC 与∠C A B '''有怎样的数量关系,并证明你的猜想.29.(14分)如图,已知抛物线y=-x 2+2x+3交x 轴于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。
云南省昭通市数学中考模拟试卷(1)
云南省昭通市数学中考模拟试卷(1)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法错误的是()A . 存在着最小的自然数B . 存在着最小的正有理数C . 不存在最大的正有理数D . 不存在最大的负有理数2. (2分)(2017·宾县模拟) 将一个正方体如图放置在一个长方体上,则所构成的几何体的左视图可能是()A .B .C .D .3. (2分) (2016七上·黑龙江期中) 如图,a∥b,若∠1=50°,则∠2的度数为()A . 50°B . 120°C . 130°D . 140°4. (2分)下面是一位同学做的四道题:①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3;④a2•a3=a5 ,其中做对的一道题的序号是()A . ①B . ②C . ③D . ④5. (2分) 2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,捐款达308.76亿元.把308.76亿元用科学记数法表示为()A . 30.876×109元B . 3.0876×1010元C . 0.30876×1011元D . 3.0876×1011元6. (2分)如果一个多边形的内角和等于720度,那么这个多边形的边数为()A . 4B . 5C . 6D . 77. (2分) (2019八下·九江期中) 不等式的解集是()A .B .C .D .8. (2分) (2017九上·泰州开学考) 下列调查中,不适合做普查的是()A . 准确了解全国人口状况B . 调查你班每位同学穿鞋的尺码C . 学校招聘教师,对应聘人员面试D . 调查一批灯泡的使用寿命9. (2分)(2017·南开模拟) 已知抛物线和直线l在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x=﹣1,P1(x1 , y1),P2(x2 , y2)是抛物线上的点,P3(x3 , y3)是直线l上的点,且x3<﹣1<x1<x2 ,则y1 , y2 , y3的大小关系是()A . y1<y2<y3B . y2<y3<y1C . y3<y1<y2D . y2<y1<y310. (2分) (2015七下·杭州期中) 如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A . β=α+γB . α+β+γ=180°C . α+β﹣γ=90°D . β+γ﹣α=180°11. (2分)(2017·和平模拟) 已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A . y3<y1<y2B . y1<y2<y3C . y2<y1<y3D . y3<y2<y112. (2分)观察下列钢管横截面图,则第13个图中钢管的个数是()A . 271B . 269C . 273D . 267二、填空题 (共6题;共6分)13. (1分)因式分解:x4﹣16=________.14. (1分)长度为2㎝、3㎝、4㎝、5㎝的四条线段,从中任取三条线段能组成三角形的概率是________.15. (1分)在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .16. (1分) (2017七下·抚宁期末) 在足球联赛前9场比赛中,红星队保持不败记录,共积23分.按竞赛规则,胜一场得3分,平一场得1分,那么该队共胜了________场.17. (1分)(2018·秀洲模拟) 已知,则代数式的值是________18. (1分)如图,把一块等腰直角三角板△ABC,∠C=90°,BC=5,AC=5.现将△ABC沿CB方向平移到△A′B′C′的位置,若平移距离为x(0≤x≤5),△ABC与△A′B′C′的重叠部分的面积y,则y=________(用含x的代数式表示y).三、解答题 (共9题;共87分)19. (10分)(2017·薛城模拟) 计算题(1)解方程:2x2﹣4x+1=0(2)计算:.20. (10分) (2017九下·台州期中) 计算下列各题:(1)计算:(2)解方程21. (5分)(2018·无锡模拟) 如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.22. (15分)(2019·莲湖模拟) 为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?23. (5分)(2017·江西模拟) 太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)24. (7分) (2016九上·吴中期末) 2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ________ ;扇形统计图中的圆心角α等于 ________ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.25. (10分)(2018·盘锦) 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?26. (10分)(2016·黄冈) 如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.27. (15分)(2019·潍坊模拟) 如图,在平面直角坐标系中,为坐标原点,点,点,的中线与轴交于点,且经过,,三点.(1)求圆心的坐标;(2)若直线与相切于点,交轴于点,求直线的函数表达式;(3)在过点且以圆心为顶点的抛物线上有一动点,过点作轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共87分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
2010年中考模拟卷数学参考答案
2010年中考模拟卷数学参考答案二.认真填一填(本题有6个小题,每小题4分,共24分) 11.4(x+3)(x-3) 12.10≠≥x x 且 13.15414.6)1(2+--=x y 15. ︒20 16.)12,1222(22++++n nn n n n P n 三.全面答一答(本题有8个小题,共66分) 17.(本小题满分6分) 解:11)1()1)(1(1----+⨯+=a a a a a a a 原式…………………………………………………2分 =12111--=--a a a …………………………………………………2分 当a=-2时,原式=34…………………………………………………2分18.(本题满分6分) 解:可以做2)1(-n n 条直线…………………………………………………3分 理由如下:平面上有n 个点,两点确定一条直线。
取第一个点A 有n 种取法,取第二个点B(n-1)种取法,所以一共可连成n(n-1)条直线,但AB 和BA 是同一条直线,所以应除以2,得2)1(-n n 条直线 …………………………………………………3分 19.(本题满分6分)解:过点A 作BC 的垂线段,垂足为D ,则由题可知,∠BAD=30°,∠DAC=60° ∵∠BAD=30°,△ABD 为直角三角形, ∴BD=3223663==AD …………………………………………………2分同理可得3663==AD CD …………………………………………………2分∴楼高AB=2.152388≈…………………………………………………2分 20.(本小题6分)(1)21人 …………………………………………………1分(2)众数 90 中位数80…………………………………………………2分(3)从平均数和中位数的角度来比较,一班的成绩比二班好;从平均数和众数的角度来比较,一班的成绩不如二班;从B 级以上(包括B 级)的人数的角度来比较,一班的成绩比二班好。
云南省2010年各地州数学中考试题
ABC DEF第11题图俯视图 主视图 左视图 第2题图第9题图D AB C第6题图云南省2010年各市(地、州)中考数学试题昆 明 市一、选择题(每小题3分,满分27分.在每小题给出的四个选项中,只有一项是正确的;每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号的小框涂黑) 1.3的倒数是( )。
A .3B .3-C .13D .13-2.若右图是某个几何体的三视图,则该几何体是( )。
A .长方体 B .三棱柱C .圆柱D .圆台3.某班六名同学在一次知识抢答赛中,他们答对的题数分别是:7,5,6,8,7,9. 这组数据的平均数和众数分别是( ) 。
A .7,7 B .6,8 C .6,7 D .7, 24.据2010年5月11日云南省委、省政府召开的通报会通报,全省各级各部门已筹集抗旱救灾救济资金32亿元,32亿元用科学记数法表示为( )。
A .83.210⨯元B .100.3210⨯元C .93.210⨯元D .83210⨯元5.一元二次方程220x x +-=的两根之积是( 。
)A .-1B .-2C .1D .26.如图,在△ABC 中,CD 是∠ACB 的平分线,∠A = 80°,∠ACB=60°,那 么∠BDC=( )。
A .80° B .90° C .100° D .110°7.下列各式运算中,正确的是( ) 。
A .222()a b a b +=+ B 3C .3412a a a ⋅=D .2236()(0)a aa=≠ 8.如图,已知圆锥侧面展开图的扇形面积为65πcm 2,cm ,则圆锥母线长是( )。
A .5cm B .10cm C .12cm D .13cm9.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12,分别以AB 、AC 为直径作半圆,则图中阴影部分的面积是( )。
2010年中考数学模拟试卷参考答案
2010年中考数学模拟试卷 参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. -4,2 12.(3,5) 13.12-14.31 15. n )23( 16. 6S 1≤≤ 三. 解答题(8小题共66分) 17. (本题6分)解:(1)上述两同学回答的均不全面,应该是300 , 1500 , 900 (遗漏一个扣1分) ………3分 (2)答案不唯一.如面对不确定的情况就要考虑进行分类讨论;考虑问题要全面呀等等,只要有这样的意思就得3分. …………………………3分 18. (本题6分)解:900,1350,1800 ,2700, 3600,只要举出其中两个角能够进行三等分, ……………………2分尺规作图正确,每个2分 ………………………4分19、(本题6分)解:(1)第一只 肉 香肠 红枣 红枣第二只 红枣 肉 红枣 红枣 肉 香肠 红枣 香肠 红枣∴P =61122= …………………………3分(2)这样模拟不正确 …………………………1分 理由如下:连续两次掷骰子点数朝上的情况有(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16种,而满足条件的情况有4种 …………………………2分 20. (本题8分)解:老板第二次售手链还是赚了. …………………………1分 设第一次批发价为x 元/条,则第二次的批发价为x+0.5元/条 依题意,得: )x1000.5)(10(x ++=150 解之得 5.2x ,2x 21== …………………………3分经检验,5.2x ,2x 21== 都是原方程的根 …………………………1分 由于当x=2.5时,第二次的批发价就是3元/条,而零售价为2.8元,所以x=2.5不合题意,舍去.故第一次的批发价为2元/条.第二次的批发价为2.5元/条第二次共批发手链605.21505.0x 150==+(条) …………………………1分第二次的利润为: 1.2150-5).08.260518.26054(=⨯⨯⨯+⨯⨯ …………………………1分故,老板第二次售手链赚了1.2元 . …………………………1分21.(本题8分)解:(1)如图,由题意得,∠EAD =45°,∠FBD =30°.∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD , ∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°.又∵ ∠DBC =∠DAB +∠ADB , ∴ ∠ADB =15°.∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km . ……………………………………………4分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°. ∴ DO =2×sin60°=2×323=,BO =2×cos60°=1. 在Rt △CBO 中,∠CBO =30°,CO =BO tan30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332km . …………………………………………………4分 22. (本题10分)解:(1)这个样本的中位数为120(人),众数为100(人),平均数为150(人) ………3分 信息:①这一周每天参观人数不低于100人; ②周末参观人数逐渐增加;金③一周内参观人数在百人左右的天数最多;④星期日参观人数最多;⑤这一周每天参观人数不超过240人;⑥星期五参观人数最接近这一周的平均值;•⑦一周内多数天参观人数低于本周参观人数的平均值等等.…………………………2分(2)①由(1)知样本数据的中位数为120(人),则甲、乙两团共120人,其中甲团有x人,乙团有(120-x)人.∵0<120-x≤50,∴甲团人数超过50人…………………………1分ⅰ)当50<x•≤100,•0<120-x≤50时,W=60x+80(120-x)即W=9600-20x(70≤x≤100)ⅱ)当x>100,0<120-x•≤50时,W=40x+80(120-x)即W=9600-40x(100<x<120)∴当70≤x≤100时,W关于x的函数关系式为W=9600-20x;当100<x<120时,W关于x的函数关系式为:W=9600-40x.…………………………2分②依题意x≤100,∴W关于x的函数关系式应为:W=9600-20x(70≤x≤100)根据一次函数的性质知:当x=70时,W=9600-2×700=8200(元)而两团合起来购票应付费40×120=4800(元),∴两团合起来购票比分开购票最多可节约8200-4800=3400(元).…………………………2分23.(本题10分)证明:(1)连接AM,∵AB是半圆O的直径,∴∠BMA=90°…………………………1分又∵DE⊥AB,∠ABM=∠NBE,∴Rt△ABM∽Rt△NBE∴BN BEBA BM,即BN·BM=BE·BA …………………………2分(2)连接AD,BD(如图2),∵AB是⊙O的直径,∴∠ADB=90°…………………………1分又因∵DE⊥AB,∴BD2=BE·BA …………………………1分∵BC是⊙O1的切线,∴BC2=BN·BM …………………………1分由(1)知BN·BM=BE·BA,∴BC2=BD2,即BC=BD …………………………1分(3)连接O 1N 和OM (如图3),则OM 过点O 1, ∵OB=OM ,O 1N=O 1M ,∴∠MNO 1=∠NMO 1=∠MBO …………………………1分 ∴O 1N ∥OB …………………………1分而DE ⊥OB ,∴OE ⊥O 1N∵O 1N 是 ⊙O 1的半径,∴DE 是⊙O 1的切线.…………………………1分24.(本题12分)解:(1)①法一:由题可知1AO CQ ==.90AOH QCH ∠=∠=,AHO QHC ∠=∠,AOH QCH ∴△≌△.OH CH ∴=,即H 为AQ 的中点. …………………………1分法二:(01)A ,,(01)B -,,OA OB ∴=.又BQ x ∥轴,HA HQ ∴=. …………………………1分 由①可知AH QH =,AHR QHP ∠=∠,AR PQ ∥,RAH PQH ∴∠=∠, RAH PQH ∴△≌△.AR PQ ∴=,又AR PQ ∥,∴四边形APQR 为平行四边形.………………………1分②设214P m m ⎛⎫ ⎪⎝⎭,,PQ y ∥轴,则(1)Q m -,,则2114PQ m =+.过P 作PG y ⊥轴,垂足为G ,在Rt APG △中,2114AP m PQ ===+=.∴平行四边形APQR 为菱形. …………………………2分(2)设直线PR 为y kx b =+,由OH CH =,得,0)2m (H ,214P m m ⎛⎫⎪⎝⎭,代入得: 2021.4m k b km b m ⎧+=⎪⎪⎨⎪+=⎪⎩, 221.4m k b m ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线PR 为2124m y x m =-.………………………1分 设直线PR 与抛物线的公共点为214x x ⎛⎫ ⎪⎝⎭,,代入直线PR 关系式得:22110424m x x m -+=,21()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线PH 与抛物线214y x =只有一个公共点P . …………………………2分 (3)AN ∥GH ,AN 21GH =. …………………………2分由(1)知AP=PQ ,同理知AM=MN.M A N M N A ,A Q P PA Q ∠=∠∠=∠∴ BQ PQ ,BQ M N ⊥⊥∴MN ∥PQ ∴180MPQ NMA =∠+∠ ∵⊿AMN 和⊿APQ 的内角和都为180180MAN MNA AQP PAQ =∠+∠+∠+∠∴ 90MAN PAQ =∠+∠∴ AQ AN 90NAQ ⊥∴=∠∴…………………………2分由(1)知四边形APQR 为菱形,HQ AH PR AQ =⊥∴,PR ∴∥AN为GH ∴⊿ANQ 的中位线.∴AN ∥GH ,AN 21GH = …………………………1分。
2010年中考数学模拟试卷答案
2010年中考模拟试卷 数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分)11. 6 . 12. 67 . 13. 2π14. 50 ,40 15. y=31x-4或y=-31x-3 16. 2548 , n2543⎪⎭⎫ ⎝⎛⨯三. 解答题(8小题共66分) 17. (本题满分6分) 解:(1)223. …………………………………………2分 (2)n a = 214-n . …………………………………………4分 (3)∵71=4×18-1 ,∴271=21184-⨯, ∴271为数列当中第18个数. …………………………………………6分 18. (本题满分6分) 解:① 2532,1±=x (利用公式法解决) ②512,1±=x (利用开平方法) ③3,021==x x (利用因式分解法) ④512,1±=x (利用配方法或者公式法等) (说明:没有说明具体解题思路,只有答案得3分) 19. (本题满分6分)解:在Rt △ADC 中,∠DAC=45°,CD=15 m ,∴AD=CD=15 m , …………………………………………2分在Rt △NDC 中,∠DNC=30°,CD=15 m ,∴DN=315 m , ……………………………………………4分∴AN=DN-DA=315-15=)13(15- m.≈11m答:所求AN 之间的距离约为11 m. ………………………………………6分 20. (本题满分8分)解: (1)31.6%; ……………………………………………2分(2)补全统计图; ……………………………………………6分 (说明:①补全“上网”给2分;②补全“健身游戏”给2分.)(3)答案不惟一,如:适当减少看电视的时间,多做运动,有益健康.(合理即给分)……………………………………………8分21. (本题满分8分)解: (1)5; ……………………2分(2)如图:……………………6分 (3)32(a 2+b 2) ………………8分22.(本题满分10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. …………………………1分∵∠D =30°,∴∠COD =60°. …………………2分 ∵OA=OC ,∴∠A=∠ACO=30°. ………………4分 ⑵ ∵CF ⊥直径AB , CF =34,∴CE=5分 ∴在Rt △OCE 中,OE =2,OC =4. ……………………6分∴2BOC 60483603S ππ⨯扇形==,EOC122S ⨯⨯=……………………8分∴EOCBOC S S Sπ阴影扇形8=-=-3……………………………………………10分 23.(本题满分10分)解:(1)由图象知:当x =10时,y =10;当x =15时,y =5.设y =kx+b ,根据题意得:⎩⎨⎧=+=+5151010b k b k ,解得⎩⎨⎧=-=201b k ,∴y =-x +20. ……………………………………………2分 (2)当y =4时,得x =16,即A 零售价为16元. ………………………………3分 设这次批发A 种文具a 件,则B 文具是(100-a )件,由题意,得⎩⎨⎧≥-+≤-+296)100(241000)100(812a a a a ,解得48≤a ≤50 ……………………………………………5分 ∴有三种进货方案,分别是①进A 种48件,B 种52件;②进A 种49件,B 种51件;③进A 种50件,B 种50件. ……………………………………………8分 (3)W =(x -12)(-x +20)+(x -10)(-x +22),整理,得W =-2x 2+64x -460.当x =-b2a =16,W 有最大值,即每天销售的利润最大. …………………………10分24. (本题满分12分)解:(1)由已知得:C (0,-3),A (-1,0)将A 、B 、C 三点的坐标代入得⎪⎩⎪⎨⎧-==++=+-30390c c b a c b a解得:⎪⎩⎪⎨⎧-=-==321c b a所以这个二次函数的表达式为:322--=x x y ……………………………2分 (2)存在,F 点的坐标为(2,-3)易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0)∵以A 、C 、E 、F 为顶点的四边形为平行四边形∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合∴存在点F ,坐标为(2,-3) ………………………………………………4分 (3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),代入抛物线的表达式,解得2171+=R ②当直线MN 在x 轴下方时,设圆的半径为r (r>0)则N (r+1,-r ),代入抛物线的表达式,解得2171+-=r∴圆的半径为2171+或2171+-. ……………………8分(4)过点P 作y 轴的平行线与AG 交于点Q ,易得G (2,-3),直线AG 为1--=x y .设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .3)2(212⨯++-=+=∆∆∆x x S S S GPQ APQ APG 当21=x 时,△APG 的面积最大 此时P 点的坐标为⎪⎭⎫ ⎝⎛-415,21,827的最大值为APG S ∆. ……………12分。
云南省昭通市数学中考模拟试卷
云南省昭通市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分)1. (4分) (2018七上·碑林月考) 2018的倒数是()A . 2018B .C .D . ﹣20182. (4分)(2019·涡阳模拟) 首届中国国际进口博览会于2018年11月5日至10日在上海国家会展中心举行.据新华社电,此次进博会交易采购成果丰硕,按一年计累计,意向成交57830000000美元,其中57830000000用科学记数法表示应为()A . 5783×107B . 57.83×109C . 5.783×1010D . 5.783×10113. (4分)(2018·北部湾模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)(2017·徐汇模拟) 如图,AB∥CD,BE平分∠ABC,∠C=36°,那么∠ABE的大小是()A . 18°B . 24°C . 36°D . 54°.5. (4分) (2019九上·射阳期末) 人民商场对上周女装的销售情况进行了统计,销售情况如下表所示:颜色黄色绿色白色紫色红色数量(件)10018022080550经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A . 平均数B . 中位数C . 众数D . 方差6. (2分)(2017·南宁模拟) 小张抛掷两枚质地均匀的硬币,出现两枚硬币全部正面朝上的概率是()A .B .C .D . 17. (4分)(2018·毕节模拟) 如图,四边形ABCD内接于⊙O,它的对角线把四个内角分成八个角,其中相等的角有()A . 2对B . 4对C . 6对D . 8对8. (4分)若方程x2-6x+m=0有两个同号不相等的实数根,则m的取值范围是()A . m<9B . m>0C . 0<m<9D . 0<m≤99. (2分)如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠a=75°,则b的值为()A . 3B .C . 4D .10. (4分) (2019九上·台安月考) 如图,为等边三角形,点从A出发,沿作匀速运动,则线段的长度y与运动时间x之间的函数关系大致是()A .B .C .D .二、填空题(共6小题,满分30分,每小题5分) (共6题;共27分)11. (5分)(2016·乐山) 因式分解:a3﹣ab2=________.12. (5分)(2019·靖远模拟) 如图,的外接圆O的半径为3,,则劣弧的长是________ 结果保留13. (5分) (2019七上·高台期中) 对正有理数a,b定义运算★如下:a★b=,则3★4=________.14. (5分)如图,直线l1∥l2∥l3 ,已知AG=0.6cm,BG=1.2cm,CD=1.5cm,CH= ________ cm.15. (2分)如图,在▱ABCD中,AB=, AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE 的长为________.16. (5分)一天,小青在校园内发现:旁边一颗树在阳光下的影子和她本人的影子在同一直线上,树顶的影子和她头顶的影子恰好落在地面的同一点,同时还发现她站立于树影的中点(如图所示).如果小青的身高为1.65米,由此可推断出树高是________ 米.三、解答题(共8小题,满分80分) (共8题;共58分)17. (2分)已知+|2x﹣3|=0.(1)求x,y的值;(2)求x+y的平方根.18. (8分)(2017·威海模拟) 解不等式组并写出它的所有非负整数解.19. (2分)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)20. (8分) (2018九上·皇姑期末) 如图,在平面直角坐标系中,点在反比例函数的图象上,,轴于点C.(1)求反比例函数的表达式;(2)求的面积;(3)若将绕点B按逆时针方向旋转得到点O、A的对应点分别为、,点是否在反比例函数的图象上?若在请直接写出该点坐标,若不在请说明理由.21. (10.0分) (2018九上·兴义期末) 黔西南州勤智学校九年级要组织一次学生的数学解题能力大赛.(1)现要从每班随机选出一名学生负责协调老师工作,小明所在的六班共有54名同学,请求出小明被选的概率;(2)经过第一轮在班内的比赛,有六名同学小帆、小恒、小丽、小颖、小茹、小斌(分别依次记为A、B、C、D、E、F)的成绩优秀,现要从这六名同学中随机选出两人代表本班参加年级的解题大赛,请求出小丽和小颖作为本班代表参赛的概率.22. (12分) (2017九下·无锡期中) 如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D 与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?23. (2分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.24. (14分) (2020九上·桂林期末) 在矩形中,,,是边上的中点,动点在边上,连接,过点作分别交射线、射线于点、 .(1)如图1,当点与点重合时,求的长;(2)如图2,当点在线段上(不与,重合)且时,求的长;(3)线段将矩形分成两个部分,设较小部分的面积为,长为,求与的函数关系式.参考答案一、选择题(共10小题,满分40分,每小题4分) (共10题;共34分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题,满分30分,每小题5分) (共6题;共27分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8小题,满分80分) (共8题;共58分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
2010年云南省昭通市中考数学试题和答案
16.(7 分)先化简再求值: x − 3 ÷ x2 − 9 ,其中 x = −5 . 2x − 4 x − 2
17.(8 分)如图 6, ABCD 的两条对角线 AC 、 BD 相交于点 O .
(1) 图中有哪些三角形是全等的? (2) 选出其中一对全等三角形进行证明.
4.下列事件中是必然事件的是
A. 一个直角三角形的两个锐角分别是 40°和 60°
B.抛掷一枚硬币,落地后正面朝上
C.当 x 是实数时, x2 ≥ 0
D.长为 5cm 、 5cm 、11cm 的三条线段能围成一个三角形
D.
D. a2 + a3 = a5
第 1 页 共 11 页
5.某物体的三视图如图 1 所示,那么该物体的形状是 A.圆柱 B.球 C.正方体 D.长方体
① 当 t 为何值时,半圆与直线 l 相切?
②
是否存在这样的 t
值,使得半圆面积 S
=
1 2
S梯形ABCD
?若存在,求出 t
值,若不存
在,说明理由.
图 9(1)
第 6 页 共 11 页
图 9(2)备用图
2010 年昭通中考数学答案
一、选择题: 1.D 2.B 3.A 4.C 5.D 6.B 7.D 二、填空题:
2010 年昭通市高中(中专)招生统一考试
数 学试卷
(全卷三个大题,共 23 个小题,共 6 页;满分 120 分,考试用时 120 分钟) 注意事项:
1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在 试题卷、草稿纸上作答无效.
2. 考试结束后,请将试题卷和答题卷一并交回. 一、选择题(本大题共 7 小题,每小题只有一个正确先项,每小题 3 分,满分 21 分) 1.下列结论错误的是
2010年模拟试卷数学(1)
2011年昭阳区二中高中(中专)招生统一考试模拟试卷数 学(1)(全卷三个大题,共28个题,共5页;满分150分,考试用时150分钟) 注意事项:1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2. 考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题共10小题,每小题只有一个正确先项,每小题3分,满分30分) (1)4的算术平方根是( ) A .2±B .2C.D(2)下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷22(3)视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移B .旋转C .对称D .位似(4)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为12,那么口袋中球的总数为( ) A .12个 B .9个C .6个D .3个(5)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是( )(6)如图,直线AB CD 、相交于点E ,DF AB ∥. 若100AEC ∠=°,则D ∠等于( ) A .70°B .80°C .90°D .100°标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第3题图)(俯视图)A .B .C .D .C A E B FD4=1+3 9=3+616=6+1010题图…(7)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cx++在同一坐标系内的图象大致为( ) (8)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩(9)改革开放以来,我国国内生产总值由1978年的3 645亿元增长到2008年的300 670亿元,将300 670用科学记数法表示应为( )A .60.3006710⨯B .53.006710⨯C .43.006710⨯D .430.06710⨯(10)古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10B .25 = 9+16C . 36 = 15+21D .49 = 18+31二、填空题(本大题共10小题,每小题3分,满分30分) (11)计算:3(2)⨯-= . (12)计算2的结果等于 .xxxxx(13)分解因式:22x xy xy -+=_________________.(14)自2011年以来,昆明市城市绿化走上了快车道.目前园林绿化总面积达到了9101.5万平方米.这个数据保留四个有效数字为 万平方米. (15)当x 时,分式12x -有意义. (16)如图,AB 为O ⊙的直径,弦CD AB ⊥,E 为⌒BC 上一点, 若28CEA ∠=°,则ABD ∠= .(17)如图是一种贝壳的俯视图,点C 分线段AB 近似于黄金分割. 已知AB =10cm ,则较长边AC 的长约为 cm . (18)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面 (接缝忽略不计),则这个圆锥的底面半径是 。
2010年中考模拟试卷 数学参考答案及评分标准
2010年中考模拟试卷 数学参考答案及评分标准一、仔细选一选二、认真填一填11.x ≤7/2 12.10/3 13.不能14.6或3 15.0≤s ≤1/2 16. 3411-⎪⎭⎫⎝⎛n17.解: (2) 三.全面答一答18.(1)由题意,q=3k-12……………………1分因为正比例函数,所以3k-12=0k=4……………………1分(2)因为抛物线与x 轴的交点为A1(-2m/3,0),A2(4,0),与y 轴的交点为B (0,-8m )……………………1分 若S △OBA1 =4,则;4=mm 8.3221--,m=6……………………1分若S △OB A2=4,则;4=m 8.421- ,m=41所以当时,满足题设条件,抛物线的解析式为与坐标轴的交点为A(362-,0),B(0,-86)或A(2,0),B(0,-4)图象过A,B 两点的一次函数的特征数为(-12, -86)或(2,-4)………1分19. 作法:(1)作∠MAN=∠α. ……………………2分 (2)作∠MAN 的平分线AE ……………………1分(3)在AM 上截取AB=c ,在AE 上截取AD=b. …………………… 1分 (4)连结BD ,并延长交AN 于点C. ……………………1分 △ABC 就是所画的三角形.(如图) ……………………1分20.解: (1)丙同学提出的方案最为合理 ……………………2分 (2)如图……………………4分(每图各2分,涂"基本不参加",阴影只要是两个扇形均可) (3) 220人 ……………………2分21.解(1)A ………………………………………………………………2分(2)① 相似比 ………………………………………… 1 分② 相似比的平方 …………………………………………1分 ③ 相似比的立方 …………………………………………1分(3)设他的体重是xkg ,则根据题意得32.170.119⎪⎭⎫ ⎝⎛=x……………………………………2分 得x =54.02 (kg )……………………………………1分22. 解:(1)根据题意得:解得:205022003205025003x x x x ⎧+⨯≥⎪⎪⎨⎪⨯≤⎪⎩解得:2606811x ≤≤∵x 为正整数∴x 可取60,61,62,63,64,65,66,67,68 ∵13x也必需是整数∴13x可取20,21,22∴有三种购买方案:方案一:成人票60张,儿童票20张:方案二:成人票63张,儿童票21张:方案一:成人票66张,儿童票22张:……………………………………3分 (2)在(1)中,方案一购买的总数量最少,所以总费用最少最少费用为:60×20+20×50=220……………………………………3分 (3)设用(2)中的最少费用最多还可以多买儿童票数量为y ,2090%(603)5080%(20)2200y y ⨯++⨯+≤解得:19347y ≤∵y 为正整数∴满足19347y ≤的最大正整数为3∴多买的儿童票为:39y =(根)………………3分答:用(2)中的最少费用最多还可以多买9张成人票和3张儿童票…………………1分23. ∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,∴PE+PF=AC 。
2010年中考模拟试卷数学卷f
新世纪教育网精选资料版权所有@新世纪教育网2010 年中考模拟试卷数学参照答案及评分标准一.认真选一选(此题有10 个小题,每题 3 分,共 30分)。
题号12345678910答案B B D D A C C C A B二.认真填一填(此题有 6 个小题,每题 4 分,共 24 分)2 11.3612 .x(xy+2)(xy-2)13 .614.34200915.16.52010三.全面答一答(此题有8 个小题,共66 分)解答应写出文字说明,证明过程或推演步骤。
17.(本小题满分 6 分)解:原式 =2x 4。
2 分解不等式组得: 3 x 2 ,。
2 分若 x 2时,原式 =8( x 为 3 x 2 中不为0、1、-1的随意数)。
2 分18.(本小题满分 6 分)略(1)由已知得 Rt⊿ ABC≌ Rt⊿ DEF ∴∠ A= ∠D∵AC ⊥ BD∴∠ ACD=900又∠ DNC= ∠ ANP∴∠ APN=900∴AB ⊥ ED 。
3 分(2)⊿ ABC≌⊿ DBP证明:由( 1)得∠ A= ∠D ,∠ BPD= ∠ ACB=90 0,又 PB=BC∴⊿ ABC≌⊿ DBP。
3 分19( 6 分).解:∵ l ∥BC∴∠ ACB==80在 Rt⊿ ABC中,tan= AB,∴ BC= AB≈6=42。
3 分BC tan17新世纪教育网精选资料 版权所有 @新世纪教育网依据题意得 h 2+42 2=(h+6) 2,∴ h=144 。
3 分20.(本小题满分 8 分)解: (1)5。
2 分(2)10%。
2 分40 人。
2 分(3) 设参加训练前的人均进球数为x 个,则x(1+25%)=5 ,所以 x=4,即参加训练以前的人均进球数是4 个 . 。
2 分21.(本小题满分 8)解.( 1)∵ x,y 都是整数且 y6,x∴ x=1, 2, 3, 6,∴P 1( 1, 6), P 2( 2, 3), P 3( 3, 2), P 4(6, 1);。
2010年中考数学模拟试卷(4)参考答案
(注:表达式的最终结果用三种形式中的任一种都不扣分) ( 2)方法一:存在, F 点的坐标为( 2,- 3) …… 5 分 理由:易得 D( 1,- 4),所以直线 CD的解析式为: y x 3
∴ E 点的坐标为(- 3,0)
…………… 6 分
由 A、 C、 E、F 四点的坐标得: AE= CF= 2, AE∥ CF
…… 4 分
c3
c3
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
方法二:由已知得: C( 0,- 3), A(- 1, 0) ……… 1 分
设该表达式为: y a( x 1)( x 3 )
……… 2 分
将 C 点的坐标代入得: a 1
……… 4 分
y
所以这个二次函数的表达式为:
y
2
x
2x
3
…… 4 分
D
∴F点的坐标为( 2,- 3)或(― 2,― 3)或(- 4,3)
代入抛物线的表达式检验,只有( 2,- 3)符合
∴存在点 F,坐标为( 2,- 3) …………… 7 分
( 3)如图,①当直线 MN在 x 轴上方时,设圆的半径为 R( R>0),则 N( R+1,R),
代入抛物线的表达式,解得
1 17 R
1 11. x 1 ; 12 . ; 13 . 略;
2
15、 4:1 16 、(2, 4)或( 3, 4)或( 8, 4)
三、解答题
17、 x>-4
画数轴略
2000
14 . sin
1
18、①原式 =
4分
a1
②如 a=2 时,原式 =1,答案不唯一 2 分
昭通市中考模拟数学考试试卷(五)
昭通市中考模拟数学考试试卷(五)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法正确的是()A . “向东5米”与“向西10米”不是相反意义的量.B . 如果气球上升25米记作+25米,那么-15米的意义就是下降-15米.C . 如果气温下降6℃,那么+80C的意义就是下降零上8℃D . 若将高1米设为标准0,高.1.20米记作+1.20,那么-0.05米所表示的高是0.95米.2. (2分)(2019·新乡模拟) 如图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG 于点G,若∠CFN=110°,则∠BEG=()A . 20°B . 25°C . 35°D . 40°3. (2分)“湘潭是我家,爱护靠大家”.自我市开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为()A .B .C .D .4. (2分) (2018七上·郓城期中) 在一仓库里堆放着若干个相同的正方体小货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体小货箱共有()A . 11箱B . 10箱C . 9箱D . 8箱5. (2分)十名工人某天生产同一零件,生产的件数是:15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A . a>b>cB . c>b>aC . c>a>bD . b>c>a6. (2分) (2020八下·眉山期末) 化简的结果是()A . a-bB . a+bC .D .7. (2分)(2019·云南模拟) 如图,点D,E分别在△ABC的边AB,AC上,且AB=9,AC=6,AD=3,若使△ADE与△ABC相似,则AE的长为()A . 2B .C . 2或D . 3或8. (2分)如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB、BC、AC于D、E、F,则AF的长为()A . 5B . 10C . 7.5D . 49. (2分)边长为2的等边三角形的面积是()A . 2B .C . 3D . 610. (2分)(2018·鄂州) 小明从如图所示的二次函数y = ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab > 0②a+b+c < 0 ③b+2c > 0 ④a-2b+4c > 0 ⑤ .你认为其中正确信息的个数有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共6题;共6分)11. (1分)(2012·温州) 若代数式的值为零,则x=________.12. (1分) (2018九下·吉林模拟) 因式分解: =________.13. (1分)若单项式﹣8x3m+ny的次数为5,若m,n均为正整数,则m﹣n的值为________.14. (1分) (2020九上·苏州期末) 如图,在半径为3的⊙O中,随意向圆内投掷一个小球,经过大量重复投掷后发现,小球落在阴影部分的概率稳定在,则的长约为________.(结果保留 )15. (1分)(2019·铁西模拟) 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△O DP是腰长为5的等腰三角形时,点P的坐标为________.16. (1分)假设有足够多的黑白围棋子,按照一定的规律排列成一行请问第2016个棋子是黑的还是白的?答:________.三、解答题 (共8题;共76分)17. (10分)(2017·绵阳模拟) 计算题:二次根式与分式运算(1)计算:()﹣2+(﹣)0+(﹣1)1001+(﹣3 )×tan30°(2)先化简,再求值:﹣(﹣a2+b2),其中a=3﹣2 ,b=3 ﹣3.18. (6分) (2019七下·洛江期末) 如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=________度;(2)求∠EDF的度数.19. (10分)(2017·辽阳) 如图,Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E,F是⊙O 上两点,连接AE,CF,DF,满足EA=CA.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为3,tan∠CFD= ,求AD的长.20. (10分)在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?21. (10分) (2019九上·同安月考) 已知,关于x的一元二次方程()(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为(其中).若y是关于m的函数,且,求这个函数的解析式;22. (10分) (2019七下·巴南月考) 某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?23. (10分) (2018九上·柯桥期末) 如图,,点O为边AN上一点,以O为圆心,6为半径作交AN于D、E两点.(1)当与AM相切时,求AD的长;(2)如果,判断AM与的位置关系?并说明理由.24. (10分)(2020·峨眉山模拟) 如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线于点M.①当时,过抛物线上一动点P(不与点B,C重合),作直线的平行线交直线于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接,当直线与直线的夹角等于的倍时,请直接写出点M的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共76分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省昭通市2010年中考数学模拟试卷(全卷三个大题,共23个小题,共6页;满分120分,考试用时120分钟) 注意事项:1. 本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效. 2. 考试结束后,请将试题卷和答题卷一并交回. 一、选择题(本大题共7小题,每小题只有一个正确先项,每小题3分,满分21分) 1.下列结论错误的是A2= B.方程240x -=的解为2x = C.22()()a b a b a b +-=- D.22x y xy += 2.下列图形是轴对称图形的是3.下列运算正确的是A .235x x x =· B.222()a b a b +=+ C.235()a a = D.235a a a +=4.下列事件中是必然事件的是A . 一个直角三角形的两个锐角分别是40°和60° B.抛掷一枚硬币,落地后正面朝上 C.当x 是实数时,20x ≥D.长为5cm 、5cm 、11cm 的三条线段能围成一个三角形 5.某物体的三视图如图1所示,那么该物体的形状是 A .圆柱 B.球 C.正方体 D.长方体6.如图2, AB CD ∥,EF AB ⊥于E ,EF 交CD 于F ,已知230∠=°,则1∠是 A .20° B.60° C.30° D.45°7.二次函数2y ax bx c =++的图象如图3所示,则下列结论正确的是 A .200040a b c b ac <<>->,,, B.200040a b c b ac ><>-<,,, C.200040a b c b ac <><->,,,A. B. C.D.图1图2图3D.200040a b c b ac <>>->,,,二、填空题(本大题共8小题,每小题3分,满分24分) 8.3的相反数是__________. 9.计算:0(3)1-+=__________. 10.分解因式:234a b ab -=__________.11.如图4,上海世博会的中国馆建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积4.6457万平方米,保留两个有效数字是__________万平方米. 12.不等式1302x -≤的解集为_________.13.如图5,O ⊙的弦8AB =,M 是AB 的中点,且OM 为3,则O ⊙的半径为_________.14.如果两个相似三角形的一组对应边分别为3cm 和5cm ,且较小三角形的周长为15cm ,则较大三角形的周长为__________cm .15.某种火箭被竖直向上发射时,它的高度(m)h 与时间(s)t 的关系可以用公式2515010h t t =-++表示.经过________s ,火箭达到它的最高点.三、解答题(本大题共8小题,满分75分)16.(7分)先化简再求值:239242x x x x --÷--,其中5x =-.17.(8分)如图6,ABCD 的两条对角线AC 、BD 相交于点O . (1) 图中有哪些三角形是全等的?(2) 选出其中一对全等三角形进行证明.18.(8分)水是生命之源,水是希望之源,珍惜每一滴水,科学用水,有效节水,就能播种希望.某居民小区开展节节水量(立方米图4 图5图6(1) 节水量众数是多少立方米?(2) 该小区3月份比2月份共节约用水多少立方米? (3) 该小区3月份平均每户节约用水多少立方米?19.(9分)全球变暖,气候开始恶化,中国政府为了对全球气候变暖负责任,积极推进节能减排,在全国范围内从2008年起,三年内每年推广5000万只节能灯.居民购买节能灯,国家补贴50%购灯费.某县今年推广财政补贴节能灯时,李阿姨买了4个8W 和3个24W 的节能灯,一共用了29元,王叔叔买了2个8W 和2个24W 的节能灯,一共用了17元.求:(1)该县财政补贴50%后,8W 、24W 节能灯的价格各是多少元? (2)2009年我省已推广通过财政补贴节能灯850万只,预计我省一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨左右,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)20.(8分)小颖为学校联欢会设计了一个“配紫色”的游戏;下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1) 利用树状图或列表的方法表示出游戏所有可能出现的结果; (2) 游戏者获胜的概率是多少?21.(10分)云南2009年秋季以来遭遇百年一遇的全省性特大旱灾,部分坝塘干涸,小河、小溪断流,更为严重的情况是有的水库已经见底,全省库塘蓄水急剧减少,为确保城乡居民生活用水,有关部门需要对某水库的现存水量进行统计,以下是技术员在测量时的一些数据:水库大坝的横截面是梯形ABCD (如图7所示),AD BC ∥,EF 为水面,点E 在DC 上,测得背水坡AB 的长为18米,倾角30B ∠=°,迎水坡CD 上线段DE 的长为8米,A 盘B 盘120ADC ∠=°.(1) 请你帮技术员算出水的深度(精确到0.011.732);(2) 就水的深度而言,平均每天水位下降必须控制在多少米以内,才能保证现有水量至少能使用20天?(精确到0.01米)22.(11分)在如图8所示的方格图中,每个小正方形的顶点称为“格点”,且每个小正方形的边长均为1个长度单位,以格点为顶点的图形叫做“格点图形”,根据图形解决下列问题: (1) 图中格点A B C '''△是由格点ABC △通过怎样变换得到的?(2) 如果建立直角坐标系后,点A 的坐标为(5-,2),点B 的坐标为(50)-,,请求出过A 点的正比例函数的解析式,并写出图中格点DEF △各顶点的坐标.23.(14分)如图9,已知直线l 的解析式为6y x =-+,它与x 轴、y 轴分别相交于A 、B 两点,平行于直线l 的直线n 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动时间为t 秒,运动过程中始终保持n l ∥,直线n 与x 轴,y 轴分别相交于C 、D 两点,线段CD 的中点为P ,以P 为圆心,以CD 为直径在CD 上方作半圆,半圆面积为S ,当直线n 与直线l 重合时,运动结束. (1) 求A 、B 两点的坐标;(2) 求S 与t 的函数关系式及自变量t 的取值范围; (3) 直线n 在运动过程中,①当t 为何值时,半圆与直线l 相切? ②是否存在这样的t 值,使得半圆面积12ABCD S S =梯形?若存在,求出t 值,若不存在,说明理由.图7图82010年昭通中考数学答案一、选择题:1.D 2.B 3.A 4.C 5.D 6.B 7.D 二、填空题:8.3- 9.2 10.(34)ab a - 11.4.6 12.6x ≤ 13.5 14.25 15.15 三、解答题:16.解:239242x x x x --÷--=232249x x x x ----· 322(2)(3)(3)x x x x x --=-+-·12(3)x =+ ································ 5分当5x =-时,原式112(53)4==--+ ···················· 7分17.解:(1)AOB COD △≌△、AOD COB △≌△、 ABD CDB △≌△、ADC CBA △≌△ ···························· 4分 (2)以AOB COD △≌△为例证明, 四边形ABCD 是平行四边形, ∴OA OC OB OD ==,. 在AOB △和COD △中,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,,. AOB COD ∴△≌△.··························· 8分 18.解:(1)节水量的众数是2.5立方米. ·················· 2分 (2)该小区3月份比2月份共节约用水:220 2.5120360520⨯+⨯+⨯=(立方米).················· 5分 (3)该小区3月份平均每户节约用水:220 2.51203602012060x ⨯+⨯+⨯=++ 2.6=(立方米). ··············· 8分19.解:(1)设8W 节能灯的价格为x 元,24W 节能灯的价格为y 元. ····· 1分则43292217x y x y +=⎧⎨+=⎩, ①. ② ·························· 2分解之 3.55x y =⎧⎨=⎩,.······························· 4分答:该县财政补贴50%后,8W 节能灯的价格为3.5元,24W 节能灯的价格为5元.····································· 5分 (2)全国一年大约可节约电费:2.3500013.5850⨯≈(亿元) ·········· 7分 大约减排二氧化碳:43.55000255.9850⨯≈(万吨) ·············· 9分 20.解:(1)用树状图表示:····································· 4分所有可能结果:(红、黄),(红、绿),(红、蓝),(白、黄),(白、绿),(白、蓝) 6分(2)P (获胜)=6. ··························· 8分 21.解:分别过A 、D 作AM BC ⊥于M 、DN BC ⊥于N , ········· 1分 在Rt ABM △中, 30B ∠=°,192AM AB ∴==.AD BC AM BC DN BC ⊥⊥∥,,,9AM DN ∴==. ····························2分 DN BC ⊥, DN AD ∴⊥, 90ADN ∴∠=°.1209030CDN ADC ADN ∠=∠-∠=-=°°°. 延长FE 交DN 于H .在Rt DHE △中,cosHDEDH DE∠=, cos308DH=°,8DH ∴== ·························· 6分 994 1.732 2.07HN DN DH ∴=-=-=-⨯≈.(米) ·········· 8分(2)2.070.10350.1020=≈(米). ···················· 9分 答:平均每天水位下降必须控制在0.10米以内,才能保证现有水量至少能使用20天.····································· 10分22.解:(1)格点A B C '''△是由格点ABC △先绕点B 逆时针旋转90°,然后向右平移13个长度单位(或格)得到的. ··································· 4分 (注:先平移后旋转也行)(2)设过A 点的正比例函数解析式为y kx =, 将(52)A -,代入上式得25k =-,25k =-.∴过A 点的正比例函数的解析式为25y x =-. ················ 8分DEF △各顶点的坐标为:(24)(08)(77)D E F ---,,,,,. ····················· 11分 23.解:(1)6y x =-+,令0y =,得06x =-+,6x =,(60)A ∴,.令0x =,得6y =,(06)B ∴,. ······················ 2分(2)6OA OB ==,AOB ∴△是等腰直角三角形. n l ∥,45CDO BAO ∴∠=∠=°, COD ∴△为等腰直角三角形, OD OC t ∴==.CD ===.122PD CD ∴==,222111πππ2224S PD t ⎛⎫=== ⎪ ⎪⎝⎭·, 21π(06)4S t t ∴=<≤. ·························· 8分 (3)①分别过D 、P 作DE AB ⊥于E 、PF AB ⊥于F .6AD OA OD t =-=-,在Rt ADE △中,sin DEEAD AD∠=,(6)DE t =-,)2PF DE t ∴==-. 当PF PD =时,半圆与l 相切.)t -=, 3t =.当3t =时,半圆与直线l 相切. ······················· 11分②存在.21116618222AOB COD ABCD S S S t t t =-=⨯⨯-⨯=-△△梯形·.21π4S t =.若12ABCD S S =梯形,则22111π18422t t ⎛⎫=- ⎪⎝⎭,2(π1)36t +=,2361t π=+,6π1t ==<+.∴存在t =,使得12ABCD S S =梯形. ·················· 14分。