chap11a

合集下载

CHAP解释

CHAP解释

CHAPCHAP全称是PPP(点对点协议)询问握手认证协议(Challenge Handshake Authentication Protocol)。

该协议可通过三次握手周期性的校验对端的身份,可在初始链路建立时完成时,在链路建立之后重复进行。

通过递增改变的标识符和可变的询问值,可防止来自端点的重放攻击,限制暴露于单个攻击的时间。

目录简述询问握手认证协议(CHAP)通过三次握手周期性的校验对端的身份,在初始链路建立时完成,可以在链路建立之后的任何时候重复进行。

1. 链路建立阶段结束之后,认证者向对端点发送“challenge”消息。

2. 对端点用经过单向哈希函数计算出来的值做应答。

3. 认证者根据它自己计算的哈希值来检查应答,如果值匹配,认证得到承认;否则,连接应该终止。

4. 经过一定的随机间隔,认证者发送一个新的 challenge 给端点,重复步骤 1 到 3 。

通过递增改变的标识符和可变的询问值,CHAP 防止了来自端点的重放攻击,使用重复校验可以限制暴露于单个攻击的时间。

认证者控制验证频度和时间。

特性该认证方法依赖于只有认证者和对端共享的密钥,密钥不是通过该链路发送的。

虽然该认证是单向的,但是在两个方向都进行 CHAP 协商,同一密钥可以很容易的实现相互认证。

由于CHAP 可以用在许多不同的系统认证中,因此可以用NAME 字段作为索引,以便在一张大型密钥表中查找正确的密钥,这样也可以在一个系统中支持多个 NAME/ 密钥对,并可以在会话中随时改变密钥。

CHAP 要求密钥以明文形式存在,无法使用通常的不可回复加密口令数据库。

CHAP 在大型网络中不适用,因为每个可能的密钥由链路的两端共同维护。

协议结构CHAP 帧格式CHAP 的配置选项格式如下:8 16 32 40 bitType Length Authentication-Protocol AlgorithmType ― 3Length ― 5Authentication-Protocol ― 对于CHAP,为 C223(Hex)。

chap11-opampapp

chap11-opampapp

Calculate the output voltage for the circuit of Fig. 11.2. The inputs are V1=50 mV sin(1000t) and V2 =10 mV sin(3000t).
VOLTAGE SUBTRACTION
Two signals can be subtracted from one another in a number of ways. Figure 11.10 shows two op-amp stages used to provide subtraction of input signals. The resulting output is given by:
11.3 Voltage buffer
A voltage buffer circuit provides a means of isolating an input signal from a load by using a stage having unity voltage gain, with no phase or polarity inversion, and acting as an ideal circuit with very high input impedance and low output impedance.
The output voltage is then
Multiple-Stage Gains
When a number of stages are connected in series, the overall gain is the product of the individual stage gains. The overall circuit gain is then noninverting and is calculated by

计算机网络实验 实验三 PAP、chap认证

计算机网络实验 实验三 PAP、chap认证
[实验步骤]
步骤1.基本配置 Red-Giant(config)# hostname Ra 由器主机名Ra Ra(config)# Red-Giant(config)# hostname Rb 由器主机名Rb 配置路
配置路
对路由器Ra进行的配置
Ra(config)# interface serial 1/3 Ra(config-if)# ip address 172.16.2.1 255.255.255.0 配置接口地址 Ra(config-if)# no shutdown Ra# show int serial 1/3
对Rb进行配置
Rb(config)# interface serial 1/3 ( DCE), DTE Rb(config-if)# ip address 172.16.2.2 255.255.255.0 Rb(config-if)# clock rate 64000 (DCE端进行 时钟配置) Rb(config-if)# no shutdown
验证测试
注意事项:先关掉电源开关,然后打开,再调 试debug命令。 Ra# debug ppp authentication 观察pap验证 过程 Rb# debug ppp authenticationຫໍສະໝຸດ 步骤2.配置PPP PAP认证
Rb(config)# username Ra password 0 star ! 在验证方配置被验证方用户名、密码 Ra(config-if) # encapsulation ppp 接口 下封装PPP协议 Ra(config-if) # ppp pap sent-username Ra password 0 star ! PAP认证的用户名、密码 Rb(config-if)# encapsulation ppp Rb(config-if)# ppp authentication pap ! ppp 启用pap认证方式

SDS_Anti-Terra-202_PT_pt

SDS_Anti-Terra-202_PT_pt

Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013 1. Identificação da substância/mistura e da sociedade/empresa1.1 Identificador do produtoNome comercial : Anti-Terra-2021.2 Utilizações identificadas relevantes da substância ou mistura e utilizações desaconselhadasUtilização da substância oumistura: Wetting & Dispersing Additive1.3 Identificação do fornecedor da ficha de dados de segurançaCompanhia : BYK-Chemie GmbHAbelstrasse4546483 WeselTelefone : +49 281 670-0Telefax : +49 281 65735Informações : Regulatory AffairsTelefone : +49 281 670-23532Telefax : +49 281 670-23533GHS.BYK@1.4 Número de telefone de emergênciaGBK Gefahrgut Buero GmbH, Tel. +49 6132 844632. Identificação dos perigos2.1 Classificação da substância ou misturaClassificação (REGULAMENTO (CE) N.o 1272/2008)Líquidos inflamáveis, Categoria 3 H226: Líquido e vapor inflamáveis.Sensibilização da pele, Categoria 1 H317: Pode provocar uma reacção alérgicacutânea.Toxicidade para órgãos-alvo específicos -exposição única, Categoria 3, Sistemanervoso centralH336: Pode provocar sonolência ou vertigens.Toxicidade para órgãos-alvo específicos - exposição repetida, Categoria 1 H372: Afecta os órgãos após exposição prolongada ou repetida.Perigo de aspiração, Categoria 1 H304: Pode ser mortal por ingestão e penetraçãonas vias respiratórias.Toxicidade crónica para o ambiente aquático, Categoria 2 H411: Tóxico para os organismos aquáticos com efeitos duradouros.Classificação (67/548/CEE, 1999/45/CE)Inflamável R10: Inflamável.Tóxico R48/25: Tóxico: risco de efeitos graves para asaúde em caso de exposição prolongada poringestão.Nocivo R65: Nocivo: pode causar danos nos pulmões seingerido.Sensibilizante R43: Pode causar sensibilização em contacto comVersão 4.0 SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013a pele.Perigoso para o ambiente R51/53: Tóxico para os organismos aquáticos, podendo causar efeitos nefastos a longo prazo no ambiente aquático.R66: Pode provocar secura da pele ou fissuras, por exposição repetida.R67: Pode provocar sonolência e vertigens, por inalação dos vapores.2.2 Elementos do rótuloRótulo (REGULAMENTO (CE) N.o 1272/2008) Pictogramas de perigo:Palavra-sinal: PerigoAdvertências de perigo: H226 Líquido e vapor inflamáveis.H304 Pode ser mortal por ingestão e penetração nas vias respiratórias.H317 Pode provocar uma reacção alérgica cutânea.H336 Pode provocar sonolência ou vertigens. H372 Afecta os órgãos após exposição prolongada ou repetida.H411Tóxico para os organismos aquáticos com efeitos duradouros.Recomendações de prudência: Prevenção: P210 Manter afastado do calor/faísca/chama aberta/superfícies quentes. - Não fumar. P260 Não respirar as poeiras/ fumos/ gases/ névoas/ vapores/ aerossóis.P273Evitar a libertação para o ambiente. Resposta: P301 + P310EM CASO DE INGESTÃO: contacte imediatamente um CENTRO DEINFORMAÇÃO ANTIVENENOS ou um médico.P331NÃO provocar o vómito.P370 + P378 Em caso de incêndio: Utilizar areia seca, um produto químico seco ou espuma resistente ao álcool para a extinção.Componentes determinantes de perigo para o rótulo::• 64742-82-1Nafta (petróleo), hidrodessulfurada, pesada • 147900-93-4Fatty acids, C-18, unsatd. trimers, compd. with 9-octadecen-1-amine, (Z)-• 85711-55-3Fatty acids, tall-oil, compds. with oleylamine Etiquetagem suplementar:Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013 EUH066 Pode provocar pele seca ou gretada, por exposição repetida.3. Composição/informação sobre os componentes3.2 MisturasNatureza quimica : Solução de um sal de alquil amônio de um ácido poli-carboxílico.Componentes perigososNome Químico No. CASNo. CENúmero deregisto Classificação(67/548/CEE)Classificação(REGULAMENTO(CE) N.o1272/2008)Concentração[%]Nafta (petróleo), hidrodessulfurada, pesada 64742-82-1265-185-4N; R51/53Xn; R65R10R66R67STOT SE 3; H336Asp. Tox. 1; H304Aquatic Chronic 2;H411Flam. Liq. 3; H226>= 30 - < 50Fatty acids, C-18, unsatd. trimers, compd. with 9-octadecen-1-amine, (Z)- 147900-93-4604-612-4/R43N; R51/53T; R48/25Skin Sens. 1B;H317STOT RE 1; H372Aquatic Chronic 2;H411>= 30 - < 50Fatty acids, tall-oil, compds. with oleylamine 85711-55-3288-315-1/Xi; R43Skin Sens. 1A;H317>= 20 - < 252-butoxietanol 111-76-2203-905-001-2119475108-36 Xn; R20/21/22Xi; R36/38Acute Tox. 4; H332Acute Tox. 4; H312Acute Tox. 4; H302Eye Irrit. 2; H319Skin Irrit. 2; H315>= 3 - < 5Para o texto completo sobre as frases R mencionadas nesta Secção, ver a Secção 16.Para o pleno texto das DECLARAÇÕES H mencionadas nesta Secção, ver a Secção 16.4. Primeiros socorros4.1 Descrição das medidas de primeiros socorrosRecomendação geral : Afastar da área perigosa.Mostrar esta ficha de segurança ao médico de serviço.Os sintomas de envenenamento podem manifestar-se apenasalgumas horas depois.Não deixar a vítima sozinha.Se for inalado : Após exposição prolongada, consultar um médico.Se estiver inconsciente, pôr a pessoa na posição derecuperação ou obter uma opinião médica.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013No caso dum contacto com a pele : Se estiver en contacto com a pele, enxaguar bem com água. Se estiver em contacto com a roupa, retirar a roupa.No caso dum contacto com os olhos : Lavar os olhos com água como precaução.Retirar as lentes de contacto.Proteger o olho não afectado.Manter os olhos bem abertos enquanto enxaguar.Se a irritação dos olhos continuar, consultar um especialista.Se for engolido : Manter o aparelho respiratório livre.NÃO provocar vómitos.Não dar leite nem bebidas alcoólicas.Nunca dar nada pela boca a uma pessoa inconsciente.No caso de problemas prolongados consultar um médico.Transportar imediatamente paciente para um Hospital.5. Medidas de combate a incêndios5.1 Meios de extinçãoMeios adequados de extinção : Espuma resistente ao álcool Dióxido de carbono (CO2) Substância química secaMeios inadequados deextinção: Jacto de água de grande volume 5.2 Perigos especiais decorrentes da substância ou misturaPerigos específicos para combate a incêndios : Não deixar entrar a água utilizada para apagar o incêndio nos esgotos e nos cursos de água.5.3 Recomendações para o pessoal de combate a incêndiosEquipamento especial de protecção a utilizar pelo pessoal de combate a incêndio : Usar equipamento de respiração autónomo para combate a incêndios, se necessário.Outras informações : Recolher a água de combate a fogo contaminadaseparadamente. Não deve entrar no sistema de esgotos.Resíduos de combustão e água de combate a fogocontaminada devem ser eliminados de acordo com as normasda autoridade responsável local.Por razões de segurança em caso de fogo as latas devem serarmazenadas separadamente em compartimentos fechados.Utilizar jactos de água para refrescar os contentores fechadose cheios.6. Medidas a tomar em caso de fugas acidentais6.1 Precauções individuais, equipamento de protecção e procedimentos de emergênciaPrecauções individuais : Usar equipamento de protecção individual.Assegurar ventilação adequada.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013Cortar todas as fontes de ignição.Evacuar o pessoal para áreas de segurança.Atenção com a acumulação de vapores que pode formarconcentrações explosivas. Os vapores podem-se acumularnas áreas baixas.6.2 Precauções a nível ambientalPrecauções a nível ambiental : Evitar que o produto entre no sistema de esgotos.Prevenir dispersão ou derramamento ulterior se for mais seguro assim.Se o produto contaminar rios e lagos ou os esgotos informar as autoridades respectivas.6.3 Métodos e materiais de confinamento e limpezaMétodos de limpeza : Controlar e recuperar o líquido derramado com um produtoabsorvente não combustível, (por exemplo areia, terra, terradiatomácea, vermiculite) e pôr o líquido dentro de contentorespara eliminação de acordo com os regulamentos locais /nacionais (ver secção 13).7. Manuseamento e armazenagem7.1 Precauções para um manuseamento seguroInformação para um manuseamento seguro : Evitar a formação de aerosol.Não respirar vapores/poeira.Evitar a exposição - obter instruções específicas antes da utilização.Evitar o contacto com a pele e os olhos.Para a protecção individual ver a secção 8.Fumar, comer e beber deve ser proibido na área deaplicação.Evitar acumulação de cargas electrostáticas.Proporcionar arejamento suficiente e/ou sistema exaustor nos locais de trabalho.Abrir o recipiente com cuidado pois o conteúdo pode estar sob pressão.Eliminar água de lavagem de acordo com a regulamentação local e nacional.As pessoas suscetíveis aos problemas de sensibilização da pele ou asma, alergias, doenças respiratórias crónicas ou recorrentes não devem trabalhar nos processos utilizando esta mistura.Orientação para prevenção de Fogo e Explosão : Não vaporizar para uma chama ou um corpo incandescente. Tomar as precauções necessárias para evitar descargas de electricidade estática (as quais podem provocar a inflamação de vapores orgânicos).Guardar longe de chamas, superfícies aquecidas e fontes de ignição.7.2 Condições de armazenagem segura, incluindo eventuais incompatibilidadesVersão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013Exigências para áreas de estocagem e recipientes : Não fumar.Guardar o recipiente herméticamente fechado em lugar seco e bem ventilado.Os contentores abertos devem ser cuidadosamente fechados de novo e têm que ficar direitos para evitar a dispersão.As instalações eléctricas / material de trabalho devem obdecer com as normas tecnológicas de segurança.Outras informações: Não se decompõe se armazenado e utilizado de acordo comas instruções.8. Controlo da exposição/protecção individual8.1 Parâmetros de controloComponente s No. CAS ValorParâmetros decontroloPosta em dia Bases2-butoxietanol 111-76-2 TWA20 ppm98 mg/m32000-06-162000/39/ECOutras informações : cutânea:Identifica a possibilidade da significante captação através da pele IndicativoSTEL50 ppm246 mg/m32000-06-162000/39/ECOutras informações : cutânea:Identifica a possibilidade da significante captação através da pele IndicativoVLE-MP20 ppm2007-03-26PT OELOutras informações : (1):Abrangido por legislação nacional específica ou por legislação comunitária não transposta Agente carcinogénico confirmado nos animais de laboratório com relevância desconhecida no Honemirritação do tracto respiratório superiorIrritação ocularoitohoras20 ppm98 mg/m32007-08-24PT DL 305/2007Outrasinformações: P:Possibilidade de absorção significativa através da pelecurta duração 50 ppm246 mg/m32007-08-24PT DL 305/2007Outrasinformações: P:Possibilidade de absorção significativa através da peleVersão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013 DNEL2-butoxietanol : Utilização final: TrabalhadoresVias de exposição: Contacto com a peleEfeitos potenciais para a saúde: Agudo - efeitos sistémicosValor: 89 mg/kgUtilização final: TrabalhadoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Agudo - efeitos sistémicosValor: 135 ppmUtilização final: TrabalhadoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Agudo - efeitos locaisValor: 50 ppmUtilização final: TrabalhadoresVias de exposição: Contacto com a peleEfeitos potenciais para a saúde: Longo prazo - efeitossistémicosValor: 75 mg/kgUtilização final: TrabalhadoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Longo prazo - efeitossistémicosValor: 20 ppmUtilização final: ConsumidoresVias de exposição: Contacto com a peleEfeitos potenciais para a saúde: Agudo - efeitos sistémicosValor: 44,5 mg/kgUtilização final: ConsumidoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Agudo - efeitos sistémicosValor: 426 mg/m3Utilização final: ConsumidoresVias de exposição: IngestãoEfeitos potenciais para a saúde: Agudo - efeitos sistémicosValor: 13,4 mg/kgUtilização final: ConsumidoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Agudo - efeitos locaisValor: 123 mg/m3Utilização final: ConsumidoresVias de exposição: Contacto com a peleEfeitos potenciais para a saúde: Longo prazo - efeitosVersão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013sistémicosValor: 38 mg/kgUtilização final: ConsumidoresVias de exposição: InalaçãoEfeitos potenciais para a saúde: Longo prazo - efeitossistémicosValor: 49 mg/m3Utilização final: ConsumidoresVias de exposição: IngestãoEfeitos potenciais para a saúde: Longo prazo - efeitossistémicosValor: 3,2 mg/kgPNEC2-butoxietanol : Agua doceValor: 8,8 mg/lÁgua do marValor: 0,88 mg/lEstação de Patamento de esgotoValor: 463 mg/lSedimento de água doceValor: 34,6 mg/kgSedimento marinhoValor: 3,46 mg/kgSolosValor: 2,8 mg/kg8.2 Controlo da exposiçãoProtecção individualProtecção respiratória : No caso duma formação de vapores utilizar um aparelhorespiratório com um filtro apropriado.Protecção das mãos : Luvas impermeáveis: A aptidão para um lugar de trabalho específico deve serdebatido com os produtores das luvas de protecção.Protecção dos olhos : Garrafa para lavagem dos olhos com água puraÓculos de segurança bem ajustadosProtecção do corpo e da pele : roupas impermeáveisEscolher uma protecção para o corpo conforme a quantidadee a concentração das substâncias perigosas no lugar detrabalho.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013 Medidas de higiene : Não comer nem beber durante a utilização.Não fumar durante a utilização.Lavar as mãos antes de interrupções, e no final do dia detrabalho.Controlo da exposição ambientalRecomendação geral : Evitar que o produto entre no sistema de esgotos.Prevenir dispersão ou derramamento ulterior se for maisseguro assim.Se o produto contaminar rios e lagos ou os esgotos informaras autoridades respectivas.9. Propriedades físicas e químicas9.1 Informações sobre propriedades físicas e químicas de baseAspecto : líquidoCor : castanho-claroOdor : semelhante ao hidrocarbonetoPonto de inflamação : 40,00 °CMétodo: 48 (Abel-Pensky)Temperatura de ignição : > 200 °CMétodo: calculadoLimites de explosão, inferior : 0,60 %(V)Limite de explosão, superior : 10,60 %(V)pH : dados não disponíveisPonto/intervalo de fusão : dados não disponíveisInício de ebulição : dados não disponíveisPressão de vapor : 6,0000000 hPaa 20,00 °CMétodo: calculadoDensidade : 0,8500 g/cm3a 20,00 °CMétodo: 4 (20°C Biegeschwinger)Densidade da massa : não aplicávelHidrossolubilidade : não miscívelViscosidade, cinemático: a 20,00 °Cdados não disponíveisVersão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013a 40,00 °Cdados não disponíveisTensão superficial : dados não disponíveis10. Estabilidade e reactividade10.1 Reactividade10.2 Estabilidade química10.3 Possibilidade de reacções perigosasReacções perigosas : Não se decompõe se armazenado e utilizado de acordo comas instruções.: Vapores podem formar misturas explosivas com o ar.10.4 Condições a evitarCondições a evitar : Calor, chamas e faíscas.10.5 Materiais incompatíveis10.6 Produtos de decomposição perigososProdutos de decomposição perigosos : Óxidos de carbono Oxidos de fósforoóxidos de azoto (NOx)11. Informação toxicológica11.1 Informações sobre os efeitos toxicológicosToxicidade agudaToxicidade aguda por viaoral: dados não disponíveis: Estimativa da toxicidade aguda: > 2.000,00 mg/kgMétodo: Método de calculoToxicidade aguda por via inalatória : Estimativa da toxicidade aguda: > 20 mg/l Método: Método de calculoToxicidade aguda por via cutânea : Estimativa da toxicidade aguda: > 2.000 mg/kg Método: Método de calculoCorrosão/irritação cutâneaIrritação dermal : dados não disponíveis Lesões oculares graves/irritação ocularIrritação ocular : dados não disponíveisVersão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013Sensibilização respiratória ou cutâneaSensibilização : dados não disponíveisTóxico Sistémico do orgão alvo - Exposição repetida: dados não disponíveis12. Informação ecológica12.1 ToxicidadeToxicidade em peixes :Toxicidade aquática é pouco provável dada a sua baixasolubilidade.12.2 Persistência e degradabilidadeBiodegradabilidade : dados não disponíveis12.3 Potencial de bioacumulaçãoBioacumulação : dados não disponíveis12.4 Mobilidade no soloTensão superficial : dados não disponíveis12.5 Resultados da avaliação PBT e mPmB12.6 Outros efeitos adversosInformações ecológicas adicionais : Um perigo para o ambiente não pode ser excluído no caso dum manejo ou duma destruição não professional.Tóxico para os organismos aquáticos com efeitos duradouros.13. Considerações relativas à eliminação13.1 Métodos de tratamento de resíduosProduto : Este produto não deve entrar nos esgotos, nos cursos deágua e no solo.Não contaminar fontes, poços ou cursos de água com oproduto ou recipientes usados.Enviar para uma indústria licenciada de gerência dosresíduos.Embalagens contaminadas : Esvaziar o conteúdo remanescente.Eliminar como produto Não utilizado.Não reutilizar os recipientes vazios.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013Não queimar nem usar um maçarico de corte no recipientevazio.14. Informações relativas ao transporteTransporte rodoviárioADR / RID:Classe: 3Grupo de embalagem:IIINúmero ONU: 1268Rótulos ADR/RID: 3Descrição dasmercadorias:PETROLEUM DISTILLATES, N.O.S.ENVIRONMENTALLY HAZARDOUSTransporte marítimoIMDG:Classe: 3Grupo de embalagem: IIINúmero ONU: 1268Rótulos: 3EMS: F-E S-EDescrição dasmercadorias:PETROLEUM DISTILLATES, N.O.S.P(Mineral spirit)Transporte aéreoIATA-DGR :Classe: 3Grupo de embalagem: IIINo. UN/ID: UN 1268Rótulos: 3Descrição dasmercadorias:Petroleum distillates, n.o.s.15. Informação sobre regulamentação15.1 Regulamentação/legislação específica para a substância ou mistura em matéria de saúde, segurança e ambienteLegislação sobre o principal acidente perigoso : 96/82/EC Posta em dia: 2003 Tóxico2Quantidade 1: 50 tQuantidade 2: 200 t: 96/82/EC Posta em dia: 2003 Inflamável.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.20136Quantidade 1: 5.000 tQuantidade 2: 50.000 t: 96/82/EC Posta em dia: 2003Perigoso para o ambiente9bQuantidade 1: 200 tQuantidade 2: 500 t: 96/82/EC Posta em dia: 2003-12-31Produtos petrolíferos: a) Gasolinas e naftas; b) Querosenes(incluindo os combustíveis para aviação); c) Gasóleos(incluindo combustíveis para motores a diesel, fuelóleosdomésticos e gasóleos de mistura)13Quantidade 1: 2.500 tQuantidade 2: 25.000 t15.2 Avaliação da segurança química16. Outras informaçõesTexto integral das frases R referidas nos pontos 2 e 3R10 Inflamável.R20/21/22 Nocivo por inalação, em contacto com a pele e por ingestão.R36/38 Irritante para os olhos e pele.R43 Pode causar sensibilização em contacto com a pele.R48/25 Tóxico: risco de efeitos graves para a saúde em caso de exposiçãoprolongada por ingestão.R51/53 Tóxico para os organismos aquáticos, podendo causar efeitos nefastosa longo prazo no ambiente aquático.R65 Nocivo: pode causar danos nos pulmões se ingerido.R66 Pode provocar secura da pele ou fissuras, por exposição repetida.R67 Pode provocar sonolência e vertigens, por inalação dos vapores.Texto integral das declarações H referidas nos parágrafos 2 e 3.H226 Líquido e vapor inflamáveis.H302 Nocivo por ingestão.H304 Pode ser mortal por ingestão e penetração nas vias respiratórias.H312 Nocivo em contacto com a pele.H315 Provoca irritação cutânea.H317 Pode provocar uma reacção alérgica cutânea.H319 Provoca irritação ocular grave.H332 Nocivo por inalação.H336 Pode provocar sonolência ou vertigens.H372 Afecta os órgãos após exposição prolongada ou repetida.H411 Tóxico para os organismos aquáticos com efeitos duradouros.A informação fornecida nesta ficha de segurança é a mais correcta de que dispomos até à datada sua publicação e não deve ser considerada uma garantia ou especificação de qualidade.Versão 4.0SDB_PT Data de revisão 21.02.2013Data de impressão 27.02.2013。

chap名词解释

chap名词解释

chap名词解释
CHAP(Challenge Handshake Authentication Protocol)是一种用于网络安全的认证协议,它可以在用户和服务器之间建立安全连接。

具体来说,CHAP协议的原理如下:
1.用户输入用户名和密码。

2.认证服务器生成一个随机数作为“挑战”,并将其发送给客户端。

3.客户端使用用户输入的密码和挑战计算出一个“响应”值,并将
该响应值发送给认证服务器。

4.认证服务器使用保存的用户密码和挑战值来验证客户端的响应
值。

如果响应值正确,则认证成功;否则认证失败。

5.如果认证成功,认证服务器可以向客户端发送一个“握手”消息,
表示身份验证成功,可以开始数据传输。

6.如果认证失败,认证服务器可以向客户端发送一个“拒绝”消息,
表示身份验证失败,无法进行数据传输。

CHAP协议的优点在于密码不会在网络上明文传输,因为挑战是由认证服务器生成的随机数。

Transition Networks CPSMC18xx-xxx 18-Slot PointSys

Transition Networks CPSMC18xx-xxx 18-Slot PointSys

Table of Contents1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.1Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51.2Unpacking the CPSMC18xx-xxx Equipment . . . . . . . . . . . . . . . . . .72Slide-in-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82.1Media Converter Slide-in-Modules . . . . . . . . . . . . . . . . . . . . . . . . .82.1.1Chassis Face Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82.1.2Calculating the Power Consumption . . . . . . . . . . . . . . . . . . . . . .82.1.3Installing the Media Converter Slide-in-Modules . . . . . . . . . . . . .92.1.4Replacing the Media Converter Slide-in-Modules . . . . . . . . . . .102.2Management Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112.2.1Three Types of Management Modules . . . . . . . . . . . . . . . . . . . .112.2.2Installing the Management Modules . . . . . . . . . . . . . . . . . . . . .122.2.3Replacing the Management Modules . . . . . . . . . . . . . . . . . . . . .133Powering the CPSMC18xx-xxx . . . . . . . . . . . . . . . . . . . . . . . .143.1AC Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143.2DC Power Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163.3Optional Dual Power Supply Modules . . . . . . . . . . . . . . . . . . . . .183.4Power Supply Module Maintenance . . . . . . . . . . . . . . . . . . . . . .193.4.1Primary/Secondary-Management/Manual Switch . . . . . . . . . . . .193.4.2Installing the Power Supply Module . . . . . . . . . . . . . . . . . . . . . .203.4.3Replacing the Power Supply Module . . . . . . . . . . . . . . . . . . . . .213.4.4Replacing the Power Supply Fuses . . . . . . . . . . . . . . . . . . . . . . .223.5Optional Fan Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244CPSMC18xx-xxx Chassis . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.1Installing the CPSMC18xx-xxx Chassis . . . . . . . . . . . . . . . . . . . . .254.1.1Table Top Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254.1.2Standard 19-inch Rack Installation . . . . . . . . . . . . . . . . . . . . . . .254.1.3Grounding Lugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274.2Telco Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284.3Cascade Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314.4Connecting the Slide-in-Modules to the Network . . . . . . . . . . . . .334.5Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335Network Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345.1Hardware Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Cable Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Contact Us . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Warranty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41introductionintroductionslide-in-modules1.2Unpacking the CPSMC18xx-xxx EquipmentUse the following list to verify the shipment:ItemPart Number 18-Slot chassis with AC Power SupplyCPSMC1800-20018-Slot chassis with DC Power SupplyCPSMC1810-20018-Slot chassis with AC Power SupplyCPSMC1850-150and two (2) Telco connectors18-Slot chassis with DC Power SupplyCPSMC1850-160and two (2) Telco connectorsPointSystem™Chassis Face Plates (18)CPSFP-200 Power Cord(varies by country)User’s Guide 33185The following items are optional accessories for the C PSMC 18xx-xxx 18-Slot PointSystem™ chassis:ItemPart Number Redundant AC Power Supply ModuleCPSMP-200 (optional)Redundant 48-VDC Power Supply ModuleCPSMP-210 (optional)Redundant Fan ModuleCPSFM-200 (optional)Single-Slot Master Management ModuleCPSMM-120 (optional)Dual-Slot Master Management ModuleCPSMM-200 (optional)FocalPoint™Software DiskA1-7227(included with the management modules)Expansion Management ModuleCPSMM-210 (optional)Management Module Cascade Connector6026 (optional)Telco RJ-21 (male) to RJ-45 Hydra cable21HC45-6 (optional)Telco RJ-21 to RJ-21 (male-to-male) cable21HC21-6 (optional)Rack Mount EarsCPSRE-230 (optional)Selectable media converter slide-in-module(s)(various P/N) - (optional)slide-in-modulesslide-in-modulesslide-in-modulesslide-in-modulesslide-in-modulespower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplypower supplychassischassischassischassisFiber Port #2Fiber Port #1CDFTF1001850-1xx are designed for any Transition Networks Slots 7-18 on the CPSMC1850-1xx can accommodate any Transition Networks media converter slide-in-module. However the Telco option will not functionchassisCascading multiple CPSMC18xx-xxx chassisTo cascade two or more CPSMC18xx-xxx chassis:1.Locate one (1) Transition Networks management module cascade cable (withRJ-45 connectors installed at both ends) (P/N 6026) for each set of two (2)chassis to be cascaded.NOTE: Transition Networks management module cascade cables are one (1)meter long. Ensure that the chassis are installed within one (1) meter of eachother.2.At the first chassis in the series: Plug the RJ-45 connector at one end of thecascade cable into the management module’s RJ-45 port labeled “OUT”.3.At the next chassis in the series: Plug the RJ-45 connector at the other end of thecascade cable into the management module’s RJ-45 port labeled “IN”.4.At the same chassis as in step 3: Plug the RJ-45 connector at one end of thecascade cable into the management module’s RJ-45 port labeled “OUT”.5.At the next chassis in the series: Plug the RJ-45 connector at the other end of thecascade cable into the management module’s RJ-45 port labeled “IN”.6.Repeat steps 4 and 5 until all chassis have been connected.chassisnetwork mgmt.network mgmt.6Troubleshooting1.Are any of the power LEDs on any of the slide-in-modules illuminated, AND arethe fans operating?YES•The chassis is receiving power. Proceed to the next step.NO•Check all power supply cables for proper connection.•For AC power: Ensure the AC receptacle on the wall is supplying power.•If the fuse for the AC receptacle on the wall blows repeatedly, have the ACreceptacle inspected by a qualified electrician.•For DC power: Ensure the DC power supply is supplying power.•Check the fans to see if they are operating.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.2.For the management modules (CPSMM-120, CPSMM-200, CPSMM-210), areANY of the power LEDs NOT illuminated?NO•All management modules are receiving power. Proceed to the next step.YESFor those management modules where the power LED is NOT illuminated:•Ensure the management module is firmly seated in the slot.•Press the RESET button on the management module.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.3.For the remaining slide-in-modules, are ANY of the power LEDs NOTilluminated?NO•All slide-in-modules are receiving power. Proceed to the next step.YESFor those slide-in-modules where the power LED is NOT illuminated:•Ensure the slide-in-module is firmly seated in the slot.•C ontact Technical Support: U.S./C anada: 1-800-260-1312, International:00-1-952-941-7600.4.To determine if a fault is due to a software problem, consult the troubleshootingsection of the Focal Point™ 2.0 Management Appl ication and CPSMM100Firmware User’s Guide (P/N 33293). This manual is available on the enclosedapplication CD and on-line at .5.To determine if a fault is due to an individual management module or slide-in-troubleshooting module, consult the troubleshooting section of the user’s guide for thatparticular module.6.If none of the solutions listed in this section resolves the problem, contactTechnical Support: U.S./Canada: 1-800-260-1312, International: 00-1-952-941-7600.Cable SpecificationsNull Modem CableThe Null Modem Cable is used for connecting a terminal or terminal emulator tothe management module’s DB-9 connector to access the command-line interface.The table below shows the pin assignments for the DB9 cable.Function Mnemonic PinCarrier Detect CD1Receive Data RXD2Transmit Data TXD3Data Terminal Ready DTR4Signal Ground GND5Data Set Ready DSR6Request To Send RTS7Clear To Send CTS8The table below shows the pin assignments for the RS-232 null modem cable.RJ-45 CableCategory 5:Gauge:24 to 22 AWGAttenuation: 22.0 dB /100m @ 100 MHzMaximum Cable Distance:100 meters• Straight-through OR crossover cable may be used.• Shielded twisted-pair(STP) OR unshielded twisted-pair (UTP) may be used.• Pins 1&2 and 3&6 are the two active pairs in an Ethernet network.(RJ-45 Pin-out: Pin 1 = TD+, Pin 2 = TD-, Pin 3 = RD+, Pin 6 = RD-)• All pin pairs (1&2, 3&6, 4&5, 7&8) are active in a gigabit Ethernet network.• Use only dedicated wire pairs for the active pins:(e.g., blue/white & white/blue, orange/white & white/orange, etc.)• Do not use flat or silver satin wire.COAX CableCoaxial cable media is used for circuits such as DS3, E1 and 10Base-2 Ethernet.The impedance of the coaxial cable is determined by the interface type, forexample:•75 ohm for DS3.•50 ohm for 10Base-2 Ethernet.Special attention should be given to the grounding requirements of coaxial cablecircuits. Installation may require grounding at both cable ends or only one cableend or neither cable end.Cable Shield GroundingMedia converter network cabling my be shielded or unshielded. Shielded cablesMUST be grounded according to the specific requirements of the media and porttype. For example:•Shielded RJ-45 cable used for 100Base-Tx Ethernet MUST be grounded at both cable endpoints via shielded RJ-45 jacks.•Shielded RS-232 cable MUST have the shield grounded at both cable endpoints via shielded RS-232 connectors.•COAX cable used for 10Base-2 Ethernet MUST only be grounded at a single point.The media converters provide a jumper option or other grounding mechanism asrequired. Special attention should be given to the grounding requirements ofcoaxial cable circuits. Installation may require grounding at both cable ends or onlyone cable end or neither cable end. See the individual media converter user’s guidefor cable/port grounding requirements.WarrantyLimited Lifetime WarrantyEffective for products shipped May 1, 1999 and after. Every Transition Networks' labeled product purchased after May 1, 1999 will be free from defects in material and workmanship for its lifetime. This warranty covers the original user only and is not transferable.This warranty does not cover damage from accident, acts of God, neglect, contamination, misuse or abnormal conditions of operation or handling, including over-voltage failures caused by use outside of the product's specified rating, or normal wear and tear of mechanical components. If the user is unsure about the proper means of installing or using the equipment, contact Transition Networks' free technical support services.To establish original ownership and provide date of purchase, please complete and return the registration card accompanying the product or register the product on-line on our product registration page.Transition Networks will, at its option:•Repair the defective product to functional specification at no charge,•Replace the product with an equivalent functional product, or•Refund the purchase price of a defective product.To return a defective product for warranty coverage, contact Transition Networks' technical support department for a return authorization number. Transition's technical support department can be reached through any of the following means: Technical Support is available 24 hours a day at:•800-260-1312 x 200 or 952-941-7600 x 200•fax 952-941-2322•*******************************•live web chat: and click the “Transition Now” link•voice mail 800-260-1312 x 579 or 952-941-7600 x 579•All messages will be answered within one hour.Send the defective product postage and insurance prepaid to the following address: CSI Material Management Centerc/o Transition Networks508 Industrial DriveWaconia, MN 55387 USAAttn: RETURNS DEPT: CRA/RMA # ___________Failure to properly protect the product during shipping may void this warranty. The return authorization number must be written on the outside of the carton to ensure its acceptance. We cannot accept delivery of any equipment that is sent to us without a CRA or RMA number.The customer must pay for the non-compliant product(s) return transportation costs to Transition Networks for evaluation of said product(s) for repair or replacement.Transition Networks will pay for the shipping of the repaired or replaced in-warranty product(s) back to the customer (any and all customs charges, tariffs, or/and taxes are the customer's responsibility).Before making any non-warranty repair, Transition Networks requires a $200.00 charge plus actual shipping costs to and from the customer. If the repair is greater than $200.00, an estimate is issued to the customer for authorization of repair. If no authorization is obtained, or the product is deemed not repairable, Transition Networks will retain the $200.00 service charge and return the product to the customer not repaired. Non-warranted products that are repaired by Transition Networks for a fee will carry a 180-day limited warranty. All warranty claims are subject to the restrictions and conventions set forth by this document.Transition Networks reserves the right to charge for all testing and shipping incurred, if after testing, a return is classified as "No Problem Found."THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTIC ULAR PURPOSE, ARE EXPRESSED OR IMPLIED. TRANSITION NETWORKS IS NOT LIABLE FOR ANY SPEC IAL, INDIREC T, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOSSES, INCLUDING LOSS OF DATA, ARISING FROM ANY CAUSE OR THEORY. AUTHORIZED RESELLERS ARE NOT AUTHORIZED TO EXTEND ANY DIFFERENT WARRANTY ON TRANSITION NETWORKS' BEHALF.。

1-2007_-_Y_F_Han_-_PreparationofnanosizedMn3O4SBA15catalystforcomplet[retrieved-2016-11-15]

1-2007_-_Y_F_Han_-_PreparationofnanosizedMn3O4SBA15catalystforcomplet[retrieved-2016-11-15]

Preparation of nanosized Mn 3O 4/SBA-15catalyst for complete oxidation of low concentration EtOH in aqueous solution with H 2O 2Yi-Fan Han *,Fengxi Chen,Kanaparthi Ramesh,Ziyi Zhong,Effendi Widjaja,Luwei ChenInstitute of Chemical and Engineering Sciences,1Pesek Road,Jurong Island 627833,Singapore Received 11May 2006;received in revised form 18December 2006;accepted 29May 2007Available online 2June 2007AbstractA new heterogeneous Fenton-like system consisting of nano-composite Mn 3O 4/SBA-15catalyst has been developed for the complete oxidation of low concentration ethanol (100ppm)by H 2O 2in aqueous solution.A novel preparation method has been developed to synthesize nanoparticles of Mn 3O 4by thermolysis of manganese (II)acetylacetonate on SBA-15.Mn 3O 4/SBA-15was characterized by various techniques like TEM,XRD,Raman spectroscopy and N 2adsorption isotherms.TEM images demonstrate that Mn 3O 4nanocrystals located mainly inside the SBA-15pores.The reaction rate for ethanol oxidation can be strongly affected by several factors,including reaction temperature,pH value,catalyst/solution ratio and concentration of ethanol.A plausible reaction mechanism has been proposed in order to explain the kinetic data.The rate for the reaction is supposed to associate with the concentration of intermediates (radicals: OH,O 2Àand HO 2)that are derived from the decomposition of H 2O 2during reaction.The complete oxidation of ethanol can be remarkably improved only under the circumstances:(i)the intermediates are stabilized,such as stronger acidic conditions and high temperature or (ii)scavenging those radicals is reduced,such as less amount of catalyst and high concentration of reactant.Nevertheless,the reactivity of the presented catalytic system is still lower comparing to the conventional homogenous Fenton process,Fe 2+/H 2O 2.A possible reason is that the concentration of intermediates in the latter is relatively high.#2007Elsevier B.V .All rights reserved.Keywords:Hydrogen peroxide;Fenton catalyst;Complete oxidation of ethanol;Mn 3O 4/SBA-151.IntroductionRemediation of wastewater containing organic constitutes is of great importance because organic substances,such as benzene,phenol and other alcohols may impose toxic effects on human and animal anic effluents from pharmaceu-tical,chemical and petrochemical industry usually contaminate water system by dissolving into groundwater.Up to date,several processes have been developed for treating wastewater that contains toxic organic compounds,such as wet oxidation with or without solid catalysts [1–4],biological oxidation,supercritical oxidation and adsorption [5,6],etc.Among them,catalytic oxidation is a promising alternative,since it avoids the problem of the adsorbent regeneration in the adsorption process,decreases significantly the temperature and pressure in non-catalytic oxidation techniques [7].Generally,the disposalof wastewater containing low concentration organic pollutants (e.g.<100ppm)can be more costly through all aforementioned processes.Thus,catalytic oxidation found to be the most economical way for this purpose with considering its low cost and high efficiency.Currently,a Fenton reagent that consists of homogenous iron ions (Fe 2+)and hydrogen peroxide (H 2O 2)is an effective oxidant and widely applied for treating industrial effluents,especially at low concentrations in the range of 10À2to 10À3M organic compounds [8].However,several problems raised by the homogenous Fenton system are still unsolved,e.g.disposing the iron-containing waste sludge,limiting the pH range (2.0–5.0)of the aqueous solution,and importantly irreversible loss of activity of the reagent.To overcome these drawbacks raised from the homogenous Fenton system,since 1995,a heterogeneous Fenton reagent using metal ions exchanged zeolites,i.e.Fe/ZSM-5has proved to be an interesting alternative catalytic system for treating wastewater,and showed a comparable activity with the homogenous Fenton system [9].However,most reported heterogeneous Fenton reagents still need UV radiation during/locate/apcatbApplied Catalysis B:Environmental 76(2007)227–234*Corresponding author.Tel.:+6567963806.E-mail address:han_yi_fan@.sg (Y .-F.Han).0926-3373/$–see front matter #2007Elsevier B.V .All rights reserved.doi:10.1016/j.apcatb.2007.05.031oxidation of organic compounds.This might limit the application of homogeneous Fenton system.Exploring other heterogeneous catalytic system considering the above disadvantages,is still desirable for this purpose.Here,we present an alternative catalytic system for the complete oxidation of organic com-pounds in aqueous solution using supported manganese oxide as catalyst under mild conditions,which has rarely been addressed.Mn-containing oxide catalysts have been found to be very active for the catalytic wet oxidation of organic effluents (CWO)[10–14],which is operated at high air pressures(1–22MPa)and at high temperatures(423–643K)[15].On the other hand,manganese oxide,e.g.MnO2[16],is well known to be active for the decomposition of H2O2in aqueous solution to produce hydroxyl radical( OH),which is considered to be the most robust oxidant so far.The organic constitutes can be deeply oxidized by those radicals rapidly[17].The only by-product is H2O from decomposing H2O2.Therefore,H2O2is a suitable oxidant for treating the wastewater containing organic compounds.Due to the recent progress in the synthesis of H2O2 directly from H2and O2[18,19],H2O2is believed to be produced through more economical process in the coming future.So,the heterogeneous Fenton system is economically acceptable.In this study,nano-crystalline Mn3O4highly dispersed inside the mesoporous silica,SBA-15,has been prepared by thermolysis of organic manganese(II)acetylacetonate in air. We expect the unique mesoporous structure may provide add-itional function(confinement effect)to the catalytic reaction, i.e.occluding/entrapping large organic molecules inside pores. The catalyst as prepared has been examined for the complete oxidation of ethanol in aqueous solution with H2O2,or to say, wet peroxide oxidation.Ethanol was selected as a model organic compound because(i)it is one of the simplest organic compounds and can be easily analyzed,(ii)it has high solu-bility in water due to its strong hydrogen bond with water molecule and(iii)the structure of ethanol is quite stable and only changed through catalytic reaction.Presently,for thefirst time by using the Mn3O4/SBA-15catalyst,we investigated the peroxide ethanol oxidation affected by factors such as temperature,pH value,ratio of catalyst(g)and volume of solution(L),and concentration of ethanol in aqueous solution. In addition,plausible reaction mechanisms are established to explain the peroxidation of ethanol determined by the H2O2 decomposition.2.Experimental2.1.Preparation and characterization of Mn3O4/SBA-15 catalystSynthesis of SBA-15is similar to the previous reported method[20]by using Pluronic P123(BASF)surfactant as template and tetraethyl orthosilicate(TEOS,98%)as silica source.Manganese(II)acetylacetonate([CH3COCH C(O)CH3]2Mn,Aldrich)by a ratio of2.5mmol/gram(SBA-15)werefirst dissolved in acetone(C.P.)at room temperature, corresponding to ca.13wt.%of Mn3O4with respect to SBA-15.The preparation method in detail can be seen in our recent publications[21,22].X-ray diffraction profiles were obtained with a Bruker D8 diffractometer using Cu K a radiation(l=1.540589A˚).The diffraction pattern was taken in the Bragg angle(2u)range at low angles from0.68to58and at high angles from308to608at room temperature.The XRD patterns were obtained by scanning overnight with a step size:0.028per step,8s per step.The dispersive Raman microscope employed in this study was a JY Horiba LabRAM HR equipped with three laser sources(UV,visible and NIR),a confocal microscope,and a liquid nitrogen cooled charge-coupled device(CCD)multi-channel detector(256pixelsÂ1024pixels).The visible 514.5nm argon ion laser was selected to excite the Raman scattering.The laser power from the source is around20MW, but when it reached the samples,the laser output was reduced to around6–7MW after passing throughfiltering optics and microscope objective.A100Âobjective lens was used and the acquisition time for each Raman spectrum was approximately 60–120s depending on the sample.The Raman shift range acquired was in the range of50–1200cmÀ1with spectral resolution1.7–2cmÀ1.Adsorption and desorption isotherms were collected on Autosorb-6at77K.Prior to the measurement,all samples were degassed at573K until a stable vacuum of ca.5m Torr was reached.The pore size distribution curves were calculated from the adsorption branch using Barrett–Joyner–Halenda(BJH) method.The specific surface area was assessed using the BET method from adsorption data in a relative pressure range from 0.06to0.10.The total pore volume,V t,was assessed from the adsorbed amount of nitrogen at a relative pressure of0.99by converting it to the corresponding volume of liquid adsorbate. The conversion factor between the volume of gas and liquid adsorbate is0.0,015,468for N2at77K when they are expressed in cm3/g and cm3STP/g,respectively.The measurements of transmission electron microscopy (TEM)were performed at Tecnai TF20S-twin with Lorentz Lens.The samples were ultrasonically dispersed in ethanol solvent,and then dried over a carbon grid.2.2.Kinetic measurement and analysisThe experiment for the wet peroxide oxidation of ethanol was carried out in a glass batch reactor connected to a condenser with continuous stirring(400rpm).Typically,20ml of aqueous ethanol solution(initial concentration of ethanol: 100ppm)wasfirst taken in the round bottomflask(reactor) together with5mg of catalyst,corresponding to ca.1(g Mn)/30 (L)ratio of catalyst/solution.Then,1ml of30%H2O2solution was introduced into the reactor at different time intervals (0.5ml at$0min,0.25ml at32min and0.25ml at62min). The total molar ratio of H2O2/ethanol is about400/1. Hydrochloric acid(HCl,0.01M)was used to acidify the solution if necessary.NH4OH(0.1M)solution was used to adjust pH to9.0when investigating the effect of pH.The pH for the deionized water is ca.7.0(Oakton pH meter)and decreased to 6.7after adding ethanol.All the measurements wereY.-F.Han et al./Applied Catalysis B:Environmental76(2007)227–234 228performed under the similar conditions described above if without any special mention.For comparison,the reaction was also carried out with a typical homogenous Fenton reagent[17], FeSO4(5ppm)–H2O2,under the similar reaction conditions.The conversion of ethanol during reaction was detected using gas chromatography(GC:Agilent Technologies,6890N), equipped with HP-5capillary column connecting to a thermal conductive detector(TCD).There is no other species but ethanol determined in the reaction system as evidenced by the GC–MS. Ethanol is supposed to be completely oxidized into CO2and H2O.The variation of H2O2concentration during reaction was analyzed colorimetrically using a UV–vis spectrophotometer (Epp2000,StellarNet Inc.)after complexation with a TiOSO4/ H2SO4reagent[18].Note that there was almost no measurable leaching of Mn ion during reaction analyzed by ICP(Vista-Mpx, Varian).3.Results and discussion3.1.Characterization of Mn3O4/SBA-15catalystThe structure of as-synthesized Mn3O4inside SBA-15has beenfirst investigated with powder XRD(PXRD),and the profiles are shown in Fig.1.The profile at low angles(Fig.1a) suggests that SBA-15still has a high degree of hexagonal mesoscopic organization even after forming Mn3O4nanocrys-tals[23].Several peaks at high angles of XRD(Fig.1b)indicate the formation of a well-crystallized Mn3O4.All the major diffraction peaks can be assigned to hausmannite Mn3O4 structure(JCPDS80-0382).By N2adsorption measurements shown in Fig.2,the pore volume and specific surface areas(S BET)decrease from 1.27cm3/g and937m2/g for bare SBA-15to0.49cm3/g and 299m2/g for the Mn3O4/SBA-15,respectively.About7.7nm of mesoporous diameter for SBA-15decreases to ca.6.3nm for Mn3O4/SBA-15.The decrease of the mesopore dimension suggests the uniform coating of Mn3O4on the inner walls of SBA-15.This nano-composite was further characterized by TEM. Obviously,the SBA-15employed has typical p6mm hex-agonal morphology with the well-ordered1D array(Fig.3a). The average pore size of SBA-15is ca.8.0nm,which is very close to the value(ca.7.7nm)determined by N2adsorption. Along[001]orientation,Fig.3b shows that the some pores arefilled with Mn3O4nanocrystals.From the pore A to D marked in Fig.3b correspond to the pores from empty to partially and fullyfilled;while the features for the SBA-15 nanostructure remains even after forming Mn3O4nanocrys-tals.Nevertheless,further evidences for the location of Mn3O4inside the SBA-15channels are still undergoing in our group.Raman spectra obtained for Mn3O4/SBA-15is presented in Fig.4a.For comparison the Raman spectrum was also recorded for the bulk Mn3O4(97.0%,Aldrich)under the similar conditions(Fig.4b).For the bulk Mn3O4,the bands at310,365, 472and655cmÀ1correspond to the bending modes of Mn3O4, asymmetric stretch of Mn–O–Mn,symmetric stretch of Mn3O4Fig.1.XRD patterns of the bare SBA-15and the Mn3O4/SBA-15nano-composite catalyst.(a)At low angles:(A)Mn3O4/SBA-15,(B)SBA-15;and (b)at high angles of Mn3O4/SBA-15.Fig.2.N2adsorption–desorption isotherms:(!)SBA-15,(~)Mn3O4/SBA-15.Y.-F.Han et al./Applied Catalysis B:Environmental76(2007)227–234229groups,respectively [24–26].However,a downward shift ($D n 7cm À1)of the peaks accompanying with a broadening of the bands was observed for Mn 3O 4/SBA-15.For instance,the distinct feature at 655cm À1for the bulk Mn 3O 4shifted to 648cm À1for the nanocrystals.The Raman bands broadened and shifted were observed for the nanocrystals due to the effect of phonon confinement as suggested previously in the literature [27,28].Furthermore,a weak band at 940cm À1,which should associate with the stretch of terminal Mn O,is an indicative of the existence of the isolated Mn 3O 4group [26].The assignment of this unique band has been discussed in our previous publication [22].3.2.Kinetic study3.2.1.Blank testsUnder a typical reaction conditions,that is,20ml of 100ppm ethanol aqueous solution (pH 6.7)mixed with 1ml of 30%H 2O 2,at 343K,there is no conversion of ethanol was observed after running for 120min in the absence of catalyst or in the presence of bare SBA-15(5mg).Also,under the similar conditions in H 2O 2-free solution,ethanol was not converted for all blank tests even with Mn 3O 4/SBA-15catalyst (5mg)in the reactor.It suggests that a trace amount of oxygen dissolved in water or potential dissociation of adsorbed ethanol does not have any contribution to the conversion of ethanol under reaction conditions.To study the effect of low temperature evaporation of ethanol during reaction,we further examined the concentration of ethanol (100ppm)versus time at different temperatures in the absence of catalyst and H 2O 2.Loss of ca.5%ethanol was observed only at 363K after running for 120min.Hence,to avoid the loss of ethanol through evaporation at high temperatures,which may lead to a higher conversion of ethanol than the real value,the kinetic experiments in this study were performed at or below 343K.The results from blank tests confirm clearly that ethanol can be transformed only by catalytic oxidation during reaction.3.2.2.Effect of amount of catalystThe effect of amount of catalyst on ethanol oxidation is presented in Fig.5.Different amounts of catalyst ranging from 2to 10mg were taken for the same concentration of ethanol (100ppm)in aqueous solution under the standard conditions.It can be observed that the conversion of ethanol increases monotonically within 120min,reaching 15,20and 12%for 2,5and 10mg catalysts,respectively.On the other hand,Fig.5shows that the relative reaction rates (30min)decreased from 0.7to ca 0.1mmol/g Mn min with the rise of catalyst amount from 2to 10mg.Apparently,more catalyst in the system may decrease the rate for ethanol peroxidation,and a proper ratio of catalyst (g)/solution (L)is required for acquiring a balance between the overall conversion of ethanol and reaction rate.In order to investigate the effects from other factors,5mg (catalyst)/20ml (solution),corresponding to 1(g Mn )/30(L)ratio of catalyst/solution,has been selected for the followedexperiments.Fig.4.Raman spectroscopy of the Mn 3O 4/SBA-15(a)and bulk Mn 3O 4(b).Fig.3.TEM images recorded along the [001]of SBA-15(a),Mn 3O 4/SBA-15(b):pore A unfilled with hexagonal structure,pores B and C partially filled and pore D completely filled.Y.-F .Han et al./Applied Catalysis B:Environmental 76(2007)227–2342303.2.3.Effect of temperatureAs shown in Fig.6,the reaction rate increases with increasing the reaction temperature.After 120min,the conversion of ethanol increases from 12.5to 20%when varying the temp-erature from 298to 343K.Further increasing the temperature was not performed in order to avoid the loss of ethanol by evaporation.Interestingly,the relative reaction rate increased with time within initial 60min at 298and 313K,but upward tendency was observed above 333K.3.2.4.Effect of pHIn the pH range from 2.0to 9.0,as illustrated in Fig.7,the reaction rate drops down with the rise of pH.It indicates that acidic environment,or to say,proton concentration ([H +])in the solution is essential for this reaction.With considering our target for this study:purifying water,pH approaching to 7.0in the reaction system is preferred.Because acidifying the solution with organic/inorganic acids may potentially causea second time pollution and result in surplus cost.Actually,there is almost no effect on ethanol conversion with changing pH from 5.5to 6.7in this system.It is really a merit comparing with the conventional homogenous Fenton system,by which the catalyst works only in the pH range of 2.0–5.0.3.2.5.Effect of ethanol concentrationThe investigation of the effect of ethanol concentration on the reaction rate was carried out in the ethanol ranging from 50to 500ppm.The results in Fig.8show that the relative reaction rate increased from 0.07to 2.37mmol/g Mn min after 120min with increasing the concentration of ethanol from 50to 500ppm.It is worth to note that the pH value of the solution slightly decreased from 6.7to 6.5when raising the ethanol concentration from 100to 500ppm.paring to a typical homogenous Fenton reagent For comparison,under the similar reaction conditions ethanol oxidation was performed using aconventionalFig.5.The ethanol oxidation as a function of time with different amount of catalyst.Conversion of ethanol vs.time (solid line)on 2mg (&),5mg (*)and 10mg (~)Mn 3O 4/SBA-15catalyst,the relative reaction rate vs.time (dash line)on 2mg (&),5mg (*)and 10mg (~)Mn 3O 4/SBA-15catalyst.Rest conditions:20ml of ethanol (100ppm),1ml of 30%H 2O 2,708C and pH of6.7.Fig.6.The ethanol oxidation as a function of temperature.Conversion of ethanol vs.time (solid line)at 258C (&),408C (*),608C (~)and 708C (!),the relative reaction rate vs.time (dash line)at 258C (&),408C (*),608C (~)and 708C (5).Rest conditions:20ml of ethanol (100ppm),1ml of 30%H 2O 2,pH of 6.7,5mg ofcatalyst.Fig.7.The ethanol oxidation as a function of pH value.Conversion of ethanol vs.time (solid line)at pH value of 2.0(&),3.5(*),4.5(~),5.5(!),6.7(^)and 9.0("),the relative reaction rate vs.time (dash line)at pH value of 2.0(&),3.5(*),4.5(~),5.5(5),6.7(^)and 9.0(").Rest conditions:20ml of ethanol (100ppm),1ml of 30%H 2O 2,708C,5mg ofcatalyst.Fig.8.The ethanol oxidation as a function of ethanol concentration.Conver-sion of ethanol vs.time (solid line)for ethanol concentration (ppm)of 50(&),100(*),300(~),500(!),the relative reaction rate vs.time (dash line)for ethanol concentration (ppm)of 50(&),100(*),300(~),500(5).Condi-tions:20ml of ethanol,pH of 6.7,1ml of 30%H 2O 2,708C,5mg of catalyst.Y.-F .Han et al./Applied Catalysis B:Environmental 76(2007)227–234231homogenous reagent,Fe 2+(5ppm)–H 2O 2(1ml)at pH of 5.0.It has been reported to be an optimum condition for this system [17].As shown in Fig.9,the reaction in both catalytic systems exhibits a similar behavior,that is,the conversion of ethanol increases with extending the reaction time.Varying reaction temperature from 298to 343K seems not to impact the conversion of ethanol when using the homogenous Fenton reagent.Furthermore,the conversion of ethanol (defining at 120min)in the system of Mn 3O 4/SBA-15–H 2O 2is about 60%of that obtained from the conventional Fenton reagent.There are no other organic compounds observed in the reaction mixture other than ethanol suggesting that ethanol directly decomposing to CO 2and H 2O.3.2.7.Decomposition of H 2O 2In the aqueous solution,the capability of metal ions such as Fe 2+and Mn 2+has long been evidenced to be effective on the decomposition of H 2O 2to produce the hydroxyl radical ( OH),which is oxidant for the complete oxidation/degrading of organic compounds [9,17].Therefore,ethanol oxidation is supposed to be associated with H 2O 2decomposition.The investigation of H 2O 2decomposition has been performed under the reaction conditions (in an ethanol-free solution)with different amounts of catalyst.H 2O 2was introduced into the reaction system by three steps,initially 0.5ml followed by twice 0.25ml at 32and 62min,the pH of 6.7is set for all experiments except pH of 5.0for Fe 2+.As shown in Fig.10,H 2O 2was not converted in the absence of catalyst or presence of bare SBA-15(5mg);in contrast,by using the Mn 3O 4/SBA-15catalyst we observed that ca.Ninety percent of total H 2O 2was decomposed in the whole experiment.It can be concluded that that dissociation of H 2O 2is mainly caused by Mn 3O paratively,the rate of H 2O 2decomposition is relatively low with the homogenous Fenton reagent,total conversion of H 2O 2,was ca.50%after runningfor 120min.Considering the fact that H 2O 2decomposition can be significantly enhanced with the rise of Fe 2+concentration,however,it seems not to have the influence on the reaction rate for ethanol oxidation simultaneously.The similar behavior of H 2O 2decomposition was also observed during ethanol oxidation.The rate for ethanol oxidation is lower for Mn 3O 4/SBA-15comparing to the conventional Fenton reagent.The possible reasons will be discussed in the proceeding section.3.3.Plausible reaction mechanism for ethanol oxidation with H 2O 2In general,the wet peroxide oxidation of organic constitutes has been suggested to proceed via four steps [15]:activation of H 2O 2to produce OH,oxidation of organic compounds withOH,recombination of OH to form O 2and wet oxidation of organic compounds with O 2.It can be further described by Eqs.(1)–(4):H 2O 2À!Catalyst =temperture 2OH(1)OH þorganic compoundsÀ!Temperatureproduct(2)2 OHÀ!Temperature 12O 2þH 2O(3)O 2þorganic compoundsÀ!Temperature =pressureproduct(4)The reactive intermediates produced from step 1(Eq.(1))participate in the oxidation through step 2(Eq.(2)).In fact,several kinds of radical including OH,perhydroxyl radicals ( HO 2)and superoxide anions (O 2À)may be created during reaction.Previous studies [29–33]suggested that the process for producing radicals could be expressed by Eqs.(5)–(7)when H 2O 2was catalytically decomposed by metal ions,such asFeparison of ethanol oxidation in systems of typical homogenous Fenton catalyst (5ppm of Fe 2+,20ml of ethanol (100ppm),1ml of 30%H 2O 2,pH of 5.0acidified with HCl)at room temperature (~)and 708C (!),and Mn 3O 4/SBA-15catalyst (&)under conditions of 20ml of ethanol (100ppm),pH of 6.7,1ml of 30%H 2O 2,708C,5mg ofcatalyst.Fig.10.An investigation of H 2O 2decomposition under different conditions.One milliliter of 30%H 2O 2was dropped into the 20ml deionized water by three intervals,initial 0.5ml followed by twice 0.25ml at 32and 62min.H 2O 2concentration vs.time:by calculation (&),without catalyst (*),SBA-15(~),5ppm of Fe 2+(!)and Mn 3O 4/SBA-15(^).Rest conditions:5mg of solid catalyst,pH of 7.0(5.0for Fe 2+),708C.Y.-F .Han et al./Applied Catalysis B:Environmental 76(2007)227–234232and Mn,S þH 2O 2!S þþOH Àþ OH (5)S þþH 2O 2!S þ HO 2þH þ(6)H 2O $H þþO 2À(7)where S and S +represent reduced and oxidized metal ions,both the HO 2and O 2Àare not stable and react further with H 2O 2to form OH through Eqs.(8)and (9):HO 2þH 2O 2! OH þH 2O þO 2(8)O 2ÀþH 2O 2! OH þOH ÀþO 2(9)Presently, OH radical has been suggested to be the main intermediate responsible for oxidation/degradation of organic compounds.Therefore,the rate for ethanol oxidation in the studied system is supposed to be dependent on the concentra-tion of OH.Note that the oxidation may proceed via step four (Eq.(4))in the presence of high pressure O 2,which is so-called ‘‘wet oxidation’’and usually occurs at air pressures (1–22MPa)and at high temperatures (423–643K)[15].However,it is unlikely to happen in the present reaction conditions.According to Wolfenden’s study [34],we envisaged that the complete oxidation of ethanol may proceed through a route like Eq.(10):C 2H 5OH þ OH À!ÀH 2OC 2H 4O À! OHCO 2þH 2O(10)Whereby,it is believed that organic radicals containing hydroxy-groups a and b to carbon radicals centre can eliminate water to form oxidizing species.With the degrading of organic intermediates step by step as the way described in Eq.(10),the final products should be CO 2and H 2O.However,no other species but ethanol was detected by GC and GC–MS in the present study possibly due to the rapid of the reaction that leads to unstable intermediate.Fig.5indicates that a proper ratio of catalyst/solution is a necessary factor to attain the high conversion of ethanol.It can be understood that over exposure of H 2O 2to catalyst will increase the rate of H 2O 2decomposition;but on the other hand,more OH radical produced may be scavenged by catalyst with increasing the amount of catalyst and transformed into O 2and H 2O as expressed in Eq.(3),instead of participating the oxidation reaction.In terms of Eq.(10),stoichiometric ethanol/H 2O 2should be 1/6for the complete oxidation of ethanol;however,in the present system the total molar ratio is 1/400.In other words,most intermediates were extinguished through scavenging during reaction.This may explain well that the decrease of reaction rate with the rise of ratio of catalyst/solution in the system.The same reason may also explain the decrease of reaction rate with prolonging the time.Actually,H 2O 2decomposition (ca.90%)may be completed within a few minutes over the Mn 3O 4/SBA-15catalyst as illustrated in Fig.10,irrespective of amount of catalyst (not shown for the sake of brevity);in contrast,the rate for H 2O 2decomposition became dawdling for Fe 2+catalyst.As a result,presumably,the homogenous system has relatively high concentration ofradicals.It may explain the superior reactivity of the conventional Fenton reagent to the presented system as depicted in Fig.9.Therefore,how to reduce scavenging,especially in the heterogeneous Fenton system [29],is crucial for enhancing the reaction rate.C 2H 5OH þ6H 2O 2!2CO 2þ9H 2O(11)On the other hand,as illustrated by Eqs.(1)–(4),all steps in the oxidation process are affected by the reaction temperature.Fig.6demonstrates that increasing temperature remarkably boosts the reactivity of ethanol oxidation in the system of Mn 3O 4/SBA-15–H 2O 2possibly,due to the improvement of the reactions in Eqs.(2)and (4)at elevated temperatures.In terms of Eqs.(6)and (7),acidic conditions may delay the H 2O 2decomposition but enhance the formation of OH (Eqs.(5),(8)and (9)).This ‘‘delay’’is supposed to reduce the chance of the scavenging of radicals and improve the efficiency of H 2O 2in the reaction.The protons are believed to have capability for stabilizing H 2O 2,which has been elucidated well previously [18,19].Consequently,it is understandable that the reaction is favored in the strong acidic environment.Fig.7shows a maximum reactivity at pH of 2.0and the lowest at pH of 9.0.As depicted in Fig.8,the reaction rate for ethanol oxidation is proportional to the concentration of ethanol in the range of 50–500ppm.It suggests that at low concentration of ethanol (100ppm)most of the radicals might not take part in the reaction before scavenged by catalyst.With increasing the ethanol concentration,the possibility of the collision between ethanol and radicals can be increased significantly.As a result,the rate of scavenging radicals is reduced relatively.Thus,it is reasonable for the faster rate observed at higher concentration of ethanol.Finally,it is noteworthy that as compared to the bulk Mn 3O 4(Aldrich,98.0%of purity),the reactivity of the nano-crystalline Mn 3O 4on SBA-15is increased by factor of 20under the same typical reaction conditions.Obviously,Mn 3O 4nanocrystal is an effective alternative for this catalytic system.The present study has evidenced that the unique structure of SBA-15can act as a special ‘‘nanoreactor’’for synthesizing Mn 3O 4nanocrystals.Interestingly,a latest study has revealed that iron oxide nanoparticles could be immobilized on alumina coated SBA-15,which also showed excellent performance as a Fenton catalyst [35].However,the role of the pore structure of SBA-15in this reaction is still unclear.We do expect that during reaction SBA-15may have additional function to trap larger organic molecules by adsorption.Thus,it may broaden its application in this field.So,relevant study on the structure of nano-composites of various MnO x and its role in the Fenton-like reaction for remediation of organic compounds in aqueous solution is undergoing in our group.4.ConclusionsIn the present study,we have addressed a new catalytic system suitable for remediation of trivial organic compound from contaminated water through a Fenton-like reaction withY.-F .Han et al./Applied Catalysis B:Environmental 76(2007)227–234233。

网络与通信chapMobileCellularSystems优质获奖课件

网络与通信chapMobileCellularSystems优质获奖课件
Received power must be sufficiently above the background noise for effective communication
Desirable to minimize power in the transmitted signal from the mobile
15
反向链路旳功率 控制
16
Traffic Engineering
Ideally, available channels would equal number of subscribers active at one time
In practice, not feasible to have capacity handle all possible load
本章简介全部蜂窝网络所需用到旳基本原理,考察已经 被分为三代旳蜂窝技术和原则:
第一代是基于模拟旳,尽管仍在广泛使用,却已在逐渐淘汰 中;
今日旳主流技术是数字式旳第二代系统; 第三代高速数字式系统也已开始出现。
2
Outline
Cellular Concept
Cellular Architecture Frequency Reuse
Handoff delay(越区切换时延 ) – distance the mobile moves from the point at which the handoff should occur to the point at which it does occur
11
Handoff Strategies Used to Determine Instant of Handoff
8
途径损耗旳Hata模型举例:

chap认证的流程

chap认证的流程

CHAP认证流程简介CHAP (Challenge-Handshake Authentication Protocol) 是一种用于网络认证的协议,用于验证两个通信节点(典型的是客户端和服务器)之间的身份。

CHAP通过使用散列函数和加密算法来防止中间人攻击和密码破解,提供更高的安全性。

本文将详细介绍CHAP认证的流程步骤,包括协议规范,握手过程和认证验证过程。

流程步骤1. 建立连接首先,客户端和服务器建立一个连接。

这可以通过网络进行,使用TCP/IP协议或其他类似协议。

2. 发送挑战请求服务器首先向客户端发送一个挑战请求。

该请求包含一个随机的挑战值(Challenge Value),通常为64位的随机数。

3. 客户端响应挑战接收到挑战请求后,客户端使用服务器提供的挑战值计算挑战响应。

挑战响应的计算过程如下: a) 客户端在挑战值后附加一个密钥(Secret Key)作为共享密码,可以是明文密码或加密后的密码。

b) 使用散列函数(通常是MD5或SHA)对上述结果进行散列运算,得到挑战响应值。

4. 发送挑战响应客户端将计算得到的挑战响应发送给服务器。

5. 服务器验证响应服务器接收到客户端的挑战响应后,使用与客户端相同的计算方法计算出挑战响应值。

6. 认证验证服务器将自己计算得到的挑战响应值与客户端发送的挑战响应进行比较。

如果两者相等,则验证成功,客户端被确认为合法的用户。

7. 返回结果服务器根据验证的结果,返回一个认证结果给客户端。

如果验证成功,通常返回一个确切的成功消息;如果验证失败,通常返回一个错误消息。

8. 数据传输如果验证成功,客户端和服务器之间的数据传输就可以开始。

认证过程只需要在连接建立时进行一次,后续的数据传输可以使用相同的连接,而无需重复认证。

流程图下面是CHAP认证流程的可视化流程图,更直观地表示了每个步骤的依赖关系和执行顺序。

图1. CHAP认证流程图graph TDA[建立连接]A --> B[发送挑战请求]B --> C[响应挑战]C --> D[发送挑战响应]D --> E[验证挑战响应]E --> F[认证验证]F --> G[返回结果]G --> H[数据传输]总结CHAP认证是一种安全的网络认证协议,通过使用挑战-响应机制和散列函数来验证通信双方的身份。

chap受限被解释变量实用

chap受限被解释变量实用
第23页/共32页
• (2)两步法的heckman回归
• 当数据集比较大时,极大似然估计非常耗时,两步法就 提供了一种很好的替代。键入命令:
• heckman wage educ age, select(married children educ age) twostep mills(m)
• 其中,选项twostep表明使用两步法的heckman回归。 选项mills()会生成一个新变量,计算出各样本的逆米 尔斯比率,即样本不被选择的可能性。我们这里给该变 量命名为m。
• 利用这些数据,我们会讲解样本选择问题的heckman 回归的操作以及相关的预测。
第21页/共32页
• 实验操作指导
• 1 heckman回归的操作
第22页/共32页
• 下面,我们利用“fwage.dta”的数据进行样本选择模 型的回归分析。我们认为,妇女的工资是教育程度和年 龄的函数,而妇女是否选择工作的影响因素是其保留工 资(受婚姻状况、家中儿童数量影响)以及雇主提供的 工资(受教育程度和年龄的影响)。
该回归的结果;第二步是对参加工作的妇女的期望工资的预测, 且将新变量命名为yc;第三步获得wage非缺失值的观测值的 wage和yc的描述统计量。
第28页/共32页
• 如果我们想知道所有妇女的期望工资,参加工作, 如果预期不参加,则其期望工资为0。
以将其看做观测值处于均值水平下的标准误。预测的标准误(stdf)也被称作 the standard error of the future or forecast value,指的是每个观测值 的点预测的标准误。根据两种标准误的计算公式可知,stdf预测的标准误总是 比stdp预测的要大。 我们对上面的断尾回归进行默认预测以及stdp和stdf的预测,采用如下命令: predict y predict p, stdp predict f, stdf list whrs y p f in 1/10 其中,第一步为默认预测,并将预测值命名为y;第二步预测的是拟合的标准误, 并将预测值命名为p;第三步预测的是预测的标准误,并将其命名为f;最后一 步列出原序列值whrs和各预测值的前10个观测值。

ONVIF2.0协议珍藏版

ONVIF2.0协议珍藏版

O N V I F2.0协议珍藏版work Information Technology Company.2020YEAR1 范围 (16)2 引用标准 (18)3 术语与定义 (20)3.1定义 (20)3.2缩写 (23)4 概述 (27)4.1W EB 服务 (28)4.2IP配置 (29)4.3设备发现 (29)4.4设备类型 (30)4.5设备管理 (30)4.5.1 功能 (31)4.5.2 网络 (31)4.5.3 系统 (32)4.5.4 系统信息检索 (32)4.5.5 固件升级 (32)4.5.6 系统还原 (33)4.5.7 安全 (33)4.6设备IO (33)4.7图像配置 (34)4.8媒体配置 (34)4.8.1 媒体配置文件 (35)4.9实时流 (37)4.10事件处理 (39)4.11PTZ控制 (39)4.12视频分析 (40)4.13分析设备 (43)4.14显示 (43)4.15接收器 (44)4.15.1 同步点 (45)4.16存储 (45)4.16.1 存储模式 (46)4.16.2 记录 (47)4.16.3 查找 (48)4.16.4 回放 (49)4.17安全 (49)5 WEB服务框架 (50)5.1服务概述 (51)5.1.1 服务要求 (51)5.2WSDL概述 (52)5.3命名空间 (53)5.4类型 (56)5.5消息 (56)5.6操作 (57)5.6.1 单向操作 (58)5.6.2 要求-应答操作类型 (58)5.7端口类型 (59)5.8绑定 (60)5.9端口 (60)5.10服务 (60)5.11错误处理 (60)5.11.1 协议错误 (61)5.11.2 SOAP错误 (61)5.11.2.1常见的故障 (63)5.11.2.2 具体的错误 (65)5.11.2.3 HTTP错误 (65)5.12安全 (66)5.12.1 基于用户访问控制 (67)5.12.2 用户令牌配置文件 (67)5.12.2.1密码推导 (68)5.12.2.1.1 例子 (69)6 IP配置 (69)7 设备发现 (70)7.1概述 (70)7.2操作模式 (71)7.3发现定义 (72)7.3.1 终端参考 (72)7.3.2 服务地址 (72)7.3.3 Hello (72)7.3.3.1类型 (72)7.3.3.2范围 (72)7.3.3.2.1例子 (74)7.3.3.3 地址 (75)7.3.4 探头和探头匹配 (75)7.3.5 解决和解决匹配 (75)7.3.6 BYE (76)7.3.7 SOAP错误信息 (76)7.4远程发现扩展 (76)7.4.1 网络情景 (77)7.4.2 发现代理 (79)7.4.2.1 直接的DP地址配置 (80)7.4.2.2 域名服务记录的查找 (80)7.4.3 远程hello和探头行为 (81)7.4.4 客户端行为 (82)7.4.5 安全 (83)7.4.5.1 本地发现 (83)7.4.5.2 远程发现 (83)8设备管理 (84)8.1功能 (84)8.1.1获取WSDL的URL (84)8.1.2交换的功能 (85)8.2网络 (90)8.2.1获取主机 (90)8.2.2设置主机名 (91)8.2.3 获取 DNS配置 (91)8.2.4设置DNS (92)8.2.5获取NTP配置信息 (93)8.2.6 对设备设置NTP (93)8.2.7获取动态的DNS设置 (94)8.2.8设置设备动态DNS (95)8.2.9 获取网络接口配置 (95)8.2.10 设置网络接口配置 (96)8.2.11 获取网络协议 (97)8.2.12 设置网络协议 (98)8.2.13 获取默认的网关 (98)8.2.14 设置默认网关 (98)8.2.15 获取0配置 (99)8.2.16 设置0配置 (99)8.2.17 获取IP地址过滤 (100)8.2.18 对IP地址过滤进行配置 (101)8.2.19 增加IP地址过滤 (101)8.2.20 移除IP地址过滤 (102)8.2.21 IEEE 802.11配置 (103)8.2.21.1 SSID (104)8.2.21.2 基站模式 (104)8.2.21.3 多种无线网络配置 (104)8.2.21.4 安全配置 (104)8.2.21.4.1 None 模式 (105)8.2.21.4.2 PSK模式 (105)8.2.21.4.3 IEEE 802.1X-2004 模式 (106)8.2.21.5 获取DOT11的性能 (106)8.2.21.6 GetIEEE802.11状态 (107)8.2.21.7 扫描可用的IEEE802.11网络 (107)8.3系统 (108)8.3.1设备信息 (108)8.3.2获取系统的URL (109)备份8.3.5开始恢复系统 (111)8.3.6获取系统日期以及时间 (112)8.3.7设置系统日期以及时间 (113)8.3.8 出厂默认配置 (113)8.3.9 固件升级 (114)8.3.10 开始固件升级 (115)8.3.11 获取系统日志 (116)8.3.12 获取支持信息 (117)8.3.13 重启 (117)8.3.14 获取范围参数 (118)8.3.15设置范围参数 (119)8.3.16 添加范围参数 (119)8.3.17 移除范围参数 (120)8.3.18 获取发现模式 (120)8.3.19 设置发现模式 (121)8.3.20 获取远程发现方式 (121)8.3.21 设置远程发现方式 (122)8.3.22 获取远程DP地址 (123)8.3.23 配置远程DP地址 (123)8.4安全 (123)8.4.1获取访问策略 (124)8.4.2 设置访问策略 (124)8.4.3 获取用户 (125)8.4.4 创建用户 (125)8.4.5 删除用户 (126)8.4.6 对用户进行配置 (127)8.4.7 IEEE 802.1X配置 (128)8.4.7.1创建IEEE802.1X配置 (129)8.4.7.2对IEEE802.1X配置 (130)8.4.7.3 获取IEEE802.1X配置 (131)8.4.7.4获取IEEE802.1X配置 (131)8.4.7.5 删除IEEE802.1X配置 (132)8.4.8 创建签名证书 (132)8.4.9 获取证书 (133)8.4.10 获取CA证书 (134)8.4.11获取证书状态 (134)8.4.12 设置证书状态 (135)8.4.13获取证书请求 (135)8.4.14 获取客户证书状态 (136)8.4.15 设置客户认证状态 (137)8.4.16 下载设备证书 (137)8.4.17 利用私有密钥来链接下载设备证书 (138)8.4.18 获取证书信息请求 (139)8.4.20 删除证书 (141)8.4.21 获取远程用户 (141)8.4.22 设置远程用户 (142)8.4.23获取终端参数 (143)8.5输入与输出 (143)8.5.1获取继电器输出 (144)8.5.2 对继电器输出进行配置 (144)8.5.3继电器触发输出 (145)8.5.4 辅助操作 (146)8.6与服务相关的错误代码 (146)9设备IO服务 (152)9.1视频输出 (152)9.1.1 获取视频输出集 (153)9.2视频输出配置 (153)9.2.1 获取视频输出配置 (153)9.2.2 设置视频输出配置 (154)9.2.3 获取视频输出配置选项集 (154)9.3视频源 (155)9.3.1 获取视频源 (155)9.4视频源配置 (156)9.4.1 获取视频源配置 (156)9.4.2 设置视频源配置 (156)9.4.3 获取视频源多个配置选项 (157)9.5音频输出 (158)9.5.1 获取多个音频输出 (158)9.6音频输出配置 (158)9.6.1 获取音频输出配置 (158)9.6.2 设置音频输出配置 (160)9.6.3 获取音频输出多个配置选项 (161)9.7音频源 (161)9.7.1 获取音频源 (161)9.8音频源配置 (162)9.8.1 获取音频源配置 (162)9.8.2 设置音频源配置 (162)9.8.3 获取音频源多个配置选项 (163)9.9继电器输出 (165)9.9.1 获取多个继电器输出 (165)9.9.2 设置继电器输出设置 (165)9.9.3 触发继电器输出 (167)9.10服务错误码 (169)10图像配置 (170)10.1图像设置 (170)10.1.2 设置图像设置 (174)10.1.3 获取选项 (176)10.1.4 移动 (176)10.1.5 获取运行选项 (178)10.1.6 停止 (179)10.1.7 获取图像状态 (179)10.2服务错误码 (181)11媒体配置 (182)11.1音视频编解码器 (183)11.2媒体文件 (184)11.2.1 创建媒体文件 (185)11.2.2 获取多个媒体文件 (186)11.2.3 获取媒体文件 (186)11.2.4 添加视频源配置 (188)11.2.5 添加视频编码器配置 (188)11.2.6 添加音频源配置 (189)11.2.7 添加音频源编码器配置 (190)11.2.8 添加云台配置 (190)11.2.9 添加视频分析配置 (191)11.2.10 添加元数据配置 (193)11.2.11 添加音频输出配置 (194)11.2.12 添加音频解码器配置 (194)11.2.13 移除视频源配置 (195)11.2.14 移除视频源编码器配置 (196)11.2.15 移除音频源编码器配置 (196)11.2.16 移除音频编码器配置 (197)11.2.17 移除云台配置 (197)11.2.18 移除视频分析配置 (198)11.2.19 移除元数据配置 (199)11.2.20 移除音频输出配置 (199)11.2.21 移除音频编码器配置 (200)11.2.22 删除媒体文件 (201)11.3视频源 (201)11.3.1 获取视频源集 (201)11.4视频源配置 (202)11.4.1 获取视频源配置集 (202)11.4.2 获取视频源配置 (202)11.4.3 获取多个兼容视频源配置 (203)11.4.4 获取视频源配置选项 (203)11.4.5 设置视频源配置 (204)11.5视频编码器配置 (205)11.5.1 获取多个视频编码器配置 (205)获取视频编码器配置11.5.3 获取多个兼容视频解码器配置 (206)11.5.4 获取视频编码器配置选项集 (207)11.5.5 修改视频编码器配置 (208)11.5.6 获取有效的视频编码数量 (209)11.6音频源 (209)11.6.1 获取多个音频源 (209)11.7音频源配置 (210)11.7.1 获取多个音频源配置 (210)11.7.2 获取音频源配置 (211)11.7.3 获取兼容音频源配置集 (211)11.7.4 获取音频源配置选项集 (212)11.7.5 修改音频源配置 (213)11.8音频编码器配置 (214)11.8.1 获取多个音频编码器配置 (214)11.8.2 获取音频源编码器配置 (215)11.8.3 获取多个兼容音频编码器配置 (215)11.8.4 获取音频编码器配置选项集 (216)11.8.5 设置音频编码配置 (217)11.9视频分析配置 (217)11.9.1 获取多个视频分析配置 (218)11.9.2 获取视频分析配置 (219)11.9.3 获取多个兼容视频分析配置 (219)11.9.4 修改视频分析配置 (220)11.10元数据配置 (221)11.10.1 获取多个元数据配置 (221)11.10.2 获取元数据配置 (222)11.10.3 获取多个兼容元数据配置 (222)11.10.4 获取元数据配置选项集 (223)11.10.5 修改元数据配置 (223)11.11音频输出 (224)11.11.1 获取音频输出集 (224)11.12音频输出配置 (225)11.12.1 获取多个音频输出配置 (225)11.12.2 获取音频输出配置 (226)11.12.3 获取多个兼容音频输出配置 (226)11.12.4 获取音频输出配置选项集 (227)11.12.5 设置音频输出配置 (227)11.13音频解码器配置 (228)11.13.1 获取多个音频解码器配置 (228)11.13.2 获取音频解码器配置 (229)11.13.3 获取兼容音频解码器配置集 (229)11.13.4 获取音频解码器配置选项集 (230)11.13.5 设置音频解码器配置 (231)11.14音频通道模式 (231)11.15.1 获取Uri流 (232)11.16快照 (233)11.16.1 获取Uri快照 (233)11.17组播 (234)11.17.1 开始组播流 (234)11.17.2 停止组播流 (235)11.18同步点 (235)11.18.1 设置同步点 (235)11.19服务具体的错误码 (236)12 实时流 (238)12.1流媒体协议 (238)12.1.1传输格式 (238)12.1.1.1通过UDP的RTP数据传输 (238)12.1.1.2 通过TCP传输RTP数据 (238)12.1.1.3 RTP/RTSP/TCP (238)12.1.1.4 RTP/RTSP/HTTP/TCP (239)12.1.2 媒体传输 (239)12.1.2.1 RTP (239)12.1.2.1.1 RTP元数据流 (240)12.1.2.2 RTCP (242)12.1.2.2.1媒体同步 (243)12.1.3 同步点 (244)12.1.4 通过RTP传输JPEG (244)12.1.4.1所有包的结构 (244)12.1.4.2 逻辑解码规范 (246)12.1.4.3支持的彩色空间和采样因素 (248)12.1.4.4像素长宽比处理 (248)12.1.4.5 隔行扫描处理 (248)12.2媒体控制协议 (248)12.2.1流控制 (248)12.2.1.1 RTSP (249)12.2.1.1.1 保持RTSP会话的方法 (250)12.2.1.1.2 RTSP音频和视频同步 (251)12.2.1.1.4 RTSP消息的例子 (252)12.2.1.2 通过HTTP的RSTP (253)12.3往回通道连接 (253)12.3.1 RTSP协议请求的标签 (253)12.3.2双向连接的连接设置 (254)12.3.2.1 例一:没有往回支持的服务 (254)12.3.2.2 例二:使用ONVIF往回通道支持的服务 (254)12.3.3组播流 (256)12.3.3.1例:多播设置 (256)13.1持久性 (257)13.2接收端模式 (258)13.3接收命令 (258)13.3.1 获得多个接收器 (258)13.3.2 获得单个接收器 (258)13.3.3 创建接收器 (259)13.3.4 删除接收器 (259)13.3.5 配置接收器 (260)13.3.6 设计接收器模式 (260)13.3.7 获取接收机状态 (260)13.4事件 (261)13.4.1 改变状态 (261)13.4.2 连接失败 (261)13.5服务器错误码 (262)14 显示服务 (263)14.1窗格 (263)14.1.1 获得多个窗格配置 (264)14.1.2 获得单个窗格配置 (265)14.1.3 设置多个窗格配置 (266)14.1.4 设置单个窗格配置 (266)14.1.5 创建窗格配置 (267)14.1.6 删除窗格配置 (267)14.2布局 (268)14.2.1 获得布局 (268)14.2.2 设置布局 (269)14.3显示选项 (270)14.3.1 获取显示选项 (270)14.4事件 (271)14.4.1 解码错误事件 (271)14.5服务错误码 (272)15 事件处理 (273)15.1基本通知接口 (274)15.1.1 介绍 (274)15.1.2 要求 (275)15.2实时拉点通知接口 (276)15.2.1 创建 pull point subscription (278)15.2.2 pull 消息 (278)15.3通知流接口 (279)15.4属性 (279)15.4.1 属性举例 (280)15.5通知结构 (280)15.5.1 通知消息 (282)15.5.1.1 事件例子 (282)15.5.2 消息格式 (283)15.5.3 属性举例,持续 (285)15.5.4 信息描述语言 (287)15.5.4.1 消息描述举例 (288)15.5.5 消息内容过滤器 (288)15.6同步点 (290)15.7主题结构 (291)15.7.1 ONVIF主题名字空间 (291)15.7.2 主题类型信息 (292)15.7.3 主题过滤器 (293)15.8获取事件属性 (295)15.9SOAP错误消息 (296)15.10通知例子 (297)15.10.1 获取事件属性请求 (297)15.10.2 获取事件属性应答 (297)15.10.3 创建PULLPOIT订阅 (299)15.10.4 创建PULLPOIT订阅应答 (300)15.10.5 拉消息请求 (301)15.10.6 拉消息应答 (301)15.10.7 退订请求 (303)15.10.8 退订应答 (304)15.11服务错误码 (304)16 PTZ控制 (304)16.1PTZ模型 (306)16.2PTZ节点 (308)16.2.1 获取所有节点(GetNodes) (308)16.2.2 获取节点(GetNode) (309)16.3PTZ配置 (309)16.3.1 读取所有配置命令(GetConfigurations) (311)16.3.2 读取配置命令(GetConfiguration) (312)16.3.3 读取配置选项(GetConfigurationOptions) (312)16.3.4 设置配置(SetConfiguration) (313)16.4移动操作 (314)16.4.1 绝对的移动(AbsoluteMove) (314)16.4.2 相对移动(RelativeMove) (315)16.4.3 连续移动(ContinuousMove) (316)16.4.4 停止(Stop) (318)16.4.5 读取状态(GetStatus) (318)16.5起始位置操作 (319)16.5.1 设置预设值(SetPreset) (319)16.5.2 读取所有预设值(GetPresets) (321)16.5.3 返回预设 (321)16.5.4 移除预设(RemovePreset) (322)16.6归位点操作 (323)16.6.1 转到归位点(GotoHomePosition) (323)16.6.2 设置归位点(SetHomePosition) (324)16.7辅助操作 (324)16.7.1 发送辅助命令(SendAuxiliaryCommand) (325)16.8预定PTZ空间 (325)16.8.1 绝对的位置空间 (326)16.8.1.1 泛化的全方位移动空间 (326)16.8.1.2 泛化的变焦位置空间 (326)16.8.2 相对的转换空间 (327)16.8.2.1 泛化的方位转换空间 (327)16.8.2.2 泛化的变焦转换空间 (327)16.8.3 连续的速率空间 (328)16.8.3.1 泛化的方位速率空间 (328)16.8.3.2 泛化的变焦速率空间 (329)16.8.4 速度空间 (329)16.8.4.1 泛化的方位速度空间 (329)16.8.4.2 泛化的变焦速度空间 (330)16.9服务错误码 (330)17 视频分析 (333)17.1场景描述接口 (333)17.1.1 概述 (333)17.1.2 画面相关内容 (334)17.1.2.1时间关系 (335)17.1.2.2 空间关系 (335)17.1.3 场景元素 (337)17.1.3.1 对象 (338)17.1.3.2 对象树 (341)17.1.3.3 形状描述符 (343)17.2规则接口 (344)17.2.1 规则陈述 (344)17.2.2 规则描述语言 (345)17.2.3 规则标准 (347)17.2.3.1 线性检测器 (347)17.2.3.2 域检测器 (348)17.2.4 规则操作 (349)17.2.4.1 读取支持的操作(GetSupportedRules) (349)17.2.4.2 读取规则(GetRules) (350)17.2.4.3 创建规则(CreateRules) (350)17.2.4.4 修改规则(ModifyRules) (351)17.4.4.5 删除规则(DeleteRules) (351)17.3分析模块接口 (352)17.3.1 分析模块配置 (352)17.3.2 分析模块描述语言 (353)17.3.3 分析模块操作 (354)17.3.3.1 读取支持的分析模块(GetSupportedAnalysticsModule) (354)17.3.3.2 读取模块分析(GetAnalyticsModules) (354)17.3.3.3 创建分析模块(CreateAnalyticsModules) (355)17.3.3.4 修改分析模块(ModifyAnalyticsModules) (355)17.3.3.5 删除分析模块(DeleteAnalyticsModules) (356)17.4服务错误码 (356)18分析设备 (358)18.1概述 (359)18.2分析引擎输入 (359)18.2.1获取分析引擎输入 (360)18.2.2获取分析引擎的输入 (360)18.2.3设置分析引擎的输入 (361)18.2.4 创建分析引擎输入 (361)18.2.5删除分析引擎输入 (362)18.3视频分析配置 (363)18.3.1 获取视频分析配置 (363)18.3.2 设置视频分析配置 (363)18.4分析引擎 (364)18.4.1获取分析引擎 (364)18.4.2 获取分析引擎 (365)18.5分析引擎控制 (365)18.5.1 GetAnalyticsEngineControls (366)18.5.2 获取分析引擎控制 (366)18.5.3设置分析引擎控制 (367)18.5.4 CreateAnalyticsEngineControl (368)18.5.5删除分析引擎控制 (368)18.6获取分析状态 (369)18.7输出流配置 (370)18.7.1 请求流的URL (370)19录制控制 (371)19.1介绍 (371)19.2一般要求 (373)19.3数据结构 (373)19.3.1 录制设置 (374)19.3.2 轨迹设置 (374)19.3.3 录制任务设置 (374)19.4创建录制 (376)19.5删除录制 (377)19.6获取录制集 (377)19.7设置录制配置 (378)19.8获取录制配置 (378)19.9创建轨道 (379)19.10删除轨道 (379)19.11获取轨道配置 (380)19.12设置轨道配置 (380)19.13创建录制任务 (381)19.14删除录制任务 (382)19.15获取录制任务集 (382)19.16设置录制任务配置 (382)19.17获取录制任务配置 (383)19.18设置录制模式 (384)19.19获取录制任务状态 (384)19.20事件 (385)19.20.1 录制任务状态变化 (386)19.20.2 设置变化 (386)19.20.3 删除数据 (387)19.20.4 录制和轨道的建立与删除 (388)19.21示例 (389)19.21.1 例1:单摄像头的安装录制 (389)19.21.2 例2:从一台摄像机录制多个流到一个单录制 (389)20 记录搜索 (390)20.1介绍 (390)20.2概念 (391)20.2.1 搜索方向 (391)20.2.2 记录事件 (391)20.2.3 查找对话 (392)20.2.4 查找范围 (393)20.2.4.1 包括的数据 (393)20.2.4.2 记录信息滤波器 (393)20.2.5 搜索过滤器 (393)20.3数据结构 (394)20.3.1 记录信息结构 (394)20.3.2 记录源信息结构 (394)20.3.3 跟踪信息结构 (394)20.3.4 列举查找状态 (395)20.3.5 媒体属性结构 (395)20.3.6 找事件结果结构 (396)20.3.7 找PTZ位置结果结构 (396)20.3.8 PTZ位置过滤结构 (396)20.3.9 元数据过滤结果 (396)20.3.10 找元数据结果结构 (397)20.4获取记录概要(G ET R ECORDING S UMMARY) (397)20.5读取记录信息(G ET R ECORDING I NFORMATION) (397)20.6读取媒体属性(G ET M EDIA A TTRIBUTES) (398)20.7找记录(F IND R ECORDINGS) (398)20.8获取记录搜索结果(G ET R ECORDING S EARCH R ESULTS) (399)20.9找事件(F IND E VENTS) (400)20.10读取事件搜索结果(G ET E VENT S EARCH R ESULTS) (401)20.11查找PTZ位置(F IND PTZP OSITION) (402)20.12读取PTZ位置搜索结果(G ET PTZP OSITION S EARCH R ESULTS) (403)20.13查找元数据(F IND M ETADATA) (404)20.14读取元数据搜索结果(G ET M ETADATA S EARCH R ESULTS) (405)20.15获取搜索状态(G ET S EARCH S TATE) (406)20.16结束搜索(E ND S EARCH) (407)20.17记录事件说明 (407)20.18XP ATH习惯用法 (409)21 重放控制 (410)21.1使用RTSP协议 (411)21.1.1 RTSP描述 (411)21.2RTP协议头部扩展 (412)21.2.1 NTP时间戳 (413)21.2.2 压缩JEPG头扩展的兼容 (413)21.3RTSP特性标签 (414)21.4启动播放 (414)21.4.1 领域范围 (415)21.4.2 速度控制头领域 (416)21.4.3 帧头字段 (416)21.4.4 同步点 (417)21.5回放 (417)21.5.1 数据包传输顺序 (418)21.5.2 RTP传输顺序号 (418)21.5.3 RTP时间戳 (418)21.6RTSP长连接 (419)21.7当前记录片段 (419)21.8结束片段 (420)21.9拖放 (420)21.10使用RTCP协议 (421)21.11重放命令 (421)21.11.1 重放命令 (421)21.11.2 重播配置 (422)21.11.3 设置重播配置 (422)21.11.4 获取重播配置 (423)21.11.5 服务指定的误码 (423)22 安全 (424)22.1传输层安全 (424)22.1.1 支持密码套 (425)22.1.2 服务器身份验证 (425)22.1.3 客户端认证 (426)22.2消息安全 (426)22.3IEEE802.1X (426)介绍ONVIF的目标是为了实现完全标准化的、可互操作性的网络视频服务,即使是由不同的网络视频供应商组成的产品。

chap 的安全认证 -回复

chap 的安全认证 -回复

chap 的安全认证-回复【chap 的安全认证】在计算机网络通信中,安全认证是一项至关重要的技术,它能够确保通信过程中的数据安全和身份验证。

Chap(Challenge-Handshake Authentication Protocol)是一种广泛应用于网络安全认证的协议,它使用了一种比较简单和高效的身份验证机制。

在本文中,我们将一步一步地解析chap的安全认证过程,并探讨其在实际应用中的重要性。

首先,让我们了解Chap的基本工作原理。

Chap是一种基于密码散列的挑战-握手认证协议。

在通信开始之前,客户端和服务器之间通过网络发送一系列挑战和响应消息进行握手。

Chap使用了一种称为单向散列函数(One-Way Hash Function)的密码学算法来生成和验证挑战-响应对。

这种算法可以确保在不传输明文密码的情况下,通过比对散列值来实现身份验证。

在Chap的安全认证过程中,首先,服务器将发送一个挑战给客户端。

这个挑战是一个随机生成的字符串,用于增加被攻击者猜测答案的难度。

客户端接收到挑战后,使用事先共享的密钥和密码散列函数来计算一个响应值,并将其返回给服务器。

在第二步中,服务器将使用相同的密钥和密码散列函数来计算预期的响应值。

然后,服务器将比对客户端发送的响应值和计算出的预期响应值。

如果两者相等,那么服务器将认为客户端是合法的,并允许其继续通信。

否则,将拒绝客户端的认证请求。

Chap的安全认证机制通过引入挑战和响应的方式,增加了破解者破解密码的难度。

即使在网络被攻击者截获的情况下,破解者也无法获得明文密码,因为挑战和响应都是通过密码散列函数计算得到的。

这种单向散列函数的特性,使得Chap成为一种相对安全的认证协议。

现在让我们探讨一下Chap在实际应用中的重要性。

Chap广泛应用于各种网络通信场景,例如拨号连接、虚拟专用网(VPN)、局域网(LAN)和广域网(WAN)等。

通过使用Chap的安全认证机制,网络管理员可以确保只有合法用户可以访问网络资源,从而提高网络的安全性和保密性。

PAP认证实验

PAP认证实验

PAP认证实验我们PAP和CHAP的认证分为2种一种是单向认证(目前使用最多的认证方式,比如ADSL的PPPOE拨号上网就是我们只需要向电信发送认证信息就可以。

电信是不会向你发送认证信息的),另外一个是双向认证。

PAP认证实验我们PAP和CHAP的认证分为2种一种是单向认证(目前使用最多的认证方式,比如ADSL的PPPOE拨号上网就是我们只需要向电信发送认证信息就可以。

电信是不会向你发送认证信息的),另外一个是双向认证。

我们先看下单向认证。

假设R1为服务端,R2为客户端。

R1上的配置,R1为服务端要有个认证数据库。

Username定义的远端的数据库。

rack10r1(config)# username ediyf password cisco //定义一个认证数据库。

rack10r2(config)#interface s0rack10r2(config-if)#no shutdownrack10r1(config-if)#ip add 12.12.12.1 2rack10r2(config-if)#encapsulation ppp //把接口的封装模式改成PPP,如果说想做PPP认证的话,必须把接口封装模式给改成PPP rack10r2(config-if)#ppp authentication pap //开启PAP的认证功能,开启以后就相当于成了认证的服务端。

rack10r2(config-if)#endrack10r2#R2上的配置,R2上为客户端,所以可以不用定义数据库。

rack10r2(config)#interface s0rack10r2(config-if)#no shutdownrack10r2(config-if)#clock rate *****rack10r2(config-if)#ip address 12.12.12.2 255.255.255.0rack10r2(config-if)#encapsulation ppp //修改封装协议为PPPrack10r2(config-if)#ppp pap sent-username edify password cisco //将用户名和密码发送过去进行认证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

force constant
HOOKE'S LAW
compress K stretch x
restoring = force
-F = K(x)
x0
x1
m1 K
m2
Molecule as a Hooke's Law device
THE MORSE CURVE APPROXIMATES AN HARMONIC OSCILLATOR
CH2 CH2 CH2 CH2
Formation of each ring or double bond causes the loss of 2H.
Index of Hydrogen Deficiency
CALCULATION METHOD
Determine the expected formula for a noncyclic, saturated compound ( CnH2n+2 ) with the same number of carbon atoms as your compound. Correct the formula for heteroatoms
short
Wavelength (λ)
long
Types of Energy Transitions in Each Region of the Electromagnetic Spectrum
REGION ENERGY TRANSITIONS
X-ray UV/Visible Infrared Microwave Radio Frequency
CH3 CH3
H3C
CH3
CH3
CH2CH3
..... there is still work required to fully solve the problem
INFRARED SPECTROSCOPY
THE ELECTROMAGNETIC SPECTRUM
high high Frequency (ν) Energy low low
(stretching vibrations)
WAVELENGTH (m)
2.5 4 5 5.5 6.1 6.5 15.4
O-H N-H
C-H
C N C C X=C=Y (C,O,N,S)
C=O Very few bands
C-Cl C-O C=C C-N C-C N=O N=O * C=N 650
(NMR)
Bond-breaking Electronic Vibrational Rotational Nuclear and Electronic Spin
Simplified Infrared Spectrophotometer
focusing mirror NaCl plates Detection Electronics and Computer
m1 m2 = m1 + m2
C C > C C >C C
multiple bonds have higher K's
m = atomic masses
This equation describes the vibrations of a bond.
= reduced mass
larger K, higher frequency
C C
C
C
both of these types are "infrared active" ( excited by infrared radiation )
BONDING CURVES AND VIBRATIONS
MORSE CURVES STRETCHING
BOND VIBRATIONAL ENERGY LEVELS
C-H C-X -H,+X
-1
H N
C4H5N
C4H10 = ( CnH2n+2 ) C4H11N add one H for N C4H5 N H6 Index = 6/2 = 3
two double bonds and ring in this example
The index gives the number of double bonds or triple bonds or rings in a molecule
= ( CnH2n+2 )
Index = 4/2 = 2
Two Unsaturations
double bond and ring in this example
Index of Hydrogen Deficiency
CORRECTIONS FOR ATOMS OTHER THAN HYDROGEN
e n e r g y
vibrational energy levels
bond dissociation energy
zero point energy
rmin ravg
rmax
distance
(average bond length)
Typical Infrared Absorption Regions
CH3
O CH3
500
CH3 CH CH2 C
1000
AN INFRARED SPECTRUM
THE UNIT USED ON AN IR SPECTRUM IS WAVENUMBERS ( ν )
ν= ν=
ν ν
wavenumbers (cm-1) 1 λ(cm)
λ νc
= wavelength (cm) c = speed of light c = 3 x 1010 cm/sec
++ ++
e n e r g y
+ +
+
οο
+
MORSE CURVE
zero point energy
rmin ravg
rmax
decreasing distance
(average bond length)
BOND VIBRATIONAL ENERGY LEVELS
Bonds do not have a fixed distance. They vibrate continually even at 0oK (absolute). The frequency for a given bond is a constant. Vibrations are quantized as levels. The lowest level is called the zero point energy.
(explained later)
Subtract the actual formula of your compound The difference in H's divided by 2 is the Index of Hydrogen-deficiency
C5H8
C5H12 C5H8 H4
ν
1 = 2 πc
K
larger atom masses, lower frequency
X-RAY
ULTRAVIOLET
INFRARED MICROWAVE
RADIO
FREQUENCY
Ultraviolet
Visible
Vibrational infrared 2.5 m 15 m
Hale Waihona Puke Nuclear magnetic resonance 1m 5m
200 nm
400 nm BLUE
800 nm RED
Saturated Hydrocarbons CnH2n+2
CH4 CH3CH3 CH3CH2CH3 CH3CH2CH2CH3 CH3CH2CH2CH2CH3
CH3 CH3 CH3 CH CH C CH3 CH3 CH3
GENERAL FORMULA
CH4 C2H6 C3H8 C4H10 C5H12
INDEX OF HYDROGEN DEFICIENCY
and
THE BASIC THEORY OF INFRARED SPECTROSCOPY
WHAT CAN YOU LEARN FROM A MOLECULAR FORMULA ?
YOU CAN DETERMINE THE NUMBER OF RINGS AND / OR DOUBLE BONDS.
C9H20
branched compounds also follow the formula
FORMATION OF RINGS AND DOUBLE BONDS
C C H H H H C C H H H2C H2C CH2 CH2 H CH2 CH2 H
-2H
C C
-4H
C C
-2H
H2C H2C
(decreasing)
KETONE
4-Methyl-2-pentanone
C-H < 3000, C=O @ 1715 cm-1
100 100 % T R A N S M I T T A N C E 80 80 60 60 40 40 20 20 0 0 3500 3000 2500 2000 1500 WAVELENGTH (cm-1)
Benzene one ring and the equivalent of three double bonds gives an index of 4
If index = 4, or more, expect a benzene ring
PROBLEM
A hydrocarbon has a molecular formula of C6H8. It will react with hydrogen and a palladium catalyst to give a compound of formula C6H12. Give a possible structure.
相关文档
最新文档