2011年4月自学考试离散数学试题及答案
2011年4月自考真题离散数学
中国自考人( ) 用科学记忆系统永久免费在线学习700门自考专业课
第 1 页 全国2011年4月自学考试离散数学试题
课程代码:02324
一、单项选择题(本大题共15小题,每小题1分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均不得分。
中国自考人( ) 用科学记忆系统永久免费在线学习700门自考专业课 第 2 页
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。
错填、不填均不得分。
离散数学试题(A卷答案)
离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。
乙说:王教授不是上海人,是苏州人。
丙说:王教授既不是上海人,也不是杭州人。
王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。
试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。
则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。
所以,丙至少说对了一半。
因此,可得甲或乙必有一人全错了。
又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。
同理,乙全错则甲全对。
所以丙必是一对一错。
故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。
三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。
证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。
离散数学考试题及详细参考答案
离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。
b)我今天进城,除非下雨。
c)仅当你走,我将留下。
2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。
c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。
(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。
(4分)4.判断下面命题的真假,并说明原因。
(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。
(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。
离散数学自考试题
离散数学自考试题离散数学是计算机科学、信息科学等领域中的一门基础课程,它涉及到离散结构、逻辑、证明、图论、集合论等内容。
为了帮助大家更好地应对离散数学自考,以下是一些典型的离散数学试题。
第一部分:命题逻辑与谓词逻辑1. 简单命题与复合命题假设p表示"今天下雨",q表示"我会带伞",请写出以下复合命题的真值表:(1)p∨q(2)¬p∧q2. 谓词逻辑与谓词符号转换将以下自然语言句子转换为谓词逻辑符号表示:(1)"每个人都喜欢巧克力"(2)"存在一个学生没有按时交作业"第二部分:集合与关系1. 集合运算与分拣问题设A={1,2,3,4,5},B={3,4,5,6,7},C={4,5,6,7,8},求出以下集合的并、交、差:(1)A∪B(2)B∩C(3)A-B2. 关系的性质与运算定义集合A={1,2,3},B={3,4,5},请回答以下问题:(1)关系R={(x,y)|x∈A, y∈B, x+y>5}是自反的吗?(2)关系S={(x,y)|x∈A, y∈B, x<y}是对称的吗?第三部分:图论1. 图的遍历与连通性给定以下无向图的邻接矩阵,请使用深度优先搜索算法遍历整个图,并判断该图是否连通。
```[0 1 1 1 0][1 0 0 1 0][1 0 0 1 1][1 1 1 0 1][0 0 1 1 0]```2. 最短路径问题给定以下有向带权图的邻接矩阵,请使用Dijkstra算法求解从顶点A到其他各顶点的最短路径及其长度。
```[0 1 3 ∞ ∞][∞ 0 1 2 ∞][∞ ∞ 0 ∞ 4][∞ ∞ ∞ 0 2][∞ ∞ ∞ ∞ 0]```第四部分:计数与概率1. 排列组合问题从1、2、3、4、5这五个数字中任选3个数字组成不重复的数,有多少种可能的情况?2. 概率计算一个有10个红球和5个蓝球的盒子,从中依次取球,不放回。
11级离散数学试题(A)参考答案
2011级离散数学(A)参考答案一、填空题(每小题2分,共30分)1. 设():M x x 为人, ():F x x 不吃饭。
将命题“没有不吃饭的人”符号化为:))()((x F x M x ⌝→∀ 或 ))()(((x F x m x ∧∃⌝ 。
2. 设A={1, 2, 3, 4} ,则 A 的全部2元子集共有 6 个。
3. 设p :明天是周一,q :明天是周三,r :我有课。
则命题“如果明天是周一或周三,我就有课”的符号化形式为 r q p →∨)( 。
4. 已知命题公式A 含有2个命题变项,其成真赋值为00、10、11,则其主析取范式为 320m m m ∨∨ 。
5. 设p :北京比大连人口多,q :2+2=4,r :乌鸦是白色的。
则命题公式)()(r p r q ⌝→→∨的真值为 1 。
6. 集合}3,2,1{=A 上的关系}3,2,3,1,2,1{><><><=R ,则=-1R { <2,1>,<3,1>,<3,2> }。
7. 画出下图的补图 。
8.设A={1,2,3},B={a,b,c},A 1={1},f={<1,a>,<2,a>,<3,b>},则=-))((11A f f { 1,2 }。
9. 设无向图的度数序列为:1,2,2,3,4。
则该无向图的边数m= 6 。
10. 3阶有向完全图的2条边的非同构的生成子图有 4 个。
11. 设〈≤,A 〉为偏序集,A B ⊆。
若y x B y x 与,,∈∀都是可比的,则称B是A 中的一条链,B 中的元素个数称为链的长度。
在偏序集〈{1,2,…,9},整除〉中,{1,2,4,8}是长为 4 的链。
12. 下面运算表中的单位元是 b 。
13. 写出模4加法群G=<Z 4,⊕ >的运算表14. 模4加法群中, 2-3= 2 。
离散数学习题的答案解析
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p →(11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国.r :太阳从西方升起.求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→解:p=1,q=1,r=0, ()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型:(2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:20、求下列公式的成真赋值:(4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒00p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
《离散数学》试题含答案
《离散数学》试题含答案⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ .2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.5.设G是完全⼆叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则R1?R2 =________________________,R2?R1 =____________________________, R12=________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________.11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B =__________________________ , B-A = __________________________ ,A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
(完整版)离散数学题目及答案
数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
2010~2011学年度第一学期离散数学试题A卷及答案
2010~2011学年度第 一 学期《离散数学》试卷(A 卷)适用专业年级:2009信息与计算科学 网络工程 软件工程及计算机科学与技术专业(本)考 试 形 式:( )开卷、(√)闭卷二级学院: 行政班级: 学 号: 教 学 班: 任课教师: 姓 名: 注:学生在答题前,请将以上内容完整、准确填写,填写不清者,成绩不计。
一、选择题(每小题 3分,共 15 分。
请将答案填在下面的表格内)1.设命题公式G :()p q r ⌝↔∧,则使公式G 取值为1的,,p q r 赋值分别为( )(A )0,0,0 (B )0,0,1 (C )0,1,1 (D )1,1,1 2.以下的联结词不是联结词完备集的是( ) (A )1{}S =⌝∧, (B )1{}S =⌝∨, (C )1{}S =∧∨→↔,,,(D )1{}S =↓3.下述等价式不正确的是( ) (A )()()xAx x A x ⌝∀⇔∃⌝ (B )()()xA x x A x ⌝∃⇔∀⌝(C )()()x A x B xA x B∀→⇔∃→() (D )()()x A x B xA x B∃→⇔∃→()4.设集合A={a,b },A 上的关系R={<a,a >,<b,b > },则R 是( ) (A )是等价关系但不是偏序关系 (B )是偏序关系但不是等价关系 (C ) 既是等价关系又是偏序关系 (D )既不是等价关系又不是偏序关系 5.无向图G 是欧拉图当且仅当G 是连通的且( )………………………………………线………………………………………订………………………………………装…………………………………………………(A )G 中各顶点的度数均相等 (B )G 中各顶点的度数之和为偶数(D )G 中各顶点的度数均为奇数二、填空题(每题 3分,共15分)1.“有的运动员不是大学生”符号化为 . (设P(x):x 是运动员;Q(x):x 是大学生)2. 设S ={<1,2>,<2,4>,<3,3>},R ={<1,3>,<2,4>,<4,2>}, 则S R = .3.下图所具有的关系性质有: .4.设有一棵树,它有2个2度结点,1个3度结点,3个4度结点,其余为叶 则它的树叶数为 个. 共有6个结点11条边,则它的面数为 . 三、计算题: 求公式()p q r →⌝↔的主析取范式和主合取范式(10 分)四、演绎证明: 前提:p ,,,q pr q s r p q∨→→→⌝∧⌝ 结论:s (10分)五、设A={1,2,3,4},R 是A 上的一个关系,R={<a,b>|a ,b ∈A ,(a-b)/2=k ,k ∈Z},证明R 是A 上的等价关系,并按关系R 给出A 上的划分。
离散数学习题答案精选全文完整版
可编辑修改精选全文完整版离散数学习题答案习题一:P121.判断下列句子哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
(2)5是无理数。
(3)3是素数或4是素数。
(4)x2+3<5,其中x是任意实数。
(5)你去图书馆吗?(6)2与3都是偶数。
(7)刘红与魏新是同学。
(8)这朵玫瑰花多美丽呀!(9)吸烟请到吸烟室去!(10)圆的面积等于半径的平方乘π。
(11)只有6是偶数,3才能是2的倍数。
(12)8是偶数的充分必要条件是8能被3整除。
(13)2025年元旦下大雪。
1、2、3、6、7、10、11、12、13是命题。
在上面的命题中,1、2、7、10、13是简单命题;1、2、10是真命题;7的真值现在还不知道。
2.将上题中是简单命题的命题符号化。
(1)p:中国有四大发明。
(2)q:5是无理数。
(7)r:刘红与魏新是同学。
(10)s:圆的面积等于半径的平方乘π。
(1)t:2025年元旦下大雪。
3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值。
“5是有理数”的否定式是“5不是有理数”。
解:原命题可符号化为:p:5是有理数。
其否定式为:非p。
非p的真值为1。
4.将下列命题符号化,并指出真值。
(1)2与5都是素数。
(2)不但π是无理数,而且自然对数的底e也是无理数。
(3)虽然2是最小的素数,但2不是最小的自然数。
(4)3是偶素数。
(5)4既不是素数,也不是偶数。
a:2是素数。
b:5是素数。
c:π是无理数。
d:e是无理数。
f:2是最小的素数。
g:2是最小的自然数。
h:3是偶数。
i:3是素数。
j:4是素数。
k:4是偶数。
解:(1)到(5)的符号化形式分别为a∧b,c∧d,f∧非g,h∧i,非j∧非k。
这五个复合命题的真值分别为1,1,1,0,0。
5.将下列命题符号化,并指出真值。
a:2是偶数。
b:3是偶数。
c:4是偶数。
完整word版,《离散数学》题库及答案
《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式∀x A和∃x A中,称x为指导变元,A为量词的辖域。
在∀x A和∃x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和∃z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 (命题必须满足是陈述句,不能是疑问句或者祈使句。
离散数学习题答案解析
离散数学习题答案习题一及答案:(P14-15) 14、将下列命题符号化:(5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→15、设p :2+3=5.q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值:(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解:p=1,q=1,r=0,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,(())((11)0)(00)1p q r ⌝∨⌝→⇔⌝∨⌝→⇔→⇔ ()(())111p q r p q r ∴∧∧⌝↔⌝∨⌝→⇔↔⇔19、用真值表判断下列公式的类型: (2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:()10p q q ⌝∨⇔⎧⎨⇔⎩⇒0p q ⇔⎧⎨⇔⎩ 所以公式的成真赋值有:01,10,11。
习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式, 所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
全国2011-7-2014-4自学考试离散数学试题
全国2011年7月自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
三、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
三、计算题(本大题共5小题,每小题6分,共30分)四、证明题(本大题共3小题,每小题7分,共21分)五、综合应用题(本大题共2小题,每小题7分,共14分)全国2012年4月自学考试离散数学试题课程代码:02324全国2012年7月自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P :他看电影,Q :他学习,将命题“他在学习或在看电影”符号化正确的是( ) A.P →Q B.P ∧Q C.P ∨QD.Q →⌝P2.下列命题公式不是..永真式的是( ) A.()P Q P →→ B.()P Q →∨P C.P ⌝∨()Q P →D.()P Q P →→ 3.下列等价式正确的是( ) A.()()()()x A x x A x ⌝∀⇔∀⌝ B.()()()(())A x B x x A B x →∃⇔∃→ C.()(())()()x A x B x A x B ∀→⇔∀→D.()(())()()x A x B x A x B ∃→⇔∃→ 4.设A(x):x 是鸟,B(x):x 会飞,命题“有的鸟不会飞”符号化为( ) A.()(()x A x ⌝∃∧())B x B.()(()x A x ⌝∀∧())B x C.()(()())x A x B x ⌝∃→D.()(()())x A x B x ⌝∀→5.设X ={,{},{,}}a a ∅∅,则下列陈述正确的是( ) A.a X ∈ B.{,}a X ∅⊆ C.{{,}}a X ∅⊆D.{}X ∅∈6.设A B B =,则有( ) A.A B A = B.A B -=∅ C.A B B =D.A B ⊆ 7.设A ={a ,{b , c }},则其幂集P (A )的元素总个数为( ) A.3 B.4 C.6D.88.在整数集Z 上,下列定义的运算满足结合律的是( ) A.1a b b *=+ B.1a b a *=- C.1a b ab *=-D.1a b a b *=++9.设<G ,*>是群,则下列陈述不正确...的是( ) A.11()a a --= B.111()ab a b ---= C.n m n m a a a +=D.11()n n a ba a b a --=10.设:,:f X Y g Y Z →→是函数,则下列陈述正确的是( ) A.若f 不是入射的,则g f 不是入射的B.若g 是入射的,则g f 也是入射的C.若f 是入射的,则g f 也是入射的D.若g f 不是入射的,则f 也不是入射的11.设简单图G 所有结点的度数之和为36,由G 的边数为( ) A.6 B.9 C.12D.1812.下列无向图不一定...是树的是( ) A.结点数比边数多1的连通图 B.每对结点之间都有通路的图 C.无回路但添加一条边则有回路的图D.无回路的连通图 13.设R 1,R 2是A 上的两个关系,s 为对称闭包,t 为传递闭包,则下列描述正确的是( ) A.1212()()()s R R s R s R = B.1212()()()t R R t R t R = C.1212()()()s R R s R s R =D.1212()()()t R R t R t R =14.下列必为欧拉图的是( ) A.有回路的连通图B.不可以一笔画的图C.有1个奇数度结点的连通图D.无奇数度结点的连通图 15.设X ={0},下列关于代数系统<P (X ),>的陈述正确的是( ) A.0是幺元 B.∅是幺元 C.{0}是幺元D.没有幺元二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
离散数学考试试题及答案
离散数学考试试题及答案离散数学是一门涉及离散结构和逻辑推理的数学学科。
它在计算机科学、信息技术和其他领域中具有重要的应用价值。
离散数学考试试题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。
本文将为大家提供一些离散数学考试试题及答案,希望能帮助大家更好地理解和掌握这门学科。
一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。
答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。
2. 设集合A={x|x是正整数,1≤x≤10},B={x|x是偶数,2≤x≤8},求A与B的笛卡尔积。
答案:A与B的笛卡尔积为{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),...,(10,2),(10,4),(10,6),(10,8)}。
二、图论1. 给定图G,其邻接矩阵如下:| 0 1 1 0 || 1 0 0 1 || 1 0 0 1 || 0 1 1 0 |判断图G是否是连通图,并给出其连通分量。
答案:图G是连通图,其连通分量为{1,2,3,4}。
2. 给定图G,其邻接表如下:| 1 | 2 || 3 | 2 4 || 4 | 3 |判断图G是否是树,并给出其生成树。
答案:图G是树,其生成树为{1-2, 2-3, 3-4}。
三、逻辑1. 判断命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值。
答案:命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值为真。
2. 判断命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值。
答案:命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值为假。
四、代数结构1. 设集合S={0,1,2,3,4},定义运算*如下:a*b = (a+b)%5其中%表示取余运算。
全国2011-7-2014-4自学考试离散数学试题
全国2011年7月自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
三、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
三、计算题(本大题共5小题,每小题6分,共30分)四、证明题(本大题共3小题,每小题7分,共21分)五、综合应用题(本大题共2小题,每小题7分,共14分)全国2012年4月自学考试离散数学试题课程代码:02324全国2012年7月自学考试离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P :他看电影,Q :他学习,将命题“他在学习或在看电影”符号化正确的是( ) A.P →Q B.P ∧Q C.P ∨QD.Q →⌝P2.下列命题公式不是..永真式的是( ) A.()P Q P →→ B.()P Q →∨P C.P ⌝∨()Q P →D.()P Q P →→ 3.下列等价式正确的是( ) A.()()()()x A x x A x ⌝∀⇔∀⌝ B.()()()(())A x B x x A B x →∃⇔∃→ C.()(())()()x A x B x A x B ∀→⇔∀→D.()(())()()x A x B x A x B ∃→⇔∃→ 4.设A(x):x 是鸟,B(x):x 会飞,命题“有的鸟不会飞”符号化为( ) A.()(()x A x ⌝∃∧())B x B.()(()x A x ⌝∀∧())B x C.()(()())x A x B x ⌝∃→D.()(()())x A x B x ⌝∀→5.设X ={,{},{,}}a a ∅∅,则下列陈述正确的是( ) A.a X ∈ B.{,}a X ∅⊆ C.{{,}}a X ∅⊆D.{}X ∅∈6.设A B B =,则有( ) A.A B A = B.A B -=∅ C.A B B =D.A B ⊆ 7.设A ={a ,{b , c }},则其幂集P (A )的元素总个数为( ) A.3 B.4 C.6D.88.在整数集Z 上,下列定义的运算满足结合律的是( ) A.1a b b *=+ B.1a b a *=- C.1a b ab *=-D.1a b a b *=++9.设<G ,*>是群,则下列陈述不正确...的是( ) A.11()a a --= B.111()ab a b ---= C.n m n m a a a +=D.11()n n a ba a b a --=10.设:,:f X Y g Y Z →→是函数,则下列陈述正确的是( ) A.若f 不是入射的,则g f 不是入射的B.若g 是入射的,则g f 也是入射的C.若f 是入射的,则g f 也是入射的D.若g f 不是入射的,则f 也不是入射的11.设简单图G 所有结点的度数之和为36,由G 的边数为( ) A.6 B.9 C.12D.1812.下列无向图不一定...是树的是( ) A.结点数比边数多1的连通图 B.每对结点之间都有通路的图 C.无回路但添加一条边则有回路的图D.无回路的连通图 13.设R 1,R 2是A 上的两个关系,s 为对称闭包,t 为传递闭包,则下列描述正确的是( ) A.1212()()()s R R s R s R = B.1212()()()t R R t R t R = C.1212()()()s R R s R s R =D.1212()()()t R R t R t R =14.下列必为欧拉图的是( ) A.有回路的连通图B.不可以一笔画的图C.有1个奇数度结点的连通图D.无奇数度结点的连通图 15.设X ={0},下列关于代数系统<P (X ),>的陈述正确的是( ) A.0是幺元 B.∅是幺元 C.{0}是幺元D.没有幺元二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。
《离散数学》试题及答案
《离散数学》试题及答案一、填空题1设集合A,B,其中A={1,2,3},B={1,2},则A-B=____________________;(B)=__________________________.2.设有限集合A,|A|=n,则|(A某A)|=__________________________.3.设集合A={a,b},B={1,2},则从A到B的所有映射是_______________________________________,其中双射的是__________________________.4.已知命题公式G=(PQ)∧R,则G的主析取范式是________________________________________________________________ _________________________.6设A、B为两个集合,A={1,2,4},B={3,4},则从AB=_________________________;AB=_________________________;A-B=_____________________.7.设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________,________________________,________________ _______________.8.设命题公式G=(P(QR)),则使公式G为真的解释有__________________________,_____________________________,__________________________.9.设集合A={1,2,3,4},A上的关系R1={(1,4),(2,3),(3,2)},R2={(2,1),(3,2),(4,3)},则R1R2=________________________,R2R1=____________________________,R12=________________________.(A)-10.设有限集A,B,|A|=m,|B|=n,则||(AB)|=_____________________________.11设A,B,R是三个集合,其中R是实数集,A={某|-1≤某≤1,某R},B={某|0≤某<2,某R},则A-B=__________________________,B-A=__________________________,A∩B=__________________________,.13.设集合A={2,3,4,5,6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14.设一阶逻辑公式G=某P(某)某Q(某),则G的前束范式是_______________________________.16.设谓词的定义域为{a,b},将表达式某R(某)→某S(某)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17.设集合A={1,2,3,4},A上的二元关系R={(1,1),(1,2),(2,3)},S={(1,3),(2,3),(3,2)}。
《离散数学》试题及标准答案解析
《离散数学》试题及标准答案解析⼀、填空题1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)= __________________________ .2. 设有限集合A, |A| = n, 则 |ρ(A×A)| = __________________________.3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________.4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_________________________________________________________________________________________.6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B= _____________________ .7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________.8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________.9. 设集合A={1,2,3,4}, A上的关系R1= {(1,4),(2,3),(3,2)}, R2= {(2,1),(3,2),(4,3)}, 则R1?R2 = ________________________,R2? R1 =____________________________, R12 =________________________.10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A =__________________________ , A∩B = __________________________ , .13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为__________________________________________________________________.14. 设⼀阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____.16. 设谓词的定义域为{a, b},将表达式?xR(x)→?xS(x)中量词消除,写成与之对应的命题公式是__________________________________________________________________________.17. 设集合A={1, 2, 3, 4},A上的⼆元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。