上海市金山区2017届高考数学一模(含答案)

合集下载

2017上海各区数学一模填空-解析汇报

2017上海各区数学一模填空-解析汇报

2017年市一模数学汇编之填空 解析一、(2017徐汇一模)7.已知线段9=a ,4=c ,如果线段b 是c a 、的比例中项,那么=b __6___.8.点C 是线段AB 延长线上的点,已知AB a =,B =b ,那么=__b a-__.9.如图1,EF CD AB ////,如果2=AC ,5.5=AE ,3=DF ,那么=BD __712__. 10.如果两个相似三角形的对应中线比是2:3,那么它们的周长比是__2:3___. 11.如果点P 是线段AB 的黄金分割点)(BP AP >,那么请你写出一个关于线段、、BP AP AB 之间的数量关系的等式,你的结论是:__ AB BP AP ⋅=2__(答案不唯一).12.在ABC Rt ∆中,︒=∠90ACB ,AB CD ⊥,垂足为D ,如果4=CD ,3=BD ,那么A ∠的正弦值是___53___. 13.正方形ABCD 的边长为3,点E 在边CD 的延长线上,联结BE 交边AD 于F ,如果1=DE ,那么=AF ___49___.14.已知抛物线ax ax y 42-=与x 轴交于点B A 、,顶点C 的纵坐标是2-,那么=a ___21___. 15.如图2,矩形ABCD 的四个顶点正好落在四条平行线上,并且从上到下每两条平行线间的距离都是1,如果4:3:=BC AB ,那么AB 的长是___473___. 16.在梯形ABCD 中,BC AD //,BD AC 、相交于O ,如果ACD BOC ∆∆、的面积分别是9和4,那么梯形ABCD 的面积是___16___.17.在ABC Rt ∆中,︒=∠90ABC ,5=AC ,3=BC ,CD 是ACB ∠的平分线,将ABC ∆ 沿直线CD 翻折,点A 落在点E 处,那么AE 的长是___52___.18.如图3,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP的值是___13392___.FABCD E A BCD A B C DEF二、(2017黄埔一模)7.已知线段a 是线段b 、c 的比例中项,如果a =3,b =2,那么c = 29. 8.计算:()()+--322= 7-- .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB =2,则AP -BP = 452- . 10.已知二次函数()x f y =的图像开口向上,对称轴为直线x =4,则()1f > ()5f .(填“>”或“<”)11.计算:=︒•︒30tan 60sin21. 12.已知G 是等腰直角△ABC 的重心,若AC =BC =2,则线段CG 的长为322 . 13.若两个相似三角形的相似比为2∶3,则它们的面积比为 4∶9 . 14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式是2363C S =. 15.如图7,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC =6,△ABC 的面积为9,则正方形DEFG 的面积为 4 .16.如图8,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α.若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 27 米.17.如图9,在△ABC 中,∠C =90°,AC =8,BC =6,D 是边AB 的中点.现有一点P 位于边AC上,使得△ADP 与△ABC 相似,则线段AP 的长为 4或425.图8BDECA G图718.如图10,菱形ABCD形两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的15,则cos A=32.三、 (2017静安一模)7.16的平方根是±4 .8.如果代数式有意义,那么x 的取值围为x>﹣2 .9.方程+=1的根为x=2 .10.如果一次函数y=(m﹣3)x+m﹣2的图象一定经过第三、第四象限,那么常数m的取值围为m<2 .11.二次函数y=x2﹣8x+10的图象的顶点坐标是(4,﹣6).12.如果点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,那么m的值为 3 .13.如果△ABC∽△DEF,且△ABC与△DEF相似比为1:4,那么△ABC与△DEF的面积比为1:16 .14.在△ABC中,如果AB=AC=10,cosB=,那么△ABC的重心到底边的距离为 2 .15.已知平行四边形ABCD中,点E是边BC的中点,DE与AC相交于点F,设=, =,那么= ﹣(用,的式子表示)16.在△ABC中,点D,E分别在边AB,AC上,△ADE∽△ABC,如果AB=4,BC=5,AC=6,AD=3,那么△ADE的周长为.17.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,∠BDC=∠CED,如果DE=4,CD=6,那么AD:AE等于3:2 .DNMBA图10A18.一直角三角形纸片ABC,∠C=90°,AB=24,tanB=(如图),将它折叠使直角顶点C 与斜边AB的中点重合,那么折痕的长为13 .四、(2017闵行一模)7.已知:3a=2b,那么= ﹣.8.计算:(+)﹣(﹣2)= .9.如果地图上A,B两处的图距是4cm,表示这两地实际的距离是20km,那么实际距离500km的两地在地图上的图距是100 cm.10.二次函数y=﹣x2+5的图象的顶点坐标是(0,5).11.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是(4,5).12.已知两个相似三角形的面积之比是1:4,那么这两个三角形的周长之比是1:2 .13.已知在Rt△ABC中,∠C=90°,BC=6,sinA=,那么AB= 9 .14.已知一斜坡的坡度i=1:2,高度在20米,那么这一斜坡的坡长约为44.7 米(精确到0.1米)15.如图,在平行四边形ABCD中,点E在边AB上,联结DE,交对角线AC于点F,如果=,CD=6,那么AE= 4 .16.如图,△OPQ在边长为1个单位的方格纸中,它们的顶点在小正方形顶点位置,点A,B,C,D,E也是小正方形的顶点,从点A,B,C,D,E中选取三个点所构成的三角形与△OPQ相似,那么这个三角形是△CDB .17.2016年3月完工的中心大厦是一座超高层地标式摩天大楼,其高度仅次于世界排名第一的阿联酋迪拜大厦,某人从距离地面高度263米的明珠球体观光层测得中心大厦顶部的仰角是22.3°.已知明珠与中心大厦的水平距离约为900米,那么中心大厦的高度约为632 米(精确到1米).(参考数据:sin22.3°≈0.38,cos22.3°≈0.93.tan22.3°≈0.41)18.如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD= 2﹣2 .解:作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE= BD,则BD+BD=2,解得,BD=2﹣2,故答案为:2﹣2.五、(2017普陀一模)7.如果x:y=4:3,那么= .8.计算:3﹣4(+)= ﹣﹣4.9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值围是m>1 .10.抛物线y=4x2﹣3x与y轴的交点坐标是(0,0).11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为12 .12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于5﹣5 厘米.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是1:4 .14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值围是x>5 .15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是北偏西52°.16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:y=﹣πx2+16π(结果保留π,不要求写出定义域)17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ:S△CPE的值是1:15 .六、(2017浦一模)7.(4,0)- 9. 减小 10.32x=11.23 12.1213. 20 14.45b15. 60 16. 2.4 17. 3 18.12七、(2017嘉定一模)7.a-;819.1:4.10. (3,4) 11 12. 13.1m<14.y轴(或者直线0x=)15.上升的16.1217.218. 1802α︒-八、(2017长宁、金山、青浦一模)九、(2017崇明一模)7.53a 8.1:2 9.2 10.3 11.120 12.含 13.614.()221y x=-- 15.十、(2017虹口一模)7. 2 8. 9.a<3 10. 2 11. 12.413. 14. 15.8 16. 17.12 18.e2-2)2(2+=xy32512cb3131-+32十一、(2017松江一模)7.已知,则的值为.8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值围是k<1 .10.把抛物线y=x2向右平移4个单位,所得抛物线的解析式为y=(x﹣4)2.11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是8 .12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1>y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线x=2 .15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是△ABC 的中线,AD与BE相交于点G,那么AG的长为 2 .16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为5+5米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为.18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为4.十二、(2017宝山一模)7.已知2a=3b,则= .8.如果两个相似三角形的相似比为1:4,那么它们的面积比为1:16 .9.如图,D为△ABC的边AB上一点,如果∠ACD=∠ABC时,那么图中AC 是AD和AB的比例中项.10.如图,△ABC中∠C=90°,若CD⊥AB于D,且BD=4,AD=9,则tanA= .11.计算:2(+3)﹣5= 2+.12.如图,G为△ABC的重心,如果AB=AC=13,BC=10,那么AG的长为8 .13.二次函数y=5(x﹣4)2+3向左平移二个单位长度,再向下平移一个单位长度,得到的函数解析式是y=5(x﹣2)2+2 .14.如果点A(1,2)和点B(3,2)都在抛物线y=ax2+bx+c的图象上,那么抛物线y=ax2+bx+c的对称轴是直线x=2 .15.已知A(2,y1)、B(3,y2)是抛物线y=﹣(x﹣1)2+的图象上两点,则y1>y2.(填不等号)16.如果在一个斜坡上每向上前进13米,水平高度就升高了5米,则该斜坡的坡度i= 1:2.4 .17.数学小组在活动中继承了学兄学姐们的研究成果,将能够确定形如y=ax2+bx+c的抛物线的形状、大小、开口方向、位置等特征的系数a、b、c称为该抛物线的特征数,记作:特征数{a、b、c},(请你求)在研究活动中被记作特征数为{1、﹣4、3}的抛物线的顶点坐标为(2,﹣1).18.如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═,那么CF:DF═6:5 .解:∵DE⊥AB,tanA═,∴DE=AD,∵Rt△ABC中,AC═8,tanA═,∴BC=4,AB==4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE==5,∴CE=8﹣5=3,∴Rt△BCE中,BE==5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.故答案为:6:5.十三、(2017奉贤一模)7.如果线段a、b、c、d满足==,那么= .8.计算:(2+6)﹣3= ﹣2+3.9.已知线段a=3,b=6,那么线段a、b的比例中项等于3.10.用一根长为8米的木条,做一个矩形的窗框.如果这个矩形窗框宽为x米,那么这个窗户的面积y(米2)与x(米)之间的函数关系式为y=﹣x2+4x (不写定义域).11.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是﹣1 (只需写一个).12.如果二次函数y=x2﹣mx+m+1的图象经过原点,那么m的值是﹣1 .13.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是4:9 .14.在△ABC中,点D、E分别在边AB、AC上,如果=,AE=4,那么当EC的长是 6 时,DE∥BC.15.如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么的值是.16.边长为2的等边三角形的重心到边的距离是.17.如图,如果在坡度i=1:2.4 的斜坡上两棵树间的水平距离AC为3米,那么两树间的坡面距离AB是米.18.如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是 1 .解:∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG==5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1,故答案为:1.十四、 (2017 浦东一模)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .9.已知||=2,||=4,且和反向,用向量表示向量= ﹣2.10.如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m= 2 .11.如果抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值围是a>3 .实用文档12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是y=﹣x2+4(0<x<2).13.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x= 3 .14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y 1<y 2(填“>”、“=”或“<”)15.如图,已知小鱼同学的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长分别为DE=2米,BE=5米,那么树的高度AB= 4 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= 4 .17.如图,点M是△ABC的角平分线AT的中点,点D、E分别在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C分别落在点B'、C'处,联结BC'与AC边交于点D,那么= .。

07.2017年上海高三数学一模分类汇编:解析几何

07.2017年上海高三数学一模分类汇编:解析几何

2(2017徐汇一模). 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为4(2017青浦一模). 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两点,且||AB =,则该双曲线的实轴长等于4(2017崇明一模). 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为4(2017宝山一模). 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5(2017普陀一模). 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是6(2017浦东一模). 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6, 则b =6(2017金山一模). 点(1,0)到双曲线2214x y -=的渐近线的距离是 6(2017奉贤一模). 若抛物线22y px =的焦点与椭圆2215x y +=的右焦点重合,则p =7(2017虹口一模). 若双曲线2221y x b-=的一个焦点到其渐近线距离为线焦距等于8(2017普陀一模). 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直线与圆C 相切,则k 的取值范围是9(2017浦东一模). 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交 双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为9(2017金山一模). 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)9(2017杨浦一模). 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10(2017松江一模). 设(,)P x y 是曲线1C =上的点,1(4,0)F -,2(4,0)F , 则12||||PF PF +的最大值为10(2017闵行一模). 已知x 、y 满足曲线方程2212x y +=,则22x y +的取值范围是10(2017杨浦一模). 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共点,则此双曲线的标准方程为11(2017虹口一模). 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于 抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于11(2017杨浦一模).平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12(2017虹口一模). 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取 值与x 、y 均无关,则实数a 的取值范围是12(2017金山一模). 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称;③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ;其中,所有正确结论的序号是13(2017奉贤一模). 对于常数m 、n ,“0mn <”是“方程221mx ny +=表示的曲线 是双曲线”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14(2017静安一模). 已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均 为原点O ,从每条曲线上各取两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之 间的距离为( )A.1 B. 1 C. 1 D. 215(2017崇明一模). 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y +=16(2017杨浦一模). 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥16(2017闵行一模). 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过201716(2017徐汇一模). 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个17(20172017静安一模). 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅的取值范围; (2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程; 18(2017普陀一模). 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12arccos 9PF F ∠=,12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;18(2017宝山一模). 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-;(1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||AB =试求直线l 的倾斜角;18(2017杨浦一模). 如图所示,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段,点A 、B 在1l 上,且位于M 点的两侧,C 在2l 上,AM BM NM CN ===; (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积9ABCN V =,求异面直线1l 、2l 之间的距离;19(2017青浦一模). 如图,1F 、2F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,且焦距为AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;19(2017浦东一模). 已知椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为1F 、2F ,过2F 的一条直线交椭圆于P 、Q 两点,若△12PF F 的周长为4+,且长轴长与短轴长; (1)求椭圆C 的方程;(2)若12||||F P F Q PQ +=,求直线PQ 的方程;19(2017金山一模). 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短倍,直线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;19(2017崇明一模). 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;19(2017杨浦一模). 如图所示,椭圆22:14x C y +=,左右焦点分别记作1F 、2F ,过1F 、2F 分别作直线1l 、2l 交椭圆于AB 、CD ,且1l ∥2l ;(1)当直线1l 的斜率1k 与直线BC 的斜率2k 都存在时,求证:12k k ⋅为定值; (2)求四边形ABCD 面积的最大值;20(2017闵行一模). 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距为P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围;(3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;20(2017奉贤一模). 过双曲线2214y x -=的右支上的一点P 作一直线l 与两渐近线交于A 、B 两点,其中P 是AB 的中点;(1)求双曲线的渐近线方程;(2)当P 坐标为0(,2)x 时,求直线l 的方程; (3)求证:||||OA OB ⋅是一个定值;20(2017虹口一模). 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;20(2017松江一模). 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;20(2017徐汇一模). 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ;(1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=?,若存在, 求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程;。

2017年上海高考数学真题试卷(word解析版)

 2017年上海高考数学真题试卷(word解析版)

绝密★启用前2017年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)1、考生注意2、1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.3、2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.4、3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.5、4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一.填空题目(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知集合{1,2,3,4}A ,集合{3,4,5}B ,则A B ∩2.若排列数6654m P ,则m3.不等式11x x 的解集为4.已知球的体积为36 ,则该球主视图的面积等于5.已知复数z 满足30z z,则||z6.设双曲线22219x y b(0)b 的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF ,则2||PF7.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC的坐标为8.定义在(0,) 上的函数()y f x 的反函数为1()y f x ,若31,0()(),0x x g x f x x为奇函数,则1()2f x 的解为9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10.已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b的项是互不相等的正整数,若对于任意*n N ,{}n b 的第na 项等于{}n a 的第nb 项,则149161234lg()lg()b b b b b b b b11.设1a 、2a R ,且121122sin 2sin(2) ,则12|10| 的最小值等于12.如图,用35个单位正方形拼成一个矩形,点1P、2P 、3P 、4P 以及四个标记为“”的点在正方形的顶点处,设集合1234{,,,}P P P P ,点P ,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()()P P D l D l ,则 中所有这样的P 为二.选择题目(本大题共4题,每题5分,共20分)13.关于x 、y 的二元一次方程组50234x y x y的系数行列式D 为()A.0543 B.1024 C.1523 D.605414.在数列{}n a 中,1(2nn a ,*n N ,则lim n n a ()A.等于12B.等于0C.等于12D.不存在15.已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N ,则“存在*k N ,使得100kx 、200kx 、300kx 成等差数列”的一个必要条件是()A.0aB.0b C.0c D.20a b c 16.在平面直角坐标系xOy 中,已知椭圆221:1364x y C 和222:19y C x .P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ的最大值.记{(,)|P Q P 在1C 上,Q 在2C 上,且}OP OQ w,则 中元素个数为()A.2个B.4个C.8个D.无穷个三.解答题(本大题共5题,共14+14+14+16+18=76分)17.如图,直三棱柱111ABC A B C 的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C 的体积;(2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18.已知函数221()cos sin 2f x x x,(0,)x .(1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A所对边a ,角B 所对边5b ,若()0f A ,求△ABC 的面积.19.根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.在平面直角坐标系xOy 中,已知椭圆22:14x y ,A 为 的上顶点,P 为 上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P在第一象限,且||OP ,求P的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP ,直线AQ 与 交于另一点C ,且2AQ AC ,4PQ PM ,求直线AQ 的方程.21.设定义在R 上的函数()f x 满足:对于任意的1x 、2x R ,当12x x 时,都有12()()f x f x .(1)若3()1f x ax ,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值.函数()()()h x f x g x .证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年普通高等学校招生全国统一考试上海--数学试卷考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题目,用黑色字迹钢笔、水笔或圆珠笔作答非选择题目.一、填空题目(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知集合1,2,3,4,3,4,5A B ,则A B ∩.【解析】本题考查集合的运算,交集,属于基础题【答案】3,42.若排列数6P 654m ,则m .【解析】本题考查排列的计算,属于基础题【答案】33.不等式11x x 的解集为.【解析】本题考查分式不等式的解法,属于基础题【答案】,0 4.已知球的体积为36 ,则该球主视图的面积等于.【解析】本题考查球的体积公式和三视图的概念,343633R R ,所以29S R ,属于基础题【答案】95.已知复数z 满足30z z,则z .【解析】本题考查复数的四则运算和复数的模,2303z z z设z a bi ,则22230,a b abi a b,z【答案】6.设双曲线 222109x y b b 的焦点为12F F 、,P为该双曲线上的一点.若15PF ,则2PF.【解析】本题考查双曲线的定义和性质,1226PF PF a (舍),2122611PF PF a PF 【答案】117.如图,以长方体1111ABCD A B C D 的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系.若1DB 的坐标为(4,3,2),则1AC的坐标是.【解析】本题考查空间向量,可得11(400)(03,2)(432)A C AC,,,,,,,属于基础题【答案】(432) ,,8.定义在(0,) 上的函数()y f x 的反函数-1()y f x .若31,0,()(),0x x g x f x x 为奇函数,则-1()=2f x 的解为.【解析】本题考查函数基本性质和互为反函数的两个函数之间的关系,属于中档题10,0,()31()()13x x x x g x g x g x,所以1()13x f x,当2x 时,8()9f x,所以18(29f【答案】9x9.已知四个函数:①y x ;②1y x;③3y x ;④12y x .从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为.【解析】本题考查事件的概率,幂函数的图像画法和特征,属于基础题总的情况有:42C 6种,符合题意的就两种:①和③,①和④【答案】1310.已知数列na 和 nb ,其中2,N na n n , nb 的项是互不相等的正整数.若对于任意N n n b ,中的第n a 项等于 n a 中的第n b 项,则149161234lg lg b b b b b b b b.【解析】本题考查数列概念的理解,对数的运算,属于中档题由题意可得:222222114293164(),,,n n a b n n b a b b b b b b b b b b ,所以214916123412341234lg lg =2lg lg b b b b b b b b b b b b b b b b 【答案】211.设12R ,,且121122sin 2sin(2) ,则1210 的最小值等于.【解析】考查三角函数的性质和值域,121111,1,12sin 32sin(2)3,,要使121122sin 2sin(2) ,则111122221=122sin 2,,1=12sin(2)4k k k Z k1212min min31010(2)44k k,当122=11k k 时成立【答案】412.如图,用35个单位正方形拼成一个矩形,点1234,,,P P P P 以及四个标记为“▲”的点在正方形的顶点处.设集合1234=,,,P P P P ,点P .过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1()P D l 和2()P D l 分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足12()=()P P D l D l ,则 中所有这样的P 为.【解析】本题考查有向距离,以左下角的顶点为原点建立直角坐标系。

2017年上海市高考数学试卷(含解析版)

2017年上海市高考数学试卷(含解析版)

2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= .2.(4分)若排列数=6×5×4,则m= .3.(4分)不等式>1的解集为.4.(4分)已知球的体积为36π,则该球主视图的面积等于.5.(4分)已知复数z满足z+=0,则|z|= .6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|= .7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则= .11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P 的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于B.等于0C.等于D.不存在15.(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0 16.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P 为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.2017年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B= {3,4} .【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}.故答案为:{3,4}.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.(4分)若排列数=6×5×4,则m= 3 .【考点】D4:排列及排列数公式.【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】利用排列数公式直接求解.【解答】解:∵排列数=6×5×4,∴由排列数公式得,∴m=3.故答案为:m=3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用.3.(4分)不等式>1的解集为(﹣∞,0).【考点】7E:其他不等式的解法.【专题】35:转化思想;4R:转化法;59:不等式的解法及应用.【分析】根据分式不等式的解法求出不等式的解集即可.【解答】解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0).【点评】本题考查了解分式不等式,考查转化思想,是一道基础题.4.(4分)已知球的体积为36π,则该球主视图的面积等于9π.【考点】L7:简单空间图形的三视图.【专题】31:数形结合;48:分析法;5U:球.【分析】由球的体积公式,可得半径R=3,再由主视图为圆,可得面积.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.【点评】本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题.5.(4分)已知复数z满足z+=0,则|z|= .【考点】A5:复数的运算.【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.【分析】设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b 的值得答案.【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.【点评】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题.6.(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|= 11 .【考点】KC:双曲线的性质.【专题】11:计算题;34:方程思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案.【解答】解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11.【点评】本题考查双曲线的几何性质,关键是掌握双曲线的定义.7.(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2).【考点】JH:空间中的点的坐标.【专题】11:计算题;31:数形结合;44:数形结合法;5H:空间向量及应用.【分析】由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果.【解答】解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴.故答案为:(﹣4,3,2).【点评】本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题.8.(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为.【考点】4R:反函数.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【解答】解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=.故答案为:.【点评】本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题.9.(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【考点】3A:函数的图象与图象的变换;CC:列举法计算基本事件数及事件发生的概率.【专题】11:计算题;33:函数思想;4O:定义法;5I:概率与统计.【分析】从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率.【解答】解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.10.(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=2 .【考点】8H:数列递推式.【专题】34:方程思想;4R:转化法;51:函数的性质及应用;54:等差数列与等比数列.【分析】a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n 项,可得==.于是b1=a1=1,=b4,=b9,=b16.即可得出.【解答】解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==.∴b1=a1=1,=b4,=b9,=b16.∴b1b4b9b16=.∴=2.故答案为:2.【点评】本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题.11.(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于.【考点】GF:三角函数的恒等变换及化简求值.【专题】35:转化思想;4R:转化法.【分析】由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1.求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值【解答】解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1.则:,k1∈Z.,即,k2∈Z.那么:α1+α2=(2k1+k2)π,k1、k2∈Z.∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为.故答案为:.【点评】本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查.12.(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P 的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4.【考点】F4:进行简单的合情推理.【专题】35:转化思想;44:数形结合法;5M:推理和证明.【分析】根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论.【解答】解:建立平面直角坐标系,如图所示;则记为“▲”的四个点是A(0,3),B(1,0),C(7,1),D(4,4),线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;设四边形重心为M(x,y),则+++=,由此求得M(3,2),即为平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4.故答案为:P1、P3、P4.【点评】本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力.二、选择题(本大题共4题,每题5分,共20分)13.(5分)关于x、y的二元一次方程组的系数行列式D为()A.B.C.D.【考点】O1:二阶矩阵.【专题】11:计算题;38:对应思想;4O:定义法;5R:矩阵和变换.【分析】利用线性方程组的系数行列式的定义直接求解.【解答】解:关于x、y的二元一次方程组的系数行列式:D=.故选:C.【点评】本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用.14.(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A.等于B.等于0C.等于D.不存在【考点】6F:极限及其运算.【专题】38:对应思想;4O:定义法;55:点列、递归数列与数学归纳法.【分析】根据极限的定义,求出a n=的值.【解答】解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0.故选:B.【点评】本题考查了极限的定义与应用问题,是基础题.15.(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【考点】29:充分条件、必要条件、充要条件.【专题】34:方程思想;54:等差数列与等比数列;5L:简易逻辑.【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.16.(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1.P 为C1上的动点,Q为C2上的动点,w是的最大值.记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A.2个B.4个C.8个D.无穷个【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;57:三角函数的图像与性质;5D:圆锥曲线的定义、性质与方程.【分析】设出P(6cosα,2sinα),Q(cosβ,3sinβ),0≤αβ<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数.【解答】解:椭圆C1:=1和C2:x2+=1.P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤αβ<2π,则=6cosαcosβ+6sinαsinβ=6cos(α﹣β),当α﹣β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对.另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=9nu,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确.故选:D.【点评】本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果.(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M与平面ABC所成角的大小.【解答】解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20.(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan.【点评】本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.18.(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π).(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积.【考点】HT:三角形中的几何计算.【专题】35:转化思想;48:分析法;57:三角函数的图像与性质;58:解三角形.【分析】(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值.【解答】解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=.【点评】本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题.19.(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【考点】5C:根据实际问题选择函数类型.【专题】38:对应思想;49:综合法;54:等差数列与等比数列.【分析】(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.【解答】解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935.(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大.当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782.S42=﹣4×16+8800=8736.∵8782>8736,∴第42个月底单车保有量超过了容纳量.【点评】本题考查了数列模型的应用,等差数列的求和公式,属于中档题.20.(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程.【考点】KL:直线与椭圆的综合.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标.(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意.由此能求出点M的横坐标.(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ.【解答】解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,).(2)设M(x0,0),A(0,1),P(),若∠P=90°,则?,即(x0﹣,﹣)?(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=.如图,若∠M=90°,则?=0,即(﹣x0,1)?(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意.∴点M的横坐标为,或1,或.(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图.∴直线AQ为y=x+1.【点评】本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题.21.(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【考点】3Q:函数的周期性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明.类似(2)证明充分性;再证必要性,然后分类证明.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1?g(x),则对任意x0∈R,h(x0+T g)=c1?g(x0+T g)=c1?g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]?[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)?f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)?f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.【点评】本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.。

2017上海各区数学一模 24、25汇总 - 解析

2017上海各区数学一模 24、25汇总  - 解析

2017年上海市一模压轴题 解析一、(2017徐汇一模)24. 解:(1)∵抛物线32++-=bx x y 与y 轴交于点C ,∴)3,0(C ;又抛物线32++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左侧),∵OC OB =;∴)0,3(B ;∴0339=++-b ,解得2=b ;∴322++-=x x y ;∴)4,1(D .(2)∵OC OB =,∴︒=∠=∠45OBC OCB ; ∵)3,0(C ,)4,1(D ,∴︒=∠45DCy ;∴︒=︒⨯-︒=∠90452180DCB ;∴3223cot ===∠DC BC DBC . (3)由322++-=x x y ,可得)0,1(-A .在AOC ∆和BCD ∆中,3==CDBCAO CO , ︒=∠=∠90DCB AOC ,∴AOC ∆∽BCD ∆,∴CBD ACO ∠=∠; 又CBD E OCB ACO ACB ∠+∠=∠+∠=∠,∴︒=∠=∠45OCB E ; 当EBM ∆和ABC ∆相似时,已可知CBA E ∠=∠;又点M 在线段CA 延长线上,EBA ACB ∠=∠,∴可得ACB EMB ∠=∠; ∴23==BC MB ;由题意,得直线AC 的表达式为33+=x y ;设)33,(+x x M . ∴18)33()3(22=++-x x ,解得561-=x ,02=x (舍去);∴点M 的坐标是)53,56(--. 25.(本题满分14分)解:(1)过点D 作AC DF //.交BP 于点F .∴21==QE DQ PE DF ;又BC DE //,∴1==ABAC BD EC ; ∴x BD EC ==;y x PE --=3;QPDBAC E F∵AC DF //,∴AB BD AP DF =;即323xy y x =--,∴3239+-=x x y ;定义域为:30<<x .(2)∵BC DE //,∴PEQ ∆∽PBC ∆;∴当PEQ ∆是等腰三角形时,PBC ∆也是等腰三角形;︒1当BC PB =时,ABC ∆∽PBC ∆;∴AC CP BC ⋅=2;即)3(34y -=,解得35=y ,∴353239=+-x x ,解得1912==x BD ; ︒2当2==BC PC 时,1==y AP ;∴13239=+-x x ,56==x BD ;︒3当PB PC =时,点P 与点A 重合,不合题意.(3)∵BC DE //,∴︒=∠+∠180CBD BDQ ;又CQB ∠和CBD ∠互补,∴︒=∠+∠180CBD CQB ;∴BDQ CQB ∠=∠;∵CE BD =,∴四边形BCED 是等腰梯形;∴CED BDE ∠=∠;∴CED CQB ∠=∠; 又CED ECQ CQB DQB ∠+∠=∠+∠,∴ECQ DQB ∠=∠;∴BDQ ∆∽QEC ∆;∴EC DQ QE BD =:即222x DQ =,∴2x DQ =,23x DE =; ∵BC DE //,∴AB AD BC DE =;即33223x x -=; 解得 7324254-=x .二、(2017黄埔一模) 24.(本题满分12分)解:(1)令抛物线的表达式为c bx ax y ++=2,由题意得:⎪⎩⎪⎨⎧=++=++=++64160390c b a c b a c b a ,解得:⎪⎩⎪⎨⎧=-==682c b a ,所以抛物线的表达式为6822+-=x x y . (2)由(1)得平移前抛物线的对称轴为直线x =2,顶点为()2,2-.则平移后抛物线的对称轴为直线x =8,令()0,8a D -,其中0>a ,则()0,8a E +。

2017年上海市金山区高考数学一模试卷含详解

2017年上海市金山区高考数学一模试卷含详解

2017年上海市金山区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)若集合M={x|x2﹣2x<0},N={x||x|>1},则M∩N=.2.(4分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=.3.(4分)若sinα=﹣,且α为第四象限角,则tanα的值等于.4.(4分)函数的最小正周期T=.5.(4分)函数f(x)=2x+m的反函数为y=f﹣1(x),且y=f﹣1(x)的图象过点Q (5,2),那么m=.6.(4分)点(1,0)到双曲线的渐近线的距离是.7.(5分)若x,y满足,则2x+y的最大值为.8.(5分)从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有种不同的选法(结果用数值表示).9.(5分)方程x2+y2﹣4tx﹣2ty+3t2﹣4=0(t为参数)所表示的圆的圆心轨迹方程是(结果化为普通方程)10.(5分)若a n是(2+x)n(n∈N*,n≥2,x∈R)展开式中x2项的二项式系数,则=.11.(5分)设数列{a n}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{a n}中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则a15的值为.12.(5分)曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹,下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)成中心对称;③若点P在曲线C上,点A、B分别在直线l1、l2上,则|PA|+|PB|不小于2k;④设P0为曲线C上任意一点,则点P0关于直线l1:x=﹣1,点(﹣1,1)及直线f(x)对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2;其中,所有正确结论的序号是.二.选择题(本大题共4题,每题5分,共20分)13.(5分)给定空间中的直线l与平面α,则“直线l与平面α垂直”是“直线l垂直于平面α上无数条直线”的()条件.A.充分非必要B.必要非充分C.充要D.既不充分也不必要14.(5分)已知x、y∈R,且x>y>0,则()A.B.C.log2x+log2y>0D.sinx﹣siny>015.(5分)某几何体的三视图如图所示,则它的体积是()A.8﹣B.8﹣C.8﹣2πD.16.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a 的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成的角依次是和,AP=2,E、F依次是PB、PC的中点;(1)求异面直线EC与PD所成角的大小;(结果用反三角函数值表示)(2)求三棱锥P﹣AFD的体积.18.(14分)已知△ABC中,AC=1,,设∠BAC=x,记;(1)求函数f(x)的解析式及定义域;(2)试写出函数f(x)的单调递增区间,并求方程的解.19.(14分)已知椭圆C以原点为中心,左焦点F的坐标是(﹣1,0),长轴长是短轴长的倍,直线l与椭圆C交于点A与B,且A、B都在x轴上方,满足∠OFA+∠OFB=180°;(1)求椭圆C的标准方程;(2)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.20.(16分)已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;(1)求实数a、b的值;(2)若不等式对任意x∈R恒成立,求实数k的范围;(3)对于定义在[p,q]上的函数m(x),设x0=p,x n=q,用任意x i(i=1,2,…,n﹣1)将[p,q]划分成n个小区间,其中x i﹣1<x i<x i+1,若存在一个常数M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(x n﹣1)﹣m (x n)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.21.(18分)数列{b n}的前n项和为S n,且对任意正整数n,都有;(1)试证明数列{b n}是等差数列,并求其通项公式;(2)如果等比数列{a n}共有2017项,其首项与公比均为2,在数列{a n}的每相邻两项a i与a i+1之间插入i个(﹣1)i b i(i∈N*)后,得到一个新数列{c n},求数列{c n}中所有项的和;(3)如果存在n∈N*,使不等式成立,若存在,求实数λ的范围,若不存在,请说明理由.2017年上海市金山区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)若集合M={x|x2﹣2x<0},N={x||x|>1},则M∩N=(1,2).【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】解x2﹣2x<0可得集合M={x|0<x<2},解|x|>1可得集合N,由交集的定义,分析可得答案.【解答】解:x2﹣2x<0⇔0<x<2,则集合M={x|0<x<2}=(0,2)|x|>1⇔x<﹣1或x>1,则集合N=(﹣∞,﹣1)∪(1,+∞),则M∩N=(1,2),故答案为:(1,2)【点评】本题考查集合交集的计算,关键是求出集合集合M、N,注意答案写成集合或区间的形式.2.(4分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=1﹣2i.【考点】A5:复数的运算.【专题】11:计算题;36:整体思想;4O:定义法;5N:数系的扩充和复数.【分析】设复数z=a+bi,(a、b是实数),则=a﹣bi,代入已知等式,再根据复数相等的含义可得a、b的值,从而得到复数z的值.【解答】解:设z=a+bi,(a、b是实数),则=a﹣bi,∵2z+=3﹣2i,∴2a+2bi+a﹣bi=3﹣2i,∴3a=3,b=﹣2,解得a=1,b=﹣2,则z=1﹣2i故答案为:1﹣2i.【点评】本题给出一个复数乘以虚数单位后得到的复数,求这个复数的值,着重考查了复数的四则运算和复数相等的含义,属于基础题.3.(4分)若sinα=﹣,且α为第四象限角,则tanα的值等于.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题;35:转化思想;56:三角函数的求值.【分析】由已知利用同角三角函数基本关系式可求cosα,进而可求tanα的值.【解答】解:∵sinα=﹣,且α为第四象限角,∴cosα===,∴tanα===.故答案为:.【点评】本题主要考查了同角三角函数基本关系式在三角函数求值中的应用,属于基础题.4.(4分)函数的最小正周期T=π.【考点】GP:两角和与差的三角函数;H1:三角函数的周期性;ON:二阶行列式与逆矩阵.【专题】57:三角函数的图像与性质.【分析】利用行列式的计算方法化简f(x)解析式,再利用二倍角的余弦函数公式化为一个角的余弦函数,找出ω的值,即可求出最小正周期.【解答】解:f(x)=cos2x﹣sin2x=cos2x,∵ω=2,∴T=π.故答案为:π【点评】此题考查了二倍角的余弦函数公式,三角函数的周期性及其求法,以及二阶行列式与逆矩阵,化简函数解析式是解本题的关键.5.(4分)函数f(x)=2x+m的反函数为y=f﹣1(x),且y=f﹣1(x)的图象过点Q (5,2),那么m=1.【考点】4R:反函数.【专题】4O:定义法;51:函数的性质及应用.【分析】根据反函数的性质可知:原函数与反函数的图象关于y=x对称,利用对称关系可得答案.【解答】解:f(x)=2x+m的反函数y=f﹣1(x),∵函数y=f﹣1(x)的图象经过Q(5,2),原函数与反函数的图象关于y=x对称,∴f(x)=2x+m的图象经过Q′(2,5),即4+m=5,解得:m=1.故答案为:1.【点评】本题考查了原函数与反函数的图象的关系,它们的图象关于y=x对称,即坐标也对称.属于基础题.6.(4分)点(1,0)到双曲线的渐近线的距离是.【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【解答】解:双曲线的一条渐近线方程为:x+2y=0,点(1,0)到双曲线的渐近线的距离是:=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式的应用,是基础题.7.(5分)若x,y满足,则2x+y的最大值为4.【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;49:综合法;5T:不等式.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).设z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(1,2),代入目标函数z=2x+y得z=1×2+2=4.即目标函数z=2x+y的最大值为4.故答案为:4.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.(5分)从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课代表,共有48种不同的选法(结果用数值表示).【考点】D9:排列、组合及简单计数问题.【专题】12:应用题;34:方程思想;4G:演绎法;5O:排列组合.【分析】根据分步计数原理,先安排数学课代表,再安排语文、英语课代表.【解答】解:先从除了甲之外的4人选1人为数学课代表,再从包含甲在内的4人中选2人为语文、英语课代表,根据分步计数原理可得,共有A41A42=48种,故学生甲不能担任数学课代表,共有48种不同的选法.故答案为48.【点评】本题考查了分步计数原理,关键是分步,属于基础题.9.(5分)方程x2+y2﹣4tx﹣2ty+3t2﹣4=0(t为参数)所表示的圆的圆心轨迹方程是x﹣2y=0(结果化为普通方程)【考点】J3:轨迹方程.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】把圆化为标准方程后得到:圆心坐标,令x=2t,y=t,消去t即可得到y 与x的解析式.【解答】解:把圆的方程化为标准方程得(x﹣2t)2+(y﹣t)2=2t2+4,圆心(2t,t)则圆心坐标为,所以消去t可得x=2y,即x﹣2y=0.故答案为:x﹣2y=0【点评】此题考查学生会将圆的方程变为标准方程,会把直线的参数方程化为一般方程.10.(5分)若a n是(2+x)n(n∈N*,n≥2,x∈R)展开式中x2项的二项式系数,则=2.【考点】8J:数列的极限;DA:二项式定理.【专题】11:计算题;33:函数思想;35:转化思想;49:综合法;54:等差数列与等比数列;5P:二项式定理.,令r=2,可得a n,再利【分析】(2+x)n(其中n=2,3,4,…)的展开式,T r+1用求和公式化简,利用数列的极限即可得出.=,令r=2,【解答】解:(2+x)n(其中n=2,3,4,…)的展开式,T r+1可得:T3=2n﹣2x2.∴a n是二项式(2+x)n(其中n=2,3,4,…)的展开式中x的二项式系数,∴a n==.则=2= =2.故答案为:2.【点评】本题考查二项式定理的应用,数列求和,数列的极限的求法,考查计算能力.11.(5分)设数列{a n}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的数从小到大排列成的数列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,将数列{a n}中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则a15的值为324.【考点】F1:归纳推理.【专题】15:综合题;35:转化思想;4G:演绎法;5L:简易逻辑.【分析】如果用(t,s)表示3s+3t,则4=(0,1)=30+31,10=(0,2)=30+32,12=(1,2)=31+32,….利用归纳推理即可得出.【解答】解:如果用(t,s)表示3s+3t,则4=(0,1)=30+31,10=(0,2)=30+32,12=(1,2)=31+32,28=(0,3)=30+33,30=(1,3)=31+33,36=(2,3)=32+33,….利用归纳推理即可得:a15=(4,5),则a15=34+35=324.故答案为:324.【点评】本题考查了指数幂的运算性质、归纳法,考查了推理能力与计算能力,属于基础题.12.(5分)曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹,下列四个结论:①曲线C过点(﹣1,1);②曲线C关于点(﹣1,1)成中心对称;③若点P在曲线C上,点A、B分别在直线l1、l2上,则|PA|+|PB|不小于2k;④设P0为曲线C上任意一点,则点P0关于直线l1:x=﹣1,点(﹣1,1)及直线f(x)对称的点分别为P1、P2、P3,则四边形P0P1P2P3的面积为定值4k2;其中,所有正确结论的序号是②③④.【考点】2K:命题的真假判断与应用.【专题】35:转化思想;4R:转化法;5L:简易逻辑.【分析】由题意曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹.利用直接法,设动点坐标为(x,y),及可得到动点的轨迹方程,然后由方程特点即可加以判断.【解答】解:由题意设动点坐标为(x,y),则利用题意及点到直线间的距离公式的得:|x+1||y﹣1|=k2,对于①,将(﹣1,1)代入验证,此方程不过此点,所以①错;对于②,把方程中的x被﹣2﹣x代换,y被2﹣y 代换,方程不变,故此曲线关于(﹣1,1)对称.所以②正确;对于③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则|PA|≥|x+1|,|PB|≥|y﹣1|∴|PA|+|PB|≥2=2k,所以③正确;对于④,由题意知点P在曲线C上,根据对称性,则四边形P0P1P2P3的面积=2|x+1|×2|y﹣1|=4|x+1||y﹣1|=4k2.所以④正确.故答案为:②③④.【点评】此题重点考查了利用直接法求出动点的轨迹方程,并化简,利用方程判断曲线的对称性,属于基础题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)给定空间中的直线l与平面α,则“直线l与平面α垂直”是“直线l垂直于平面α上无数条直线”的()条件.A.充分非必要B.必要非充分C.充要D.既不充分也不必要【考点】29:充分条件、必要条件、充要条件.【专题】38:对应思想;4R:转化法;5L:简易逻辑.【分析】根据充分必要条件的定义判断即可.【解答】解:若:直线l与平面α垂直”,则“直线l垂直于平面α上无数条直线”,是充分条件;若直线l垂直于平面α上无数条直线,则直线l与平面α不一定垂直,不是必要条件,故选:A.【点评】本题考查了充分必要条件,考查线面垂直的定义,是一道基础题.14.(5分)已知x、y∈R,且x>y>0,则()A.B.C.log2x+log2y>0D.sinx﹣siny>0【考点】72:不等式比较大小.【专题】11:计算题;35:转化思想;4O:定义法;5T:不等式.【分析】根据不等式的性质判断A,根据特殊值,判断C,D,根据指数函数的性质判断B【解答】解:因为x>y>0,所以<,故A错误,因为y=()x为减函数,故B正确,因为当1>x>y>0时,log2x+log2y=log2xy<0,故C错误,因为当x=π,y=时,sinx﹣siny<0,故D错误,故选:B.【点评】本题考查不等式大小的比较,关键是掌握函常用函数的性质,属于基础题.15.(5分)某几何体的三视图如图所示,则它的体积是()A.8﹣B.8﹣C.8﹣2πD.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为正方体内挖去一个圆锥.【解答】解:由题意可知,该几何体为正方体内挖去一个圆锥,正方体的边长为2,圆锥的底面半径为1,高为2,则正方体的体积为V1=23=8,圆锥的体积为V2=•π•12•2=,则该几何体的体积为V=8﹣,故选:A.【点评】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.16.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣x恰好有两个不相等的实数解,则a 的取值范围是()A.(0,]B.[,]C.[,]∪{}D.[,)∪{}【考点】53:函数的零点与方程根的关系;5B:分段函数的应用.【专题】15:综合题;31:数形结合;44:数形结合法;51:函数的性质及应用.【分析】利用函数是减函数,根据对数的图象和性质判断出a的大致范围,再根据f(x)为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出a的范围.【解答】解:y=loga(x+1)+1在[0,+∞)递减,则0<a<1,函数f(x)在R上单调递减,则:;解得,;由图象可知,在[0,+∞)上,|f(x)|=2﹣x有且仅有一个解,故在(﹣∞,0)上,|f(x)|=2﹣x同样有且仅有一个解,当3a>2即a>时,联立|x2+(4a﹣3)x+3a|=2﹣x,则△=(4a﹣2)2﹣4(3a﹣2)=0,解得a=或1(舍去),当1≤3a≤2时,由图象可知,符合条件,综上:a的取值范围为[,]∪{},故选:C.【点评】本题考查了方程的解个数问题,以及参数的取值范围,考查了学生的分析问题,解决问题的能力,以及数形结合的思想,属于中档题.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PB、PD与平面ABCD所成的角依次是和,AP=2,E、F依次是PB、PC的中点;(1)求异面直线EC与PD所成角的大小;(结果用反三角函数值表示)(2)求三棱锥P﹣AFD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LM:异面直线及其所成的角.【专题】15:综合题;35:转化思想;41:向量法;5F:空间位置关系与距离.【分析】(1)分别以AB、AD、AP所在直线为x、y、z轴建立空间直角坐标系.利用向量与所成角求得异面直线EC与PD所成角的大小;=V P﹣ACD﹣V F﹣ADC求解.(2)直接利用V P﹣AFD【解答】解:(1)分别以AB、AD、AP所在直线为x、y、z轴建立空间直角坐标系.∵AP=2,,∠PDA=,∴AB=2,AD=4,则P(0,0,2),D(0,4,0),E(1,0,1),C(2,4,0),,.∴cos<>===.∴异面直线EC与PD所成角的大小为;(2)V P=V P﹣ACD﹣V F﹣ACD==.﹣AFD【点评】本题考查异面直线所成角的求法,训练了利用空间向量求异面直线所成角,是中档题.18.(14分)已知△ABC中,AC=1,,设∠BAC=x,记;(1)求函数f(x)的解析式及定义域;(2)试写出函数f(x)的单调递增区间,并求方程的解.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;33:函数思想;41:向量法;5A:平面向量及应用.【分析】(1)由条件利用正弦定理、两个向量的数量积公式、三角恒等变换化简函数f(x)的解析式.(2)利用正弦函数的单调性求得f(x)的单调区间,并求出x的值.【解答】解:(1)由正弦定理有==∴BC=•sinx,AB=,∴=sinx•sin(﹣x)•=(cosx﹣sinx)sinx=sin(2x+)﹣,其定义域为(0,)(2)∵﹣+2kπ≤2x+≤+2kπ,k∈Z,∴﹣+kπ≤x≤+kπ,k∈Z,∵x∈(0,)∴递增区间,∵方程=sin(2x+)﹣,∴sin(2x+)=1,解得.【点评】本题考查了正弦定理、数量积运算、三角形的内角和定理、正弦函数的单调性,考查了推理能力和计算能力,属于中档题.19.(14分)已知椭圆C以原点为中心,左焦点F的坐标是(﹣1,0),长轴长是短轴长的倍,直线l与椭圆C交于点A与B,且A、B都在x轴上方,满足∠OFA+∠OFB=180°;(1)求椭圆C的标准方程;(2)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.【考点】K3:椭圆的标准方程;KL:直线与椭圆的综合.【专题】35:转化思想;44:数形结合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由题意可知设椭圆的标准方程为:(a>b>0),2a=•2b,即a=b,代入求得:a2=2,b2=1,即可求得椭圆C的标准方程;(2)B关于x轴的对称点B1在直线AF上.设直线AF方程:y=k(x+1),代入椭圆方程,由韦达定理及直线的斜率公式,代入由x==,此能证明直线l总经过定点M (﹣2,0).【解答】解:(1)设椭圆的标准方程为:(a>b>0),由题意可知:2a=•2b,即a=b,由c=1,则a2=b2+c2=b2+1,代入求得:a2=2,b2=1,椭圆C的方程为:;(2)存在一个定点M(﹣2,0),无论∠OFA如何变化,直线l总经过此定点证明:由OFA+∠OFB=180°,则B关于x轴的对称点B1在直线AF上.设A(x1,y1),B(x2,y2),B1(x2,﹣y2),设直线AF方程:y=k(x+1),代入,得:(k2+)x2+2k2x+k2﹣1=0,…(13分)由韦达定理可知:x1+x2=,x1•x2=,由直线AB的斜率k AB=AB的方程:y﹣y1=(x﹣x1),令y=0,得:x=x1﹣y1•,y1=k(x1+1),﹣y2=k(x2+1),x=====﹣2,∴直线l总经过定点M(﹣2,0).【点评】本题考查椭圆方程的求法,考查直线方程的求法,考查直线总过定点的证明,解题时要认真审题,注意函数与方程思想的合理运用,考查计算能力,属于中档题.20.(16分)已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R;(1)求实数a、b的值;(2)若不等式对任意x∈R恒成立,求实数k的范围;(3)对于定义在[p,q]上的函数m(x),设x0=p,x n=q,用任意x i(i=1,2,…,n﹣1)将[p,q]划分成n个小区间,其中x i﹣1<x i<x i+1,若存在一个常数M>0,使得不等式|m(x0)﹣m(x1)|+|m(x1)﹣m(x2)|+…+|m(x n﹣1)﹣m (x n)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数,试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值.【考点】3H:函数的最值及其几何意义;3R:函数恒成立问题.【专题】33:函数思想;35:转化思想;4J:换元法;4R:转化法;51:函数的性质及应用.【分析】(1)由已知中g(x)在区间[2,3]的最大值为4,最小值为1,结合函数的单调性及最值,我们易构造出关于a,b的方程组,解得a,b的值;(2)求出f(x),对任意x∈R恒成立等价于F(x)min=f(x)+g(x)恒成立,求实数k的范围;根据有界变差函数的定义,我们先将区间[1,3]进行划分,进而判断|m(xi)﹣m(xi﹣1)|≤M是否恒成立,进而得到结论.【解答】解:(1)∵函数g(x)=ax2﹣2ax+1+b,∵a>0,对称轴x=1,∴g(x)在区间[2,3]上是增函数,又∵函数g(x)故在区间[2,3]上的最大值为4,最小值为1,∴,解得:a=1,b=0.∴g(x)=x2﹣2x+1故实数a的值为1,b的值为0.(2)由(1)可知g(x)=x2﹣2x+1,∵f(x)=g(|x|),∴f(x)=x2﹣2|x|+1,∵对任意x∈R恒成立,令F(x)=f(x)+g(x)=x2﹣2x+1+x2﹣2|x|+1=根据二次函数的图象及性质可得F(x)min=f(1)=0则F(x)min≥恒成立,即:≤0令log2k=t,则有:t2﹣2t﹣3≤0,解得:﹣1≤t≤3,即,得:故得实数k的范围为.(3)函数f(x)为[1,3]上的有界变差函数.因为函数f(x)为[1,3]上的单调递增函数,且对任意划分T:1=x0<x1<…<x i <…<x n=3有f(1)=f(x0)<f(x1)<…<f(x I)<…<f(x n)=f(3)所以|m(xi)﹣m(xi﹣1)|=f(x1)﹣f(x0)+f(x2)﹣f(x1)<…<f(x n)﹣f(x n)﹣1=f(x n)﹣f(x0)=f(3)﹣f(1)=4恒成立,所以存在常数M,使得|m(xi)﹣m(xi﹣1)|≤M是恒成立.M的最小值为4,即M min=4;【点评】本题考查的知识点是函数恒成立问题,二次函数在闭区间上的最值,新定义,其中(1)的关键是分析出函数的单调性,(2)要用转化思想将其转化为二次函数(3)的关键是真正理解新定义的含义.21.(18分)数列{b n}的前n项和为S n,且对任意正整数n,都有;(1)试证明数列{b n}是等差数列,并求其通项公式;(2)如果等比数列{a n}共有2017项,其首项与公比均为2,在数列{a n}的每相邻两项a i与a i+1之间插入i个(﹣1)i b i(i∈N*)后,得到一个新数列{c n},求数列{c n}中所有项的和;(3)如果存在n∈N*,使不等式成立,若存在,求实数λ的范围,若不存在,请说明理由.【考点】8B:数列的应用;8I:数列与函数的综合.【专题】34:方程思想;35:转化思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)n=1时,b1=1;n≥2时,b n=S n﹣S n﹣1=n,即可证明.(2)通过题意,易得数列{a n}的通项公式为an=2n,当m=2k﹣1(k≥2,k∈N*)时,数列{c n}共有(2k﹣1)+1+2+…+(2k﹣2)=k(2k ﹣1)项,其所有项的和为Sk(2k﹣1)=(2+22+…+22k﹣1)+[﹣1+22﹣32+42﹣…﹣(2k ﹣3)2+(2k﹣2)2]=m(m﹣1)+2m+1﹣2.取m=2017时,可得数列{c n}中所有项的和.(3)不等式,即不等式(n+1)≤(n+1)λ≤,化为:f(n)=≤λ≤1+=g(n).通过验证:n=1,2,3时不等式不成立.n≥4时,f(n)≥f(n)=6,g(n)<6.即可得出结论.【解答】(1)证明:n=1时,b1=1;n≥2时,b n=S n﹣S n﹣1=﹣=n.n=1时也成立.∴b n=n为等差数列,首项与公差都为1.(2)解:通过题意,易得数列{a n}的通项公式为a n=2n,当m=2k﹣1(k≥2,k∈N*)时,数列{c n}共有(2k﹣1)+1+2+…+(2k﹣2)=k(2k﹣1)项,其所有项的和为Sk(2k﹣1)=(2+22+…+22k﹣1)+[﹣1+22﹣32+42﹣…﹣(2k ﹣3)2+(2k﹣2)2]=2(22k﹣1﹣1)+[3+7+…+(4k﹣5)]=22k﹣2+(2k﹣1)(k﹣1)=m(m﹣1)+2m+1﹣2.∴m=2017时,数列{c n}中所有项的和=22018+2033134.(3)不等式,即不等式(n+1)≤(n+1)λ≤,化为:f(n)=≤λ≤1+=g(n).∵f(n)≥f(3)=3+,g(n)≤g(1)=6.而n=1,2,3时不等式不成立.n≥4时,f(n)≥f(n)=6,g(n)<6.因此不存在n∈N*,使不等式成立.【点评】本题考查了等差数列与等比数列的定义通项公式及其求和公式、作差法、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于难题.。

2017年高考数学上海卷-答案

2017年高考数学上海卷-答案

上海市2017年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】{3,4}解析:利用交集定义直接求解。

【考点】交集的求法。

2.【答案】3m =解析:36654P =⨯⨯,故3m =.【考点】实数值的求法。

3.【答案】(,0)-∞【解析】由11x x ->得:11110x x x ->⇒⇒<0<。

【考点】解分式不等式4.【答案】9π【解析】代解:球的体积为36π,设球的半径为R ,可得34π36π3R =,可得3R =,该球主视图为半径为3的圆,可得面积为2π9πR =.故答案为:9π.【考点】球的体积公式,以及主视图的形状和面积求法。

5.【解析】设i(,)z a b a b =+∈R ,代入23z =-,由复数相等的条件列式求得a ,b 的值得答案.【考点】复数代数形式的乘除运算。

6.【答案】11【解析】根据题意,由双曲线的方程可得a 的值,结合双曲线的定义可得12||||||6PF PF -=,解可得2||PF 的值,即可得答案.【考点】双曲线的几何性质。

7.【答案】(4,3,2)-【解析】解:如图,以长方体ABCD ﹣A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵1DB 的坐标为(4,3,2),∴(4,0,0)A ,1(0,3,2)C ,∴1(4,3,2)AC =-.故答案为:(4,3,2)-.【考点】空间向量的坐标的求法。

8.【答案】89【解析】由奇函数的定义,当0x >时,0x -<,代入已知解析式,即可得到所求0x >的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值.【考点】函数的奇偶性和运用。

9.【答案】13【解析】从四个函数中任选2个,基本事件总数246n C ==,再利用列举法求出事件A :“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A :“所选2个函数的图象有且只有一个公共点”的概率.【考点】概率的求法。

2017年上海市高考数学模拟试卷 Word版含解析

2017年上海市高考数学模拟试卷 Word版含解析

2017年上海市高考数学模拟试卷一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.3.已知复数(i为虚数单位),则|z|=.4.函数,若存在锐角θ满足f(θ)=2,则θ=.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=.7.设k为常数,且,则用k表示sin2α的式子为sin2α=.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为.9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=.+112.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.19.某租车公司给出的财务报表如下:1014年(1﹣121015年(1﹣121016年(1﹣11月)月)月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.2017年上海市高考数学模拟试卷参考答案与试题解析一、填空题(本大题满分54分,1-6每小题4分,7-12每小题4分)1.计算:=﹣2.【考点】二阶矩阵.【分析】利用二阶行列式对角线法则直接求解.【解答】解:=4×1﹣3×2=﹣2.故答案为:﹣2.2.设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【考点】反函数.【分析】先求出x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,由此能求出f﹣1(4).【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.3.已知复数(i为虚数单位),则|z|=2.【考点】复数代数形式的乘除运算.【分析】利用复数模的计算公式即可得出.【解答】解:复数(i为虚数单位),则|z|==2.故答案为:2、4.函数,若存在锐角θ满足f(θ)=2,则θ=.【考点】三角函数的化简求值.【分析】运用两角和的正弦公式和特殊角的正弦函数值,计算即可得到所求值.【解答】解:函数=2(sinx+cosx)=2sin(x+),由若存在锐角θ满足f(θ)=2,即有2sin(θ+)=2,解得θ=﹣=.故答案为:.5.已知球的半径为R,若球面上两点A,B的球面距离为,则这两点A,B 间的距离为R.【考点】球面距离及相关计算.【分析】两点A、B间的球面距离为,可得∠AOB=,即可求出两点A,B 间的距离.【解答】解:两点A、B间的球面距离为,∴∠AOB=.∴两点A,B间的距离为R,故答案为:R.6.若(2+x)n的二项展开式中,所有二项式的系数和为256,则正整数n=8.【考点】二项式系数的性质.【分析】由题意可得:2n=256,解得n.【解答】解:由题意可得:2n=256,解得n=8.故答案为:8.7.设k为常数,且,则用k表示sin2α的式子为sin2α=2k2﹣1.【考点】二倍角的正弦.【分析】利用两角差的余弦函数公式化简已知等式,进而两边平方利用二倍角的正弦函数公式,同角三角函数基本关系式即可求解.【解答】解:∵,∴(cosα+sinα)=k,可得:cosα+sinα=k,∴两边平方可得:cos2α+sin2α+2cosαsinα=2k2,可得:1+sin2α=2k2,∴sin2α=2k2﹣1.故答案为:sin2α=2k2﹣1.8.设椭圆的两个焦点为F1,F2,M是椭圆上任一动点,则的取值范围为[﹣2,1] .【考点】椭圆的简单性质.【分析】由题意可知:焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),可得y2=1﹣,=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,则x2∈[0,4],的取值范围为[﹣2,1].【解答】解:如下图所示,在直角坐标系中作出椭圆:由椭圆,a=2,b=1,c=,则焦点坐标为F1(﹣,0),F2(,0),设点M坐标为M(x,y),由,可得y2=1﹣;=(﹣﹣x,﹣y),﹣=(﹣x,﹣y);=(﹣﹣x,﹣y)•(﹣x,﹣y)=x2﹣3+1﹣=﹣2,由题意可知:x∈[﹣2,2],则x2∈[0,4],∴的取值范围为[﹣2,1].故答案为:[﹣2,1].9.在△ABC中,内角A,B,C的对边分别是a,b,c,若,sinC=2 sinB,则A角大小为.【考点】余弦定理;同角三角函数基本关系的运用.【分析】先利用正弦定理化简sinC=2sinB,得到c与b的关系式,代入中得到a2与b2的关系式,然后利用余弦定理表示出cosA,把表示出的关系式分别代入即可求出cosA的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.【解答】解:由sinC=2sinB得:c=2b,所以=•2b2,即a2=7b2,则cosA===,又A∈(0,π),所以A=.故答案为:10.设f(x)=lgx,若f(1﹣a)﹣f(a)>0,则实数a的取值范围为.【考点】对数函数的图象与性质.【分析】由题意,f(x)=lgx在(0,+∞)上单调递增,利用f(﹣a)﹣f(a)>0,可得﹣a>a>0,即可求出实数a的取值范围.【解答】解:由题意,f(x)=lgx在(0,+∞)上单调递增,∵f(1﹣a)﹣f(a)>0,∴1﹣a>a>0,∴a∈,故答案为11.已知数列{a n}满足:a1=1,a n+a n=()n,n∈N*,则=﹣.+1【考点】极限及其运算.【分析】由已知推导出S2n=(1﹣),S2n﹣1=1+,从而a2n=S2n =﹣[1+(1﹣)],由此能求出.﹣S2n﹣1【解答】解:∵数列{a n}满足:a1=1,,n∈N*,∴(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)===(1﹣)=(1﹣),∴S2n=(1﹣),a1+(a2+a3)+(a4+a5)+…+(a2n+a2n﹣1)﹣2=1+=1+=1+,=1+,∴S2n﹣1∴a2n=S2n﹣S2n﹣1=﹣[1+(1﹣)],∴=﹣[1+(1﹣)]==﹣.故答案为:.12.已知△ABC的面积为360,点P是三角形所在平面内一点,且,则△PAB的面积为90.【考点】平面向量的基本定理及其意义.【分析】取AB的中点D,AC的中点E,则P为DE的中点,利用相似比,可得结论.【解答】解:取AB的中点D,AC的中点E,则P为DE的中点,∵△ABC的面积为360,∴△PAB的面积=△ADE的面积==90.故答案为90.二、选择题(本大题满分20分)13.已知集合A={x|x>﹣1},则下列选项正确的是()A.0⊆A B.{0}⊆A C.∅∈A D.{0}∈A【考点】元素与集合关系的判断.【分析】根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可得结论.【解答】解:根据元素与集合的关系,用∈,集合与集合的关系,用⊆,可知B 正确.故选B.14.设x,y∈R,则“|x|+|y|>1”的一个充分条件是()A.|x|≥1 B.|x+y|≥1 C.y≤﹣2 D.且【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:A.当x=1,y=0时,满足|x|≥1时,但|x|+|y|=1>1不成立,不满足条件.B.当x=1,y=0时,满足|x+y|≥1时,但|x|+|y|=1>1不成立,不满足条件.C.当y≤﹣2时,|y|≥2,则|x|+|y|>1成立,即充分性成立,满足条件.D.当且,则|x|+|y|≥1,等取等号时,不等式不成立,即充分性不成立,不满足条件.故选:C.15.图中曲线的方程可以是()A.(x+y﹣1)•(x2+y2﹣1)=0 B.C.D.【考点】曲线与方程.【分析】由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),即可得出结论.【解答】解:由图象可知曲线的方程可以是x2+y2=1或x+y﹣1=0(x2+y2≥1),故选C.16.已知非空集合M满足:对任意x∈M,总有x2∉M且,若M⊆{0,1,2,3,4,5},则满足条件M的个数是()A.11 B.12 C.15 D.16【考点】集合的包含关系判断及应用.【分析】由题意M是集合{2,3,4,5}的非空子集,且2,4不同时出现,同时出现有4个,即可得出结论.【解答】解:由题意M是集合{2,3,4,5}的非空子集,有15个,且2,4不同时出现,同时出现有4个,故满足题意的M有11个,故选:A.三、解答题(本大题满分76分)17.已知A是圆锥的顶点,BD是圆锥底面的直径,C是底面圆周上一点,BD=2,BC=1,AC与底面所成角的大小为,过点A作截面ABC,ACD,截去部分后的几何体如图所示.(1)求原来圆锥的侧面积;(2)求该几何体的体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积. 【分析】(1)设BD 的中点为O ,连结OA ,OC ,则OA ⊥平面BCD .由经能求出S 圆锥侧.(2)该几何体的体积V=(S △BCD +S 半圆)•AO ,由此能求出结果. 【解答】解:(1)设BD 的中点为O ,连结OA ,OC , ∵A 是圆锥的顶点,BD 是圆锥底面的直径, ∴OA ⊥平面BCD .∵BD=2,BC=1,AC 与底面所成角的大小为,过点A 作截面ABC ,ACD ,∴在Rt △AOC 中,OC=1,,AC=2,AO=,∴S 圆锥侧=πrl==2π.(2)该几何体为三棱锥与半个圆锥的组合体, ∵AO=,∠BCD=90°,∴CD=,该几何体的体积V=(S △BCD +S 半圆)•AO ==.18.已知双曲线Γ:(a>0,b>0),直线l:x+y﹣2=0,F1,F2为双曲线Γ的两个焦点,l与双曲线Γ的一条渐近线平行且过其中一个焦点.(1)求双曲线Γ的方程;(2)设Γ与l的交点为P,求∠F1PF2的角平分线所在直线的方程.【考点】双曲线的简单性质.【分析】(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),即可求双曲线Γ的方程;(2)设Γ与l的交点为P,求出P的坐标,利用夹角公式,即可求∠F1PF2的角平分线所在直线的方程.【解答】解:(1)依题意,双曲线的渐近线方程为y=±x,焦点坐标为F1(﹣2,0),F2(2,0),∴双曲线方程为x2﹣y2=2;(2),显然∠F1PF2的角平分线所在直线斜率k存在,且k>0,,,于是.∴为所求.19.某租车公司给出的财务报表如下:1014年(1﹣12月)1015年(1﹣12月)1016年(1﹣11月)接单量(单)144632724012512550331996油费(元)214301962591305364653214963平均每单油费t(元)14.8214.49平均每单里程k(公里)1515每公里油耗a(元)0.70.70.7有投资者在研究上述报表时,发现租车公司有空驶情况,并给出空驶率的计算公式为.(1)分别计算2014,2015年该公司的空驶率的值(精确到0.01%);(2)2016年该公司加强了流程管理,利用租车软件,降低了空驶率并提高了平均每单里程,核算截止到11月30日,空驶率在2015年的基础上降低了20个百分点,问2016年前11个月的平均每单油费和平均每单里程分别为多少?(分别精确到0.01元和0.01公里)【考点】函数模型的选择与应用.【分析】(1)根据空驶率的计算公式为,带入计算即可;(2)根据T2016的值,求出k的值,从而求出2016年前11个月的平均每单油费和平均每单里程.【解答】解:(1),,∴2014、2015年,该公司空驶率分别为41.14%和38.00%.(2),T2016=38%﹣20%=18%.由,∴2016年前11个月的平均每单油费为12.98元,平均每单里程为15.71km.20.已知数列{a n},{b n}与函数f(x),{a n}是首项a1=15,公差d≠0的等差数列,{b n}满足:b n=f(a n).(1)若a4,a7,a8成等比数列,求d的值;(2)若d=2,f(x)=|x﹣21|,求{b n}的前n项和S n;(3)若d=﹣1,f(x)=e x,T n=b1•b2•b3…b n,问n为何值时,T n的值最大?【考点】数列的求和;数列递推式.【分析】(1)由a4,a7,a8成等比数列,可得=a4•a8,可得(15+6d)2=(15+3d)(15+7d),化简解出即可得出..(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,对n分类讨论,利用等差数列的求和公式即可得出.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,利用指数运算性质、等差数列的求和公式及其二次函数的单调性即可得出.【解答】解:(1)∵a4,a7,a8成等比数列,∴=a4•a8,∴(15+6d)2=(15+3d)(15+7d),化为:d2+2d=0,∵d≠0,∴d=﹣2.(2)依题意,a n=15+2(n﹣1)=2n+13,b n=|2n﹣8|,∴,∴.(3)依题意,a n=15﹣(n﹣1)=16﹣n,,,∴当n=15或16时,T n最大.21.对于函数f(x),若存在实数m,使得f(x+m)﹣f(m)为R上的奇函数,则称f(x)是位差值为m的“位差奇函数”.(1)判断函数f(x)=2x+1和g(x)=2x是否为位差奇函数?说明理由;(2)若f(x)=sin(x+φ)是位差值为的位差奇函数,求φ的值;(3)若f(x)=x3+bx2+cx对任意属于区间中的m都不是位差奇函数,求实数b,c满足的条件.【考点】抽象函数及其应用;函数奇偶性的性质.【分析】(1)根据“位差奇函数”的定义.考查h(x)=g(x+m)﹣g(m)=2x+m ﹣2m=2m(2x﹣1)即可,(2)依题意,是奇函数,求出φ;(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.假设h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需.【解答】解:(1)对于f(x)=2x+1,f(x+m)﹣f(m)=2(x+m)+1﹣(2m+1)=2x,∴对任意实数m,f(x+m)﹣f(m)是奇函数,即f(x)是位差值为任意实数m的“位差奇函数”;对于g(x)=2x,记h(x)=g(x+m)﹣g(m)=2x+m﹣2m=2m(2x﹣1),由h(x)+h(﹣x)=2m(2x﹣1)+2m(2﹣x﹣1)=0,当且仅当x=0等式成立,∴对任意实数m,g(x+m)﹣g(m)都不是奇函数,则g(x)不是“位差奇函数”;(2)依题意,是奇函数,∴(k∈Z).(3)记h(x)=f(x+m)﹣f(m)=(x+m)3+b(x+m)2+c(x+m)﹣m3﹣bm2﹣cm=x3+(3m+b)x2+(3m2+2bm+c)x.依题意,h(x)对任意都不是奇函数,若h(x)是奇函数,则3m+b=0,此时.故要使h(x)不是奇函数,必须且只需,且c∈R.2017年2月1日。

上海市各区2017届高三一模数学试卷

上海市各区2017届高三一模数学试卷
3. 已知 M x
1 x P x ≥ 0, x R , x 1 ≤ 2, x R , 则 M ∩P 等于 x 2


4.抛物线 y x 2 上一点 M 到焦点的距离为 1,则点 M 的纵坐标为 5.已知无穷数列 {an } 满足 an 1
18.(本题满分 14 分)本题共有 2 个小题,第(1)小题满分 6 分,第(2)小题满分 8 分. 在一个特定时段内,以点 D 为中心的 7 海里以内海域被设为警戒水域.点 D 正北 55 海里处有一个雷达观测站 A. 某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 且与 点 A 相距 40 2 海里的位置 B 处, 经过 40 分钟又测得该船已行驶到点 A 北偏东 45 (其
你认为正确论断的序号都填上)
(注:把
12.已知 AB 为单位圆 O 的一条弦,P 为单位圆 O 上的点.若 f ( ) AP AB ( R) 的
最小值为 m ,当点 P 在单位圆上运动时, m 的最大值为 为 .
4 ,则线段 AB 的长度 3
二、选择题(本大题共有 4 题,满分 20 分)
x 1 0 的解集为 x2 x 5cos 4. 椭圆 ( 为参数)的焦距为 y 4sin
3. 不等式 5. 设复数 z 满足 z 2 z 3 i ( i 为虚数单位) ,则 z 6. 若函数 y
cos x sin x
sin x cos x
n
求实数 x 的取值集合;
21. 设集合 A 、 B 均为实数集 R 的子集,记: A B {a b | a A, b B} ; (1)已知 A {0,1, 2} , B {1,3} ,试用列举法表示 A B ;

上海市金山区2017-2018学年高考数学一模试卷 Word版含解析

上海市金山区2017-2018学年高考数学一模试卷 Word版含解析

上海市金山区2017-2018学年高考数学一模试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N=__________.2.计算:=__________.3.不等式的解集是__________.4.如果复数z=(b∈R)的实部与虚部相等,则z的共轭复数=__________.5.方程:sinx+cosx=1在[0,π]上的解是__________.6.等差数列{a n}中,a2=8,S10=185,则数列{a n}的通项公式a n=__________(n∈N*).7.当a>0,b>0且a+b=2时,行列式的值的最大值是__________.8.若(x+)12的二项展开式中的常数项为m,则m=__________.9.从一堆苹果中任取5只,称得它们的质量为(单位:克):125 124 121 123 127,则该样本标准差s=__________(克)(用数字作答).10.三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是__________.11.从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是,则k=__________.12.已知点A(﹣3,﹣2)和圆C:(x﹣4)2+(y﹣8)2=9,一束光线从点A发出,射到直线l:y=x﹣1后反射(入射点为B),反射光线经过圆周C上一点P,则折线ABP的最短长度是__________.13.如图所示,在长方体ABCD﹣EFGH中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为,那么点M到平面EFGH 的距离是__________.14.已知点P(x0,y0)在椭圆C:(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:.根据以上性质,解决以下问题:已知椭圆L:,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,则a的取值范围是( ) A.a>1 B.a>0 C.﹣l<a<1 D.a<﹣1或a>116.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有( )A.60个B.48个C.36个D.24个17.设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于( )A.3 B.C.D.18.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是( )A.27 B.26 C.9 D.8三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.a、b、c分别是锐角△ABC的内角A、B、C的对边,向量=(2﹣2sinA,cosA+sinA),=(sinA﹣cosA,1+sinA),且∥.已知a=,△ABC面积为,求b、c的大小.20.如图,在四棱锥P﹣ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)(2)四棱锥P﹣ABCD的体积.21.已知a>0且a≠1,数列{a n}是首项与公比均为a的等比数列,数列{b n}满足b n=a n•lga n (n∈N*).(1)若a=3,求数列{b n}的前n项和S n;(2)若对于n∈N*,总有b n<b n+1,求a的取值范围.22.(16分)动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设点A(0,a)(a>2),动点T在曲线C上运动时,|AT|的最短距离为a﹣1,求a的值以及取到最小值时点T的坐标;(3)设P1,P2为曲线C的任意两点,满足OP1⊥OP2(O为原点),试问直线P1P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.23.(18分)设函数f(x)=2ka x+(k﹣3)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2﹣x)+f(tx+4)<0恒成立的t的取值范围;(3)若f(2)=3,且g(x)=2x+2﹣x﹣2mf(x)在[2,+∞)上的最小值为﹣2,求m的值.上海市金山区2015届高考数学一模试卷一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N=[0,5].考点:交集及其运算.专题:集合.分析:分别求出M与N中y的范围,确定出M与N,找出两集合的交集即可.解答:解:由M中y=﹣x2+5≤5,得到M=(﹣∞,5],由N中y=,x≥﹣2,得到y≥0,即N=[0,+∞),则M∩N=[0,5],故答案为:[0,5]点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.计算:=.考点:数列的极限.专题:点列、递归数列与数学归纳法.分析:直接利用数列极限的运算法则,分子分母同除3n,然后求解极限即可.解答:解:===.故答案为:.点评:本题考查数列极限的运算法则,基本知识的考查.3.不等式的解集是{x|0<x<1}.考点:其他不等式的解法.专题:计算题.分析:将不等式>1移项后通分,即可求得不等式的解集.解答:解:∵>1,∴﹣1=>0,∴>0,∴0<x<1.∴不等式的解集为{x|0<x<1}.故答案为:{x|0<x<1}.点评:本题考查不等式的解法,移项后通分是关键,属于基础题.4.如果复数z=(b∈R)的实部与虚部相等,则z的共轭复数=1﹣i.考点:复数的基本概念.专题:数系的扩充和复数.分析:利用分母实数化化简复数z,由条件求出b的值,代入求出复数z和.解答:解:由题意知,z===,因为复数z=(b∈R)的实部与虚部相等,所以2+b=2﹣b,解得b=0,则z=1+i,所以=1﹣i,故答案为:1﹣i.点评:本题考查复数的基本概念,化简复数的方法:分母实数化,以及共轭复数,属于基础题.5.方程:sinx+cosx=1在[0,π]上的解是或0.考点:三角方程.专题:三角函数的求值.分析:sinx+cosx=1,可得sin2x+cos2x+2sinxcosx=1,sinxcosx=0,可得sinx=0或cosx=0,利用x∈[0,π],即可得出.解答:解:∵sinx+cosx=1,∴sin2x+cos2x+2sinxcosx=1,∴sinxcosx=0,∴sinx=0或cosx=0,∵x∈[0,π],∴或0.故答案为:或0.点评:本题考查了同角三角函数的关系式、正弦函数与余弦函数的单调性,属于基础题.6.等差数列{a n}中,a2=8,S10=185,则数列{a n}的通项公式a n=3n+2(n∈N*).考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的通项公式和前n项和公式求出首项和公差,由此能求出数列的通项公式.解答:解:∵等差数列{a n}中,a2=8,S10=185,∴,解得a1=5,d=3,∴a n=5+(n﹣1)×3=3n+2.故答案为:3n+2.点评:本题考查等差数列的通项公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.7.当a>0,b>0且a+b=2时,行列式的值的最大值是0.考点:二阶行列式的定义;基本不等式.专题:矩阵和变换.分析:利用行列的性质和均值定理求解.解答:解:∵a>0,b>0且a+b=2时,∴行列式=ab﹣1≤﹣1=1﹣1=0.当且仅当a=b=1时,取“=”,∴行列式的值的最大值为0.故答案为:0.点评:本题考查行列式的最大值的求法,是基础题,解题时要认真审题,注意行列式性质和均值定理的合理运用.8.若(x+)12的二项展开式中的常数项为m,则m=7920.考点:二项式定理的应用.专题:二项式定理.分析:根据二项式展开式的通项公式,求出展开式为常数时r的值,再计算常数项m即可.解答:解:(x+)12的展开式的通项公式为T r+1=•x12﹣r•=2r••x12﹣3r,令12﹣3r=0,解得r=4;∴常数项m=24•=16×=7920.故答案为:7920.点评:本题考查了二项式定理的应用问题,也考查了组合公式的应用问题,是基础题目.9.从一堆苹果中任取5只,称得它们的质量为(单位:克):125 124 121 123 127,则该样本标准差s=2(克)(用数字作答).考点:极差、方差与标准差.专题:计算题;压轴题.分析:根据题意,利用平均数、方差、标准差的公式直接计算即可.解答:解:由题意得:样本平均数x=(125+124+121+123+127)=124,样本方差s2=(12+02+32+12+32)=4,∴s=2.故答案为2.点评:本题考查用样本的平均数、方差、标准差来估计总体的平均数、方差、标准差,属基础题,熟记样本的平均数、方差、标准差公式是解答好本题的关键.10.三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:将△BOC作为三棱锥的底面,当OA⊥平面BOC时,该棱锥的高最大,体积就最大,由此能求出三棱锥O﹣ABC体积的最大值.解答:解:将△BOC作为三棱锥的底面,∵OA=OB=OC=2,且∠BOC=45°,∴△BOS的面积为定值S==,∴当OA⊥平面BOC时,该棱锥的高最大,体积就最大,此时三棱锥O﹣ABC体积的最大值V=×S×h==.故答案为:.点评:本题考查三棱锥的体积的最大值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.11.从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是,则k=7.考点:古典概型及其概率计算公式.专题:概率与统计.分析:,先求出所有的基本事件有45种,再求出取到的一个数大于k,另一个数小于k的基本事件有(k﹣1)(10﹣k),根据古典概率公式即可得到关于k的方程解得即可解答:解:从集合{1,2,3,4,5,6,7,8,9,10}中任取两个数的基本事件有=45种,取到的一个数大于k,另一个数小于k,比k的小的数有(k﹣1)个.比k的大的数有(10﹣k)个,故有=(k﹣1)(10﹣k),所以取到的一个数大于k,另一个数小于k(其中k∈{5,6,7,8,9})的概率是P==,解得k=7故答案为:7点评:本题考查了古典概型的概率公式的应用,关键是求出取到的一个数大于k,另一个数小于k的基本事件,属于基础题12.已知点A(﹣3,﹣2)和圆C:(x﹣4)2+(y﹣8)2=9,一束光线从点A发出,射到直线l:y=x﹣1后反射(入射点为B),反射光线经过圆周C上一点P,则折线ABP的最短长度是10.考点:圆的标准方程.专题:直线与圆.分析:求出A点关于直线l:y=x﹣1的对称点D,连接D与圆C的圆心,交圆C于P,则折线ABP的最短长度等于|DC|﹣3.解答:解:如图:设A(﹣3,﹣2)关于直线l:y=x﹣1的对称点为D(x0,y0),由,解得D(﹣1,﹣4),由圆的方程可知圆心为C(4,8),半径为3.连接DC交圆C于P,则|DC|=.∴折线ABP的最短长度是13﹣3=10.故答案为:10.点评:本题考查了圆的标准方程,考查了直线和圆的位置关系,考查了数形结合的解题思想方法与数学转化思想方法,是中档题.13.如图所示,在长方体ABCD﹣EFGH中,AD=2,AB=AE=1,M为矩形AEHD内的一点,如果∠MGF=∠MGH,MG和平面EFG所成角的正切值为,那么点M到平面EFGH的距离是.考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:以E为原点,EF为x轴,EH为y轴,EA为z轴,建立空间直角坐标系,设M(0,b,c),00≤b≤2,0≤c≤1,利用向量法能求出点M到平面EFGH的距离.解答:解:以E为原点,EF为x轴,EH为y轴,EA为z轴,建立空间直角坐标系,设M(0,b,c),00≤b≤2,0≤c≤1,则G(1,2,0),F(1,0,0),H(0,2,0),=(﹣1,b﹣2,c),=(0,﹣2,0),=(﹣1,0,0),cos<>=,cos<>=,∵∠MGF=∠MGH,∴=,解得b=1.∴=(﹣1,﹣1,c),又平面EFG的法向量=(0,0,1),MG和平面EFG所成角的正切值为,∴|cos<>|==,由0≤c≤1,解得c=,∴=(﹣1,﹣2,),∴点M到平面EFGH的距离d==.故答案为:.点评:本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意向量法的合理运用.14.已知点P(x0,y0)在椭圆C:(a>b>0)上,如果经过点P的直线与椭圆只有一个公共点时,称直线为椭圆的切线,此时点P称为切点,这条切线方程可以表示为:.根据以上性质,解决以下问题:已知椭圆L:,若Q(u,v)是椭圆L外一点(其中u,v为定值),经过Q点作椭圆L的两条切线,切点分别为A、B,则直线AB的方程是.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设切点A(x1,y1),B(x2,y2),由切线的性质分别写出切线方程,再将点Q代入,由两点确定一条直线,即可得到直线AB的方程.解答:解:设切点A(x1,y1),B(x2,y2),则由切线的性质可得,切线方程分别为=1,=1,由于椭圆的两条切线都经过点Q(u,v),则有=1,=1,由于过A,B有且只有一条直线,则直线AB的方程为=1.故答案为:=1.点评:本题考查椭圆的切线的性质,考查切点弦方程的求法,考查运算能力,属于基础题.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,则a的取值范围是( ) A.a>1 B.a>0 C.﹣l<a<1 D.a<﹣1或a>1考点:复数求模.专题:数系的扩充和复数.分析:利用复数的模的计算公式即可得出.解答:解:∵复数z1=a+bi(a、b∈R,i为虚数单位),z2=﹣b+i,且|z1|<|z2|,∴,化为a2<1,解得a∈(﹣1,1).故选:C.点评:本题考查了复数的模的计算公式,属于基础题.16.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有( )A.60个B.48个C.36个D.24个考点:分步乘法计数原理.分析:偶数即个位数字只能是2或4解答:解:偶数即个位数字只能是2或4,其它位置任意排放共有C21•A44=2×4×3×2×1=48个故选B点评:分步乘法计数原理的理解,偶数怎样选,注意没有0;当然也可以用概率解答.17.设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f(x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于( )A.3 B.C.D.考点:反函数.专题:计算题;压轴题.分析:先根据题意画出图形,由于互为反函数的两个函数的图象关于y=x对称,从而两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,利用四边形OAPB的面积=AB×OP,求得P(3,3)从而求得k值.解答:解:根据题意画出图形,如图.由于互为反函数的两个函数的图象关于y=x对称,所以这两个函数的图象交于P点必在直线y=x上.且A,B两点关于y=x对称,∴AB⊥OP∴四边形OAPB的面积=AB×OP=×OP=3,∴OP=3.∴P(3,3)代入f(x)=k(x﹣1)得:k=故选B.点评:本题主要考查反函数,反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.18.若集合A1、A2满足A1∪A2=A,则称(A1,A2)为集合A的一个分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a1,a2,a3}的不同分拆种数是( )A.27 B.26 C.9 D.8考点:交、并、补集的混合运算.专题:计算题;新定义.分析:根据拆分的定义,对A1分以下几种情况讨论:A1=∅,A1={a1},A1={a1,a2},A1={a1,a2,a3}.解答:解:∵A1∪A2=A,对A1分以下几种情况讨论:①若A1=∅,必有A2={a1,a2,a3},共1种拆分;②若A1={a1},则A2={a2,a3}或{a1,a2,a3},共2种拆分;同理A1={a2},{a3}时,各有2种拆分;③若A1={a1,a2},则A2={a3}、{a1,a3}、{a2,a3}或{a1,a2,a3},共4种拆分;同理A1={a1,a3}、{a2,a3}时,各有4种拆分;④若A1={a1,a2,a3},则A2=∅、{a1}、{a2}、{a3}、{a1,a2}、{a1,a3}、{a2,a3},{a1,a2,a3}.共8种拆分;∴共有1+2×3+4×3+8=27种不同的拆分.故选A点评:本题属于创新型的概念理解题,准确地理解拆分的定义,以及灵活运用集合并集的运算和分类讨论思想是解决本题的关键所在.三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.a、b、c分别是锐角△ABC的内角A、B、C的对边,向量=(2﹣2sinA,cosA+sinA),=(sinA﹣cosA,1+sinA),且∥.已知a=,△ABC面积为,求b、c的大小.考点:平面向量数量积的运算;正弦定理.专题:平面向量及应用.分析:由∥,根据共线向量基本定理即可求得sinA=,所以A=60°,根据△ABC的面积即可求得bc=6①,而由余弦定理便可得到b2+c2=13,联立①式即可求出b,c.解答:解:,,又∥;∴(2﹣2sinA)(1+sinA)﹣(cosA+sinA)(sinA﹣cosA)=0,即:4sin2A﹣3=0;又∠A为锐角,则,所以∠A=60°;因为△ABC面积为,所以bcsinA=,即bc=6 ①;又a=;∴7=b2+c2﹣2bccosA,b2+c2=13 ②;①②联立解得:或.点评:考查共线向量基本定理,三角形的面积公式,以及余弦定理.20.如图,在四棱锥P﹣ABCD的底面梯形ABCD中,AD∥BC,AB⊥BC,AB=1,AD=3,∠ADC=45°.又已知PA⊥平面ABCD,PA=1.求:(1)异面直线PD与AC所成角的大小.(结果用反三角函数值表示)(2)四棱锥P﹣ABCD的体积.考点:用空间向量求直线间的夹角、距离;棱柱、棱锥、棱台的体积.专题:综合题.分析:(1)利用平移法作出异面直线所成的角,进而利用余弦定理可求线线角;(2)四棱锥的体积为×底面积×高,求出底面梯形的面积即可.解答:解:(1)连接AC,过点C作CF∥AB交AD于点F,因为∠ADC=45°,所以FD=1,从而BC=AF=2,……延长BC至E,使得CE=AD=3,则AC∥DE,∴∠PDE(或其补角)是异面直线PD与AC 所成角,且DE=AC=,AE=,PE=3,PD=.在△PDE中,cos∠PDE=﹣.…所以,异面直线PD与AC所成角的大小为arccos.…(2)∵BC=2,AD=3,AB=1,∴底面梯形面积为∵PA⊥平面ABCD,PA=1.∴四棱锥P﹣ABCD的体积为.…点评:本题考查线线角,考查棱锥的体积,解题的关键是正确作出线线角,属于中档题.21.已知a>0且a≠1,数列{a n}是首项与公比均为a的等比数列,数列{b n}满足b n=a n•lga n (n∈N*).(1)若a=3,求数列{b n}的前n项和S n;(2)若对于n∈N*,总有b n<b n+1,求a的取值范围.考点:等比数列的性质;等比数列的前n项和.专题:计算题.分析:(1)由已知有a n=3n,b n=a n•lga n =n•3n•lg3,由此可得S n=[3+2•32+3•3n+…+n•3n]lg3,用错位相减法求出它的值.(2)由条件可得nlga<(n+1)alga,所以,或,而,且,由此解得a的取值范围.解答:解:(1)由已知有a n=3n,b n=a n•lga n =n•3n•lg3.∴S n=[3+2•32+3•3n+…+n•3n]lg3,∴3S n=[32+2•33+…+(n﹣1)3n+n•3n+1]lg3,∴﹣2S n=[3+32+33+…+3n﹣n•3n+1]lg3=[﹣n•3n+1]lg3,∴S n=•[3+(2n﹣1)•3n+1].(2)b n<b n+1 ,即na n lga<(n+1)a n+1lga.由a>0且a≠1,可得nlga<(n+1)alga.所以,或.即或对任意n∈N*成立,而,且,解得或a>1,即a的取值范围为(0,)∪(1,+∞).点评:本题主要考查等比数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式的应用,用错位相减法求数列的前n项和,属于中档题.22.(16分)动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设点A(0,a)(a>2),动点T在曲线C上运动时,|AT|的最短距离为a﹣1,求a的值以及取到最小值时点T的坐标;(3)设P1,P2为曲线C的任意两点,满足OP1⊥OP2(O为原点),试问直线P1P2是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)根据抛物线的定义可知,动点P的轨迹是抛物线,且抛物线的焦点坐标为F(0,1),准线方程为l:y=﹣1,由此能求出曲线C的方程.(2)设点T(x0,y0),x02=4y0(y0≥0),|AT|=,由此能求出a的值以及取到最小值时点T的坐标.(3)由题意得直线OP1、OP2的斜率都必须存在,记为k,,联立,解得P1(,),同理P2(﹣4k,4k2),由此能证明直线P1P2恒过点(0,4).解答:解:(1)∵动点P与点F(0,1)的距离和它到直线l:y=﹣1的距离相等,∴根据抛物线的定义可知,动点P的轨迹是抛物线,且抛物线的焦点坐标为F(0,1),准线方程为l:y=﹣1,所以曲线C的方程为x2=4y.…(2)设点T(x0,y0),x02=4y0(y0≥0),|AT|==,a﹣2>0,则当y 0=a﹣2时,|AT|取得最小值为2,2=a﹣1,a2﹣6a+5=0,a=5或a=1 (舍去),所以y0=a﹣2=3,x0=±2,所以T坐标为(±2,3);…(3)由题意得直线OP1、OP2的斜率都必须存在,记为k,,联立,解得P1(,),同理P2(﹣4k,4k2),直线P1P2的斜率为,直线P1P2方程为:整理得:k(y﹣4)+(k2﹣1)x=0,所以直线P1P2恒过点(0,4)…(16分)点评:本题考查曲线方程的求法,考查满足条件的实数值以及取到最小值时点的坐标的求法,考查直线是否恒过一个定点的判断与求法,解题时要注意函数与方程思想的合理运用.23.(18分)设函数f(x)=2ka x+(k﹣3)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k值;(2)若f(2)<0,试判断函数f(x)的单调性,并求使不等式f(x2﹣x)+f(tx+4)<0恒成立的t的取值范围;(3)若f(2)=3,且g(x)=2x+2﹣x﹣2mf(x)在[2,+∞)上的最小值为﹣2,求m的值.考点:函数奇偶性的性质;函数的最值及其几何意义;函数恒成立问题.专题:函数的性质及应用.分析:(1)运用f(0)=0求解.(2)根据单调性得出不等式x2﹣x>﹣tx﹣4,即x2+(t﹣1)x+4>0恒成立,(3)化简得出g(x)=2x+2﹣x﹣4m(﹣)=(﹣)2﹣4m(﹣)+2.换元转化:令t=﹣,h(t)=t2﹣4mt+2=(t﹣2m)2+2﹣4m2(t≥)分类讨论求解即可.解答:解(1)因为f(x)是定义域为R的奇函数,所以f(0)=0,所以2k+(k﹣3)=0,即k=1,检验知,符合条件(2)f(x)=2(a x﹣a ﹣x)(a>0且a≠1)因为f(2)<0,<0,又a>0且a≠1,所以0<a<1因为y=a x单调递减,y=a ﹣x单调递增,故f(x)在R上单调递减.不等式化为f(x2﹣x)<f(﹣tx﹣4)所以x2﹣x>﹣tx﹣4,即x2+(t﹣1)x+4>0恒成立,所以△=(t﹣1)2﹣16<0,解得﹣3<t<5.(3)因为f(2)=3,所以2()=3,即2a4﹣3a2﹣2=0,所以a=,所以g(x)=2x+2﹣x﹣4m(﹣)=(﹣)2﹣4m(﹣)+2.令t=﹣,由(1)可知t=﹣为增函数,因为x≥2,所以t≥,令h(t)=t2﹣4mt+2=(t﹣2m)2+2﹣4m2(t≥)若m≥,当t=2m时,h(t)min=2﹣4m2=﹣2,∴m=1若m<,当t=时,h(t)min=﹣6m=﹣2,解得m=>,舍去综上可知m=1.点评:本题考查了函数的性质,运用求解数值,判断单调性求解字母的范围,属于中档题,综合性较大.。

2017年上海高考数学一模卷(分类汇编--三角H

2017年上海高考数学一模卷(分类汇编--三角H

2017年高考数学一模分类汇编--三角一、填空题汇编:(第1--6题4分/题;第7--12题5分/题)1、(17年普陀一模2) 若22ππα-<<,3sin 5α=,则cot 2α=2、(17年浦东一模8) 函数()3cos 3sin )f x x x x x =+-的最小正周期为3、(17年长宁/嘉定一模2) 函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω=4、(17年长宁/嘉定一模9)如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为5、(17年杨浦一模4)若ABC ∆中,4=+b a ,︒=∠30C ,则ABC ∆面积的最大值是 .6、(17年松江一模5)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为7、(17年闵行一模1)集合[]{}cos(cos )0,0,x x x ππ=∈=_____________ .(用列举法表示)8(17年松江一模)如右图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅的取值范围是_____________.9、(17年静安一模2).函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 .10、(17年静安一模6).已知为锐角,且,则________ .11、(17年静安一模9).直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为___________.12、(17年金山一模3).如果5sin 13α=-,且α为第四象限角,则tan α的值是 13、(17年金山一模4).函数cos sin ()sin cos x xf x x x=的最小正周期是14、(17年虹口一模3).设函数()sin cos f x x x =-,且()1f α=,则sin2α= . 15、(17年虹口一模6).已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin A =的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).16、(17年奉贤一模11).参数方程[)πθθθθ2,0,sin 12cos2sin ∈⎪⎩⎪⎨⎧+=+=y x 表示的曲线的普通方程是_________.3cos()45πα+=sin α=17、(17年奉贤一模12).已知函数()()sin cos 0,f x wx wx w x R =+>∈,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为____________.18、(17年崇明一模9).已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是19、(17年崇明一模11).在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)20、(17年宝山一模6). 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为二、选择题汇编:(5分/题) 1、(17年徐汇一模13)、“4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要2、(17年青浦一模13)、已知()sin3f x x π=,{1,2,3,4,5,6,7,8}A =现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为 ( ).A .12种B .13种C .14种D .15种3、(17年浦东一模13) 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+ C. cos(2)3y x π=-D. cos(2)6y x π=- 4、(17年长宁/嘉定一模15)给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2x π=-是函数sin y x =图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )A. ①②B. ②③C. ③④D. ①④5、(17年长宁/嘉定一模16) 如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-6、(17年杨浦一模13)若直线1=+bya x 通过点()θθsin ,c os P ,则下列不等式正确的是 ( )(A )122≤+b a (B )122≥+b a (C )11122≤+b a (D )11122≥+ba7、(17年松江一模16)解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-8、(17年虹口一模14).已知函数()sin(2)3f x x π=+在区间[]0,a (其中0a >)上单调递增,则实数a 的取值范围是( )..A 02a <≤π.B 012a π<≤.C ,12a k k N ππ*=+∈ .D 22,12k a k k N <≤+∈πππ9、(17年奉贤一模15).已知函数22sin ,()cos(),x x f x x x α⎧+⎪=⎨-++⎪⎩00x x ≥<([0,2)απ∈是奇函数,则α=( )A .0 B .2πC .πD .23π10、(17年崇明一模13). 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =三、解答题汇编1、(17年徐汇一模18)、已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c,若()2Af =4a =,5b c +=, 求△ABC 的面积;2、(17年青浦一模18)、本题满分14分)第(1)小题满分6分,第(2)小题满分8分.已知函数()()221cos 42f x x x x π⎛⎫=+--∈ ⎪⎝⎭R .(1) 求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值; (2)在ABC ∆中,若A B <,且()()12f A f B ==,求BCAB的值.3、(17年浦东一模13)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =ABC 的面积S =a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;4、(17年长宁/嘉定一模18)(14分) 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B C A +-=;(1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;5、(17年杨浦一模17)(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题6分. 如图,某柱体实心铜质零件的截面边界是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中︒=∠60BAC . (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1立方厘米铜重8.9克,按四舍五入精确到0.1克).6、(17年松江一模19)松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”,兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求: (1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)60° A B PC7、(17年松江一模18)(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知()23,1m =,2cos ,sin 2A n A ⎛⎫= ⎪⎝⎭,A B C 、、是ABC △的内角. (1)当2A π=时,求n 的值;(2)若23C π=,3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长.8、(17年静安一模18).(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向2cos θ⎛⎫= ⎪ ⎪⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?9、(17年金山一模18). 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;10、(17年虹口一模18).(本题满分14分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30︒方向与它相距20海里的B 处有一外国船只,且D 岛位于海监船正东18海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1︒,速度精确到0.1海里/小时).A11、(17年奉贤一模19).(本题满分14分)本题共有1个小题,满分14分一艘轮船在江中向正东方向航行,在点观测到灯塔在一直线上,并与航线成角α()0900<<α.轮船沿航线前进b 米到达处,此时观测到灯塔在北偏西方向,灯塔在北偏东β()0900<<α方向,0090αβ<+<.求.(结果用,,b αβ的表达式表示).12、(17年崇明一模18).在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin θ=090θ︒︒<<)且与点A相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时) (2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;P A B ,C A 45︒B CB。

2017年高考真题——数学(上海卷)含答案

2017年高考真题——数学(上海卷)含答案

2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( ) A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则AB =【解析】{3,4}A B =2. 若排列数6654m P =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于 【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ==18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =,∴003(,3)2Q x y --,∵2AQ AC =,∴00133(,)42y C x --,代入并联立椭圆方程,解得09x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。

2017年上海各区高三一模填空题难题解析

2017年上海各区高三一模填空题难题解析

2017年上海市高三一模数学考试客观题难题解析一. 长宁/嘉定区11. 设向量(1,2)OA =- ,(,1)OB a =- ,(,0)OC b =-,其中O 为坐标原点,0a >,0b >, 若A 、B 、C 三点共线,则12a b+的最小值为【解析】∵A 、B 、C 三点共线,∴AB ∥AC ,(1,1)AB a =- ,(1,2)AC b =--,可得12(1)b a --=-,即21a b +=,∴122424228a b a b b aa b a b a b+++=+=+++≥,本 题以向量共线的方式转化出a 与b 的关系,然后通过“1的代换”转化为基本不等式求最值12. 如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱 的侧面绕行两周到达1A 点的最短路线的长为 cm【解析】绕行两周,∴侧面展开两次,如右图所示,最短路线即斜线段1AA 的长度13cm , 这类求几何体表面距离最短的问题,都是通过几何体的展开图,化空间为平面来解决的 16. 如果对一切正实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范 围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-【解析】不等式转化为29sin cos 4y a x x y +≤+,∵934y y +≥,即94y y+的最小值为3, ∴2sin cos 3a x x +≤,即2sin sin 20x a x -+≥恒成立,法一:二次函数分类讨论,① 当12a≤-,即2a ≤-,将sin 1x =-代入,120a ++≥,即3a ≥-,∴32a -≤≤-,② 当112a -<<,即22a -<<,280a ∆=-≤,即a -≤≤,∴22a -<<,③ 当12a≥,即2a ≥,将sin 1x =代入,120a -+≥,即3a ≤,∴23a ≤≤;综上,[3,3]a ∈-,故选D ;法二:分离参数讨论,2sin 2sin a x x ≤+,当0sin 1x <≤,2sin sin a x x ≤+,∴3a ≤,当1sin 0x -≤<,2sin sin a x x≥+,∴3a ≥-,故选D11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示) 【解析】如图所示,OB OA R ==,45OBO ︒'∠=,∴O B O A R ''==R , 根据弧长公式,可得2AO B π'∠=,∴AB R =,∴3AOB π∠=,∴球面距离3Rl R πθ==;球面上两点会经过无数的小圆和唯一的一个大圆,但两点之间的线段距离是确定的,所以解决球面 距离问题的关键就是求出两点之间的线段距离,“两点的线段距离”就像是一座桥,连接着 “两点的小圆弧长”和“两点的球面距离”12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-, 函数()F x 零点的个数是【解析】这是一道典型的数形结合题,∵(2)()f x f x +=,∴周期为2,由此可得()f x 的图像,()F x 的零点个数,即()f x 与()g x 图像的交点个数,由图可知,有15个,本题 的易错点在于容易漏掉(0,1)这个点,还有(10,1)附近的一个点,即[9,10]上有两个交点, ∵如果在[9,10]上只有一个交点(10,1)的话,(10,1)又是()f x 在[9,10]上的顶点,()g x 必 须要平行于x 轴,而()g x 在[9,10]上明显是递增的,∴在[9,10]上会有两个交点16. 设θ是两个非零向量a 、b 的夹角,若对任意实数t ,||a tb +的最小值为1,则下列判断正确的是( )A. 若||a 确定,则θ唯一确定B. 若||b确定,则θ唯一确定C. 若θ确定,则||b 唯一确定D. 若θ确定,则||a唯一确定【解析】本题需理解“对任意实数t ,||a tb +的最小值”的几何意义,如图,即线段1AC =,故选D ,||b是无法确定的,A 选项错在θ不是唯一确定,还有πθ-12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为【解析】本题与普陀区16题类似,m 的几何意义为P 点 到AB 的距离,即PC 的长,当PC 经过圆心O 时取最大,43PC =,13OC =,1OA =,3AC =,3AB =15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C. 2213616x y += D. 2214525x y += 【解析】本题不难,但比较有意思,体现了“重思维,轻计算”的命题原则,取PF 中点A ,F '为右焦点, 联结AO 、PF ',∵OP OF =,∴AO PF ⊥,法一:2AF =,OF =4AO =,8PF '=, ∴212PF PF a '+==,即6a =,选C法二:21tan481642PFF S b π'∆==⨯⨯=,即216b =,选C16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+( )A. 可能是等差数列,也可能是等比数列B. 可能是等差数列,但不可能是等比数列C. 不可能是等差数列,但可能是等比数列D. 不可能是等差数列,也不可能是等比数列【解析】0ab >且a b ≠,有两种情况,① 设0a b >>,∴02a ba b +>>>>,∵a 、2a b +、b 成等差,a b 成等比,∴a 、2a b+b 不可能是等差或等比数列;② 设0a b <<,∴02a ba b +<<<<,不可能是等比数列,若为等差数列,必有22a bb +=,即3()()0b a -+-=,0=, ∴9a b =,此时四个数为953b b b b <<<-,为等差数列,综上,选B四. 黄浦区11. 已知点O 、A 、B 、F 分别为椭圆2222:1x y C a b +=(0)a b >>的中心、左顶点、上顶点、右焦点,过点F 作OB 平行线,它与椭圆C 在第一象限部分交于点P ,若A B O P λ=,则实数λ的值为【解析】如图所示,(,0)A a -,(0,)B b ,2(,)b P c a,∵AB OP λ= ,∴2b b a ac=,即c b =,a c λ==12. 已知()22ax xf x x=-(a 为常数),221()x g x x +=,且当1x 、2[1,4]x ∈时,总有12()()f x g x ≤,则实数a 的取值范围是【解析】2()22f x ax x =+,1()2g x x x=+,[1,4]x ∈,∴min ()(1)3g x g ==, ∵12()()f x g x ≤恒成立,即()3f x ≤在[1,4]x ∈时恒成立,分类讨论,① 当0a ≥,()f x在[1,4]上单调递增,∴(4)3283f a =+≤,不符,舍去;② 当0a <,(1)223f a =+≤,24()348f a a --=≤,(4)3283f a =+≤,综上解得,16a ≤-16. 若函数()y f x =在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,则称函数()f x 是区间I 上的“H 函数”,对于命题:① 函数()f x x =-+(0,1)上的“H函数”;② 函数22()1xg x x=-是(0,1)上的“H 函数”;下列判断正确的是( ) A. ①和②均为真命题 B. ①为真命题,②为假命题 C. ①为假命题,②为真命题 D. ①和②均为假命题【解析】① ()f x x =-+t =,∴2()2h t t t =-+,(0,1)t ∈,结合图像,()h t 在(0,1)t ∈时是递增的,根据复合函数同增异减,()f x x =-+(0,1)上递增, ()1f x yx ==-,在(0,1)上递减,∴是“H 函数”;② 12()g x x x -=-,∵函数1y x x -=-在(0,1)上递减,∴12()g x x x -=-在(0,1)上递增,2()21g x x x =-,∵函数 21y x =-在(0,1)上递减,∴()g x x在(0,1)上递增,∴不是“H 函数”,综上,选B五. 奉贤区12. 已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单 调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为【解析】())4f x x πω=+,根据题意,24T πωω=≥,22πω≤,且()f ω∴2sin()14πω+=,∴24πω=,2ω=16. 若正方体12341234A A A A B B B B -的棱长为1,则集合11{|,{1,2,3,4},i j x A B A B i j ⋅∈∈{1,2,3,4}}中元素的个数为( )A. 1B. 2C. 3D. 4【解析】熟悉向量数量积的几何意义的话,这道题就很简单,∵i j A B 在11A B方向上投影始终是1,111i j A B A B ⋅= ,选A六. 闵行区11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y均由2个a和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最小值是 (用向量a 、b表示)【解析】S 的所有可能取值有2222a b + 、222a b a b ++⋅ 、4a b ⋅ ,∵222a b a b +≥⋅,∴最小值为4a b ⋅,本题看起来的难度远远大于实际做起来的难度12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nb n中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为【解析】根据题意211b b -=、322b b -=、431b b -=、……,累加可得2132n b b n -=-,2132n b n b =-+,2123n b b n n-=+,∴满足要求的12b =15. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,则实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞ 【解析】分类讨论,0a ≤时,最大值(1)(1)1f f a =-=-,不符,当0a >时,最大值在(0)f 或(1)f 处取到,要使得最 大值是a ,需满足(0)(1)f f ≥,即|1|a a ≥-,解得12a ≥16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017【解析】数形结合,当r 趋向无穷大,交点会有无穷多,选D七. 虹口区11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于【解析】有两种情况,如图,① 当24040p >,即40p <,作MA x ⊥轴,M 、P 、F三点一线时,||||PM PF +最小,即41MF =,∵40MA =,∴9FA =,∴(11,0)F 或(29,0)F ,∵40p <,∴(11,0)F ;② 当40p >,∵PA PF =,∴当M 、P 、A 三点一线时,||||PM PF +最小,∴41MA =,(21,40)A -,(21,0)F ,综上,22p =或4212. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是【解析】∵221x y +=,∴320x y -->,∵|2||32|x y a x y +++--的取值与x 、y 均无关,∴20x y a ++≥,此时满足|2||32|3x y a x y a +++--=+,与x 、y 均无关,即20x y a ++≥恒成立,∴2a x y ≥--,设cos x θ=,sin y θ=,可得a ≥16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④【解析】取特值法,① 当0.1x =,(2)(0.2){0.2}1f x f ===,(){0.1}1f x ==,(2)2()f x f x ≠,不符;④ 当0.1x =,1()()(0.1)(0.6)1122f x f x f f ++=+=+=,(2)(0.2){0.2}1f x f ===,不符;故选C八. 静安区9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为【解析】向量数量积几何意义在这次一模考试中出现很多,如图,max ||||AB AM AB AE ⋅=⋅,3AB =, 1.5OD =,2.5OM =,4DM =,4AE =,∴max 12AB AM ⋅=10. 已知()xf x a b =-(0a >且1a ≠,b R ∈),()1g x x =+,若对任意实数x 均有()()0f x g x ⋅≤,则14a b+的最小值为【解析】对任意实数x 均有()()0f x g x ⋅≤,∴()f x 单调递减,且经过(1,0)-,∴a ∈(0,1),且1ab =,∴14a b +≥,即14a b+的最小值为415. 已知()y g x =与()y h x =都是定义在(,0)(0,)-∞+∞ 上的奇函数,且当0x >时,2,01()(1),1x x g x g x x ⎧<≤=⎨->⎩,2()log h x k x =(0x >),若()()y g x h x =-恰有4个零点,则正实数k 的取值范围是( )A. 1[,1]2B. 1(,1]2C. 31(,log 2]2D. 31[,log 2]2【解析】∵都是奇函数,∴当0x >时,()g x 与()h x 有2个交点,∴有两个临界状态,当 恰好有2个交点时,()h x 经过(3,1),解得3log 2k =,当恰好有3个交点时,()h x 经过(4,1),解得12k =,但取不到,∴31(,log 2]2k ∈,选C 九. 浦东新区11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是边BC 、CD 上的两个动点,且MN =AM AN ⋅的取值范围是【解析】()()AM AN AB BM AD DN AB DN BM AD ⋅=+⋅+=⋅+⋅,设NC x =,x ∈,2DN x =-,MC ,2BM =,22AM AN DN BM ⋅=+2(2)2(282(x x =-+=-,根据基本不等式,当0a ≥,0b ≥,22222()2()a b a b a b +≤+≤+,∴22(4x ≤+≤,∴[4,8AM AN ⋅∈-12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=【解析】当1n =时,((1))3f f =,∵在*N 上单调递增,∴(1)2f =,∴(2)3f =,∴(3)((2))6f f f ==,(6)((3))9f f f ==,(9)((6))18f f f ==,(18)((9))27f f f ==观察规律可得(3)k f 到(23)kf ⋅之间是连续正整数,∴(4)7f =,(5)8f =,∴(7)f =((4))12f f =,(8)((5))15f f f ==,(10)19f =,(11)20f =,(12)21f =,……, (18)27f =,(19)((10))30f f f ==,(20)((11))33f f f ==,(21)((12))36f f f ==,……,观察规律可得(23)kf ⋅到1(3)k f +之间是以3为公差的等差数列,∵6231999⋅<<720173<,∴(2017)(1999)3(20171999)54f f -=⨯-=16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定 【解析】设玫瑰价格x 元,康乃馨价格y 元,∴28x y +>……①,4522x y +<……②,2-⨯①+②得,36y <,5-⨯①+②得,618x -<-,即263x y >>,故选A十. 宝山区12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为【解析】设数列首项为a ,项数为n ,可得(1)26682a a n n ++-=,即266812na n -=+,∵a 为正整数,266829234=⨯⨯,当n 为奇数时,只有29n =或23符合条件,当n 为偶数时,只有8n =符合条件,∴2668型标准数列的个数为316. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2【解析】将已知条件转化一下,即(2)2f -+、(0)2f +、(2)2[0,4]f +∈,∴(2)f -、(0)f 、(2)[2,2]f ∈-,且 1[1,3]t +∈-,即[2,2]t ∈-,求|()|y f t =的最大值,如图是取到最大值的一种情况,抛物线过(2,2)--,(0,2),(2,2),21()22f x x x =-++,最大值5(1)2f =,选C十一. 青浦区11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥恒成立,则实数b 的取值范围是【解析】转化已知条件,即()()g x f x ≤要恒成立,[1,1]x ∈-2x b ≤+,参变分离,即2b x ≥,设cos x θ=sin θ=∴sin 2cos b θθ≥-恒成立,即b ≥12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1 的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值 的和为【解析】133n n a ka k +=+-,∴13(3)n n a k a ++=+,① 当3n a ≠-时,即{3}n a +为等比 数列,∴3i a +∈{675,75,0,25,225,2225}--,观察可得,等比数列为25、75-、225、675-或675-、225、75-、25,∴12533a +=-或2025,1343a =-或2022;② 当 3n a =-时,符合题意,∴13a =-;∴3460232022333-+-=16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,存在22(,)x y M ∈, 使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个集合: ①21{(,)|}M x y y x ==; ②2{(,)|log }M x y y x ==; ③{(,)|22}x M x y y ==-; ④{(,)|sin 1}M x y y x ==+; 其中是“垂直对点集”的序号是( )A. ①②③B. ①②④C. ①③④D. ②③④ 【解析】②的反例是点(1,0),不符,故选C十二. 杨浦区11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是【解析】设点(1,)P my y -,由已知得224PA PB =,∴222224(3)4m y y my y +=++,整理得22(1)8120m y my +++=,由226448(1)0m m ∆=-+≥,解得23m ≥,∴实数m的取值范围是(,)-∞+∞12. 函数()y f x =是最小正周期为4的偶函数,且在[2,0]x ∈-时,()21f x x =+,若存 在1x 、2x 、⋅⋅⋅、n x 满足120n x x x ≤<<⋅⋅⋅<,且1223|()()||()()|f x f x f x f x -+-+⋅⋅⋅1|()()|2016n n f x f x -+-=,则n n x +最小值为【解析】()f x 的图像如图所示,根据题意,当10x =、22x =、34x =、46x =、……、n n x +最小,此时1|()()|4n n f x f x --=,20164504÷=,∴505n =,此时n x 为等差数列,2(1)n x n =-,∴5051008x =,即min 505()5051513n n x x +=+= 16. 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥【解析】将点(cos ,sin )P θθ代入直线得cos sin 1a b θθ+=)1θϕ+=, ∵sin()1θϕ+≤,∴22111a b +≥,故选D ;法二:直线经过单位圆上一点,说明原点到直线的距离1d =≤,∴22111a b +≥十三. 金山区11. 设数列{}n a 是集合{|33,s t x x s t =+<且,}s t N ∈中所有 的数从小到大排列成的数列,即14a =,210a =,312a =,428a =,530a =,636a =,⋅⋅⋅,将数列{}n a 中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表, 则15a 的值为【解析】观察每一行最右边的数,01433=+,121233=+,233633=+,……,∵15a 是第5行最右边的数,∴451533324a =+=12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的41012283036⋅⋅⋅点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是【解析】曲线方程为2|1||1|k y x -=+,由2k y x =平移对称变换得到,如图所示,∴①错误,②正确, ③PA PB PC PD +≥+≥2k =,正确,④0123P PP P 面积012320044P PP P S PC P D k =⋅=,正确, ∴正确结论序号为②③④16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334【解析】∵递减,∴01a <<,430a -≤,且31a ≥,∴1334a ≤≤,|()|2f x x =-恰 好有两个不相等的实数解,数形结合,如图所示,可知当0x ≥,|()|y f x =与2y x =-仅有一个交点,∴当0x <时,2(43)32x a x a x +-+=-只有一解,∴32a ≤,或0∆=,即34a =,综上,1233a ≤≤或34a =,故选C十四. 松江区10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为【解析】如图所示,曲线C 的图像是一个菱形,作出椭圆:221259x y +=,1(4,0)F -、2(4,0)F 为椭圆焦点, 根据题意,P 不在椭圆外,即12||||2PF PF a +≤, ∴12||||PF PF +的最大值为10 11.已知函数13()28,3xx f x x ≤≤=->⎪⎩,若()()F x f x k x =-在其定义域内有3个零点,则实数k ∈【解析】数形结合,作出()f x 的函数图象,根据题意, 函数()y f x =与y kx =有3个交点,∴0k >,其中在[1,3]x ∈上有2个交点,即直线y kx =与半圆相交,点(2,0)到直线距离1d =<,综上,k ∈ 12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212limn n na a -→∞=【解析】由题得,21{}n a -是递增数列,2{}n a 是递减数列,212a a -=,2322a a -=,3432a a -=-,4542a a -=,5652a a -=-,……,212212n n n a a ---=-,累加可得21343n n a -=,∴212646n n a -+=,∴2121lim 2n n na a -→∞=-16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-【解析】263arcsin arcsin x x x x +>--,∴2233arcsin()()arcsin()()x x x x +>-+-,设3()arcsin g x x x =+,()g x 为奇函数,且单调递增,定义域为[1,1]-,∴2()()g x g x >-, 即2x x >-,解得0x >或1x <-,结合定义域,∴解集为(0,1],选A ,十五. 徐汇区11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2nn nS b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是【解析】(1)2(1)2n n n m S n n mn n -⋅=+=+-,122n n nn mn m S b n -+==⋅,∵1n n b b +>,∴11122nn mn m mn +-++>,化简得(2)1n m ->-,对*n N ∈恒成立,当1n =时,1m <, 当2n =时,m R ∈,当2n >时,12m n ->-,∴0m ≥,综上,[0,1)m ∈12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是【解析】当0k ≥时,集合A 中的元素有无数个,∴0k <,∴6[()](4)0x k x k-+-<,∵60k k +<,∴64k x k +<<,∵0k <,∴64.9k k+≤-≈-,要使集合A 元素个 数最少,65k k+≥-,∴265k k +≤-,解得32k -≤≤-15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)【解析】据题意,(1)3f -=,(1)1f =,∴1(3)1f -=-,1(1)1f -=,1()f x -单调递减, ∴11|(2)|11(2)1x x f f --<⇒-<<,∴111(3)(2)(1)x f f f ---<<,即123x<<,可解 得2(0,log 3)x ∈,故选C。

2017年上海各区高三一模填空题难题解析 - 副本

2017年上海各区高三一模填空题难题解析 - 副本

2017年上海市高三一模数学考试客观题难题解析一. 长宁/嘉定区11. 设向量(1,2)OA =-u u u r ,(,1)OB a =-u u u r ,(,0)OC b =-u u u r,其中O 为坐标原点,0a >,0b >,若A 、B 、C 三点共线,则12a b+的最小值为 12. 如图,已知正三棱柱的底面边长为2cm ,高为5cm ,一质点自A 点出发,沿着三棱柱的侧面绕行两周到达1A 点的最短路线的长为 cm16. 如果对一切正实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范 围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-二. 普陀区11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示)12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函数()F x 零点的个数是16. 设θ是两个非零向量a r 、b r 的夹角,若对任意实数t ,||a tb +r r的最小值为1,则下列判断正确的是( )A. 若||a r 确定,则θ唯一确定B. 若||b r确定,则θ唯一确定C. 若θ确定,则||b r 唯一确定D. 若θ确定,则||a r唯一确定三. 崇明区12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-u u u r u u u r()R λ∈的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为15. 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C. 2213616x y += D. 2214525x y +=16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列四. 黄浦区11. 已知点O 、A 、B 、F 分别为椭圆2222:1x y C a b+=(0)a b >>的中心、左顶点、上顶点、右焦点,过点F 作OB 平行线,它与椭圆C 在第一象限部分交于点P ,若AB OP λ=u u u r u u u r,则实数λ的值为12. 已知()22ax x f x x=-(a 为常数),221()x g x x +=,且当1x 、2[1,4]x ∈时,总有12()()f x g x ≤,则实数a 的取值范围是16. 若函数()y f x =在区间I 上是增函数,且函数()f x y x=在区间I 上是减函数,则称函数()f x 是区间I 上的“H 函数”,对于命题:① 函数()f x x =-+(0,1)上的“H 函数”;② 函数22()1xg x x=-是(0,1)上的“H 函数”;下列判断正确的是( ) A. ①和②均为真命题 B. ①为真命题,②为假命题 C. ①为假命题,②为真命题 D. ①和②均为假命题五. 奉贤区12. 已知函数()sin cos f x x x ωω=+(0)ω>,x R ∈,若函数()f x 在区间(,)ωω-内单 调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为16. 若正方体12341234A A A A B B B B -的棱长为1,则集合11{|,{1,2,3,4},i j x A B AB i j ⋅∈∈u u u u r u u u u r{1,2,3,4}}中元素的个数为( )A. 1B. 2C. 3D. 4六. 闵行区11. 已知两个不相等的非零向量a r 和b r ,向量组1234(,,,)x x x x u r u u r u u r u u r 和1234(,,,)y y y y u u r u u r u u r u u r均由2个a r和2个b r 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅u r u u r u u r u u r u u r u u r u u r u u r,那么S 的所有可能取值中的最小值是 (用向量a r 、b r表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足1n n n b b a +-=(*n N ∈),若数列2{}nb n中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为【解析】根据题意211b b -=、322b b -=、431b b -=、……,累加可得2132n b b n -=-,2132n b n b =-+,2123n b b n n-=+,∴满足要求的12b =15. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,则实数a 的取值范围是( )A. [0,)+∞B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( ) A. 恒为偶数 B. 恒为奇数 C. 不超过2017 D. 可超过2017七. 虹口区11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④八. 静安区9. 直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅u u u r u u u u r的最大值为10. 已知()xf x a b =-(0a >且1a ≠,b R ∈),()1g x x =+,若对任意实数x 均有()()0f x g x ⋅≤,则14a b+的最小值为15. 已知()y g x =与()y h x =都是定义在(,0)(0,)-∞+∞U 上的奇函数,且当0x >时,2,01()(1),1x x g x g x x ⎧<≤=⎨->⎩,2()log h x k x =(0x >),若()()y g x h x =-恰有4个零点, 则正实数k 的取值范围是( )A. 1[,1]2B. 1(,1]2C. 31(,log 2]2D. 31[,log 2]2九. 浦东新区11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是边BC 、CD 上的两个动点,且MN =AM AN ⋅u u u u r u u u r的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元,购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定十. 宝山区12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为16. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2十一. 青浦区11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x 与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥ 恒成立,则实数b 的取值范围是12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值 的和为16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,存在22(,)x y M ∈, 使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个集合:①21{(,)|}M x y y x ==; ②2{(,)|log }M x y y x ==; ③{(,)|22}xM x y y ==-; ④{(,)|sin 1}M x y y x ==+;其中是“垂直对点集”的序号是( )A. ①②③B. ①②④C. ①③④D. ②③④十二. 杨浦区11.平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12. 函数()y f x =是最小正周期为4的偶函数,且在[2,0]x ∈-时,()21f x x =+,若存 在1x 、2x 、⋅⋅⋅、n x 满足120n x x x ≤<<⋅⋅⋅<,且1223|()()||()()|f x f x f x f x -+-+⋅⋅⋅1|()()|2016n n f x f x -+-=,则n n x +最小值为16. 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥十三. 金山区11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有41012283036⋅⋅⋅的数从小到大排列成的数列,即14a =,210a =,312a =,428a =,530a =,636a =,⋅⋅⋅,将数列{}n a 中各项按照上小下大,左小右大的原则排成如图的等腰直角三角形数表, 则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的 点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ; ④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称 的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334UD. 123[,){}334U十四. 松江区10. 设(,)P x y是曲线1C =上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF + 的最大值为11.已知函数13()28,3xx f x x ≤≤=->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212limn n na a -→∞=16. 解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-十五. 徐汇区11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2nn nS b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)。

2017届上海市高考一模汇编 三角函数

2017届上海市高考一模汇编 三角函数

2017届高中数学·一模汇编 三角函数一、填空题1、(静安一模)函数2()13sin 4f x x π⎛⎫=-+ ⎪⎝⎭的最小正周期为 . 2、(静安一模)已知α为锐角,且3cos(),45πα+=则sin α= . 3、(黄浦一模)已知1sin()23πα+=,(,0)2πα∈-,则tan α的值为 4、(长宁嘉定一模)函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω= 5、(金山一模)如果5sin 13α=-,且α为第四象限角,则tan α的值是 6、(金山一模)函数cos sin ()sin cos x x f x x x=的最小正周期是 7、(闵行一模)集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示)8、(浦东一模)函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9、(普陀一模)若22ππα-<<,3sin 5α=,则cot 2α= 10、(松江一模)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为11、(虹口一模)设函数()sin cos f x x x =-,且()1f a =,则sin 2a =12、(虹口一模)已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条 件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)13、(杨浦一模)若ABC ∆中,4a b +=,o 30C ∠=,则ABC ∆面积的最大值是 。

14、(宝山一模)若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为 。

15、(崇明一模)已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点 且2AOB π∠=,则该函数的最小正周期是 。

精品!2017上海一模考试第24题汇编

精品!2017上海一模考试第24题汇编

精品!2017上海一模考试第24题汇编(共6页)-本页仅作为预览文档封面,使用时请删除本页-2017上海一模考试第24题24.如图,在平面直角坐标系中xOy中,抛物线y=﹣x2+bx+c与x轴相交于点A (﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D的坐标;(2)求证:△ACO∽△DBC;(3)如果点E在x轴上,且在点B的右侧,∠BCE=∠ACO,求点E的坐标.24.(12分)如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.(1)求这个二次函数的解析式并写出其图象顶点D的坐标;(2)求∠CAD的正弦值;(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.24.(12分)平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.(1)求证:△BDE∽△CAE;(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.24.(12分)已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.24.(12分)如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.24.(12分)如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.24.(12分)如图,已知抛物线y=﹣x2+bx+3与x轴相交于点A和点B(点A 在点B的左侧),与y轴交于点C,且OB=OC,点D是抛物线的顶点,直线AC 和BD交于点E.(1)求点D的坐标;(2)连接CD、BC,求∠DBC余切值;(3)设点M在线段CA的延长线上,如果△EBM和△ABC相似,求点M的坐标.24.(12分)在直角坐标系xOy中(如图),抛物线y=ax2﹣4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.(1)求点D、点M的坐标;(2)如果该抛物线与y轴的交点为A,点P在抛物线上且AM∥DP,AM=2DP,求a的值.24.(12分)在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B (点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心,OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.。

2017年高考真题——数学(上海卷)含答案

2017年高考真题——数学(上海卷)含答案

C. c 0
D. a 2b c 0
16. 在平面直角坐标系 xOy 中,已知椭圆 C : 1
x2 y2
y2
36
4
1 和 C : x2 21
9 1.
P 为 C 上的动
点,Q为 C 上的动点,w 是OP OQ 的最大值. 记 {( P,Q) | P 在C 上,Q在 C 上,且OP OQ w} ,则
25 c2 19 2 5 c
1 2
c
2或c
3,
根据锐角三角形,cosB 0,∴ c 3, S
12bcsin
A
15 4
3
19. 根据预测,某地第n (n N *) 个月共享单车的投放量和损失量分别为a 和 b (单位:辆),
nn
其中 a n
} 的第 a
项等于{a } 的第 b
项,则
lg(b b b b ) 1 4 9 16
n
n
n
n
lg(b b b b )
1234
【解析】 b an
a bn
b
n2
b 2 b b b b (b b b b )2
n
1 4 9 16
1234
lg(b b b b ) 1 4 9 16
lg(b b b b )
【解析】
4 3
r
3
36
r
3
S
9
5.
已知复数 z 满足 z
3 z
0,则| z |
【解析】 z2 3 z 3i | z | 3
6.
设双曲线
x2 9
y2 b2
1
121
(b
0)
的焦点为
F
、F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市金山区2017届高三一模数学试卷
2016.12
一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2
{|20}M x x x =-<,{|||1}N x x =>,则M
N =
2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =
3. 如果5
sin 13
α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x x
f x x x
=
的最小正周期是
5. 函数()2x
f x m =+的反函数为1
()y f
x -=,且1()y f x -=的图像过点(5,2)Q ,那么
m =
6. 点(1,0)到双曲线2
214
x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪
+≤⎨⎪≥⎩
,则2x y +的最大值是
8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程2
2
2
42340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)n
x +(*
n N ∈,2n ≥,x R ∈)展开式中
2x 项的二项式系数,则23111
lim(
)n n
a a a →∞
++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,s
t
x x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,⋅⋅⋅,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为 12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2
k (0k >)的 点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ; ④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称 的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值2
4k ; 其中,所有正确结论的序号是
4
1012283036⋅⋅⋅
二. 选择题(本大题共4题,每题5分,共20分)
13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件
A. 充分非必要
B. 必要非充分
C. 充要
D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.
110x y -> B. 11
()()022
x y -< C. 22log log 0x y +> D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )
A. 283π-
B. 83
π
- C. 82π- D. 23
π
16. 已知函数2(43)30
()log (1)1
0a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关
于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )
A. 2(0,]3
B. 23[,]34
C. 123[,]{}334
D. 123[,){}334
三. 解答题(本大题共5题,共14+14+14+16+18=76分)
17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是
4
π
和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;
(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;
18. 已知△ABC 中,1AC =,23
ABC π
∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;
(2)试写出函数()f x 的单调递增区间,并求方程1
()
6
f x =的解;
19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-
倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒
∠+∠=; (1)求椭圆C 的标准方程;
(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;
20. 已知函数2
()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;
(2)若不等式2
22()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围;
(3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式
01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x
为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;
21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)
2
n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;
(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a
与1i a +之间插入i 个(1)i i b -*
()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和;
(3)如果存在*
n N ∈,使不等式11
820(1)()(1)n n n n n b n b b b λ++++
≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;
参考答案
一. 填空题
1. (1,2)
2. 12i -
3. 5
12
-
4. π
5. 1
6.
7. 4
8. 48
9. 20x y -= 10. 2 11. 324 12. ②③④
二. 选择题
13. A 14. B 15. A 16. C
三. 解答题
17.(1)arccos
10;(2)4
3
; 18.(1)2211()sin sin()sin(2)33366f x x x x ππ=
+=+-,(0,)3
x π∈; (2)递增区间(0,
]6
π
,6
x π
=

19.(1)2
212
x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1
[,8]2
;(3)min 4M =;
21.(1)n b n =;(2)2018
22033134+;(3)不存在;。

相关文档
最新文档