基本初等函数的公式及导数的运算法则

合集下载

基本初等函数的导数公式及导数的运算法则(上课)

基本初等函数的导数公式及导数的运算法则(上课)

题型三 商的导数
例 3 求下列函数的导数. (1)y=sxin2x; (2)y=xx2+ +33; (3)y=tanx; (4)y=x·sinx-co2sx.
【解析】 (1)y′=x2′·sinsxi- n2xx2·sinx′ =2xsinxs- in2xx2·cosx. (2)y′=x+3′·x2+x32+ -3x2+3x2+3′ =x2+3x- 2+2x3x2+3=-x2+ x2+ 6x3-23. (3)∵y=tanx=csoinsxx, ∴y′=csoinsxx′=sinx′cosxc- os2sxinx·cosx′
f (x) • g(x) f (x)g(x) f (x)g(x)
3.两个函数的商的导数,等于第一个函数的导 数乘第二个函数,减去第一个函数乘第二个函 数的导数 ,再除以第二个函数的平方.即:

f g
(x) (x)


f
(
x)
g
(x) f (
g(x)2
§1.2 导数的计算
探要点·究所然 情境导学
前面我们已经学习了几个常用函数的导数和基 本初等函数的导数公式,这样做起题来比用导数的 定义显得格外轻松.对于由四则运算符号连接的两 个或两个以上基本初等函数的导数如何求,正是本 节要研究的问题.
一、基本初等函数的导数公式
1.若f(x)=c,则 f ' (x) = 0 ;
【总结提升】
函数f(x)在某点处导数的大小表示函数在 此点附近变化的快慢.由上述计算可
知 c′(98) 25c′(90) .它表示纯净度为98%左
右时净化费用的变化率,大约是纯净度为90% 左右时净化费用的变化率的25倍.这说明,水 的纯净度越高,需要的净化费用就越多,而且 净化费用增加的费用也越快.

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,它描述了函数在给定点处的变化率。

在微积分中有许多基本的初等函数,它们都有对应的导数公式和导数的运算法则。

下面,我将介绍一些常见的基本初等函数的导数公式及导数的运算法则。

1.常数函数导数公式:如果f(x)=C,其中C为常数,则其导数为f'(x)=0。

2.幂函数导数公式:如果f(x) = x^n,其中n为常数,则其导数为f'(x) = nx^(n-1)。

例如:f(x)=x^3,则f'(x)=3x^23.指数函数导数公式:如果f(x)=e^x,则其导数为f'(x)=e^x。

例如:f(x)=e^2,则f'(x)=e^24.对数函数导数公式:如果f(x) = ln(x),则其导数为f'(x) = 1/x。

例如:f(x) = ln(2),则f'(x) = 1/25.三角函数导数公式:(1) 如果f(x) = sin(x),则其导数为f'(x) = cos(x)。

(2) 如果f(x) = cos(x),则其导数为f'(x) = -sin(x)。

(3) 如果f(x) = tan(x),则其导数为f'(x) = sec^2(x)。

6.反三角函数导数公式:(1) 如果f(x) = arcsin(x),则其导数为f'(x) = 1/√(1-x^2)。

(2) 如果f(x) = arccos(x),则其导数为f'(x) = -1/√(1-x^2)。

(3) 如果f(x) = arctan(x),则其导数为f'(x) = 1/(1+x^2)。

导数的运算法则:1.常数乘法法则:设c为常数,f(x)为可导函数,则(cf(x))' = c*f'(x)。

例如:如果f(x)=2x,则f'(x)=2*1=22.求和差法则:设f(x),g(x)为可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
y (x 解:因为2x 3)
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有,切y x 2
线的 方程 为
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
因此,在第10个年头,这种商品的价格约以元/年的速度上涨。
讲解经济学中的温水煮青蛙现象。虽然每年只有8分钱,但在 不知不觉中物价已经让你承担不起。
例5 日常生活中的饮用水通常是经过净化的。随着水 纯净度的提高,所需净化费用不断增加。已知将1吨水 净化到纯净度x%时所需费用(单位:元)为
c(x) 5284 (80 x 100) 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90% (2)98%
解:净化费用的瞬时变化率就是净化费用函数的导数
c'(x)
( 5284 100 x
)'
5284'(100
x) 5284 (100 x)2Βιβλιοθήκη (100x)'
0 (100 x) 5284 (1) (100 x)2
5284 (100 x)2
例2 假设某国家在20年期间的平均通货膨胀率为5%,物价p(单位: 元)与时间t(单位:年)有如下函数关系
p(t) p0 (1 5%)t
其中p0为t = 0时的物价。假定某种商品的p0=1,那么在第10个年 头,这种商品的价格上涨的速度大约是多少(精确到)?
解:根据基本初等函数导数公式表,有
p'(t) 1.05t ln1.05 p'(10) 1.0510 ln1.05 0.08(元 / 年)
解:因为 y (x3 2x 3)
(x3 ) (2x) (3) 3x2 2
所以,函数y=x3-2x+3的导数是
y ' 3x2 2
既然导数可求,那可以求这个函数图像的切线吗?原来的旧方 法没用了吧!我们用几何画板画出此函数的图像。
2.已知函数y=xlnx (1)求这个函数的导数 (2)求这个函数在点x=1处的切线方程

高一数学基本初等函数的导数公式

高一数学基本初等函数的导数公式

1 4 t 4
例4.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2).
对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
3 1 1 ∴y′= 4+4cosx ′=- sinx. 4
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 2 4
补充练习:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x; (4) y (2 x 2 3) 1 x 2 ;
1 4 答案: (1) y 2 3 ; x x
1 x2 ( 2) y ; 2 2 (1 x )
2 x1 2( x2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
所以所求l的方程为:y=0或y=4x-4.
[点评] 较为复杂的求导运算,一般综合了 和、差、积、商的几种运算,要注意:(1)先 将函数化简;(2)注意公式法则的层次性.
练习:求下列函数的导数:

1.2.2导数公式及导数运算法则

1.2.2导数公式及导数运算法则

例2.求下列函数的导数. 1)y=x3-2x+3 2) y (x 1) x
4x - 1 3) y 4 x
4) y e x log4 x
6) y sinx cos x
lnx 5) y x e
7) y tan x
练习:《面对面》P13:基础训练 1,2,3,4 P14:基础巩固 1-8
3、如果曲线 y=x3+x-10 的某一切线与直线 y=4x+3 平行, 求 切点坐标与切线方程.
解: ∵切线与直线 y=4x+3 平行,
∴切线斜率为 4. 又切线在 x0 处斜率为 y | x=x0=(x3+x-10) | x=x0=3x02+1. ∴3x02+1=4. ∴x0=1. 当 x0=1 时, y0=-8; 当 x0=-1 时, y0=-12. ∴切点坐标为 (1, -8) 或 (-1, -12). 切线方程为 y=4x-12 或 y=4x-8.
2 x1 2( x2 2) x1 0 x1 2 或 . 因为两切线重合, 2 2 x1 x2 4 x2 2 x2 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4.
所以所求l的方程为:y=0或y=4x-4.
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)

高二数学基本初等函数的导数公式及导数的运算法则

高二数学基本初等函数的导数公式及导数的运算法则

公 式 4 .若 f ( x ) c 5 .若 f ( x ) a x , 则 f '( x ) a x ln a ( a 0 );
公 式 6 .若 f ( x ) e x , 则 f '( x ) e x ;
公 式 7 .若 f ( x )
; https:///cn/diamonds?track=NavDrawDia 什么钻石好;
道了这件事情了,所以在这里闭关修行,害得天云天风他们兄妹三人白担心了,有了这壹座神山,根汉之前の担忧也全然不见了丶"你还敢来?""这。"他身形壹闪,避开了这壹只巨掌丶巨掌猛の落下,没有镇住根汉,壹个白袍老者出现在了原地,正是天阳子丶天阳子冷哼壹声,盯着不远处の根 汉:"你到底是什么来路?"根汉拱手笑了笑,对天阳子道:"咱并不是晴天,只是与他长の壹模壹样而已咱与晴天没有半点关系丶"天阳子眉头壹锁道:"你蒙谁呀?"根汉无奈道:"这件事情,咱已经和仙尔说清楚了。"天阳子脸色壹下子冷了下来,杀机迸现,根汉连忙说道:"前辈您先不要发飙, 有些事情,容咱慢慢の和你们说吧丶"想到自己女尔,莫名其妙の被人骗了,搞大了肚子,生下了无父の孩子,心也壹直背负着这种欺骗の情愿丶不过令他很意外の是,眼前这个家伙の隐遁之术很了得,若不是自己借助这冲天剑の仙力,也无法发现他站在这里丶别看自己是魔仙,若没有这冲天剑 の话,看都看不到这家伙,更别提还想杀了他了丶"丫の,你小子有些过了啊!""冲你小子让茹尔有能力怀孩子,老夫咱不杀你!""呃,事情是这样の。"天阳子冷哼道:"天家の事情,老夫咱自会处理,还容不着你来窜下跳の。"根汉尴尬の笑了笑,当然轮不到自己窜下跳了,自己也不想窜下跳呀, 要是知道这里の地势冲天剑,自己还管什么事尔呢丶根汉将之前,看到峰回九渊の事情,和他说了说丶根汉点了点头:"侥幸吧丶"天阳子气不打壹处来,脸色有些难看,心里骂开了,自己壹个魔仙,在天家祖地转了好些年,才发现这里の地势丶只是这家伙,明明修为低,只不过是壹位初阶大魔神, 竟然可以发现这里,壹来发现了,真是让自己难堪呀丶天阳子显然是挂不住脸,根汉可不知道他の这点小心思,要知道打了他の脸の话给他留点脸了丶"好吧,那前辈您保重吧,天家之事,由您全权做主吧。"天阳子白了他壹眼,直接身形壹闪,又回到了那冲天剑神山之,压根没再瞧根汉壹眼了丶 本来自肆0贰叁你这个坑货(猫补中文)既然天阳子早有打算了,根汉也不便再在这里打扰了,马离开了这里,让天阳子自己去安排天家の这些事情吧丶请大家搜索(@¥)看最全!更新最快の被天阳子给骂了个狗血喷头,根汉赶紧逃也,大概意思是这样の好东西别你这个老东西壹个人给享用了 丶让天家の弟子都到这冲天剑神山来修行,修行の速度都要提升好几倍,甚至是数十倍都不壹定,天家の整体实力会大增了丶"没想到,咱天家也有这样の地势风水,看来咱天不绝咱天家。"听闻天阳子实力大增,做女尔の天仙尔自然是很惊喜了丶"只不过他们那些家亭,不知道知不知道咱父亲 の情况?"天仙尔皱眉问道丶根汉笑了笑道:"你这个老父亲,等着壹鸣惊人,给他们大吃壹惊呢。"天仙尔笑道:"那咱们什么时候出发离开这里?"因为得知了天阳子の实力,所以根汉这心头隐隐の不好の感觉也消失了,想必以天阳子の实力,再加那冲天剑地势,出现什么危险天阳子也可以化 险为夷,也可以保住天家の丶天仙尔顿了顿道:"咱听你の丶"根汉对天仙尔道:"怎么说这也是壹个是非之地,有些事情咱们不要参与了,交由你父亲他们去解决吧丶"天仙尔也没有别の挂念了,只要天家不会有事好了,小天意现在也认了他们父母了丶只是小家伙不想伤天风夫妇の心,所以壹 直假装不知道而已,但是现在壹切都解决了丶三天之后,根汉壹家便出发了,他们告别了天风夫妇,离开了天家来到了浮家祖地丶"恩,根汉你小心壹些丶"她怀着孩子呢,小天意也还这么小,三岁不到,不能沾染那些不好の东西丶他反倒是将白狼马给叫了出来:"小白,咱们在这里布壹座法阵如 何?""呵呵,咱和天家の人。""去你小子の。"原来之前他和天风说过了,说自己会在浮家这边布下壹座法阵,若是到时候他们想离开の话,只要拿着自己给他の壹块玉,可以抢先从这里离开丶人不为已,天诛地灭嘛,根汉能做の也只有这么多了丶花了两天の时间,根汉和白狼马,才在这里布下 了几座复杂の法阵,其还包括壹座根汉の仙阵丶而在这阴魔域外面,还有白狼马之前留下の定位坐标,白狼马取出黑天罗盘,试着用这黑天罗盘,看看能不能锁定长生神山の位置,或者是阴魔域边缘の位置丶找了近壹天后,白狼马有所发现了,在黑天罗盘の面,出现了壹个立体の光团丶光团,立 即出现了壹个地域の地貌,不过那个地方似乎并不是长生神山丶白狼马也有些怪异:"不知道呀,好像咱们没有用罗盘,定下这样の壹个坐标呀,这地方怎么会出现在黑盘の丶"白狼马壹脸の委屈道:"大哥,咱真没有留这么壹个坐标,您看看这里面嘛,壹个人影也没有嘛。""应该,可能?"根汉 有些无语,"这要是传送到,不知道什么鬼地方去了,到时候还不如阴魔域。"白狼马道:"起码这个地方,好像有阳光,还有山有水,风景也不错の,应该不错の丶"根汉想了想,能省事省事吧,刚刚壹阵阴风吹来,根汉感觉浑身都不好了丶像幻之地壹样,也发生了这么大の变化,而阴魔域,还有阳 魔域,其实也发生了不少の变化丶根汉和白狼马渗入了其,直接传送走了,这是黑天罗盘の好处,如果有坐标の话,可以进行这样の直接の传送丶只不过需要耗费壹些顶级の灵玉,而这种灵玉の数量,根�

基本初等函数的公式及导数的运算法则

基本初等函数的公式及导数的运算法则

对数函数
对数函数是指以某个正实数为底的函数,如以10为底的常用对数函数和以e为底的自然对数函数。对数函数的 导数是一个特殊的公式。
三角函数
三角函数是描述角度和比例关系的函数,包括正弦、余弦和正切等。它们有着独特的周期性和对称性,用于解 决各种实际问题。
反三角函数
反三角函数是三角函数的逆运算,用于解决与三角函数相关的逆运算问题。 常见的反三角函数有反正弦函数、反余弦函数和反正切函数等。
基本初等函数的公式及导 数的运算法则
本节将介绍基本初等函数的公式及其导数的运算法则。这些函数包括常数函 数、幂函数、指数函数、对数函数、三角函数和反三角函数。我们还将探讨 导数的定义和运算法则,如常数法则、变量法则、和差法则、积法则、商法 则、复合函数法则和反函数法则。
基本初等函数的定义
基本初等函数是一类常见的数学函数,它们在数学领域中起到重要的作用。其中包括常数函数、幂函数、指数 函数、对数函数、三角函数和反三角函数。
导数的定义
可以通过求极限来定义。
导数的运算法则
导数的运算法则是一套用于对复杂函数求导的规则。包括常数法则、变量法 则、和差法则、积法则、商法则、复合函数法则和反函数法则。
常数函数
常数函数是指输出始终相同的函数。它的图像呈平行于x轴的直线。常数函数 的导数恒为零。
幂函数
幂函数是形如f(x) = x^n的函数,其中n是一个实数。指数n决定了幂函数的形 状。幂函数的导数可以通过幂函数的指数递减1来表示。
指数函数
指数函数是以指数为变量的函数。常见的指数函数有以e为底的自然指数函数和以10为底的常用对数函数。它 们具有特殊的性质和规律。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

5、若 f ( x) a ,则 f ( x) _______________
'
a ln a(a 0) x x ' e 6、若 f ( x) e ,则 f ( x) _______
x
1 7、若 f ( x) loga x ,则 f ( x) ________________ (a 0, 且a 1) x ln a 1 ' 8、若 f ( x) ln x ,则 f ( x) _____ x
2、求导数的一般步骤: (1)求函数的增量Δy=f(x0+Δx) -f(x0)
y (2)求平均变化率 x
(3)求极限 f ' ( x ) lim
y x 0 x
新课讲解
课题:基本初等函数的导数公式及导数的运算法则(1)
几个常用函数的导数 1、 函数 y f ( x) c 的导数 y ' 0

'
1
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
4
【例1】已知 y x (1)求y’; (2)求曲线在点(1,1)处的切线方程。
1 y x 4
'

3 4
1 3 y x 4 4
2
【练习】若抛物线y 4 x 上的点P到直线y 4 x 5 的距离最短,求点P的坐标。
1 4 s t 4t 3 16t 2 4
例题选讲
课题:基本初等函数的导数公式及导数的运算法则(1)
【例 5】偶函数 f(x)=ax4+bx3+cx2+dx+e 的图象过点 P(0,1),且在 x=1 处的切线方程 为 y=x-2,求 y=f(x)的解析式.

基本初等函数的导数公式及四则运算

基本初等函数的导数公式及四则运算
的最短距离
解:设曲线点在 p x0 y0 处的切线与2x-y+3=0 平行则切点p到直线2x-y+3=0的距离即为 所求
2 ∵ y 2x 1
'

2 2 x0 1
2
∴ x0 1
∴切点为(1,0)
∴ d min
5 5 5
小结:基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
解:设切点p x0 y0 ∴ 切线的斜率为1
y' ( x ln x) ( x) ln x x(ln x) ln x 1
' ' '
∴ 1 ln x0 1 ∴ ln x0 0 ∴ x0 1 y0 0 ∴ 切线方程为y=x-1
即x-y-1=0
5、 求曲线y=ln(2x-1)上的点到直线2x-y+3=0
所以a•(-1/2)2=1,
即:a=4
练习: 1 若直线y x b为函数y 图象的切线, x 求b的值和切点的坐标.

1.2.2基本初等函数的导数公式及导数的运算法则

1.2.2基本初等函数的导数公式及导数的运算法则
x x
1 公式7.若f ( x) log a x, 则f '( x) (a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x ) ; x
例1 假设某国家在20年期间的平均通货膨胀率为5%, 物价p(单位:元)与时间t(单位:年)有如下函数关 系 t
10
因此,在第10个年头,这种商品的价格约以0.08元/年的 速度上涨。
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
例2.求函数y=x3-2x+3的导数.
例3 日常生活中的饮用水通常是经过净化的。随着水 纯净度的提高,所需净化费用不断增加。已知将1吨水 净化到纯净度x%时所需费用(单位:元)为
5284 c( x) (80 x 100) 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
5284 c' ( x) ( )' 5284'(100 x) 5284 (100 x)' 2 100 x (100 x)

基本初等函数的公式和导数的运算法则

基本初等函数的公式和导数的运算法则
基本初等函数的公式 及导数的运算法则
基本初等函数的导数公式
1 .若 fx c ( c 为 常 数 ) , 则 f'x 0 ;
2 . 若 fx x aa Q *,则 f'x a x a 1 ;
3 .若 fx sx i ,则 n f'x cx o ; s 4 .若 fx c o s x ,则 f'x s in x ; 5 .若 fx a x ,则 f'x a x la n ; 6 .若 fx e x ,则 f'x e x ;
y=f(u)=f(g(x))=ln(x+2)
许多函数都可看成是同两个函数经过“复合”得到
y=(2x+3)2
y=u2 u=2x+3 复合
y=sin(2x+5)
y=sin u u=2x+5 复合
对于两个函数y=f (u)和u=g(x)如果通过变量u,y可以表 示成x的函数,那么称这个函数为函数y=f (u)和u=g(x)的 复合函数,记作y=f (g(x))
故 事中, 我最喜 欢的是 《完璧 归赵》 这个故 事。故 事讲了 春秋战 国时期 ,赵王 得 到 了“和 氏璧” ,秦王 想拿出 十五座 城池来 换。如 果换的 话,赵 王怕秦 王反悔 不 给 城池; 如果不 换的话 ,赵王 担心秦 王会以 这件事 为理由 ,出兵 攻打赵 国。在 赵 王 一筹莫 展、两 难之际 ,蔺相 如挺身 而出, 自告奋 勇出使 秦国。 到了秦 国,蔺 相 如 巧妙地 与秦王 周旋, 不把和 氏璧给 秦王。 到了晚 上,蔺 相如悄 悄地派 人把和 氏 璧 运回赵 国。机 智的蔺 相如不 仅不给 秦王攻 打赵国 的借口 ,又把 和氏璧 送回了 赵 国 。读了 这个故 事,我 对蔺相 如肃然 起敬, 他机智 勇敢、 能言善 辩、有 胆有识 的 精 神值得 我学习 。在平 时的学 习生活 中,我 遇到左 右为难 的事经 常找不 到解决 的 好 办法。 蔺相如 教会了 我用智 慧来解 决问题 。 读了这 本书, 我就像 在历史 的

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则

(x 2) (x 1) 2x 3
sin x (sin x)'cos x sin x(cos x)'
(3) y' ( )' cos x
cos2 x

cos2 x sin cos2 x
2
x

1 cos2
x

sec2
x.
例2求下列函数的导数.
(1) y 2sin x cos x 2x2 1 (2) y cos2 x sin 2 x
【教育类精品资料】
基本初等函数的导数公式 及导数的运算法则
一、基本初等函数的导数公式:
C'0C为常 (数 xn)'n(x)n1(nQ)
(sin x) cos x (cxo)ssixn
(ax)' ax lna,(ex)' ex
(loga
x)'

1 ,(lnx)' xlna
1 x
二、导数的运算法则:(和差积商的导数)
[f(x ) g (x ) ]' f'(x ) g '(x )
函 数 和 ( 差 ) 的 导 数 等 于 它 们 导 数 的 和 ( 差 ) .
(可以推广到求有限个函数的和(差)的导数.)
(轮流求导之和)
[f(x)g(x)]'f'(x)g(x)f(x)g(x)' [gf((xx))]' f'(x)g([xg)(x)f]2(x)g(x)'(g(x)0)
(2 )y f(1 x 2) 2 x x f(1 x 2); 21 x 2 1 x 2
(3) y[f(sin2 x)f(cos2 x)]

基本初等函数的导数公式及导数的运算法则ppt课件

基本初等函数的导数公式及导数的运算法则ppt课件
解1函y数 2x32可以看y作 u3和 函数
u2x3的复合 .由复函 合函数求数 导法则有
y'x yu' u'x u2'2x3' 4 u8 x1.2
2函y数 e0.0x5 1可以看 ye 作 u和 u函 数
0.0x5 1 的复.由合 复合函数函 求导法数 则有
y'x yu' u'x e u' 0 .0x 5 1 '
5. 若 fx ax,则 f ' x ax ln a;
6. 若 fx ex,则 f ' x ex ;
7.
若 fx loga x,则 f ' x
1 ;
x ln a
8.
若 fx ln x,则 f ' x
1 .
x
例1 假设某国家在20 年期间的年通货膨胀 率为
5%,物价p单位 : 元与时间t单位 : 年有如下函数
1.2.2 基本初等函数的导数式公 及导数的运算法则
为了方便, 今后我们 可以直接 使用下面 的基本初 等函数的 导数公式 表.
基 本 初 等 函 数 的 导 数 公式
1. 若 fx c,则f 'x 0;
2. 若 fx xn n N ,则 f ' x nx n1 ;
3. 若 fx sinx,则 f 'x cos x; 4. 若 fx cos x,则f 'x sinx;
用 单位 : 元 为
c x 5284 80 x 100 .求净化到下纯度
100 x 时 , 所需净化费用的瞬时变 化率 :
1 90 % ; 2 98 % .
解 净化费用的瞬时变 就化 是率 净化费

基本初等函数的导数公式和导数的四则运算法则及应用

基本初等函数的导数公式和导数的四则运算法则及应用

基本初等函数的导数公式和导数的四则运算法则及应用1.常见基本初等函数的导数公式和导数的四则运算'0C =(C 为常数);1()',*;n n x nx n Q -=∈ (sin )'cos ;x x = (cos )'sin ;x x =- ()';x x e e = ()'ln (0,1);x x a a a a a =>≠ 1(ln )';x x= 1(log )'(0,1)ln a x a a x a=>≠. 法则1:[()()]''()'();u x v x u x v x ±=±法则2:[()()]'()()()'();u x v x u x v x u x v x =+法则3:2()'()()()'()'(()0)()()u x u x v x u x v x v x v x v x ⎡⎤-=≠⎢⎥⎣⎦. 2.导数的几何意义:是曲线)(x f y =上点()(,00x f x )处的切线的斜率. 因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 ))(()(00/0x x x f x f y -=-.3.可导: 如果函数)(x f y =在开区间),(b a 内每一点都有导数,则称函数)(x f y =在开区间),(b a 内可导.4.可导与连续的关系:如果函数y =f (x )在点x 0处可导,那么函数y =f (x )在点x 0处连续,反之不成立.函数具有连续性是函数具有可导性的必要条件,而不是充分条件.单调性及其应用1.利用导数研究多项式函数单调性的一般步骤.(1)求f '(x )(2)确定f '(x )在(a ,b )内符号.(3)若f '(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是增函数; 若f '(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是减函数.2.用导数求多项式函数单调区间的一般步骤.(1)求f '(x ).(2)f '(x )>0的解集与定义域的交集的对应区间为增区间;f '(x )<0的解集与定义域的交集的对应区间为减区间.函数的极值、最值及应用3.极大值与极小值统称为极值(ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4.判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值5.求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x )(2)求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值6.函数的最大值和最小值:在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值.⑴在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. ⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数)(x f 在闭区间[]b a ,上连续,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个7.利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.。

基本初等函数的导数公式及导数的运算法则

基本初等函数的导数公式及导数的运算法则
导数间 y'x 的 yu ' u 'x.关系为
y'x表示y对x的导数
即 y对 x的导数 y对 u 等 的于 导u数 对 x的 与导数. 的
由此,y可 ln 3 得 x2对 x的导数 yln 等 u对 u的 于
导数 u3 与 x2对 x的导数 ,即 的乘积
y'xyu ' u'xln u'3x2' 1 u33x3 2.
1321,
所以,纯净度为 98%时,费用的瞬时变化率
是1321元/吨.
函数 fx 在某点处的导数的大小表示函数
在此点附近变化的快慢 .由上述 计算可知,
c' 98 25c' 90.它表示纯净度为98%左
右时净 化费用的变化率 ,大约是纯 净 度 为
90% 左右时净化费用变化率的 25 倍 .这说
当p0 5时,pt 5 1.05t.这时,求p关于t的导 数可以看成求函数ft 5与 gt 1.05t 乘积
的导数.下面的" 导数运算法则"可以帮助我们解 决两个函数加、减、乘、除的求导问题.
导数运算法则
1 . f x g x ' f 'x g 'x ;
2 . f x g x ' f ' x g x f x g ' x ;
3 . g fx x 'f'x g x g x f2 x g 'x g x 0 .
例2 根据基本初等函数的导数公式 和导数运算法则,求函数 y x3 2x 3的导数.
1 ;
x ln a
8.
若 fx ln x,则 f ' x

基本初等函数的导数公式及四则运算

基本初等函数的导数公式及四则运算
2 几何定义
导数是函数曲线在该点上的切线的斜率。
常见导函数的公式及图像
一次数
导数为常数,图像为直线。
二次函数
导数为一次函数,图像为抛物线。
正切函数
导数为幂函数,图像具有周期性。
指数函数
导数为自身,图像为逐渐增长的曲线。
对数函数的导数
对数函数的导数公式是1/x,其中x是对数函数的底数。对数函数的图像是单调 递增的。
反三角函数的导数
反三角函数的导数与对应的三角函数有关。例如,arcsin(x)的导数是1/√(1-x^2),arccos(x)的导数是-1/√(1-x^2)。
初等函数导数的性质
初等函数的导数具有一些规律和性质,包括链式法则、求导法则和反函数求导法则。
四则运算简单例题及求导步骤
通过一些例题和求导步骤,了解如何对简单的四则运算进行求导。
函数复合法则及求导步骤
函数复合法则是求导一个函数由多个函数复合而成时使用的方法。通过一些 例题,了解如何使用函数复合法则求导。
反函数求导法则及求导步骤
反函数求导法则是求导一个函数的反函数时使用的方法。通过一些例题,了 解如何使用反函数求导法则求导。
基本初等函数的导数公式 及四则运算
了解基本初等函数的导数公式和四则运算是学习微积分的重要基础。本演示 将逐步介绍每个函数的导数公式,以及它们的几何和物理意义。
什么是导数及其定义
导数描述了函数在某一点上的变化率。简单来说,它是函数曲线的切线的斜率。定义为函数的极 限。
1 数学定义
导数是函数f(x)在某个点x处的极限lim(x→0)(f(x+h)-f(x))/h。

所有导数公式及运算法则

所有导数公式及运算法则

所有导数公式及运算法则基本初等函数的导数公式1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .(cotX)'=-1/(sinX)2=-(cscX)29 .(secX)'=tanX secX10.(cscX)'=-cotX cscX导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v2④复合函数的导数[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。

导数是微积分的基础,同时也是微积分计算的一个重要的支柱。

2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。

基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

高阶导数的求法1.直接法:由高阶导数的定义逐步求高阶导数。

一般用来寻找解题方法。

2.高阶导数的运算法则:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yu(u2)2u, ux(sx i)ncox.s
所以
y x y u u x 2 u cx o 2 s sx ic n x o . s
例 7 设y 1x2, 求 y .
解 将中间变量 u(
u)1 1 也 在 心 中 运 算 . 2u 2(1x2)
这样可以直接写出下式
4u
8x12
(2)函数 y=e-0.05x+1 可以 看作函数 y=eu 和u= -0.05x+1的复合函数.根 据复合函数求导法则有
(3)函数 y=sin(x+) 可
以看作函数 y=sinu 和
u=x+的复合函数.根
据复合函数求导法则有
yx'yu'•ux'
e u '• 0 .0x 5 1 '
如何求?
导数运算法则
1 . f x g x ' f' x g ' x ; 2 . f x • g x ' f ' x g x f x g ' x ; 3 . g fx x 'f'x g x g x f2 x g 'x g x 0
例2 根据基本初等函数的导数公式和导数运算 法则,求函数 y=x3-2x+3的导数.
(u)v u w v w u v w uw v
u(1x)
u(x) u2(x).
堂上练习 课本第18页练习2
小结 基本初等函数的导数公式 导数运算法则 复合函数的导数
作业
课本第18页习题1.2A组题4,5,6,8
yx 2
1 (1x2)
(1x2)x
x .
1 x2
达标练习
5. 设 f (x) = sinx2 ,求 f (x).
课堂小结
导数的四则运算法则
推论 1 推论 2 推论 3
(1) (uv) uv
(2) (uv) uvuv
(3)
(
u v
)
uvuv v2
(v 0).
(cu(x)) = cu(x) (c 为常数).
且 yx=yu•ux
y对x的导数等于y对u的导数与u对x的导数的乘积
例4 求下列函数的导数:
1y2x32;
2ye0.05 x1;
3ysin x其中 ,均为常数
解: (1)函数 y=(2x+3)2 可以看作函数 y=u2 和
u=2x+3复合函数.根据复合函数求导法则有
yx'yu'•ux'
u2'• 2 x 3 '
5284
100 x2
1因c为 '90 1502 9 08 0 245.8 2,4
所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.
2因c为 '98150209882413,21
所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.
如何求函数 y=ln(x+2)的导数呢?
令 u=x+2 (x>-2),则y=lnu. y=ln(x+2)就由 y=lnu 和 u=x+2(x>-2)复合得到. y与u的关系记作 y=f (u),u与x的关系记作u=g(x)
解: y=(x3-2x+3)=(x3)-(2x)+(3)
=3x2-2, 所以,函数y=x3-2x+3的导数是
y=3x2-2.
堂上练习
求下列函数的导数:
1 y 2 x 4 2x 2 0 4x 0 1
2y32x4x25x31x4
6
3 y (2 x 3 1 )3 x (2 x )
例3
日常生活中的饮用水通常是经过净化的.随着水纯净度 的提高,所需净化费用不断增加.已知将1吨水净化到纯 净度为x%时所需费用(单位:元)为
y=f(u)=f(g(x))=ln(x+2).
许多函数都可看成是同两个函数经过“复合”得到
y=(2x+3)2
y=u2 u=2x+3 复合
y=sin(2x+5)
y=sin u u=2x+5 复合
对于两个函数y=f (u)和u=g(x)如果通过变量u,y可以表 示成x的函数,那么称这个函数为函数y=f (u)和u=g(x)的 复合函数,记作y=f (g(x))
0.05eu 0.0e50.05 x1
yx'yu'•ux'
siun '•x '
co us co xs
例 6 设 y = sin2 x,求 y . 解 这个函数可以看成是 y = sin x ·sin x, 可利 用乘法的导数公式,这里,我们用复合函数求导法. 将 y = sin2 x 看成是由 y = u2,u = sin x 复合而成.而
解: p(t)=1.05tln1.05,
p(10)=1.0510ln1.05≈0.08(元/年).
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
思考 如果上式中某中商品的p0=5,那么在第10个年
头,这种商品的价格上涨的速度大约是多少?
当p0=5时,p(t)=5×1.05t 求p关于t导数可以看成求函数 f(t)=5与g(t)=1.05t乘积的导数.
基本初等函数的公式 及导数的运算法则
乐山市更生学校 童景平
学习目标:
1.理解两函数的和(或差)的导数法则, 会求一些函数的导数.
2.理解两函数的积(或商)的导数法则, 会求一些函数的导数
3.会求一些简单复合函数的导数.
教学重难点
教学重点:
导数公式和导数的四则运算法则。
教学难点:
灵活地运用导数的四则运算法则进 行相关计算
知识链接 基本初等函数的导数公式
基本初等函数的导数公式
1 .若 fx c ,则 f'x 0 ;
2 . 若 f x x n n N * , 则 f ' x n n 1 ;x
3 .若 fx sx i ,则 n f'x cx o ; s 4 .若 fx cx o ,则 f' s x sx i ;n 5 .若 fx a x ,则 f'x a x la n ; 6 .若 fx e x ,则 f'x e x ;
7.若 fxloax g ,则 f'xxl1n a; 8.若 fxlnx,则 f'x1;
x
例1 假设某国家在20年期间的年均通货膨胀率为5%,
物价p(单位:元)与时间t(单位:年)有如下函数关系 p(t) = p0(1+5%)t,
其中 P 0为t=0时的物价.假定某种商品的 P 0 =1,那么在第 10个年头,这种商品的价格上涨的速度大约是多少(精确 到0.01)?
cx528480x100
100x
求净化到下列纯净度时,所需净化费用的瞬时变化率.
(1) 90%;
(2) 98%.
解: 净化费用的瞬时变化率就是净化费用函数的导数.
c'x 5284'
100x
5
2 ' 1 80 4x0 521 80 4x0 ' 10 x0 2
010 10 x0 5 0 x22 841
相关文档
最新文档