第4章 运放电路

合集下载

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

集成运算放大器电路-模拟电子电路-PPT精选全文完整版

第4章 集成运算放大器电路
4―3―2差动放大器的工作原理及性能分析 基本差动放大器如图4―12所示。它由两个性能参
数完全相同的共射放大电路组成,通过两管射极连接 并经公共电阻RE将它们耦合在一起,所以也称为射极 耦合差动放大器。
I UE (UEE ) UEE 0.7
RE
RE
第4章 集成运算放大器电路
IC2
R1 R2
Ir
(4―7) (4―8)
第4章 集成运算放大器电路
可见,IC2与Ir成比例关系,其比值由R1和R2确定。 参考电流Ir现在应按下式计算:
UCC
Ir
UCC U BE1 Rr R1
UCC Rr R1
(4―9)
Ir
Rr
IC2
IB1
V1

UBE1 -
IE1
R1
IB2 +
UBE2 - R2
(4―11)
Ir
IC1
IB3
IC1
IC3
IC1 IC2,
IC3
3 1 3
IE3
IE3
IC2
IC1
1
IC2
2
若三管特性相同,则β1=β2=β3=β,求解以上各
式可得
IC3
(1 2ຫໍສະໝຸດ 222)Ir
(4―12)
第4章 集成运算放大器电路
利用交流等效电路可求出威尔逊电流源的动态内阻
Ro为
Ro 2 rce
4―2 电流源电路
电流源对提高集成运放的性能起着极为重要的作 用。一方面它为各级电路提供稳定的直流偏置电流, 另一方面可作为有源负载,提高单级放大器的增益。 下面我们从晶体管实现恒流的原理入手,介绍集成运 放中常用的电流源电路。

运放典型应用电路

运放典型应用电路

运放典型应用电路一、什么是运放运放,即运算放大器,是一种集成电路芯片,主要用于放大、滤波、求导等信号处理方面。

它的特点是输入阻抗高、输出阻抗低,增益高、带宽宽广,可以通过外接电路改变其工作方式。

二、基本运放电路1. 非反馈式基本运放电路非反馈式基本运放电路由一个差动输入级和一个单端输出级组成。

其中差动输入级由两个晶体管组成,用于将输入信号转换为差模信号;单端输出级由一个共射极晶体管组成,用于将差模信号转换为单端输出信号。

2. 反馈式基本运放电路反馈式基本运放电路在非反馈式基本运放电路的基础上加入了反馈网络。

反馈网络可以改变增益、频率响应等特性,使得运放可以适应不同的应用场合。

三、典型应用电路1. 反相比例放大器反相比例放大器是一种常见的运放应用电路。

它的原理是将输入信号经过一个负反馈网络后再输入到非反相输入端口上。

这样可以实现对输入信号进行负反馈放大,从而达到比例放大的效果。

2. 非反相比例放大器非反相比例放大器与反相比例放大器类似,只是将输入信号输入到非反相输入端口上。

这样可以实现对输入信号进行正反馈放大,从而达到比例放大的效果。

3. 仪表放大器仪表放大器是一种高精度、高稳定性的运放应用电路。

它通过差分输入、高增益、低噪声等设计特点,实现对小信号的高精度测量和处理。

4. 滤波器滤波器是一种常见的运放应用电路。

它通过选择不同的电容和电感组合,可以实现不同类型的滤波功能,如低通滤波、高通滤波、带通滤波等。

5. 稳压电源稳压电源是一种常见的运放应用电路。

它通过反馈网络控制输出电压,使得输出电压保持稳定不变。

稳压电源广泛应用于各种电子设备中。

6. 正弦波振荡器正弦波振荡器是一种常见的运放应用电路。

它通过选择合适的RC组合和反馈网络,可以实现正弦波振荡输出。

正弦波振荡器广泛应用于各种信号发生器中。

四、总结运放是一种功能强大的集成电路芯片,可以应用于放大、滤波、求导等信号处理方面。

不同的运放应用电路具有不同的特点和功能,可以满足各种不同的应用需求。

第4章 集成运算放大电路 习题解答

第4章 集成运算放大电路 习题解答

第4章自测题、习题解答自测题4一、选择1.集成运放的输出级一般采用()。

A. 共基极电路B. 阻容耦合电路C. 互补对称电路2.集成运放的中间级主要是提供电压增益,所以多采用()。

A. 共集电极电路B. 共发射极电路C. 共基极电路3.集成运放的输入级采用差分电路,是因为()。

A. 输入电阻高B. 差模增益大C. 温度漂移小4.集成运放的制造工艺,使得相同类型的三极管的参数()。

A 受温度影响小 B. 准确性高 C. 一致性好5.集成运放中的偏置电路,一般是电流源电路,其主要作用是()。

A. 电流放大B. 恒流作用C. 交流传输。

解:1、C 2、B 3、C 4、C 5、B二、判断1.运放的有源负载可以提高电路的输出电阻()。

2.理想运放是其参数比较接近理想值()。

3.运放的共模抑制比K CMR越高,承受共模电压的能力越强()。

4.运放的输入失调电压是两输入端偏置电压之差()。

5.运放的输入失调电流是两输入端偏置电流之差()。

解:1、×2、×3、√4、√5、√三、选择现有如下类型的集成运放,根据要求选择最合适的运放:①.通用型②. 高阻型③. 低功耗型④. 高速型⑤. 高精度⑥. 大功率型⑦. 高压型。

1.作视频放大器应选用。

2.作内阻为500KΩ信号源的放大器应选用。

3.作卫星仪器中的放大器应选用。

4.作心电信号(?左右)的前置放大器应选用。

5.作低频放大器应选用。

作输出电流为4A的放大器应选用。

解:1、④ 2、② 3、③ 4、⑤ 5、① 6、⑥习题44.1通用型集成运算放大器一般由哪几个部分组成?每一部分常采用哪种基本电路?对每一基本电路又有何要求? 解:通用型集成运算放大器一般由输入级、中间级、输出级组成。

输入级采用差动放大电路,输入级要求尽量减小温度漂移。

中间级采用共射放大电路,要求提供较高的电压放大倍数。

输出级采用共集接法,互补对称电路,要求输出电阻要小。

4.2某一集成运算放大器的开环增益A od = 100dB ,差模输入电阻r i d = 5M Ω, 最大输出电压的峰─峰值为U OPP =±14V 。

电子技术基础-第4章

电子技术基础-第4章

整理得 uO1R Rf 13uI1uI2
图4-18 同相加法运算电路
28
【例4-1】 电路如图4-19所示。设A为理想集成运放, R1=10kΩ,Rf=100kΩ。试求:输出电压uO与输入电压uI之 间的关系,并说明该电路实现了什么运算功能。
解 根据理想集成运放的两条结论,利用“虚短”和“虚断” 的概念,有:uN=up=uI, iI=0
( a)
( b)
( c)
非线性集成电路
3
( d)
( e)
(a)为圆壳式
(b)为双列直插式 (c)为扁平式 (d)为单列直插式 (e)为菱形式
( a)
( b)
( c)
( d)
( e)
4
4.1 直接耦合放大电路
两级直接耦合放大电路如图4-1所示
图4 –1 两级直接耦合放大器电路
5
4.1.1 直接耦合放大器和组成及其零点漂移现 象
③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载 能力强),非线性失真小等优点。多采用互补对称发射极输 出电路。
17
Байду номын сангаас
④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与 分立元件不同,集成运放多采用电流源电路为各级提供合适 的集电极(或发射极、漏极)静态工作电流,从而确定了合 适的静态工作点。 集成运放的电路符号如图4-10所示。图(a)为国外常用符号, 图(b)为我国常用符号。
19
(2)直流参数 ①输入失调电压UIO及其温漂dUIO/dT 理想集成运放,当输入为零时,输出也为零。但实际集成运放的 差分输入级不易做到完全对称,在输入为零时,输出电压可能不 为零。为使其输出为零,人为的在输入端加一补偿电压,称此补 偿电压为输入失调电压,用UIO表示。 ②输入失调电流IIO及其温漂dIIO/dT 集成运放在常温下,当输出电压为零时,两输入端的静态电流之 差,称为输入失调电流,用IIO表示,

运放电路的工作原理

运放电路的工作原理

运放电路的工作原理运放电路是一种广泛应用于电子电路中的集成电路,它具有高输入阻抗、低输出阻抗、大增益和宽带特性。

运放电路在各种电子设备中都有着重要的作用,比如放大电路、滤波电路、比较电路等。

那么,运放电路是如何实现这些功能的呢?接下来我们将深入探讨运放电路的工作原理。

首先,我们来了解一下运放电路的基本结构。

运放电路由输入端、输出端、电源端和反馈网络组成。

其中,输入端通常包括一个非反相输入端和一个反相输入端,输出端则输出放大后的信号,电源端提供工作电压,反馈网络则用于控制运放的增益和频率特性。

运放电路的工作原理可以用简单的反馈控制理论来解释。

在一个典型的反馈电路中,输出信号会被反馈到输入端,通过反馈网络调节输入端的信号,从而控制输出端的信号。

这种反馈机制可以使运放电路具有稳定的工作特性和精确的控制能力。

在放大电路中,运放电路通过控制输入信号和反馈信号的比例来放大输入信号。

当输入信号进入非反相输入端时,输出端会输出一个放大后的信号。

通过调节反馈网络的参数,可以控制放大倍数和频率响应,从而实现对输入信号的精确放大。

在滤波电路中,运放电路可以通过反馈网络来实现对特定频率范围的信号进行滤波。

通过选择合适的电容和电感参数,可以设计出低通滤波器、高通滤波器、带通滤波器等不同类型的滤波电路,从而满足不同应用场景的需求。

在比较电路中,运放电路可以通过比较两个输入信号的大小来输出一个对应的逻辑电平。

这种比较功能在模拟信号处理和数字信号处理中都有着重要的应用,比如在模拟信号的采样保持电路中,可以利用运放电路来实现对输入信号的采样和保持。

总的来说,运放电路通过精确的反馈控制机制,实现了在电子电路中的多种功能,包括信号放大、滤波、比较等。

它的工作原理基于反馈控制理论,通过精确的设计和调节,可以实现对输入信号的精确处理和控制。

因此,运放电路在现代电子领域中具有着广泛的应用前景,对于提高电子设备的性能和功能起着至关重要的作用。

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路一 填空题1、集成运放内部电路通常包括四个基本组成部分,即、、和。

2、为提高输入电阻,减小零点漂移,通用集成运放的输入级大多采用_________________电路;为了减小输出电阻,输出级大多采用_________________ 电路。

3、在差分放大电路发射极接入长尾电阻或恒流三极管后,它的差模放大倍数将 ud A ,而共模放大倍数将 ,共模抑制比将 。

uc A CMR K 4、差动放大电路的两个输入端的输入电压分别为和,则差mV 8i1-=U mV 10i2=U 模输入电压为 ,共模输入电压为 。

5、差分放大电路中,常常利用有源负载代替发射极电阻,从而可以提高差分放大电e R 路的 。

6、工作在线性区的理想运放,两个输入端的输入电流均为零,称为虚______;两个输入端的电位相等称为虚_________;若集成运放在反相输入情况下,同相端接地,反相端又称虚___________;即使理想运放器在非线性工作区,虚_____ 结论也是成立的。

7、共模抑制比K CMR 等于_________________之比,电路的K CMR 越大,表明电路__________越强。

答案:1、输入级、中间级、输出级、偏置电路;2、差分放大电路、互补对称电路;3、不变、减小、增大;4、-18mV, 1mV ;5、共模抑制比;6、断、短、地、断;7、差模电压放大倍数与共模电压放大倍数,抑制温漂的能力。

二 选择题1、集成运放电路采用直接耦合方式是因为_______。

A .可获得很大的放大倍数B .可使温漂小C .集成工艺难以制造大容量电容2、为增大电压放大倍数,集成运放中间级多采用_______。

A . 共射放大电路 B. 共集放大电路 C. 共基放大电路3、输入失调电压U IO 是_______。

A .两个输入端电压之差B .输入端都为零时的输出电压C .输出端为零时输入端的等效补偿电压。

第04章 集成运算放大电路题解

第04章 集成运算放大电路题解

第四章集成运算放大电路自测题一、选择合适答案填入空内。

(1)集成运放电路采用直接耦合方式是因为。

A.可获得很大的放大倍数B. 可使温漂小C.集成工艺难于制造大容量电容(2)通用型集成运放适用于放大。

A.高频信号B.低频信号C.任何频率信号(3)集成运放制造工艺使得同类半导体管的。

A.指标参数准确B.参数不受温度影响C.参数一致性好(4)集成运放的输入级采用差分放大电路是因为可以。

A.减小温漂B. 增大放大倍数C. 提高输入电阻(5)为增大电压放大倍数,集成运放的中间级多采用。

A.共射放大电路B.共集放大电路C.共基放大电路解:(1)C (2)B (3)C (4)A (5)A二、判断下列说法是否正确,用“√”或“×”表示判断结果填入括号内。

(1)运放的输入失调电压U I O 是两输入端电位之差。

( ) (2)运放的输入失调电流I I O 是两端电流之差。

( ) (3)运放的共模抑制比cdCMR A A K =( ) (4)有源负载可以增大放大电路的输出电流。

( )(5)在输入信号作用时,偏置电路改变了各放大管的动态电流。

( ) 解:(1)× (2)√ (3)√ (4)√ (5)× 三、电路如图T4.3所示,已知β1=β2=β3=100。

各管的U B E 均为0.7V ,试求I C 2的值。

图T4.3解:分析估算如下: 100BE1BE2CC =--=RU U V I R μ AβCC B1C0B2C0E1E2CC1C0I I I I I I I I I I I I R +=+=+====1001C =≈⋅+=R R I I I ββμA四、电路如图T4.4所示。

图T4.4(1)说明电路是几级放大电路,各级分别是哪种形式的放大电路(共射、共集、差放……);(2)分别说明各级采用了哪些措施来改善其性能指标(如增大放大倍数、输入电阻……)。

解:(1)三级放大电路,第一级为共集-共基双端输入单端输出差分放大电路,第二级是共射放大电路,第三级是互补输出级。

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路课后习题及答案

第4章 集成运算放大电路一 填空题1、集成运放内部电路通常包括四个基本组成部分,即、、和 。

2、为提高输入电阻,减小零点漂移,通用集成运放的输入级大多采用_________________电路;为了减小输出电阻,输出级大多采用_________________ 电路。

3、在差分放大电路发射极接入长尾电阻或恒流三极管后,它的差模放大倍数ud A 将,而共模放大倍数uc A 将,共模抑制比CMR K 将。

4、差动放大电路的两个输入端的输入电压分别为mV 8i1-=U 和mV 10i2=U ,则差模输入电压为,共模输入电压为。

5、差分放大电路中,常常利用有源负载代替发射极电阻e R ,从而可以提高差分放大电路的。

6、工作在线性区的理想运放,两个输入端的输入电流均为零,称为虚______;两个输入端的电位相等称为虚_________;若集成运放在反相输入情况下,同相端接地,反相端又称虚___________;即使理想运放器在非线性工作区,虚_____ 结论也是成立的。

7、共模抑制比K CMR 等于_________________之比,电路的K CMR 越大,表明电路__________越强。

答案:1、输入级、中间级、输出级、偏置电路;2、差分放大电路、互补对称电路;3、不变、减小、增大;4、-18mV , 1mV ;5、共模抑制比;6、断、短、地、断;7、差模电压放大倍数与共模电压放大倍数,抑制温漂的能力。

二选择题1、集成运放电路采用直接耦合方式是因为_______。

A .可获得很大的放大倍数B .可使温漂小C .集成工艺难以制造大容量电容 2、为增大电压放大倍数,集成运放中间级多采用_______。

A . 共射放大电路 B. 共集放大电路 C. 共基放大电路 3、输入失调电压U IO 是_______。

A .两个输入端电压之差B .输入端都为零时的输出电压C .输出端为零时输入端的等效补偿电压。

4、集成运放的输入级采用差分放大电路是因为可以______。

第4章 差动放大电路与集成运算放大器

第4章 差动放大电路与集成运算放大器
ui1 ui 2
id
图3-3 差动放大电路的输入方式
共模信号 与差模信号
Ui1 Ui2
线性放 大电路
Uo
1 共模信号输入电压: U ic (U i1 U i 2 ) 2
差模信号输入电压:U
id
(U i1 U i 2 )
差模信号:是指在两个输入端加幅度相等, 极性相反的信号。
共模信号 :是指在两个输入端加幅度相等, 极性相同的信号。
在放大器的两个输入端分别输入大小相等、 极性相同的信号,即 ui1 ui 2 时,这种输入方 式称为共模输入,所输入的信号称为共模 (输入)信号。共模输入信号常用 uic 来表 示,即 uic ui1 ui 2 。在放大器的两个输入端 分别输入大小相等、极性相反的信号,即 时这种输入方式为差模输入,所输 入的信号称为差模输入信号。差模输入信 号常用 u 来表示,即 ui1 uid / 2 ui 2 uid / 2
输入信号种类
ui1 = ui2 共模输入
(common mode)
uC ud
ui1 = -ui2 差模输入
(differential mode) 任意输入ui1, ui2(既非差模又非共模)
3.2 相关的理论知识
(2)共模输入
如图3-3(a)所示为共模输入方式,由图中可以看出,当差动放大器输 入共模信号时,由于电路对称,两管的集电极电位变化相同,因而输出 电压 u oc 恒为零。
Rod 2RC
5.共模抑制比 如果温度变化,两个差放管的电流将按相同的方向一起增大或减小,相当于给放大电路 加上一对共模输入信号。所以差模输入信号反映了要放大的有效信号,而共模输入信号 可以反映由温度等原因而产生的漂移信号或其它干扰信号。通常希望差分放大电路的差 模电压放大倍数愈大愈好,而共模电压放大倍数愈小愈好。 共模抑制比反映了差分放大电路放大差模信号、抑制零漂和共模信号的能力。

第4章集成运算放大器习题解答

第4章集成运算放大器习题解答

页脚 .第四章习题参考答案4-1 什么叫“虚短”和“虚断”?答 虚短:由于理想集成运放的开环电压放大倍数无穷大,使得两输入端之间的电压近似相等,即-+≈u u 。

虚断:由于理想集成运放的开环输入电阻无穷大,流入理想集成运放的两个输入端的电流近似等于零,即0≈=-+i i 。

4-2 理想运放工作在线性区和非线性区时各有什么特点?分析方法有何不同?答 理想运放工作在线性区,通常输出与输入之间引入深度负反馈,输入电压与输出电压成线性关系,且这种线性关系只取决于外部电路的连接,而与运放本身的参数没有直接关系。

此时,利用运放“虚短”和“虚断”的特点分析电路。

理想运放工作在非线性去(饱和区),放大器通常处于开环状态,两个输入端之间只要有很小的差值电压,输出电压就接近正、负电压饱和值,此时,运放仍具有“虚断”的特点。

4-3 要使运算放大器工作在线性区,为什么通常要引入负反馈?答 由于理想运放开环电压放大倍数∞=uo A ,只有引入深度负反馈,才能使闭环电压放大倍数FA 1u =,保证输出电压与输入电压成线性关系,即运放工作在线性区。

4-4 已知F007运算放大器的开环放大倍数dB A uo 100=,差模输入电阻Ω=M r id 2,最大输出电压V U sat o 12)(±=。

为了保证工作在线性区,试求:(1)+u 和-u 的最大允许值;(2)输入端电流的最大允许值。

解 (1)由运放的传输特性5o uo 1012===++u u u A 则V 102.1101245--+⨯===u u(2)输入端电流的最大允许值为A 106102102.11164id --+⨯=⨯⨯==r u I 4-5 图4-29所示电路,设集成运放为理想元件。

试计算电路的输出电压o u 和平衡电阻R 的值。

解 由图根据“虚地”特点可得0==+-u u图中各电流为601.01--=u i 305.02---=u i 180o f u u i -=- 由“虚断”得f 21i i i =+以上几式联立,可得V 7.2o =u平衡电阻为 Ω==k R 18180//60//30图4-29 题4-5图4-6 图4-30所示是一个电压放大倍数连续可调的电路,试问电压放大倍数uf A 的可调围是多少?图4-30 题4-6图解 设滑线变阻器P R 被分为x R 和x P R R -上下两部分。

运放电路工作原理

运放电路工作原理

运放电路工作原理
运放电路是一种基本的电子电路,其工作原理是通过运放输入端的差分放大和反馈机制将输入信号放大并输出一个放大后的信号。

运放电路通常由一个差动放大器和一个输出级组成。

差动放大器是运放电路的核心部分,其输入端有两个引脚,分别为非反相输入端(+)和反相输入端(-)。

当有输入信号时,差动放大器会将两个输入信号进行放大。

如果非反相输入端的电压高于反相输入端的电压,差动放大器会输出一个正的放大信号;如果非反相输入端的电压低于反相输入端的电压,差动放大器会输出一个负的放大信号。

反馈机制是运放电路实现放大功能的关键。

通过将部分输出信号反馈到输入端,可以控制放大倍数和增加稳定性。

具体来说,反馈一般分为两种类型:正反馈和负反馈。

正反馈会使输出信号持续增加,很少被使用;而负反馈会减小放大倍数,但可以提高电路的稳定性和减小失真。

在运放电路中,输出级负责将放大后的信号输出到负载中。

负载可以是其他电路或器件,比如扬声器、显示器等。

输出级的基本原理是将差动放大器输出的信号进行电流放大和电压放大,以驱动负载。

总的来说,运放电路的工作原理是通过差分放大和反馈机制将输入信号放大,并通过输出级将放大信号输出到负载中。

这种原理使得运放电路成为广泛应用于各种电子设备中的重要组成部分。

第4章 集成电路运算放大电路

第4章 集成电路运算放大电路

④动态时ΔiO约为多少?
4.3 集成运放电路简介
•电压放大倍数高 集成运放的特点: •输入电阻大 •输出电阻小 已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
4.2.1 基本电流源电路
一、镜像电流源
T0 和 T1 特性完全相同。
U BE0 = U BE1 U BE I B0 = I B1 I B I C0 = I C1 I C
I R IC 2I B IC 2 IC IC

2
I R 即I C1
当β>>2时, I C1
学习指导 4.1 集成运算放大电路概述 4.2 集成运放中的电流源 4.3 集成运放电路的简介 4.4 集成运放的性能指标及低频等效电路
4.5 集成运放的种类及选择(自学) 4.6 集成运放的使用(自学) 小结
作 业
• 4.3
学习指导
在半导体制造工艺的基础上,将整个电路中的元 器件制作在一块硅基片上,构成特定功能的电子电路, 称为集成电路。 其体积小,而性能却很好。 集成电路按其功能分,有模拟集成电路和数字集 成电路。模拟集成电路的种类繁多,其中集成运算放 大器(简称集成运放)是应用极为广泛的一种。 主要内容:(1)集成运放中的电流源;(2)集成运放 电路的分析;(3)集成运放及主要性能指标。 基本要求:(1)熟悉运放的组成及各部分的作用, 理解主要性能指标及其使用注意事项;(2)了解镜 像电流源、微电流源的工作原理、特点和主要用途; (3)了解运放F007的基本组成和工作原理。(4)熟悉 LM324集成运放的引脚分布及其应用。

第4章集成运算放大电路

第4章集成运算放大电路

2020年4月8日星期三
Shandong University
第3页
模拟电路
二、集成运放电路的组成
两个 输入端
一个 输出端
若将集成运放看成为一个“黑盒子”,则可等效为一个 双端输入、单端输出的差分放大电路。
2020年4月8日星期三
Shandong University
第4页
模拟电路
集成运放电路四个组成部分的作用
模拟电路
第四章 集成运算放大电路
§4.1 概述 §4.2 集成运放中的电流源 §4.3 电路分析及其性能指标
2020年4月8日星期三
Shandong University
第1页
模拟电路
§4.1 概述
一、集成运放的特点 二、集成运放电路的组成 三、集成运放的电压传输特性
2020年4月8日星期三
Shandong University
2020年4月8日星期三
Shandong University
第5页
模拟电路
三、集成运放的电压传输特性 uO=f(uP-uN)
在线性区:
uO=Aod(uP-uN) Aod是差模开环放大倍数。
非线 性区
由于Aod高达几十万倍,所以集成运放工作在线性区时的 最大输入电压(uP-uN)的数值仅为几十~一百多微伏。
特点:IC1具有更高的稳定性。
2020年4月8日星期三
Shandong University
第9页
三、微电流源
模拟电路
要求提供很小的静态电流,又不能用大电阻。
IE1 (UBE0 UBE1) Re
U BE
I UT
I I e , I e E
S
E0 E1

模电课件第四章集成运算放大电路

模电课件第四章集成运算放大电路
第四章 集成运算放大电路
§4.1集成运算放大电路概述 一、集成运放的电路结构特点
集成运算放大电路:高电压放大倍数的直接耦合多级放大电路。
2019/7/28
模电课件
二、集成运放的电路组成
1、输入级:运算放大器的输入级通常是差分放大电路,其主 要功能是抑制共模干扰和温漂,双极型运放中差分管通常采 用CC-CB复合管,以便拓展通频带。 2、中间级:电压放大,要求:放大倍数要尽可能大,通常采 用共201射9/7/2或8 共源电路,并采用恒模电流课源件 负载和复合管以增加电压 放大倍数。
工作在放大状态。
当T0与 T1特性参数完全一致时,由U BE0 = U BE1可推得
IB0 = IB1 = IB IC0 = IC1 = Io 由基极输入回路得,
Io
IR
VCC
U BE R
I0 2IB

I0

2

I0

所以,I0

1 1 2
IR
基准电流
输出电流


时,I0 IR 。
在集成运放电路中通常只能制作小容量(几十pF)电容,不能 制作大201容9/7/量28 电解电容,级间通常模采电课用件 直接耦合。
四、以电流源为有源负载的放大电路
在集成运放的共射(共源)放大电路中,为了提高电压放大 倍数,常用电流源电路取代Rc (或Rd ),这样在电源电压不 变的情况下,既获得合适的静态电流,又可以得到很大的等效 的Rc(或 Rd )。
(1) 运放电路的结构分解 输入级是一个差动放大电路,主要由T1、T3(共集-共基组合)
和T2、T4组成。中间放大级由T16、T17、T13组成共集—共射电路; 输出级由T14、T18 、 T19组成互补输出电路。

第四章集成运算放大电路

第四章集成运算放大电路

( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1

23124-第4单元-集成运算放大器

23124-第4单元-集成运算放大器

• 由于运算放大器的输入级是差分放大电路, 而它的中间级和末级只是把差分放大电路 输出的信号进行放大,故它的输入、输出 电压的关系和差分放大电路相同,即 uo=K(u2−u1)
• 式中,u2——运算放大器同相信号输入端 电压。 • u1——运算放大器反相信号输入端电压。
• 由此可见,输出电压uo和同相输入端电压 u2及反相输入端电压u1之差成正比。 • K为比例系数,就是电压放大倍数。
② 通用Ⅱ型中增益运放。
• dIos约为5~20nA/℃。
③ 低漂移运放。
• dIos约为100pA/℃。
6.输入失调电压温漂dUos
• 在规定的工作温度范围内,Uos随温度的 平均变化率,即dUos=Uos/T,一般为1~ 50V/℃,高质量的低于0.5V /℃。
• 由于该指标不像Uos可以通过调零进行补 偿,因此更为重要。
图4-3 集成运算放大器的典型电路
1.输入级
• 集成运算放大器的输入级,一般采用恒流 源的差分放大电路,有2个输入端。
(1)同相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相同的同相信号。
(2)反相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相反的反相信号。
• 信号可根据需要从某一端输入,也可同时 从2个端子作差分输入。
• 再根据使用特点确定运算放大器的指标 (差模电压放大倍数、输入电阻,共模抑 制比、失调电压温漂、失调电流温漂、最 大共模电压及最大差模电压等),根据主 要指标,从IC手册中选取相应的型号。
4.2 集成运算放大器的主要参数
4.2.1 开环特性参数
• 集成运算放大器的开环特性参数主要有以 下几个方面。
7.输入偏置电流IB

模拟电子技术基础第4章

模拟电子技术基础第4章

图4.2.2 同相输入放大电路
放大电路的输入电阻Ri→∞ 放大电路的输出电阻Ro=0 图4.2.3 电压跟随器
4.2.3 差动输入(Differential input)放大电路
图 4.2.5 所示为差动输入放大电路,它的两个输入端都有 信号输入。 ui1通过R1接至运放的反相输入端,ui2通过R2、R3分压后接 至同相输入端,而uo通过Rf、R1反馈到反相输入端。
三、开方运算
平方根运算电路如图4.3.5 所示,与图4.3.2所示的除法电路比 较可知,它是上述除法电路的一个特例,如将除法电路中乘法 器的两个输入端都接到运放的输出端,就组成了平方根运算电 路。
图4.3.5 平方根运算电路
4.4
有源滤波器
滤波器的功能及其分类
4.4.1
滤波器是从输入信号中选出有用频率信号并使其顺利通过, 而将无用的或干扰的频率信号加以抑制的电路。 只用无源器件R、L、C 组成的滤波器称为无源滤波器,采用 有源器件和R、C元件组成的滤波器称为有源滤波器。 同无源滤波器相比,有源滤波器具有一定的信号放大和带 负载能力可很方便的改变其特性参数等优点; 此外,因其不使用电感和大电容元件,故体积小,重量轻。 但是由于集成运放的带宽有限,因此有源滤波器的工作频率较 低,一般在几千赫兹以下,而在频率较高的场所,采用LC无源 滤波器或固态滤波器效果较好。
通常用分贝数dB表示,则为
一般情况希望Aod越大越好, Aod越大,构成的电路性能 越稳定,运算精度越高。 Aod一般可达100dB,最高可达140dB 以上。 2、输入失调电压UIO及其温漂 dUIO/dT 如果集成运放差动输入级非常对称,当输入电压为零时,
输出电压也应为零(不加调零装置)。但实际上它的差动输入

第四章 集成运算放大电路

第四章 集成运算放大电路

(输出级偏臵的一部分;中间级的有源负载。)
34
§4-3.集成运放电路简介
F007简介 输入级
T1—T4:CC-CB差动放大
偏置电路
各部分的作用: 1.输入级:KCMR↑,Ri↑,IQ↓, 一般采用双端输入的差放电路。
5
§4-1.集成运算放大电路概述
三、集成运放的电压传输特性
集成运放符号: 电压传输特性:
uo f (uP uN )
同(反)相输入端是指运放的输入电 压与输出电压的相位关系。 可以认为集成运放是双端输入、单 端输出的差放电路。
10
集成运算放大器的符号和基本特点
3. 理想运放工作在线性区的两个特点 证:uo = Aud (u+ – u–) = Aud uid u+ – u– = uo/Aud 0 2) i+ i– 0 (虚断) 证: i+ = uid / Rid 0 同理 i – 0 1) u+ u–(虚短)
32
§4-3.集成运放电路简介
33
§4-3.集成运放电路简介
F007简介 偏臵电路 T12、R5、T11:主偏臵—R5中电流为基准电流
Im 2VCC U EB12 U BE11 0.73mA R5
T10、T11:微电流源
T8、T9:镜像电流源
T12、T13:镜像电流源
(输入级偏臵)
21
IR
Re2的作用:增大IE2,提高β。
§4-2.集成运放中的电流源电路
二、改进型电流源电路 2.威尔逊电流源 工作点稳定,输出电阻大。
I C2
2 (1 2 )IR IR 2 2
22
§4-2.集成运放中的电流源电路

第四章 集成运算放大器各种运用

第四章 集成运算放大器各种运用

的R1对应于当具用有R1内+R阻s代Rs替的,信为号了源不,使上电面压公增式益中 受Rs的太大影响,R1应该取大一些。但为了 保运证 放输 的入 内电 阻流,远对大于于通偏用置型电运流放,,RR11应 不宜远小超于过 数十千欧,反馈电阻RF越大则电压增益越大, 但要求反馈电流也应远大于偏置电流,所以 RF也不能取得过大,通常不宜超过兆欧。因 此,当Rs达到数千欧时,这个电路难以获得 高增益。另外,反相放大器是并联负反馈电
集成运放的基本组成
右图是运算放大器
的电路符号。它有两个 输入端和一个输出端。 反相输入端标“-”号, 同相输入端标“+”号。 输出电压与反相输入电 压相位相反,与同相输 入电压相位相同。此外 还有两个端分别接正、 负电源,有些集成运放 还有调零端和相位补偿 端。在电路中不画出。
二. 集成运算放大器的使用
由于集成运放具有性能稳定、可靠性高、寿命 长、体积小、重量轻、耗电量少等优点得到了广泛 应用。可完成放大、振荡、调制、解调及模拟信号 的各种运算和脉冲信号的产生等。
本章将介绍集成运放的基本知识、基本电路及 其主要应用。
主要内容
第一节 运算放大器的基本知识 第二节 运算放大器的基本电路 第三节 运算放大器的应用
因Ii=0,故i1≈if,因此 又因u+≈u-,因此
uo与ui之间的比例 关系也与运放本身
的参数无关,电路
精度和稳定度都很 高。KF为正表示uo 与ui同相,并且KF 总是大于或等于1, 这一点与反相放大 器不同。
当RF=0时KF=1,电路就变成电压 跟随器。
同相放大器实际上是一个电压串 联负反馈放大器,因此其输入阻抗高、 输出阻抗低,而且增益不受信号源内 阻的影响。该电路的不足是其共模抑 制比CMRR不太大。

运放电路的工作原理

运放电路的工作原理

运放电路的工作原理
运放电路是一种基础电子电路,广泛应用于放大信号、滤波和比较电压等领域。

其工作原理可以通过以下几个方面来解释。

首先,运放电路由多个晶体管组成,其中最重要的是差动放大器。

差动放大器由两个输入端(正输入端和负输入端)、一个输出端以及一个电源终端组成。

当输入信号施加在差动放大器的正和负输入端时,差动放大器将对输入信号进行差分放大和相位翻转。

具体来说,当正输入端电位高于负输入端时,输出端电位则下降,反之亦然。

这种相位反转和差分放大特性,使得运放电路能够有效地增强信号。

其次,运放电路中常常采用反馈电路来控制放大倍数和增强稳定性。

反馈电路将输出信号的一部分反馈到输入端,与输入信号相比较。

通过调整反馈电阻和反馈网络,可以实现对放大倍数和频率响应的调节。

相对于无反馈电路,带有适当反馈的运放电路具有更高的增益和更好的线性度。

此外,运放电路还具有一个重要特点,即有一个非常高的输入阻抗和一个非常低的输出阻抗。

输入阻抗决定了电路对输入信号的影响程度,而输出阻抗则决定了电路输出信号的稳定性和负载能力。

运放电路通常能够驱动低阻抗负载,并在输出端提供稳定的电压供电。

这使得它在信号处理中具有重要的作用。

综上所述,运放电路通过差动放大器对输入信号进行差分放大和相位反转,利用反馈电路进行增益和频率响应的调节,以及具有高输入阻抗和低输出阻抗的特点,实现了对信号的放大和
处理。

这使得运放电路成为现代电子电路设计中不可或缺的基本元件。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

uI
A +
uO
`
`
RF
u
RF R1 R F
uI
R1 R1 R F
uO
(4.2.7)
`
第四章 集成运算放大器及信号处理电路
而同相输入端的电位为
u
' RF
R1 R F
'
'
' uI
(4.2.8)
u 因为“虚短”,即 u ,所以以上两式相等。 ' 当满足条件 R1 R1' 和 R F R F 时,整理上式,可求 得差分比例运算电路的电 压放大倍数为
非线性区
uO + UOPP
理想特性 实际特性
O
u+ - u-
- UOPP
非线性区 线性区
第四章 集成运算放大器及信号处理电路
2)理想集成运放的输入电流等于零
在非线性区,虽然运放两个输入端的电压不等,即u + ≠u- ,但因为理想运放的rid = ∞,故仍可认为此时的输入 电流等于零,即 (4.1.5) i i 0
差模输入电阻rid=∞; 输出电阻ro=0;
共模抑制比KCMR=∞;
-3dB带宽fH=∞; 输入失调电压UIO、失调电流IIO、输入偏置电流IIB以 及他们的温漂均为零等等。
第四章 集成运算放大器及信号处理电路
4.1.2
集成运算放大器在线性状态下的工作
当工作在线性区时,集成运放的输出电压与两 个输入端的电压之间存在着线性放大关系,即
第四章 集成运算放大器及信号处理电路
第4章
集成运算放大器及信号处理电路
4.1 集成运算放大器的基本概念 4.2 集成运算放大器的线性应用 4.3 滤波的概念和基本滤波电路
4.4 电压比较电路
退出
第四章 集成运算放大器及信号处理电路
4.1
运算放大器的基本概念
4.1.1 运算放大器的指标 4.1.2 运算放大器在线性状态下的工作
4.1.3 运算放大器在非线性状态下的工作 退出
第四章 集成运算放大器及信号处理电路
4.1.1
运算放大器的指标
在分析集成运放的各种应用电路时,常常将其中 的集成运放看成是一个理想运算放大器。所谓理 想运放就是将集成运算放大器的各项技术指标理 想化,即具有如下参数:
开环差模电压增益Aod=∞;第四章 集成运算放大器及信号处理电路
4.2.3
差分比例运算电路
uI
在图4.2.3中,输入电压uI 和分别加在集成运放的反 相输入端和同相输入端,输出端通过反馈电阻RF接 回到反相输入端。为了保证运放两个输入端对地的 电阻平衡,同时为了避免降低共模抑制比,通常要 求: ' 在理想条件下,由于“虚 R1 R1 断”,i+=i-=0,利用叠加 RF 定理可求得反相输入端的电 R1 i位为 R1 i+
uI1 uI2 uI3
R
1
i1
R1
iF R
F
R2
R3
RF
(4.2.11)
R 2 i2 R3 i3
A +
uO
`
R
第四章 集成运算放大器及信号处理电路
可见,电路的输出电压uO,反映了输入电压uI1、 uI2和uI3相加所得的结果,即电路能够实现求和运算。
uo RF RF RF u I1 uI2 uI3 R2 R3 R1
R if R1
第四章 集成运算放大器及信号处理电路
对反相比例运算电路,可归纳得出以下几点结论:
(1) 反相比例运算电路在理想情况下,其反相输入端的电位 等于零,称为“虚地”。因此加在集成运放输入端的共 模输入电压很小。 (2) 电压放大倍数,即输出电压与输入电压的幅值成正比, 负号表示uO和uI 相位相反。也就是说,电路实现了反相 比例运算。比值|Auf|决定于电阻RF 和R1 之比,而与集成 运放内部各项参数无关。只要RF和R1的阻值比较精确而 稳定,就可以得到准确的比例运算关系。比值|Auf|可以 大于1,也可以小于或等于1。
u R1 uI R1
u u uI
i1

iF
uo u RF

uo uI RF
第四章 集成运算放大器及信号处理电路
又因为 i ,所以得 i1 F
uI R1
uo u I RF
整理可得同相比例运算电路的电压放大倍数为:
Au f 1 RF R1
(4.2.6)
u u uo 0
(4.1.2)
Ao d
上式表示运放同相输入端与反相输入端两点的电压相等, 如同将该两点短路一样。但是该两点实际上并未真正被短路, 只是表面上似乎短路了,因而是虚假的短路,所以将这种现 象称为“虚短”。 iu
u u uo
-
0
+
A od
u+
i+
Aod
uO
第四章 集成运算放大器及信号处理电路
u o Ao d ( u u )
式中:
uo是集成运放的输出端电压;
(4.1.1)
u+和u-分别是其同相输入端和反相输入端的电压; Aod是其开环差模电压增益。
第四章 集成运算放大器及信号处理电路
1)理想集成运放的差模输入电压等于零 由于集成运放工作在线性区,故输出、输入之间 符合式(4.1.1)所示的关系式。而且,因理想运放的 Aod=∞,所以由式(4.1.1)可得 即
第四章 集成运算放大器及信号处理电路
反相输入求和电路 用运放实现求和运算时,可以采用反相输入方式, 也可采用同相输入方式。求和电路的输出量反映 多个模拟输入量相加的结果。 图4.2.4示出了具有三个输入端的反相求和电路。 可以看出,这个求和电路实际上是在反相比例运 算电路的基础上加以扩展而得到的。 为了保证集成运放两个输入端对地的电阻平衡, 同相输入端电阻的阻值应为
第四章 集成运算放大器及信号处理电路
4.2.1
反相比例运算电路
输入电压uI经电阻R1加到集成运放的反相输入端, 其同相输入端经电阻R2接地,输出电压uO经RF接 回到反相输入端。通常选择R2的阻值为
R 2 R1 // R F
(4.2.1)
输入电压(虚短),可得
u u 0
iF uI i1 R1 u- i+ RF uO
(3) 反相比例运算电路的输入电阻不高,等于R1,输出电阻 很低。
第四章 集成运算放大器及信号处理电路
4.2.2
同相比例运算电路
输入电压uI 经电阻R2 加到集成运放的同相输入端, 输出电压uO 和输入信号uI 同相,反相输入端经电 阻R1接地,输出电压uO经RF接回到反相输入端。 R2的阻值仍应为:R2= R1 // RF 因为“虚短” 因为“虚断”,所以
`
uI1 uI2
R 1 i1 R 2 i2 R3 i 3
R1
RF
A +
uO
`
`
uI3
`
由上式,可解得:
u R R1 u I1 R R2 uI2
R
R R3
uI3
式中
R R1 // R 2 // R 3 // R
u u =
U OPP A od

12 V 6 10
5
=±20uV
如上所述,理想运放工作在线性区或非线性 区时,各有不同的特点。因此,在分析各种应用 电路的工作原理时,首先必须判断其中的集成运 放究竟工作在哪个区域。
第四章 集成运算放大器及信号处理电路
4.2
集成运算放大器的线性应用
4.2.1 反相比例运算电路 4.2.2 同相比例运算电路 4.2.3 差分比例运算电路 退出
Au f
uO uI
' uI

RF R1
(4.2.9)
第四章 集成运算放大器及信号处理电路
由式(4.2.9)可知,电路的输出电压与两个输入电压 之差成正比,实现了差分比例运算。其比值|Auf|同 样决定于电阻RF和R1之比,而与集成运放内部各项 参数无关。由以上分析还可以知道:差分比例运算 电路中集成运放的反相输入端和同相输入端可能加 有较高的共模输入电压,电路中不存在“虚地”现 象。
由于“虚断”,i+=0,故对运放的同相输入端, 可列出以下节点电流方程:
u I1 u R1 uI 2 u R2 uI3 u R3
uI1 uI2 uI3

u R
` `
R 1 i1 R 2 i2 R3 i 3 R1 RF
A +
uO
`
`
R
第四章 集成运算放大器及信号处理电路
由式4.2.6可知,同相比例运算电路的电压放大倍 数总是大于或等于1。
第四章 集成运算放大器及信号处理电路
对同相比例运算电路,可归纳得出以下几点结论:
(1) 由于同相比例运算电路不存在“虚地”现象,在选用集 成运放时要考虑其输入端可能具有较高的共模输入电压。
(2) 电压放大倍数,即输出电压与输入电压的幅值成正比, 且相位相同。也就是说,电路实现了同相比例运算。 比值Auf仅取决于电阻RF和R1之比,而与集成运放内部各 项参数无关。只要RF和R1的阻值比较精确而稳定,就可 以得到准确的比例运算关系。一般情况下,Auf值恒大于 1。仅当RF =0或R1 =∞时,Auf =1,这种电路称为电压 跟随器。 (3) 同相比例运算电路的输入电阻很高,输出电阻很低。
计算机电路基础 SSPU
第四章 集成运算放大器 及信号处理电路
第四章 集成运算放大器及信号处理电路
负反馈对放大电路的主要影响 1.稳定放大倍数 2.对输入电阻的影响 串联负反馈可以提高输入电阻;
相关文档
最新文档