管道的水力计算及强度计算精
雨水管道水力计算书
7.01
393.30
0.4
1103.29
10.75
0.75
1.00
3.0
98
0.29
2.17
1707.1
Y69
Y74
1.50
0.00
1.50
404.35
0.4
242.61
10.00
0.00
0.60
1.0
159
0.16
0.89
252.4
Y74
Y79
1.96
1.50
3.46
369.09
0.4
510.82
404.35
0.55
318.02
10.00
0.00
0.60
2.0
199
0.40
1.26
356.9
Y212
Y211
0.00
5.43
5.43
401.93
0.4
872.99
10.16
0.16
0.80
3.0
18
0.05
1.87
941.5
Y236
Y239
2.98
0.00
2.98
404.35
0.3
361.25
10.00
0.42
1.87
941.5
Y198
Y203
2.54
0.00
2.54
404.35
0.2
205.41
10.00
0.00
0.60
3.0
144
0.43
1.55
437.2
Y203
Y204
0.00
6.88
支管水力计算
支管水力计算水力计算是水利工程中非常重要的一部分,它涉及到管道、泵站、水轮机等工程构筑物的设计与运行。
正确进行水力计算可以确保工程的安全稳定运行,因此水力计算是水利工程中一项非常重要的技术。
本文将全面介绍水力计算的内容,包括管道水力计算、泵站水力计算和水轮机水力计算。
一、管道水力计算1.流量计算:根据管道的材质、孔径和坡度等参数,使用雷诺数和曼宁公式等计算方法,确定管道的流量。
2.压力损失计算:根据管道的材质和长度、流量和流速等参数,使用达西公式等计算方法,确定管道的压力损失。
3.防冲击计算:在水力计算中,还需要考虑管道内部的防冲击设计。
因为当管道中的流速发生突变时,会产生压力冲击。
通过伯努利方程和马朝尔方程等计算方法,来设计管道内部的防冲击设施。
二、泵站水力计算1.扬程计算:泵站的扬程是指泵站出水口与进水口之间的水位差。
通过测量进水口和出水口的水位,使用流量守恒公式,结合泵的性能曲线,计算得出泵站的扬程。
2.泵功率计算:泵站的功率是指在不同流量和扬程条件下泵的输出功率。
根据泵的性能曲线和流量扬程计算公式,在给定的流量和扬程条件下,计算得出泵站的功率。
3.变频器调速计算:变频器能够通过调整泵的转速,调整出水量,使之与水的需求相匹配。
通过对泵站的运行情况进行分析,结合流量扬程计算公式,计算出变频器的转速。
三、水轮机水力计算1.入水流速计算:水轮机的入水流速是指水流进入水轮机之前的流速。
根据水轮机型号和水量,使用水力计算方法,计算出水流的流速。
2.转动力矩计算:水轮机的转动力矩是指水轮机在给定的水量和入水流速条件下,转动的力矩。
通过计算水轮机的进水和出水之间的压力差和叶轮半径等参数,利用液力动量守恒定律和转动动力学方程,计算出水轮机的转动力矩。
3.输出功率计算:水轮机的输出功率是指在给定的水量和入水流速条件下,水轮机产生的功率。
通过计算水轮机的转动力矩和转速,使用功率计算公式,计算出水轮机的输出功率。
压力管道水力计算
3 按照终点流量要求,确定各段流量 4 以经济流速确定各段管径 5 取标准管径后,计算流速和摩阻 6 按长管计算各段水头损失hw
1
z2 2
3
z1
J
z3
7 按串联管道计算起点到控制点的总水头损失。
285井 站 : 282、 283、 284
安县
罗浮山温泉 秀水
24
塔水站
花街镇 93
Φ 159× 6,L34Km
压力管道水力计算
压力管道计算原理
有压管道:管道被水充满,管道周界各点受到液体压强作用,
其断面各点压强,一般不等于大气压强。
管壁
管壁
液体
液体自由面
有压管道
无压管道
工程中,常用各种有压管道输送液体,如水电站压力引水 钢管;水库有压泄洪隧洞或泄水管;供给的水泵装置系统及 管网;输送石油的管道。
管道按布置分
第一类问题的计算步骤
(1)已知qV、l、d 、、 Δ ,求hf;
qV、l、d 计算Re
计算
计算 hf
第二类问题的计算步骤
(2)已知hf 、 l、 d 、 、 Δ ,求qV; 假设
由hf计算 v 、Re
= New
计算New
N
Y
校核 New
由hf计算 v 、 qV
第三类问题的计算步骤
(3)已知hf 、 qV 、l、、 Δ ,求d。 hf qV l Δ
377井 站 : 377 378井 站 : 378
164井 站 : 164、 Q47 256井 站 : Q 73-1、 Q 73-2、
= New
假设
由hf计算 v 、Re
由Re、查莫迪图得New
求解方法相当 于简单管道的第 二类计算问题。
管网水力计算(精)
例题:某城市供水区总用水量93.75L/s.节点4接某工 厂,工业用水量为6.94L/s 。节点0-8都是两边供水。 求比流量
水塔
3 2
水泵
600 0 300 1 450 4
650
8
5
6
7
1.管线总长度:ΣL=2425m,其中水塔到
205
节点0的管段两侧无用户不计入。
2.比流量:
(93.75-6.94)÷2425=0.0358L/s
4.5.2 管网图形及简化
1.管网设计图中的元素 (1)节点:有集中流量进出、管道合并或分叉以 及边界条件发生变化的地点 (2)管段:两个相邻节点之间的管道管线:顺序 相连的若干管段 (3)环:起点与终点重合的管线 ①基环:不包含其它环的环 ②大环:包含两个或两个以上基环的环
③虚环:多水源的管网,为了计算方便,有时将两 个或多个水压已定的水源节点(泵站、水塔等) 用虚线和虚节点0连接起来,也形成环,因实际上 并不存在,所以叫做虚环。
管段编号
1-2 2-3 3-4 1-5 3-5 4-6 5-6 6-7
合计
管段计算总长度 (m)
800 0.5×600=300
0.5×600=300 0.5×600=300
800 800 600 500
4400
比流量 (L/s.m) 0.03182
沿线流量 (L/s)
25.45 9.55 9.55 9.55 25.45 25.45 19.09 15.91
(1)消防时:假设在泵房供水区、水塔供水区各又 一着火点,每个消防用水额定(20L/S)
泵房节点流量为 237.5+20=257.5 水塔节点流量为54.2+20=74.2
管道水力计算-公式汇总
壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
1.舍维列夫公式
公称直径 (mm) 800
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 250
流速 (m/s) 0.71
8
2.曼宁(Mannins)公式C=1/n×R1/6和谢才(Chezy)公式v=C√Ri
粗糙系数
公称直径 (mm) 100
外径 (mm) 100
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流速 (m/s) 0.68
8
5.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m /d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
3
52500 0.6 -2.63
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58
备注
注:适用于夹
6.70 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
管道水力计算(给排水)
第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
给水排水管道系统水力计算
e ( mm )
平均 0.003 0.03 0.06 0.15 0.3 0.6 3 15 150
( 4 )巴甫洛夫斯基公式 巴甫洛夫斯基公式适用于明渠流和非满流管道的计算,公式为:
C
R
y
nb 0.10
3-3 。
( 3-11 )
式中: y
2.5 nb
0.13 0.75 R
nb
nb — 巴甫洛夫斯基公式粗糙系数,见表
2
A 和水力半径 R 的值 (表中 d 以 m 计) 充满度 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 过水断面积 A ( m 2) 0.4426 d 0.4920 d 0.5404 d 0.5872 d 0.6319 d 0.6736 d 0.7115 d 0.7445 d 0.7707 d 0.7845 d
图 3-1 无压圆管均匀流的过水 断面
3-1 所示。设其 , 称为充满度,
h d
sin
2
4
所对应的圆心角 素之间的关系为:
称为充满角。由几何关系可得各水力要
过水断面面积:
A
湿周:
d
2
8
sin
( 3-16 )
d 2
水力半径:
( 3-17 )
R
所以
d 4
1
sin
( 3-18 )
2
v
2
1 d n 4 sin
将( 3-11 )式代入( 3-2 )式得:
hf
nb v R
2
2
2y 1
l
( 3-12 )
常用管渠材料粗糙系数
nb 值
管渠材料
简单管道的水力计算(精)
k 1
Q2 0.152 2 hf k 2 l 2500 9.5m 2 K 2.464
H 1 2 1 H 2 h f 45 61 25 9.5 18.5m
Δ
水塔
H
H1 H2
Δ Δ
1 2
例
6.2
图
第六章
孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
因为管道的长度较大,考虑按照长管计算。 解: 列出水厂断面和工厂断面的能量方程
1 H 1 2 H 2 h f
当管径 d 400mm,查表铸铁管 K 2.464 10 3 l s
求得K值后反查表就可得d
A 2 gH C
② 对于短管
Q 1 d
1
4
l d
d 2 2 gH
4Q
C 2 gH
, c 1
1 l d
采用试算法
第六章
孔口、管嘴出流与有压管流
§6.4 简单管道水力计算的基本类型
2. 管道的输流能力,管长已知,要求选定所需的管径及相应的水头。 这是工程中常见的实际问题。通常是从技术和经济两方面综合考虑, 确定满足技术要求的经济流速。 ①管道的技术要求。流量一定的条件下,所选管径的大小影响着管中 的流速,所选管径应使流速控制在既不会产生过大的压力,降低管道 的使用寿命,又不能过小,使泥沙沉积,阻塞管路。一般情况下,水 电站引水管中流速不应大于(5~6)m/s ,给水管中的流速不应大于 (2.5~3)m/s,不应小于0.25m/s 。 ②管道的经济效益。重要的管道在选取管径时一般应选择几个方案进 行比选,选出一种方案,使得管道投资和运转的总费用最小,但是工 程中,费用最小的并非各方面最优或可行,往往是选一种经济上合理 工程上可行的方案作为最终设计方案,这样选定的流速称为经济流速, 对应的直径为经济直径。具体数值可参照有关设计手册。
给水排水管道系统水力计算
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
排水管道纯公式水力计算
排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。
下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。
1.流量公式:流量是指单位时间内通过管道截面的液体体积。
流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。
该公式根据负责流量为截面面积与流速的乘积。
2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。
流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。
3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。
4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。
对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。
该方程表达了位置高度、压力和速度之间的关系。
5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。
以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。
在实际应用中,还可以根据具体情况选择适用的公式进行计算。
需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。
管道的水力计算
• 引言 • 管道水力计算基础 • 管道水力计算方法 • 实际应用案例 • 结论与展望
01
引言
主题简介
管道水力计算是流体动力学的一个重 要分支,主要研究流体在管道内的流 动规律和相关参数的计算。
它涉及到流体的物理性质、管道的几 何形状和流动条件等多个因素,对于 保障管道系统的正常运行、优化设计 以及节能减排等方面具有重要意义。
未来还需要加强对于管道水力计算与其他领域的 交叉研究,如环境工程、化学工程等,以拓展其 应用领域和应用范围。
随着科技的不断进步和应用需求的不断提高,未 来对于管道水力计算的研究将更加深入和广泛, 需要加强对于新型计算方法和技术的研究和应用 ,以提高计算精度和效率。
未来需要加强对于管道水力计算在实际工程中的 应用研究,以提高工程设计和运行的效率和安全 性。
03
管道水力计算方法
流量计算
流量与流速的关系
流速越大,流量越大;流速越小,流量越小。
流量计算公式
根据管道的截面积和流速,计算管道内的流 量。
流量与压力的关系
压力越大,流量越大;压力越小,流量越小。
管道阻力损失计算
摩擦阻力损失
由于流体与管道内壁之间的摩擦而产生的阻力损失。
局部阻力损失
由于管道中的阀门、弯头等局部结构而产生的阻力损失。
02
管道水力计算基础
水力学基本概念
水流运动
水流运动的基本规律和特性,包括流速、流量、水压 等。
水头损失
水流在运动过程中受到的阻力,导致水头损失的原理 和计算方法。
流体平衡
流体平衡的基本原理和计算方法,包括静水压强、流 速场等。
管道水流特性
管道水流形态
根据雷诺道水力计算的目的在于确定管道中流体的流量、压力、流速等参数,为管道系 统的设计、优化和运行提供科学依据。
采暖管道水力计算(精)
K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m ,室外供热管网
-
K =0.5×103m ;
v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s);
,根据供回水平均温度按按本院技术措施表A. 2.1取值。 γ——热媒的运动粘滞系数(m2/s)
λ={
d j ⎡
1.4 热水采暖的垂直双管系统各层支管之间重力水头H z
H z =
2
h (ρh −ρg g (Pa ) 3
式中 h ——计算环路散热器中心之间的高差 (m;
1.5 单管跨越式系统水温降
1.5.1 单管跨越式系统的散热器和跨越管流量分配
1 单管跨越式系统散热器支路和跨越管支路的流量通过以下2式求得:
=G
t si ——第i 组散热器的出水温度(℃); t i ——第i 组散热器与之后的管道温度(℃); t i-1——第i 组散热器之前的管道温度(℃)。 ∑Q, G,t 0
i-1
si
ki
si i h
1.6 散热器数量N
N =N ' ⋅β1⋅β2⋅β3=
Q
β1⋅β2⋅β3 (1.6) n
C ⋅Δt s
N ’——设计工况下散热器数量(长度或片数);
表7:适用于采用钢管的一般垂直单管系统;(包括立管及干管,计算至建筑热力入口与室外干线连接处。为提高计算速度,本表管道摩擦阻力系数λ采用阿里特苏里公式) 2.1.4 室外供热管道
表8:适用于采用钢管的室外供热管道。
2.2 双管系统
2.2.1 住宅等水平双管系统
1、 一般最远端散热器支路为该户最不利环路。
1.3.3 室外热水供热管网局部阻力按与沿程阻力的比值计算确定,见下表:
第十章管路水力计算
qVx qVT qL x
dx上消耗水头
dh f
qV2 x K2
dx
则:H
dhf
L 0
qV2 x K2
dx
L 0
qVT q L x K2
2
dx
若流动处于阻力平方区 K const
积分上式得
•H
q2 VT
L
qVT qL2 K2
q 2 L3 3
•H
L K2
q2 VT
qVT qVn
第十章 管路水力计算
本章是应用能量方程和阻力计算来确定流速、 流量,或已知管径、流量,确定阻力,即qv、 Δp。工程中,一般是设计时,qv已知,预知 结构,计算Δp阻力。选择机械如泵、风机。 在计算中,要用到连续方程,动量方程, 能量方程,阻力计算公式。 限制:恒定流,设α=1。
1、几个概念:
(1)管路系统:构成流体流动限制,并保 证流体流动畅通的管件组合,简称管路。
第九节 有压管路的水击
当管件中的闭门突然关闭或水泵突然停止 工作,使液流速度突然改变,这种液体动 量的变化而引起的压强突变(急上或下) 的现象称水击。
压强的交替变化,对管壁或阀门仪表产生类 似于锤击的作用,因此,水击也称水“锤”。
水击使压强升高达数倍或几十倍,严重时 损害管路。
本节介绍水击机理和减轻水击的措施。
liV22 2dg
i
V
)
V22 2g
H
(1
i
li d
i
V2 )
2g
令
s
i
li d
i
H
(1
s
)
V2 2g
(1
s
)
16qv 2
管道水力计算-公式汇总
壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m3/d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
52500 0.6 -2.63
20.35 4.83 2919.00
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58 6.70
备注
注:适用于夹 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
流量 (m3/h) 125.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 损失(m) i 617 0.0035 2.1701
备注
使用于旧钢管
2.60 和球墨铸铁管
√Ri
流量 (m3/h) 36.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 备注 损失(m) 注:适用钢筋 i 30 0.1232 3.70 4.07
管道的水力计算及强度计算(精)
第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。
如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。
如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。
管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。
图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。
图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。
图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。
以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。
流速是指单位时间内,流体流动所通过的距离。
以符号。
表示,其单位为m/s或cm /s。
图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。
由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1)式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。
如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。
伟星PE给水管道水力计算(精)
伟星PE给水管道水力计算系统设计同其它种类的管道一样,PE管道系统在设计时应综合考虑埋理条件、流体性质、工作条件、温度范围、安装技术和工种费用等多种设计因素,但是其中最重要的设计为强度设计和水力计算两个部分。
强度计算聚乙烯管道的工作压力可由下式计算PN二2σs e/(D—e二2σs/(SDR—1其中σs=MRS/Fd这里:PN二管材公称压力σs=设计应力,MPaD=平均外径,mme=最小壁厚,mmSDR=标准尺寸化MRS=最小要求强度(20℃,50年,MPaFd=设计系数20℃时,MRS设计应力σs和设计系数之间的对应关系如下表:作为供水用PE管道系统,设计系数F d一般选择1.25,对于PE80级别的PE管材,对应的设计应力Q s为6.3MPa。
例如-SDR17的PE100管道,由上述计算可知,该管道的公称压力为PN10.此外,聚乙烯管道的耐压强度与温度有关,当管道的工作温度偏离20℃时,最大工作压力(MOP应按下列公式计算:MOP=PN*Ft Ft为温度折减系数水力计算压力损失计算管道的压力可按照达西—威斯巴赫公式进行计算:hf=入(L j/d )(V 2/2g式中:hf=摩擦损失:L=管道长度:d j =管道计算内径 g=重力加速度;V=平均流速; 入二摩阻系数紊流状态下,摩阻系数入可由阿里特苏里公式计算:入=0.11(K /d j +68/Re0.25式中:K=管内壁绝对粗糙度(mm ,对于PE 管;K=0.01mm Re=雷诺数;d j =管道计算内径(mm管件局部阻力水头损失按下式计算:h=KV 2/2g式中:h=局部水头损失:m v=水流速度,m/s g=重力加速度,m/s 2 K=各种管件的摩阻系数常见管件摩阻系数K 值如下:通常在设计过程中,为了简化设计,局部水头损失宜按下列管网沿途水头损失的百分数采用:生活给水管网25—30%;生产给水管网,生活、消防共用给水管网,生活、生产、消防共用给水管网均为20%。
伟星PE给水管道水力计算精
伟星PE给水管道水力计算系统设计同其它种类的管道一样,PE管道系统在设计时应综合考虑埋理条件、流体性质、工作条件、温度范围、安装技术和工种费用等多种设计因素,但是其中最重要的设计为强度设计和水力计算两个部分。
强度计算聚乙烯管道的工作压力可由下式计算PN二2(T s e/(D— e 二2 c s / (SDR-1其中c s=MR/Fd这里:PN二管材公称压力c s=设计应力,MPaD=平均外径,mme=最小壁厚,mmSDR标准尺寸化MRS最小要求强度(20 C,50 年,MPaFd^计系数20 E时,MRSS计应力(T s 和设计系数之间的对应关系如下表:作为供水用PE 管道系统,设计系数F d 一般选择 1.25,对于PE80级别的PE管材,对应的设计应力Q 为6.3MP& 例如-SDR17的PE100管道,由上述计算可 知,该管道的公称压力为 PN10.此外,聚乙烯管道的 耐压强度与温度有关,当管 道的工作温度偏离20r 时,最大工作压力(MOP应 按下列公式计算:MOP=PN*Ft Ft 为温度折减 系数水力计算 压力损失计算管道的压力可按照达西—威斯巴赫公式进行计算:2hf=入(L j /d) (V /2g 式中:hf=摩擦损失:L=管道长度:d j=管道计算内径g=重力加速度;V=平均流速;入二摩阻系数紊流状态下,摩阻系数入可由阿里特苏里公式计算:入=0.11(K /d j +68/Re0.25式中:K=管内壁绝对粗糙度(mm 对于PE管;K=0.01mm Re^诺数;d j二管道计算内径(mm管件局部阻力水头损失按2下式计算:h=KV/2g式中:人=局部水头损失:m v=水流速度,m/s g=重力加2速度,m/s K=各种管件的摩阻系数常见管件摩阻系数K值如下:通常在设计过程中,为了简化设计,局部水头损失宜按下列管网沿途水头损失的百分数采用:生活给水管网25—30%;生产给水管网,生活、消防共用给水管网,生活、生产、消防共用给水管网均为20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。
如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。
如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。
管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。
图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。
图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。
图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。
以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。
流速是指单位时间内,流体流动所通过的距离。
以符号。
表示,其单位为m/s或cm /s。
图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。
由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1)式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。
如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。
当管径减小时,流速增大;而当管径增大时,流速即减小。
然而,当流速一定时,流量的变化随管径成几何倍数变化,而不是按算术倍数变化。
因为在管流中,管道的过流断面面积与管径的平方成正比。
也就是说,管径扩大到原来的2倍、3倍、4倍时,面积增加到原来的4倍、9倍、16倍。
如DN50mm的管子过流断面面积是DN25mm的管子的4倍,那么在流速相等的条件下,DN50mm管子中所通过的流量即是DN25mm管子的4倍;同理,DNlOOmm的管道内所通过的流量应是DN25mm管子的16倍。
在日常施工中,常有人认为在流速一定时,管径之比就是所输送的流量之比,这无疑是错误的。
以上提到的以m3/h和cm3/s等为单位的流量又称为体积流量。
如果指的是在单位时间内通过过流断面的流体质量时,该流量则称为质量流量,以符号qm表示,常采用的单位为kg/h或kg/s。
质量流量与体积流量之间的关系为qm=ρq v而由式(3—1)知 q v=vA则 q m=ρvA (3—2) 式中q m——质量流量(kg/s);ρ——流体的密度,即单位体积流体的质量(ks/m3);V——流体通过过流断面的平均流速(m/s);A——过流断面面积(m2)。
例管径为DNlOOmm的管子,输送介质的流速为lm/s时,其小时流量为多少?解DNlOOmm管子的过流断面面积为A=πD3/4=3.14×0.12/4=0.00785m2则q v=1×0.00785×3600=28.3m3/h答:该管道的小时流量为28.3m3/h。
第二节管道的阻力损失流体在管渠中流动时,过流断面上各点的流速并不是相同的。
例如在河沟中,靠近岸边的水,流动较慢;而河沟中心的水,流速就较大。
管道内流动的流体也是如此,靠近管内壁面的流体流速较小,处在管中心的流体流速最大。
产生这一现象的原因在于,流体流动时与管内壁面发生摩擦产生阻力,同时管内流体各流层之间由于流速的变化而引起相对运动所产生的内摩擦阻力,也阻挠流体的运动。
流体在流动中,为了克服阻力就要消耗自身所具有的机械能,我们称这部分被消耗掉的能量为阻力损失。
流体的性质不同,流动状态相同,流动时所产生的阻力损失大小也不同。
流动是产生阻力损失的外部条件,流速越高,流体与管壁及流体自身之间的摩擦就越剧烈,阻力也就越大。
相反,流速越小,摩擦减弱,阻力也就越小,不流动的静止流体也就不会产生阻力损失。
由此可见,阻力损失与流体的性质、流动状态以及流体流动时的边界条件有着密切的关系。
管道的阻力损失有两种形式,如图3-4所示。
在有压管路中的A、B、C处各开一个小孔,并用一根开口玻璃管与小孔连接立装,如图3-4a所示,当管路中阀门k关闭时,系统内:流体处于静止状态,这时A、B处两根玻璃管内的水位高度相等,并与水箱水位在同一个水平面上。
当阀门Q开启后,管路中流体处于流动状态,这时A、B、C三点处玻璃管中的水位不在一个水平面上,而且逐渐下降,我们把玻璃管A与B内的水位高差值定为hf,而B管与C管中的水位高差值定为hj。
图34管道的阻力损失管道中的流体处于流动状态时,为什么玻璃管内的水位会沿途下降呢?B管比A管水位低的原因是由于流体沿管道从A流到B的这个过程中始终存在着摩擦阻力,水位差hf就是为了克服从A到B这段管路中的摩擦阻力而引起的阻力损失,这种阻力损失叫做沿程阻力损失。
C管内水位比B管内水位低的原因,在于流体从B流到C的这个过程中经过阀门k,水流局部边界条件急剧改变,对流体运动造成阻力,这种阻力损失称为局部阻力损失。
流体在流经管道上的三通、弯头、阀门、变径管等地方时,都会产生局部阻力损失。
玻璃管A、B、C通常称为测压管。
管路中的总阻力损失则为各管段的沿程阻力损失与各管件所产生的局部阻力损失之和。
其表达式为hw=∑hf+∑hj (3-3)式中hw——管道总阻力损失(Pa);∑hf——管路中各管段的沿程阻力损失之和(Pa);∑hj——管路中各处局部阻力损失之和(Pa)。
计算管段的沿程阻力损失hf,可按以下公式进行:hf=RL (3-4)式中R——每米管长的沿程阻力损失(Pa/m);L——管段长度(m)。
进行计算时,在已知流量和经济流速的选择范围后,单位管长的沿程阻力损失及值可由事先编制好的各种介质水力计算表中直接查得,从而就可以计算出管段内的沿程阻力损失之值。
计算管件的局部阻力损失hj ,可按以下公式进行:22v hj ρξ= (3-5)式中ξ——管件的局部阻力系数;ρ——输送介质的密度(kg /m 3)。
各种不同规格的管道配件及附件的局部阻力系数可查表得出。
在一般情况下,室内外管网的局部阻力可按表3—1进行估算。
表3-1 各类管道的局部阻力占沿程阻力的百分比以上是管道阻力损失的计算方法,然而在日常工作中,我们遇到的总是管段两点间的压力差,而不是阻力损失,那么压力差与阻力损失有何区别?压力差与流速又有何关系呢?——般地说,管段两点间的压力差的数值与该管段的阻力损失是相等的,两者指的是一回事;但管道阻力损失指的是事情的本质,而压力差指的是阻力损失所产生的现象。
由于管道阻力只能通过压力差才能测出来,所以说,压力差与流速的关系,实际上就是阻力与流速的关系。
也就是说,只要知道一段管道两端的压力差和该管段长度,就能算出每米管长的阻力和这段管道内介质的平均流速。
第三节 管道的水力计算一、水力计算的任务管道水力计算的主要任务是:1)按已知的流量和允许压力降,计算管道管径。
2)按已知管径和流量,计算管道的压力降及管道中各点的压力。
3)按确定的管径及允许压力降,计算或校核管道的输送能力。
4)根据管道水力计算的结果,确定管道系统选用设备的规格型号。
二、水力计算表为了简化计算的工作量,通常管径和摩擦阻力损失的计算均借助于现成的各类水力计算表进行。
对于计算精度要求不高时,可以直接查表进行计算,能满足一般管道工程计算的要求。
当对计算精度要求较高时,应根据各专业管道水力计算资料及编制使用要求进行计算修正。
现将常用的各种介质输送管道水力计算表予以节选,见表3-2、表3-3、表3-4、表3-5,供使用时参考。
三、流速及管壁粗糙度在进行水力计算时,介质流速是计算的关键因素,不同性质的介质,其允许流速选取范围也不相同,管道水力计算时的流速取值应当在允许的经济流速范围以内。
常用介质的允许流速见表3-6。
管壁的粗糙度是影响管道水力计算的重要因素,管壁越粗糙,阻力就越大。
管道的粗糙度用k表示,常用管材的粗糙度见表3-7。
给水管道水力计算表中,已考虑到管壁锈蚀结垢后,管壁粗糙度的增加。
因此,计算表内未注明左的取值,在一般情况下均可使用。
表3-6常用介质允许流速的选择各种动力管道水力计算表中,均注有k值。
在使用时应注意所用管材的粗糙度与计算表中标注的丸值的一致性,若两者不一致时,需将水力计算表中查出的单位阻力损失值乘以换算系数m。
换算系数m值见表3-8,也可按下式进行计算得出。
表3-8粗糙度换算系数m值4/kk m = 式中k ——实际采用管材的粗糙度;k /——计算表中采用的粗糙度。
四、管径、流量及阻力损失的计算根据已知流量和允许流速选取范围来确定管径,是管道工程中最常见的计算。
其计算式为vq D mρ5.594= 或 vq D v8.18= 式中D ——管道内径(mm);q m ——质量流量(t /h);q v ——体积流量(m 3/h);v ——介质流速(可参考表3-6选取,m /s);ρ——介质密度(kg /m 3)。
例 某段埋地给水管道全长200m ,已知输送流量为79.2m 3/s 几,管内介质流速取1.26m /s ,试选用一合适管径。
解 根据式,将已知数值代人 得D=149mm由计算结果可知,该管段可选用管径为DNl50mm 的管子。
上述例题如还需估算出该管段总的阻力损失时,可按以下方法计算:由已知和计算所得数据,q m =79.2m 3/h ,v=1.26m /s , DN=150mm ,查表3-3可知单位管长的沿程阻力损失R=198Pa /m 。
再由式(3-4)hf=RL 得hf=2000×198。
再由表3—1取局部阻力hj 占沿程阻力的10%,即hj=10%hf ,那么总阻力损失为hw=hf+hj+10%hf=(1+10%)hf=(1+10%)×2000×198=435.512kPa例2某一管径为DN32mm 的室内蒸汽输送管,管长50m ,蒸汽压力为0.3MPa(表压),管段内允许压力降为0.0125MPa ,求该管道的输送能力。
解 查表3-1可知,该管段局部阻力约占沿程阻力的25%,从而估算R 的取值范围 R=△P/L (1+25%)=200Pa然后查蒸汽管道计算表34可知,当管径为DN32mm 、R 取值在200Pa 左右时,其输送介质能力为115kg /h ,此时及值为202Pa ,略大于200Pa ,满足允许压力降的要求。