漫谈电力系统无功功率

合集下载

浅谈电力系统中的无功功率补偿

浅谈电力系统中的无功功率补偿

① 电源不足 , 则会使 电网处于低 电压水平 上的无功功率平衡 , 即靠 电 止 电容器油箱爆炸 。电容器 的运行环境也尤其重要 : 电容器周围 电容工作时所产 压 降低、 负荷吸收无功功率的减少来弥补无功 电源的不足。 同样, 如 的环境温度不能太高或太低 。如 果环境温度太高 , 而如果环境温度太低 , 电容器 内的油就可能会 果由于 电网缺 乏调节 手段 或无功补偿元件的不合理运行使某段 时 生 的热就散 不出去 ; 容易 电击穿。② 电容器工作时 , 其内部介质的温度应低于 间无功功率过剩, 也会造成整个 电网的运行 电压过高。因此 , 搞好 电 并冻结 , 5 ̄ 最高不得超过 7 0C 否则会 引起热击 穿 , 0  ̄, 或引起鼓肚 现象。 力系统 的无功平衡 , 提高 负荷 的功率 因数 , 以减少线路和 变压器 6 0C, 可 ③ 电容器对电压十分敏感,因为 电容器的损耗 与电压平方成正比 , 中的有功功率 损耗和 其他电能损耗 , 从而 提高电能质量 , 降低 电能 电容器 绝缘会加速老化 , 寿命缩短 , 甚 损 耗 , 保 证 了电 力 系统 的稳 定运 行 和 用 户 的供 电质 量 。1k 配 电 过 电压会使电容器发热严重 , 并 0V 至 电击穿。为了使 电网中的无功补偿设备得到最大的效益 , 应选择 线路普通存在 电压过低或偏高 问题 , 原因除了电网结构不合理和 其 确定 有 导线过细外 , 主要是无功功率不足或过剩。系统 的无功功率对 电压 合理 的无功补偿容量。计算 电容柜容量前先进行负荷计算 , 补偿前 自然功率 因数为 cs 1 要补偿到的 o6 , 影 响极大, 无功功率不足 , 将引起 电网 电压下降, 而无功过剩将 引起 功功率 P和无功功率 0, o+ , c P tb —g 2 o式 中: c为补偿 电容器容 g O 电网电压偏 高。无功功率平衡是维持及保证电网电压质量 的基础 , 功率 因数为 cs 2 则 Q = ( qlt6 P为负荷有功功率 ; O + C S I为补偿前负荷功率 因数 :O 6 C S 2为补 必须采取有效 的调压 措施 , 以提高 电压水平。要维持整个系统 的电 量 ;

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整
二、电网中的无功电源
1. 发电机
同步发电机既是有功功率电源,又是最基本的无功功率电源。
2.电容器和调相机
并联电容器只能向系统供应感性无功功率。特点有:电容器所供应的感性无功与其端电压的平方成正比,电容器分组投切,非连续可调。
调相机实质上是只能发出无功功率的发电机。
3.静止补偿器和静止调相机
作业9:
变比分别为 和 两台变压器并联运行,每台变压器归算到低压侧的电抗均为 ,其电阻和电导忽略不计。已知低压母线电压为 。负荷功率为 ,求变压器功率分布和高压侧电压。
但当电机经多级电压向负荷供电时,仅借发电机调压往往不能满足负荷对电压质量的要求。
五、借改变变压器变比调压
双绕组变压器的高压绕组和三绕组变压器的高、中压绕组往往有若干分接头可供选择,例如,可有 或 ,即可有三个或五个分接头供选择,所以合理地选择变压器地分接头也可调压。如下图:
如上图,为一降压变压器
静止补偿器和静止调相机是分别与电容器和调相机相对应而又同属“灵活交流输电系统”范畴的两种无功功率电源。
4.并联电抗器
就感性无功功率而言,并联电抗器显然不是电源而是负荷,但在某些电力系统中的确装有这种设备,用以吸取轻载或空载线路过剩的感性无功功率。而对高压远距离输电线路而言,它还有提高输送能力,降低过电压等作用。
电力系统的无功功率和电压调整
一、 无功功率负荷和无功功率损耗
无功负荷:绝大部分是异步电动机
无功损耗:1. 变压器 ;2. 输电线路。
变压器中的无功功率损耗分为两部分,即励磁支路损耗和绕组漏抗中损耗。其中,励磁支路损耗的百分值基本上等于空载电流 的百分值,约为 ;绕组漏抗中损耗,在变压器满载时,基本上等于短路电压 的百分值,约为 。因此,对一台变压器或一级变压器的网络而言,变压器中的无功功率损耗并不大,满载时约为它额定容量的百分之十几。但对多级电压网络,变压器中的无功功率损耗就相当可观。

关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。

如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。

同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。

因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。

同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。

无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。

这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。

二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。

电压与无功功率也和频率与有功功率一样,是一对对立的统一体。

当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。

电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。

当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。

电力系统中的无功功率

电力系统中的无功功率

电力系统中的无功功率集控值班员2016-07-021.1.1 无功功率对有功功率的影响输电线路的主要任务足输送有功功率,而为了实现有功功率的传输和电网无功功率的平衡也需要输送一定量的无功功率。

输送无功功率时需要消耗有功功率。

当有功功率一定时,无功功率越大,则网络中的有功功率损耗就越大。

当电力线路的传输能力一定时,传输无功功率越小,则传输有功功率的能力越大。

1.1.2无功功率对电压的影响(1)无功功率平衡水平对电压水平的影响。

电力系统中无功功率平衡水平对电压水平有较大的影响。

如果发电机有足够的无功功率备用,系统的无功电源比较充足,就能满足较高电压质量下大功功率平衡的需要,系统就有较高质量的运行电压水平。

反之,如果无功功率不足,系统只能在较低质量的电压水平下运行。

另外,电能在电力网中传输时,要损失掉部分有功功率和无功功率。

当无功功率损耗较大时。

将引起系统电压大幅度下降,影响系统运行的稳定性、经济性。

(2)无功功率对电压质量的影响。

电力系统是向用户提供电能的网络,因而电能质量是供电部门生产;经营活动中的一个重要经济技术指标。

电压是电能质量的主要指标之一,电压质量对电力系统稳定运行,降低线路损耗和保证工农业的安全生产有着重要意义。

在保证工农业生产和人民生活个使用的各种用电设备都是按照额定电压米设计制造的。

这些设备在额定电压厂运行时,才能取得最佳的运行状态。

电压超出所规定的范围时,对用电设备将产生不良的后果。

目前大多数国家规定的电压允许变化范围一般为l 5%——10%UN (额定电压)。

电力部门为了确保电力系统正常运行时能够提供优质的电压,确保优质的供电服务,必须确保各输配电线路的母线电压稳定在允许的偏差范围之内。

电力系统正常运行时,应有充足的无功电源。

无功电源的总容量要能满足系统在额定电压下对无功功率的需求。

否则.电压就会偏离额定值。

当电力网有能力向负荷供给足够的无功功率时,负荷的电压才能维持在正常的水平上。

电力系统分析第5章 电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation ).

电力系统分析第5章  电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation ).

U S%S 2 U N 2 I o % U S %S NT S 2 I o % QT ( ) SN T ( ) S NT 100S NT U 100 100 S NT 100
电力系统分析
5.2.3 无功功率平衡
电力系统的无功平衡表示式为 其中:
QD+ Q Q GC Q G+ Q C
例5.1 求图5.6所示简单系统的无功功率平衡。图中所 示负荷为最大负荷值。 线路参数: r0 0.17 km, x0 0.41 km, b0 2.82 106 S km 变压器试验数据: PS 200KW , U s % 10.5, P0 47 KW , I 0 % 2.7
异步电动机在电力系统无功负 荷中占的比重很大,因此,电 力系统综合负荷的无功电压静 态特性主要取决于异步电动机 的特性。
图5.5 异步电动机的Q—U关系
电力系统分析
5.2.2 无功负荷及无功损耗
无功损耗(active loss) 输电线路的无功损耗
P12 Q12 B 2 2 Ql QlX QB X ( U U ) L 1 2 2 U1 2 P22 Q22 B 2 2 X ( U U ) L 1 2 变压器的无功损耗 2 U2 2
这种方法简单、经济,且不需增加额外设备。
电力系统分析
5.4.2改变变压器变比调压
改变变压器的变比就是通过改变绕组间匝数比(ratio of winding )来实现的,因此,这种调压措施也常叫利 用变压器分接头(tap)调压。
分接头设置在双绕组变压器的高压绕组,三绕组变压 器的高压绕组和中压绕组。 一般与绕组额定电压值对应的分接头为主分接头,其 它分接头为附加分接头。

无功功率在电力系统中的重要作用

无功功率在电力系统中的重要作用

影响到功率因数。 气设备的运行时要 在电
尽量避免在上述状态下运行。
无功电源
无功功率在感性电路中和容性电路工 作都必需的, 在电路系统中, 当电路表现 为感性时, 电路吸收无功功率, 电流滞后 于电压; 当电路表现为容性时, 电路放出 无功功率, 电流超前于电压。 因此电网系 因数 。 统中有感性无功功率和容性无功功率, 而 电力系统中最大的负荷是感性的, 所以我 们通常将吸收感性无功功率的负荷称为 无功补偿原理 “ 无功负荷飞而将吸收容性无功功率的功 电气设备的运行既要从电源取得有功 率设备称为“ 无功电源”也就是在电力系 , 功率,同时还需要取得无功功率。如果电 统中能提供容性无功功率负荷的设备, 通 网中的无功功率供不应求, 用电设备就没 常说的无功补偿设备。 无论是感性无功功 有足够的无功功率来建立正常的电磁场, 率还是容性无功功率, 它们仅在电流与电 因此电气设备就无法维持在额定磁场状态 压超前和滞后, 性质是相同的都是建立的 下工作,用电设备两端电压就会下降,影 维护磁场。 从无功补偿原理我们可以看出 响到电气设备的运转。 如果从发电机和高 感性负荷所需要的无功功率可由容性负荷 压输电线路来供给设备大量的无功功率, 输出的无功功率来补偿。 则使功率因数变得很小, 有功功率供给也 在电力系统中通常应用的无功电源主 会远远满足不了负荷的需要。同时还会造 要有同步电机、 静电电容器、 静止无功补 成供电质量下降,所以从发电机和高压输 偿器以及无功发生器。 可根据用户的要求 电线路来供给设备无功功率是不合理的。 来选择合理的无功电源, 所以说无功补偿 这就需要在电网增加无功补偿设备来补偿 主要作用就是吸收或供给适度的无功功 无功率,以保证电气设备的运行,可见在 率, 从而提高了功率因数, 以改善交流电 电网中进行无功补偿是十分必要的。 力系统的供电质量。 无功补偿的基本原理是把具有容性功 率的负荷设备与感性功率的负荷的设备并 联在同一电路中,当感性设备吸收能量 时,容性设备就放出能量 ; 当容性设备 吸收能量时,感性设备就放出能量。能 量就在这两种负荷间转换, 这样感性负荷 所需要的无功功率可由容性负荷输出的无 理的无功补麟 式, 功率因 讯而 攘高 女, 使电柯的 滚行达到最忱化。 功功率来补偿 。

浅谈电力系统无功功率补偿技术

浅谈电力系统无功功率补偿技术


8 — 4

科技 论坛 Ij l
浅谈 电力系统 无功功率补偿 技术
董 立 文
( 绥化 电业 局 , 龙 江 绥化 1 2 0 ) 黑 5 0 0
摘 要: 目前, 内电网采用的电容补偿技 术主要是集 中补偿与就地补偿技术 。 国 就地补偿技术主要适用于负荷稳定, 不可逆且容量较 大的异步电 动机补偿( 如风机、 水泵等) 它各种场合仍主要采用集中补偿技 术。简述我 国电力 系统无功补偿技 术的现状及 目 电力 系统无功补偿存在 的1题, , 其 前 - ' 3 提 出今后我 国无功补偿技术发展 的方向: 无功功率动 态自动无级调节, 谐波抑制 。 关键词: J L功补偿技术: 作用: 现状: 发展趋 势 无功功率补偿装置的主要 作用是:提高负 211 .. 同步调相机:同步调相机属于早期无 器,通过电压电源逆变技术提供超前和滞后 的 载 和系统的功率 因数, 减少设 备的功率损耗, 稳 功补偿装置的典型代表,它虽能进行动态补偿, 无功。 进行无功补偿 , 若控制方法得当,V S G在补 定 电压, 提高供 电质量 。 在长距离输 电中提 高系 但响应慢, 运行维护复杂, 多为高压侧集中补偿, 偿无 功功率 的同时还可 以对谐 波电流进行 补 偿。 其调节速度更快且不需要大容量的电容 、 电 统输 电稳定性和输 电能力, 平衡 三相负载的有 目前 很 少 使 用 。 功 和无 功 功 率 等 。 21 .. 2并补装置:并联电容器是无功补偿领 感等储能元件, 波含量小, 谐 同容量 占地面积小, 1 无功功率补偿的作用 域 中应 用 最 广 泛 的无 功 补 偿 装 置 ,但 电 容 补 偿 在系统欠压条件下 无功调节能力强,是新一代 只能补偿 固定 的无功,尽管采用电容分组投切 无功补偿装置 的代表, 有很大的发展前途。 1 改善功率 因数及相应地减少电费 . 1 根据国家水 电部, 物价局颁 布的“ 功率因数 相比固定电容器补偿方式能更有效适应负载无 33电力 有 源 滤波 器 _ 电力有 源滤波器 是运用 瞬时滤 波形 成技 调整 电费办法 ” 规定三种功率因数标准值, 相应 功的动态变化,但是 电容器补偿方式仍然属于 对包含谐 波和无功分量 的非正弦波进行“ 矫 减 少 电费 : 种有级 的无功调节,不能实现无功的平滑无 术, 1. . 1高压供 电 的用 电单 位,功率因数 为 级 的调 节 。 1 正 ” 因此 , 力 有 源滤 波 器 有很 快 的响 应 速 度 , 。 电 09以上 。 . 21 .- 3并联电抗器:目前所用 电抗器 的容量 对变化 的谐 波和无功功率都能 实施动态补 偿, 除吸收系统 容性负荷外, 以抑制过 并且其 补偿特性受电网阻抗参数影响较小。 用 1 . 低压供 电的用 电单 位, 率因数 为 是固定的, .2 1 功 电力有源滤波器 的交流电路分为 电压型和 08 .5以上 。 电压。 2 . 2以上几种补 偿方式在运行 中取得 一定 电流型。 目前实用的装置 9%以上为 电压型。 0 11 ._ 3低压供 电的农业 用户,功 率因数 为 08以上 。 . 的效果, 但在实际的无功补偿工作 中也存在一 从与补偿对象 的连接方式来看,电力有源滤波 些 问题 : 器可分为并联型和串联型。并联型中有单独使 1 . 2降低系统 的能耗 功率因数的提高,能减少线路损耗及变压 221 .. 补偿方式 问题:目前很多 电力部门对 用 、C滤波器混合使用及注入电路方式,目前 L 器 的铜 耗 。 无功补偿 的出发点就地补偿,不向系统倒送无 并联型占实用装置的大多数。 3 . 4综合潮流控制器 设 R为 线 路 电 阻 , 1为 原 线 路 损 耗, 功, △P 即只注意补偿功率因素, 不是立 足于降低系 △P 为功率因数提高后线路损 耗, 2 则线损减少 统 网 的损 耗 。 综 合潮 流控制器 uie o e o o— n d pw rf w cn i f l 222谐波问题:电容器具有一定 的抗谐波 t l r P C .. rl , F )将 一个 由品闸管换流器产生的交 oe U △P =AP - 2 3 (1-2 ) 1 △P = R I2 I2 () 1 比原 来损 失 减 少 的 百 分数 为 能力 , 但谐波含量过大时会对电容器的寿命产 流电压串人并叠加在输电线相电压上,使其幅 甚至造成电容器 的过早损坏; 并且 由于 值和相角皆可连续变化,从而实现线路有功和 ( , 1x10 1( / ). 0 AP△P ) 0 %= -I I 21 % () 生影响, 21 0 2 并可提高输送能力以及 式 中 , = / cs 1' = / 2o 2 电容器对谐波有放大作用, I P( Ulo )2 P( U cs)) I 3 I 3 4 因而使系统的谐波 无功功率的准确调节, 补偿后’ 由于功率因数提高, > 1 U U, 2 为分析方便, 干扰更严重。 阻尼系统振荡。U F P C注入 系统的无功是 其本 可认为 U u .I 2 1 J 贝 223无功倒送问题:无功倒送在 电力系统 身装置控制 和产生 的,并不大量消耗或提供有 ._ P C技术 是 目前 电力系统输配 电技 特别是在负荷低谷时, 功倒送 功功率。U F 无 0=1 ( s 1 o 22. 0 [-c / s )10 % o c 1 () 中是 不允 许的, 3 当功率因数从 08提高至 09时, 过上式 造 成 电压 偏 高 。 . . 通 术 的 最 新发 展 方 向,对 电 网 规 划 建 设 和 运 行 将 计算, 可求得有功损耗降低 2 %左右。 1 在输送功 224电压调 节方式 的补偿设备 带来 的问 带来 重 要 的影 响 。 ..

电力系统分析第5章 电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation )

电力系统分析第5章  电力系统的无功功率(reactive power)平衡与电压调整(voltage regulation )

电力系统分析
5.4.2改变变压器变比调压
普通变压器一般有两个或四个附加的分接头 如: 35±5%/6.3KV变压器: 主分接头电压为35KV, 附加分接头电压分别为35(1+5%)=36.5KV 35(1-5%)=33.25KV; 121±2×5%/10.5kv变压器: 主分接头电压为121KV, 附加分接头电压分别为121(1+5%)=127.05KV 121(1+2.5%)=124.025KV, 121(1-2.5%)=117.95KV, 121(1-5%)=114.95KV。
QGC
QG ——为系统中所有发电机发出的无功功率,
Q c ——为系统中所有无功补偿装置发出的无功功率;
Q D ——为系统中所有负荷需要的无功功率;
Q ——为网络元件中的无功损耗。
系统中应保持一定的无功功率备用。
无功功率备用容量一般可取最大无功功率负荷的5%~8%。
电力系统分析
5.2.3 无功功率平衡
异步电动机在电力系统无功负 荷中占的比重很大,因此,电 力系统综合负荷的无功电压静 态特性主要取决于异步电动机 的特性。
图5.5 异步电动机的Q—U关系
电力系统分析
5.2.2 无功负荷及无功损耗
无功损耗(active loss) 输电线路的无功损耗
P12 Q12 B Ql QlX QB X L (U 12 U 22 ) U 12 2 P22 Q22 B 2 X L (U 1 U 22 ) 变压器的无功损耗 U 22 2
系统中的负荷点都是通过一些主要的供电点供电 的,因此只要控制这些母线的电压偏移在允许范围 内,系统中各母线电压,从而各负荷点的电压可基 本上满足要求。我们就把这些主要的供电点称为电 压中枢点 (voltage centre)。 电压中枢点包括: (1)水、火电厂的高压母线; (2)枢纽变电所(load-center substation )的二次 母线; (3)有大量地方负荷的发电机机端母线(generator terminal bus)。

电力系统分析:第06章 电力系统无功功率平衡与电压调整

 电力系统分析:第06章 电力系统无功功率平衡与电压调整

jB T
励磁支路损耗的百分值基本上等于空载电流I0的百分值,约为1% ~ 2%不随负荷大小的改变而变化,称之为不变损耗;绕组漏抗中损耗
与所带负荷的大小有关,称为可变损耗。在变压器满载时,基本上等于
短路电压Uk的百分值,约为10%。 但对多电压级网络。变压器中的无 功功率损耗就相当可观。变压器的无功损耗是感性的
(三)无功储备
无功平衡的前提是系统的电压水平正常。和有功一样,系统中也应该保 持一定的无功储备。一般取最大负荷的7~8%。
12
例6-1
T-1 110kV
T-2
S% =
G
2 ×100kM
40LD+ j30MVA
某输电系统各元件参数如下:
发电机: 变压器T-1
P每N =台50SMN=W31,.5McVoAs,△= P0.=80358.5kWU,N =
= 42.27 + j37.618(MVA)
若发电机在满足有功需求时按额定功率因数运行,其输出功率
SG = 42.27 + j42.27×tg =42.27+j26.196 (MVA )
此时无功缺额达到
37.618 26.196=11.422(Mvar)
根据以上对无功功率缺额的初步估算,拟在变压器T-2的低压 侧设置10Mvar补偿容量,补偿前负荷功率因数为0.8,补偿后 可提高到0.895.计及补偿后线路和变压器绕组损耗还会减少, 发电机将能在额定功率因数附近运行
(c)饱和电抗器型SR
电容和电感组成滤波电路,滤去高次谐波,以免产生电流和电压的畸变 运行维护简单,损耗较小,对冲击负荷有较强的适应性,可装于枢纽变 电所进行电压控制,也可装于大的冲击负荷侧,如轧钢厂做无功补偿

第六章 电力系统无功功率和电压调整

第六章  电力系统无功功率和电压调整

Umax P1max R Q1max X /U1max 6.8945 (kV) Umin P1min R Q1min X /U1min 2.4561 (kV)
例题-降压变压器分接头的选择
3)计算分接头电压,取最大负荷时的 U2max=6.0 kV, 最小负荷时的 U2min=6.6 kV
U1t max U1maX Umax U2N U2max 110 6.8945 6.6 6 113.4161 (kV) U1t min (U1min Umin )U2N U2min 115 2.4561 6.6 6.6 112.5439 (kV)
第二节 电力系统中无功功率的最优分布
一、无功功率电源的最优分布 • 目标函数
• 约束条件P (QG1,QG2, ,QGn ) P (QGi )
m

QGi
n
QLi Q 0
Qi 1Gi min
i 1
QGi
QGimax
Ui min Ui Ui max
符合低压母线的要求 6~6.6 kV
电压调整的措施-变压器变比
(2)升压变压器分接头的选择
U2 1: k
RT+jXT U1
P + jQ
升压变压器分接头计算
电压调整的措施-变压器变比
• 最大负荷时高压绕组分接头电压为: • 最小负荷时高压绕组分接头电压为: • 普通变压器最大、最小负荷下只能选用同一个分接头:
电压调整的措施-变压器变比
(3)三绕组变压器
• 分接头选定:
– 高压绕组分接头 – 中压绕组分接头
• 步骤:
– 根据电压母线的要求选定高压绕组分接头 – 由选定高压绕组分接头和中压母线的要求选定中压绕组分接头

电力系统无功功率浅谈

电力系统无功功率浅谈

电力系统无功功率浅谈作者:刘鑫来源:《硅谷》2013年第02期摘要:作为电能质量的重要指标电压和无功功率有着密不可分的联系,系统电压的波动大小都会影响用电设备的运行特性及用电设备所取用的功率,对电力系统带来不利的影响。

无功功率从发电机和变压器向负荷输送,在输送过程中会产生电压损耗,电压损耗的多少会受到无功功率潮流的变化的影响。

无功功率的不足会引起系统电压水平的下降,电压降降低,严重影响设备的出力,为了使电压上升,就需要使电源增加无功出力。

关键词:电力系统;无功功率1 无功功率的产生简单的说,只有电动机的定子中产生磁场才能使电动机旋转,为产生磁场而消耗的功率称为无功功率。

其实变压器就是一种静止的电动机,同理才能在次级产生感应电压,一次变压器也要消耗无功功率。

无功功率仅仅是在完成电能与磁能之间的转换,并不对外做功,也不消耗燃料或其他形式的能量,因此称为无功功率。

但无功功率与有功功率同样重要,没有无功功率,电动机就不能旋转,变压器也不能变压,也就没有有功功率!2 无功功率的设备电力系统的无功功率的产生除了同步电机外,还有静电电容器、静止无功补偿器以及静止无功发生器,这四种装置又称为无功补偿装置。

除电容器外,其余几种既能吸收容性无功又能吸收感性无功。

2.1 同步电机。

同步电机可作为发电机,电动机和补偿机运行,这是其主要运行的方式。

同步发电机是其常见的运行方式,作为电动机运行是同步电机的另一种重要运行方式,同步电动机的功率因数是可以调节的。

再不要求调速的情况下,用大型同步电动机可以提高系统设备的运行效率。

如将同步电机并列于电网中可作为同步补偿机,空载的情况下调节励磁电流可向电网发出所需的感性或容性无功功率,以达到改善电力功率因数及调节系统电压,提高系统运行的经济性的目的。

2.2 并联电容器。

并联电容器可以改善系统的功率因数、降低系统中的电能损耗,调整电压,可提高输变电设备的输送能力,减少线路的电压降,提高供电质量,并联电容器补偿是我国使用最广泛的一种节电措施,不仅在工业、企业乃至我们的街头巷尾就可以见到。

电力系统的讲义无功功率

电力系统的讲义无功功率
•电力系统无功功率平衡的基本要求:系统中的无 功电源可以发出的无功功率应该大于或至少等于 负荷所需的无功功率和网络中的无功损耗。
QGCQLDQQres QQLTQLQB
Q GC Q G Q C
• Qres>0表示系统中无功功率可以平衡且有适量的
备用;
•Qres<0表示系统中无功功率不足,应考虑加设无
四、无功功率平衡和电压水平的关系 问题:在什么样的电压水平下实现无功功率平衡电
图6-6 等值电路和相量图
XcIosEsin
VXsIin Ecos
PVcIosEV sin
X
QVsIinEc Vo sV2
X
X
当P为一定值时,得
Q
EV2
P2
V2
3.输电线路的无功损耗
图6-3 输电线路的π型等值电路
QLP12U 12Q12XP22U 22Q22X QBB 2(U12U22)
线路的无功总损耗为
Q LQ BP 12U 12Q 12XU 12 2U 2 2B
一般情况下,35kV及以下系统消耗无功功率; 110kV及以上系统,轻载或空载时,成为无功电源, 传输功率较大时,消耗无功功率。
•电容器可发出无功功率,电抗器可吸收无功功率, 两者结合起来,再配以适当的调节装置,就能够平 滑地改变输出(或吸收)的无功功率。
图6-5 静止无功补偿器的原理图
(a)可控饱和电抗器型;(b)自饱和电抗器型; (c)可控硅控制电抗器型; (d) 可控硅控制电抗器和可控硅投切电容器组合型
三、无功功率平衡
(1)当发电机低于额定功率因数运行时,能增加 输出的无功功率,但发电机的视在功率因取决于 励磁电流不超过额定值的条件,将低于其额定值。

无功功率在电力系统中的重要作用

无功功率在电力系统中的重要作用

无功功率在电力系统中的重要作用随着工业的发展,电能成为现代工业的主要能源,电能质量的好坏,直接影响到工业设备的运行及企业的经济效益、社会效益等,为用户提供安全、可靠、稳定、、高效的电能是十分重要的。

在电力系统的运行过程中,通常用功率因数来衡量电网运行的效率,功率因数的大小,反映了电网系统中电源输出的视在功率中有功功率的有效利用的程度。

为了提高电网系统中电能输送质量,希望功率因数越大越好,却往往忽视了无功功率在电网中的重要作用。

无功功率在电网对用户输电的过程中,电网要提供给负载的电功率有两种:有功功率和无功功率。

有功功率(p)是指保持设备运转所需要的电功率,也就是将电能转化为其它形式的能量(机械能,光能,热能等)的电功率;而无功功率(Q)是指电气设备中电感、电容等元件工作时建立磁场所需的电功率。

无功功率比较抽象,它主要用于电气设备内电场与磁场的能量交换,在电气设备(电路系统)中建立和维护磁场的功率。

它不表现对外做功,由电能转化为磁能,又由磁场转化为电能,周而复始,并无能量损耗。

特别指出的是无功功率并不是无用功,只是它不直接转化为机械能、热能为外界提供能量,作用却十分重要。

电机运行需要旋转磁场,就是靠无功功率来建立和维护的,有了璇转的磁场,才能使转子转动,从而带动机械的运行。

变压器也需要无功功率,才能使一次线圈产生磁场,二次线圈感应出电压,凡是有电磁线圈的电气设备运行都需要建立磁场,然而建立及维护磁场消耗的能量都来自无功功率,没有无功功率电机不能转动、变压器不能运行、电抗器不能工作、继电器不会动作,所有设备中的磁场无法建立,电气设备也就不会运行。

因此供电系统中除了对用户提供有功功率,还要提供无功功率,两者缺一不可,否则电气设备将无法运行。

功率因数电网的电力负荷中的电气设备都是由电感、电容、电阻等元件组合而成,既有感性负载又有容性负载如电机、变压器、电抗器等,感性负载的电压与电流的相量间存在一个相位差,通常用相位角的余弦cosφ来表示,cosφ称为功率因数式中cosφ-功率因数,P-有功功率,KW;Q-无功功率,KVar; s-视在功率,KVA;功率因数的大小,反映了电网系统中电源输出的视在功率的有效利用程度,为了提高电网系统中电能输送质量,希望功率因数越大越好。

浅析传统电力系统无功优化的现状

浅析传统电力系统无功优化的现状

浅析传统电力系统无功优化的现状【摘要】本文浅析了传统电力系统无功优化的现状。

在介绍了传统电力系统的发展历程、无功优化的重要性以及研究目的和意义。

正文部分分析了无功功率在电力系统中的作用、传统电力系统无功优化方法及现状,探讨了存在的问题和优化方法技术的发展趋势,同时总结了国内外研究现状。

结论部分指出传统电力系统无功优化仍存在挑战,强调了加强研究和应用的重要性,并展望了未来的发展方向。

通过本文的分析,可以看出传统电力系统无功优化面临着一些挑战,但也有着广阔的发展前景,需要不断加强研究和应用,不断探索新的优化方法和技术,以推动电力系统的进一步发展和提高能源利用效率。

【关键词】传统电力系统、无功优化、现状、功率、优化方法、问题、发展趋势、研究现状、挑战、研究应用、未来发展方向1. 引言1.1 传统电力系统的发展历程传统电力系统是以发电厂、输电线路和配电设备为基础,通过输送电能实现电力供应的系统。

传统电力系统的发展历程可以追溯至19世纪末的工业革命时期。

当时,人们开始利用燃煤等传统能源进行发电,并通过输电线路将电能传输至各个城市和工厂,以满足日益增长的电力需求。

随着电力系统的不断发展,传统电力系统在20世纪逐渐完善和规范。

电力系统逐渐建立了供电网络,实现了电力的长距离输送和大规模供电。

电力系统的发展促进了工业、农业和生活的现代化,推动了社会经济的快速发展。

在传统电力系统的发展过程中,随着电力需求的增加和供电负荷的变化,无功功率在电力系统中愈发显得重要。

对于传统电力系统来说,无功功率优化是提高系统运行效率和稳定性的重要途径,也是推动电力系统智能化发展的关键。

加强对传统电力系统的无功优化研究具有重要意义,这也是本文将研究的重点之一。

1.2 无功优化在电力系统中的重要性在电力系统中,无功功率优化具有非常重要的意义。

无功功率是电力系统中一个至关重要的参数,它的优化与电力系统的稳定运行、能效提升以及减少系统损耗密切相关。

电力系统无功功率以及电压调整

电力系统无功功率以及电压调整
技术发展
随着科技的进步,电力系统无功功率与电压调整技术也在不断发展。未来技术发展的趋势包括:采用先进的传感 技术和智能算法实现无功功率和电压的快速、准确检测与控制;发展基于电力电子技术的动态无功补偿装置和有 源滤波器;利用大数据和云计算技术实现电网无功功率与电压的优化调度等。
THANKS FOR WATCHING
通过投切无功补偿设备, 如并联电容器、静止无功 补偿器等,来调整系统无 功功率,进而稳定电压。
有载调压
通过调整变压器分接头档 位来改变电压,以满足系 统电压要求。
串联电容器补偿
通过在输电线路中串联电 容器来补偿线路的感抗, 提高线路的电压水平。
电压调整的优化目标与原则
经济性
电压调整应尽量降低系统运行 成本,提高经济效益。
实施效果
无功补偿装置的应用显著减少了该工业园区在生产高峰期的无功功率 消耗,稳定了电压,降低了电能损耗,提高了生产效率。
05 结论与展望
电力系统无功功率与电压调整的重要性和挑战
重要性
电力系统无功功率与电压调整是保障电力系统的稳定运行和电能质量的关键环节。通过合理的无功功 率补偿和电压调整,可以有效降低线路损耗、提高设备利用率、增强系统稳定性,满足用户对电能质 量的需求。
挑战
随着电力系统的规模不断扩大和运行方式的复杂化,无功功率与电压调整面临诸多挑战。例如,无功 功率的合理分布和补偿、电压波动与闪变的抑制、动态无功补偿装置的性能优化等,需要不断研究和 改进。
未来研究方向与技术发展
研究方向
未来电力系统无功功率与电压调整的研究方向将主要集中在以下几个方面:一是无功功率补偿与电压调节的协调 优化;二是智能电网下的无功功率与电压控制策略;三是新能源并网对电力系统无功功率与电压的影响及其应对 措施。

漫谈电力系统无功功率

漫谈电力系统无功功率

漫谈电力系统无功功率目前世界范围内掀起环境保护的热潮,电力系统是一种的特定环境,公用电网中出现的无功功率,是电网本身的运行规律所决定,但它给电网运行带来了许多麻烦。

无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率。

在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流。

无功电流产生无功功率,给电网带来额外负担且影响供电质量。

因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域所面临发展的一个重大课题,且正在受到越来越多的关注。

设置无功补偿电容器是补偿无功功率的传统方法,目前在国内外均获广泛应用。

电容器与网络感性负荷并联,以并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。

随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机(Synchronous Condenser--SC)。

它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。

自20世纪2、30年代以来的几十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置。

然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补偿的要求。

20世纪70年代以来,同步调相机开始逐渐被静止型无功补偿装置(Static Var Compensator--SVC)所取代,目前有些国家已不再使用同步调相机。

早期的静止无功补偿装置是饱和电抗器(Saturated Reactor--SR)型的,1967年英国GEC公司制成了世界上第一批该型无功补偿装置。

饱和电抗器比之同步调相机具有静止、响应速度快等优点;但其铁芯需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整
符合要求
电压调整的措施-变压器变比
(3)三绕组变压器
❖ 分接头选定:
高压绕组分接头 中压绕组分接头
❖ 步骤:
根据电压母线的要求选定高压绕组分接头 由选定高压绕组分接头和中压母线的要求选定中压
范围较大等场合。
中枢点的调压方式
ห้องสมุดไป่ตู้2. 顺调压
高峰负荷,中枢点电压不低于1.025UN或某 值;
低谷负荷,中枢点电压不高于1.075UN或某 值;
适用于用户对电压要求不高或线路较短、 负荷变化不大等场合。
中枢点的调压方式
3. 常调压
高峰、低谷负荷,要求在任何负荷时中枢点 电压基本保持不变且略大于UN,例如 1.025UN或1.02~1.05UN间的某一值。
❖ 发电机端电压有由自动励磁调节装置控制,可根据运行 情况调节励磁电流来改变端电压;
❖ 发电机端电压的调节受发电机无功功率极限的限制,当 发电机输出的无功功率达到其上限或下限时,发电机就 不能继续进行调压;
❖ 由发电机直接供电的小系统,有可能只依靠发电机调压 满足各用户的电压要求。对于大系统,尤其是线路很长 且多级电压的电力网,单靠发电机调压就无法满足系统 中各点的电压要求,必须与其他调压方法相配合。
•超高压线路
无功功率与电压的关系
无功功率对节点电压有效值起决定性影响
•超高压线路
第三节 电力系统的电压调整
二、电压波动和电压管理
❖ 电压波动由冲击性或间歇性负荷引起; ❖ 习惯上所谓的电压调整仅针对周期长、波及面大,主要
由生产、生活和气象变化引起的负荷和电压变动。
电压调整
中枢点电压管理(电压控制的策略)
调压的目标
电压偏移:指线路始端或末端电压与线路额定电 压的数值差。

电力系统无功功率平衡

电力系统无功功率平衡

定义
电力系统无功功率平衡就是根据电源发展规划和电力发展规划进行无功功率平衡计算,使电力系统的无功电 源所发出的无功功率与系统的无功负荷相平衡,其主要目的就在于维持各种运行方式下电力各点的电压水平,确 定无功补偿装置的配置。并且由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低 而减少的,因此如果要想保持负荷端电压水平,就必须要向负荷供应所需要的无功功率,也就是电力系统必须保 持无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡,只有这样才能维持电力系统电压水平的 稳定 。
影响
在正常的情况下,运行的电力系统,要求电源的无功出力应时刻都同负荷的无功功率和络无功损耗之和相等, 也就是说系统中的无功电源对系统中的电压的影响为当无功电源比较充足时,就能很大程度上满足较高电压水平 下的无功平衡需要,系统就有比较高的运行电压水平,但是当无功电源不足时就会造成运行电压水平偏低,因此, 应该在保证额定电压的基础பைடு நூலகம்上保持电力系统无功功率平衡,然后根据要求选择必要的无功补偿装置 。
必要性
电力系统的电压需要经常调整,如果电压偏移超过极限值时对电力系统本身及其用电设备都会带来不良影响, 这会在一定程度上使电力系统效率下降,经济性变差,当系统电压降低时,各类负荷中占比重最大的异步电动机 的转差率增大,进而电动机各绕组中的电流将增大,温升将增加,效率将降低,寿命将缩短,同时同时电压过高, 照明设备寿命就会大大的下降,影响绝缘,因此电力系统中无功功率的平衡与电压调整就显得十分重要了。而电 力系统中无功功率平衡原则就是按地区并按电压等级对无功电源和无功负荷进行平衡,避免经长距离线路或多级 变压器传送大量无功功率,以降低电力损耗,实现经济运行。
调整
在电力系统中无功功率平衡是电管理的首要条件,电压调整只是对变压器传输不同功率时引起电压变化的平 衡,但是当电力系统中的无功补偿和调节能力暂时还达不到理想程度的时候,就应该采取别的措施进行电压的调 整,只有这样才能保证系统中所有的设备电压保持在容许极限内,因此电压调整就成为电力系统有效与可靠运行 的最重要的条件之一。在电力系统中经常采用的就是利用变压器分接头调压,因为变压器低压绕组的额定电压是 一定的,因此只要改变高压绕组的分接头,即可改变变压器的变比,从而使变压器二次侧的电压得到调整,但是 这种电压调整方式一般仅用于具有停电条件的供给季节性用户的变电所,或者具有多台变压器并列运行容许经常 进行切投操作的变电所。除此之外还可以采用并联静止补偿器的方式进行电压的调整,它反应比较快、谐波量比 较小、准确度也比较高,同时重量比较轻,安装简便,运行与维护费用比较低,既可以户外布置,也可置于变电 所内,还有它可以进行平滑无级调压,因而调节性能好。

电力系统中的有功功率和无功功率节约技术研究

电力系统中的有功功率和无功功率节约技术研究

电力系统中的有功功率和无功功率节约技术研究随着经济的发展和人民生活水平的提高,电力需求量也呈现出不断增长的趋势。

然而,由于电力系统本身的特殊性质以及各种不可预见的因素的影响,电力系统中所面临的问题也越来越复杂,其中之一就是有功功率和无功功率的节约问题。

有功功率和无功功率是电力系统中最基本的两种功率形式,是度量系统运行能力和电力质量的重要指标。

有功功率是指电流通过电阻元件时所产生的功率,是产生功效的能量;而无功功率是指电流通过电容或电感元件时所产生的功率,是不产生功效的能量,主要是用于维持系统的电磁场和电压稳定。

在日常生活中,大多数人只关注电费的高低,而很少对有功功率和无功功率产生的影响有深入了解。

事实上,有功功率和无功功率的浪费不仅会增加电费,还会给电力系统带来很大的安全隐患,因此在电力系统中采取有功功率和无功功率节约技术非常必要。

有功功率节约技术有功功率节约技术主要是通过调整负载和优化设备来减少有功功率的消耗,从而实现电力系统的节能目的。

具体措施如下:1. 合理配电:合理调整负载特性曲线,均衡负载,在不影响正常使用和生产情况下减少有功功率浪费。

2. 选用高效设备:采用高效电气设备和LED照明等节能技术,减少能源浪费,提升系统能效。

3. 尽量减少电流和电压波动:通过使用稳压稳流器、过滤器等器件控制电流和电压波动,在保证设备正常工作情况下减少能源浪费。

4. 合理设计变压器:采取分级变压器、干式变压器等节能型变压器,在不影响设备使用情况下减少有功功率的消耗。

5. 执行能源管理标准:建立科学的能源管理体系,完善能源管理标准,增加能源使用效益。

无功功率节约技术与有功功率不同,无功功率不直接产生功效,只是用于维持系统的电磁场和电压稳定。

因此,节约无功功率就是尽量减少维持系统电磁场和电压稳定所需的能量,避免呈现出过度补偿的情况,从而实现能源的有效利用,减少能源的浪费。

具体措施如下:1. 适当调整功率因数:合理调整负载特性曲线,使功率因数尽可能接近1,降低补偿装置的过度补偿情况。

关于无功功率,这些认知误区不要再犯了!

关于无功功率,这些认知误区不要再犯了!

关于无功功率,这些认知误区不要再犯了!无功功率,这一看似深奥的电力术语,实际上在电力系统中扮演着举足轻重的角色。

它是交流电路中,电源向负载供电时,并不直接做功的那部分功率。

尽管无功功率不直接转化为机械能、热能或其他形式的能量,但它对于维持电力系统的稳定、确保电能质量具有不可或缺的作用。

在电力传输过程中,无功功率的存在如同电流的“润滑剂”,使得电网中的电压和电流得以稳定传输。

它帮助建立和维护电磁场,使得电动机、变压器等电力设备能够正常运转。

同时,无功功率也是衡量电力系统经济运行的重要指标之一。

过高的无功功率会导致电网电压波动、设备损耗增加,甚至可能引发电力事故。

今天就给大家分享关于无功功率的一些认知误区。

误区一:无功功率是用来在电气设备中建立和维持磁场的电功率,最终会在建立和维持过程中损耗掉。

《辞海》中对于无功功率的解释:“在具有电感和电容的交流电路中,电感的磁场和电容的电场在一周期的一部分时间内从电源吸收能量,另一部分时间内将能量返回电源。

在整个周期内平均功率是零,也就是没有能量消耗,但能量是在电源和电感或电容之间来回交换的,能量交换的最大值叫做无功功率。

”这个解释说明,无功功率的物理意义在于交流电源与负载之间的能量交换,无功功率就是交流正弦电路中能量交换的最大值,它表明了交流电源与负载之间能量交换的能力。

实际的无功设备在能量交换时一定有能量的损耗(如漏磁、介质损耗等),这部分丢失的损耗不能算入无功,这是因无功作用而产生的有功损耗。

同理有些人把设备产生的不是需要的热能等能量损失称为无功是不对的,这是无用功,而不是无功,因其不能转回电能。

误区二:无功功率是不消耗能量的无用功率, “无功”乃“无用之功”无功功率决不是无用功率,相反它的用处很大。

电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。

变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漫谈电力系统无功功率
目前世界范围内掀起环境保护的热潮,电力系统是一种的特定环境,公用电网中出现的无功功率,是电网本身的运行规律所决定,但它给电网运行带来了许多麻烦。

无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率。

在实际电力系统中,异步电动机作为传统的主要负荷使电网产生感性无功电流;电力电子装置大多数功率因数都很低,导致电网中出现大量的无功电流。

无功电流产生无功功率,给电网带来额外负担且影响供电质量。

因此,无功功率补偿(以下简称无功补偿)就成为保持电网高质量运行的一种主要手段之一,这也是当今电气自动化技术及电力系统研究领域所面临发展的一个重大课题,且正在受到越来越多的关注。

设置无功补偿电容器是补偿无功功率的传统方法,目前在国内外均获广泛应用。

电容器与网络感性负荷并联,以并联电容器补偿无功功率具有结构简单、经济方便等优点,但其阻抗是固定的,故不能跟踪负荷无功需求的变化,即不能实现对无功功率的动态补偿。

随着电力系统的发展,要求对无功功率进行动态补偿,从而产生了同步调相机(Synchronous Condenser--SC)。

它是专门用来产生无功功率的同步电机,在过励磁或欠励磁的情况下,能够分别发出不同大小的容性或感性无功功率。

自20世纪2、30年代以来的几十年中,同步调相机在电力系统中作为有源的无功补偿曾一度发挥着主要作用,所以被称为传统的无功动态补偿装置。

然而,由于它是旋转电机,运行中的损耗和噪声都比较大,运行维护复杂,而且响应速度慢,难以满足快速动态补
偿的要求。

20世纪70年代以来,同步调相机开始逐渐被静止型无功补偿装置(Static Var Compensator--SVC)所取代,目前有些国家已不再使用同步调相机。

早期的静止无功补偿装置是饱和电抗器(Saturated Reactor--SR)型的,1967年英国GEC公司制成了世界上第一批该型无功补偿装置。

饱和电抗器比之同步调相机具有静止、响应速度快等优点;但其铁芯需磁化到饱和状态,因而损耗和噪声还是很大,而且存在非线性电路的一些特殊问题,又不能分相调节以补偿负荷的不平衡,所以未能占据主流。

电力电子技术的发展及其在电力系统中的应用,将晶闸管的静止无功补偿装置推上了无功补偿的舞台。

1977年美国GE公司首次在实际电力系统中演示运行了晶闸管的静止无功补偿装置。

1978年此类装置投入实际运行。

随后,世界各大电气公司都竟相推出了各具特色的系列产品。

近10多年来,占据了静止无功补偿装置的主导地位。

于是静止无功补偿装置(SVC)成了专指使用晶闸管的静止无功补偿装置,包括晶闸管控制电抗器(Thyristor ontrolled Reactor--TCR)和晶闸管投切电容器(Thyistor Switched Capactor--TSC),以及这两者的混合装置(TCR+TSC),或者TCR与固定电容器(Fixed Capacitor--FC)或机械投切电容器(Mechanically Switched Capacitor--MSC)混合使用的装置(即TCR+FC、TCR+MSC)等。

随着电力电子技术的进一步发展,20世纪80年代以来,一种更为先进的静止型无功补偿装置出现了,这就是采用自换相变流电路的无功补偿,有人称为静止无功发生器(Static Var Generator--SVG),也有人称其为高级静止无功补偿器(Advanced Static Var Compensator--ASVC)或静止调相器
(Static Condenser--STATCON)。

最近,日本和美国已分别有数台SVG装置投入实际运行。

目前,除对SVC和SVG的无功补偿进一步的探讨外,人们还研究用于动态无功补偿的其他各种形式的静止变流器,包括赌流型自换相桥式电路,交-交变频电路以及交流斩波电路等,直至最近,美国电力研究院还提出统一潮流控制器(Unified Power Flow Controller--UPFC)。

事实上,SVC、SVG和UPEC都是柔性交流输电系统(Flexible AC Transmission System--FACTS)中的器件。

所谓柔性交流输电系统,是20世纪80年代以来由美国电力研究院提出的一个崭新概念,其本质就是将高压大功率的电力电子技术应用于电力系统中,以增强对电力系统的控制能力,提高原有电力系统的输电能力。

相关文档
最新文档