高职考数学模拟卷

合集下载

2022年浙江高职单招数学试卷附答案

2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

职业学校高职模拟考试数学试卷

职业学校高职模拟考试数学试卷

中等职业学校高职模拟考试数学试卷一、选择题(本大题共18小题,每小题2分,共36分)1.若集合A=}{3|1|<-x x ,B=}{01|<+-x x ,则B C A R =( )A.(-2,∞+)B.(1,4)C.(-2,1]D.(-2,1]2. 设x 是实数,则“x>0”是“︱x ︱>0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 3.函数65)1lg()(2+--=x x x x f 的定义域为( )A.)()(∞+∞-,32,B.()2,1C. ),3()2,1(+∞D.])[[∞+,32,14. 已知=-=-)1(,2)12(2f x x x f ( ) A.23 B.21C.1D.05.平面向量a (-2,6),b (x,3),若a ||b,则x=( )A.-1B.1C.-2D.06. 下列函数在),(∞+0内为减函数的是( )A.12-=x yB. 2x y -=C.x y 2log =D. 12-=x y7. 已知关于不等式0322>++kx x 恒成立,则实数k 的取值范围为( ) A.3>k B.3-<k C.33<<-k D.3或3-<>k k8. 在数列{an}中,若1412,18-==+n n a a a a ,则该数列前8项和等于 ( )A.256B.255C.510D.5129. 平面α外一条直线l 上有两点到平面α的距离都相等,那么l 与α的位置关系为()A.相交B.平行C.垂直D.相交或平行10.圆122=+y x 上的点到直线3x+4y+25=0的最短距离( )A.1B.4C.5D.611.过点(2,3)且垂直于x-y-2=0的直线方程是( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x+y-1=012.tan α=31,则αααcos sin 2cos 2sin +-a =( )A.1B.-1C.21-D.21 13.(x-1)7展开式中奇数项的系数和是( )A.128B.-128C.64D.-6414.若双曲线的方程为,14416922=-y x 则焦点坐标为( )A.)0,5(±B.(0,5±)C.(0,7±)D.(0,7±) 15. 函数y=322--x x (x ]2,5[-∈)的值域( )A.]3,(--∞B.[-3,+∞)C.[-3,22]D.[-4,32]16. 如图,正方体ABCD-A 1B 1C 1D 1 中,两条异面直线AC 与BC 1所成角的大小为( )A. 30B.45C.60D.9017若抛物线)0(22>=p px y 上一点M 的横坐标为1,M 到焦点距离为5,则p=( )A.3B.4C.5D.818.抛两颗均匀的骰子、得到点数和为5的概率( ) A. 336 B. 436 C. 536 D. 636二、填空题(本大题共小题,每小题3分,共24分) 19.若a>3,则31-+a a 的最小值是____________. 20.双曲线191622=-y x 的渐近线方程为____________. 21.若圆锥的底面半径为2,高为2,则它的侧面积=___________________.22. 点P(3,a)到直线L :3x-4y+a=0的距离为5,则a 的值为__________________.23. 从榨菜、青菜、油菜、花菜4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中榨菜必须种植.不同的种植方法有 _______________ 种(用具体数字回答)24. 在△ABC 中,若222c bc b a ++=,那么A=__________________.25. 如果椭圆的焦点坐标F 1(-1,0),F 2(1,0),离心率为32,过点F 1作直线交椭圆于A 、B 两点,那么△ABF 2的周长为____________________.26.一个圆锥侧面展开图的弧长为6cm,圆心角为120︒,则圆锥的高为_______________.三、解答题(本大题共8小题,共60分,解答应写出文字说明、演算步骤)27.(本小题满分6分) 262log 0232397.3)41(8C ++-+-28. (本小题满分6分)数列}{n a 的前n 项和n n S n 22-=,求数列}{n a 的通项公式。

高职高考数学试卷模拟卷

高职高考数学试卷模拟卷

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。

A. √9B. √-16C. πD. 2√22. 如果 |a| = 3,那么 a 的值为()。

A. ±3B. ±4C. ±2D. ±13. 已知二次函数y = ax² + bx + c(a ≠ 0),如果它的图像开口向上,且顶点坐标为(1,-2),那么 a 的取值范围是()。

A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在等差数列 {an} 中,如果 a1 = 3,d = 2,那么第10项 an 的值为()。

A. 19B. 20C. 21D. 225. 若函数 f(x) = 2x + 1 在区间 [1, 3] 上单调递增,那么函数 g(x) = f(x) - 3 在区间 [1, 3] 上的单调性是()。

A. 单调递减B. 单调递增C. 先增后减D. 先减后增二、填空题(每题5分,共20分)6. 已知等差数列 {an} 的前n项和为 Sn,如果 S5 = 50,a1 = 2,那么 d =________。

7. 函数y = x² - 4x + 4 的图像与x轴的交点坐标为 ________。

8. 在直角坐标系中,点 A(2,3)关于 y 轴的对称点坐标为 ________。

9. 二项式定理 (a + b)ⁿ的展开式中,a³b⁷的系数为 ________。

10. 等比数列 {an} 的公比 q = 1/2,如果 a1 = 16,那么第5项 an 的值为________。

三、解答题(每题10分,共20分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\4x - y = 2\end{cases}\]12. 已知函数 f(x) = -3x² + 12x - 4,求函数 f(x) 的最大值。

四、应用题(15分)13. 一批货物由甲、乙两辆卡车运输,甲车每小时运输20吨,乙车每小时运输30吨。

2024年浙江省温州市普通高职单独考试2024届高三下学期二模数学试题(含答案)

2024年浙江省温州市普通高职单独考试2024届高三下学期二模数学试题(含答案)

2024届浙江省单独考试温州市模拟测试《数学》试卷(2024.3)本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷上、草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分).(在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分)1. 设x ∈R ,“2x >”是“24x >”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件 2. 下列函数在其定义域内单调递增的是( ) A. ()2f x x=B.()21f x x =+ C. ()e xf x = D.()sin f x x = 3. 已知角α的终边经过点()3,4P ,则cos α=( )A. 35- B. 35 C. 45- D. 454. 函数()513f x x =+-的定义域为( )A. {2x x ≠且}4x ≠-B. {}2x x ≠ C. {}4x x ≠- D.{}3x x ≠ 5. 已知集合{}2,N S x x k k ==∈,{}21,N T x x k k ==+∈,则S T ⋃=( )A. SB. TC. ND. ∅ 6. 从5名女同学和4名男同学中,选两名同学分别担任班长与学习委员,要求男女同学各一名,不同选法共有( )A. 9种B. 20种C. 40种D.72种 7. 已知扇形半径为9,圆心角为60︒,则该扇形的弧长为( )A. 3πB. 2πC. 10D. 9 8. 圆C :()()22132x y -+-=关于x 轴对称的圆的方程为( ) A. ()()22132x y -+-=()()22132x y -+-= C. ()()22132x y -++=()()22132x y -++=9. 已知数列{}n a 为等差数列,若238a a +=,4510a a +=,则67a a +=( )A. 8B. 10C. 12D. 14 10. 已知点()1,1A 、(3B ,过原点的直线l 与线段AB 有公共点,则直线l 倾斜角的取值范围为( )A. π0,4⎛⎤⎥⎝⎦B. ππ,43⎛⎫ ⎪⎝⎭C. ππ,43⎡⎤⎢⎥⎣⎦ D. ππ,32⎛⎫⎪⎝⎭11. 直线210ax y +-=与直线2310x y --=互相垂直,则常数a 的值为( )A. 3-B. 43- C. 2 D.3 12. 如图所示,在边长为1的正方形ABCD 中,点E 为折线段BCD 上动点,则BE BA -的最大值为( )A. 1B. 2C. 2D. 3 13. 从甲、乙、丙、丁、戊五名同学中随机选2人参加普法知识竞赛,则甲被选中的概率为( ) A.25 B. 15 C. 34D. 12 14. 如图所示,在正方体1111ABCD A B C D -中,点O 为侧面11ADD A 的中心,点E 为线段11C D 上的动点,则直线BE 与AO 的位置关系为( )A 平行 B. 相交 C. 异面 D. 平行或相交 15. 已知1x >-,则121x x ++的最小值为( )A. B. )221- C. 2 D. 2- 16. 已知函数23,04,0x x x y x +≤⎧=⎨>⎩的图像与直线y a =有两个交点,则a 的取值范围为( )A. 13a <£B. 13a <<C. 14a <≤D. 14a << 17. 已知一次函数()y f x =的图像如图所示,令()()g x xf x =,则()0g x >的解集为( )A. ()0,1B. ()1,+∞C. (),0∞-D. ()(),01,-∞⋃+∞18. 若221169x y -=,则下列各式为常数的是( )A.()225x y -+ B.()225x y ++C()224x y -+D.()224x y ++19. 如图所示,在由3个相同正方形拼接而成的矩形中,βα-=( )A.π2 B. π3 C.π4 D. π6..20. 如图所示,过抛物线22y px =(0p >)的焦点F 的直线交抛物线于点A 、B ,交其准线l 于点C ,若点F 是AC 的中点,且4AF =,则线段AB 的长为( )A. 5B. 6C.163 D. 203二、填空题(本大题共7小题,每小题4分,共28分) 21. 已知函数()21,01,0x x f x x x +≤⎧=⎨->⎩,则()3f =______.22. 在正项等比数列{}n a 中,若11a =,39a =,则公比q =______. 23. 已知1cos 3α=,且α为第四象限角,则sin α=______. 24. 已知双曲线221x y m -=的渐近线方程为33y x =±,则m =______.25. 有如下式子:①lg5lg 202+=;②0!0=;③02024C 0=;④202420232024202322322+=-;⑤13182-=-.其中正确的有______.(写出所有正确式子的序号)26. 如图所示,在矩形ABCD 中,1AB =,2BC =,点M 为边BC 的中点,将矩形ABCD 沿DM 剪去DCM △,将剩余部分绕直线AD 旋转一周,则所得到几何体的表面积为______.27. 过点()2,1P -且与原点距离为2的直线方程为______.三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤.)28. 已知1nx x ⎛⎫+ ⎪⎝⎭的二项式系数之和为256,求:(1)n 的值;(2)二项式展开式中的常数项.29. 已知圆C 的圆心坐标为()1,1-2. (1)写出圆C 的标准方程;(2)若直线10x y +-=与圆C 相交于A ,B 两点,求弦长AB .30. 如图所示,在梯形ABCD 中,AD BC ∥,4AC BC ==,ACB ∠为锐角,且sin 8ACB ∠=.(1)求ABC 的面积与AB 的长. (2)若6CD =sin D .31. 已知函数()223cos 2sin 222x x x f x =-. (1)求()πf 值以及函数()f x 的最小正周期. (2)当[]π,0x ∈-时,求()f x 的最小值.32. 如图所示,在ABC 中,90ACB ︒∠=,CD AB ⊥,且3AC ==BC ,ACD 绕CD 旋转至A CD ',使得面A DC '⊥面BDC .求:(1)三棱锥C A BD '-的体积. (2)二面角C A B D -'-的正切值.33. 已知数列{}n a 满足21320n n n a a a ++-+=,11a =,24a =. (1)求3a ,4a 值.(2)判断数列{}1n n a a +-是否为等比数列. (3)求数列{}n a 的通项公式.的的34. 已知椭圆E :()222210y x a b a b+=>>的焦距为2,1F ,2F 分别是其上、下焦点,点P 在椭圆E 上,且123PF PF +=(1)求椭圆E 的标准方程;(2)已知直线l :y x m =+,当直线l 与椭圆E 相交时,求m 的取值范围;(3)若直线1y x =+与椭圆E 交于A ,B 两点,直线1y x =-与椭圆E 交于C ,D 两点,求四边形ABCD 面积.35. 如图所示,已知一堵“L ”形的现成墙面ABC ,AB BC ⊥,9AB =米,3BC =米,现利用这堵墙和总长为42米的篱笆围建一个“日”字形的小型农场DBEF (虚线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图①),也可能在线段BA 的延长线上(如图②,点E 在线段BC 的延长线上.设DF 为x 米,EF 为y 米.(1)当13x =时,小型农场DBEF 的面积为多少?(2)当“点D 在线段AB 上”和“点D 在线段BA 的延长线上”时,试分别写出y 关于x 的函数关系式; (3)当x 等于多少时,小型农场DBEF 的面积最大?最大面积为多少平方米?的参考答案:ACBAC CADCC DBADB ADBCC 8 33-3①④(3π2x =或34100x y --=28. (1)8 (2)7029. (1)()()22112x y ++-= (230. (12. (2)4.31. (1)()π2,2πf T =-=. (2)3-.32. (1)3. (2)2.33. (1)3410,22a a ==.34.(1)22132y x += (2)( (3)535.(1)()278m(2)()()327,3122453,1215x x y x x ⎧-<<⎪=⎨⎪-≤<⎩(3)当9x =时,小型农场面积最大,最大面积为2243m 2。

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。

杭州市高职考试数学模拟卷(最新)

杭州市高职考试数学模拟卷(最新)

浙江省高等职业技术教育招生考试数 学 模 拟 试 卷一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个1.如图,,,M P S 是全U 的子集,则阴影部分所表示的集合是( )A.()MP S B.()M P S C.()U M P C S D.()U M P C S2.不等式组2142x a x a ⎧->⎨-<⎩有解,则实数a 的取值范围是( ) A.(1,3)- B.(,1)(3,)-∞-+∞ C.(3,1)- D.(,3)(1,)-∞-+∞3.条件“tan()0αβ-=”是“tan tan 0αβ-=”的( )A.充分不必要条件B.必要不充分已经C.既不充分又不必要条件D. 充分必要条件4.已知2211(),()f x x f x x x -=+则函数的表达式为( ) A.223x x -+ B.221x x -+ C.22x + D.221(1)(1)x x -+- 5对任意,,,a b c R +∈,则下列等式正确的是( )A.()b c b c a a +=B.bb c c a a a-= C.lg (lg lg )lg b b a a =- D .lg lg lg()a b a b ⋅=+6.若等比数列{}n a 的前n 项和为3,nn S k k =+=则( ) A.0 B.2π C.32π D.65π 7.数列1,2,5,4,9,6,13,8,……,则此数列的第21项为( )A.34B.36C.41D.458.停车场可将12辆车停放在一排,当有8辆车已停放后,恰有4个空位连在一起,这种情况发生的概率为( ) A.8127C B.8128C C.8129C D. 81210C 9.如果从南、北两个方向分别有5条、3条路可以通往上顶,那么某人从一面上山由另一面下山,共有( )种走法.A.53+B.35⨯C.35D.5310.若角β的终边经过点(2,0)P -,则β是( )A .第二象限角 B. 第三象限角 C. 第四象限角 D. 非象限角11.如果4cos(),5πα+=-则下列等式成立的是( ) A.3sin 5α=- B.3tan 4α=C.34sin()25πα-=- D.4cos(2)5πα-= 12.若cos()cos(),244ππθθθ-+==则cos ( )13.9(2)x y -展开式中,第5项的二项式系数为( )A.59CB.59C -C.49CD.49C -14. 若,αβ是两个不重合的平面,在下列条件中可判断两平面平行的条件是( )A.,αβγ都垂直于平面B.αβ内不共线的三点到的距离相等 C.,,l m l m αββ是平面内的直线,且 D. ,,,,l m l m l m ααβα⊥是两条异面直线,且15.若0,0,0AC BC Ax By C <<++=则直线不经过( )A.第一象限B.第二象限C.第三象限D. 第四象限16.过点(1,),(,6)A m B m -的直线与直线210x y -+=垂直,则m 的值为( ) A.6- B.8-C. 9-D.017.与圆224630x y x y +-+-=的圆心相同,且圆经过点(1,1)-的圆的方程为( )A.22(2)(3)25x y -++=B.22(2)(3)5x y -++=C.22(2)(3)25x y ++-=D.22(2)(3)5x y ++-=18.已知抛物线的顶点为原点,对称轴为 x 轴,焦点在直线34120x y --=上,则抛物线的方程式( )A.216y x =- B. 216y x = C.212y x =- D. 212y x =二、填空题(本大题共8小题,每小题3分,共24分)19.用符号表示结论:“三个数,,x y z 不全为零”20.比较大小:0.10.7 0.20.6.21.函数()21f x x =+的图像具有的对称特征是22.在直角坐标系中,单位圆上两点111222(,),(,),P x y P x y O 为原点,12cos POP ∠则 21cos()POX POX =∠-∠= 23.长方体1111ABCD A BC D -中,棱11113,4,AA AB B C A BCD ==则直线与平面 的距离 .24.已知413,(0,),cos ,tan ,tan()259παβαβαβ∈==-=则 25.焦点在x 轴上的椭圆2211log 892P x y e +==的离心率,则p= 26.数列9,99,999,9999,……的一个通项公式是n a = .三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤.27. (本题满分6分) 由1,2,3,4四个数字组成的没有重复数字的四位数中,求共有多少个比1234大的四位数.28. (本题满分7分)在首项为1a 的等差数列{},,.n n m m n a a m a n S +==中,已知求29. (本题满分7分) 设2212,14x F F y -=是双曲线的两焦点,点P 是双曲线上一点,121290,.F PF PF ︒∠=且F 求面积S30. (本题满分7分)若A ABC ∠是的最大内角,函数sin cos y A A =-的值域.31.(本题满分8分) 已知(1,2),(,1),22a b x a b a b ==+-当与平行时,求:(1)x 的值;(2)a b +.32. (本题满分8分) 求值: (1)79sin()6π- (2)24cos cos cos ;777πππ⋅⋅33. (本题满分8分)求过圆22:82120C x y x y +--+=内一点(3,0)Q 的最长弦和最短弦所在的直线方程.34. (本题满分9分)如图,用一棱长为a 的正方体,制作一以各面中心为顶点的正八面体.求:(1) 此正八面体的表面积S ;(2) 此正八面体的体积V .。

高职高考数学试卷月考

高职高考数学试卷月考

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. -√3C. πD. 0.1010010001…2. 已知等差数列 {an} 的前n项和为 Sn,若 S3=9,S6=36,则第4项 a4 等于()A. 6B. 7C. 8D. 93. 函数 y=2x-1 的图象上,x 的取值范围是()A. x≤0B. x≥0C. x≠0D. x>04. 下列命题中,正确的是()A. 若 a^2=b^2,则 a=bB. 若 a^2=b^2,则a=±bC. 若 a^2=b^2,则 |a|=|b|D. 若 a^2=b^2,则 ab=05. 在△ABC中,∠A=45°,∠B=60°,则∠C的大小为()A. 30°B. 45°C. 60°D. 75°6. 已知函数 y=3x^2+2x-1,若 x=2,则 y 的值为()A. 11B. 9C. 7D. 57. 下列不等式中,正确的是()A. 2x+3<5B. 2x+3>5C. 2x+3≤5D. 2x+3≥58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^210. 下列函数中,为一次函数的是()A. y=2x^2-3x+1B. y=x^3-2x+1C. y=3x+5D. y=2/x二、填空题(每题5分,共50分)1. 等差数列 {an} 的公差为d,首项为a1,第n项 an 等于__________。

2. 若 a、b、c 成等比数列,则 b^2=__________。

3. 函数y=√(x^2-1) 的定义域为__________。

山东高职单独考试试卷

山东高职单独考试试卷

山东高职单独考试试卷一、选择题(每题2分,共20分)1. 计算机科学中,二进制数1011转换为十进制数是多少?A. 11B. 13C. 15D. 172. 以下哪项不是高等数学中微积分的基本定理?A. 牛顿-莱布尼茨公式B. 泰勒公式C. 罗尔定理D. 斯托克斯定理3. 英语中,"The sun is shining brightly" 描述的是:A. 过去B. 现在C. 将来D. 完成4. 以下哪个不是中国四大名著之一?A. 《红楼梦》B. 《西游记》C. 《水浒传》D. 《三国演义》E. 《聊斋志异》5. 化学中,元素周期表的第五周期元素的原子序数范围是多少?A. 21-30B. 31-40C. 41-50D. 51-60二、填空题(每空1分,共10分)1. 一个完整的计算机系统包括______和______两大部分。

2. 英语中,动词的过去式变化规则通常遵循三个原则:规则变化、不规则变化和______。

3. 微积分中的导数概念是由数学家______首次系统提出。

4. 化学元素周期表中,位于第IA族的元素是______族元素。

5. 计算机编程中,"if-else"语句用于实现______控制。

三、简答题(每题10分,共20分)1. 简述计算机操作系统的基本功能。

2. 描述英语中名词的复数形式变化规则。

四、计算题(每题15分,共30分)1. 计算下列定积分:\[\int_{0}^{1} (2x^2 + 3x + 1) dx\]2. 假设某化学反应的速率常数 \( k = 0.5 \) min\(^{-1}\),初始浓度 \( [A]_0 = 1.0 \) mol/L,求10分钟后反应物A的浓度。

五、论述题(每题15分,共30分)1. 论述计算机在现代教育中的作用。

2. 讨论英语作为国际语言对全球文化交流的影响。

结束语:考生们,希望你们在考试中发挥出色,取得理想的成绩。

2024浙江省高职考(中职高考)联合体第一次模拟(数学试卷(含答案))

2024浙江省高职考(中职高考)联合体第一次模拟(数学试卷(含答案))

第1 页(共6页)2023 2024学年浙江省职教高考研究联合体第一次联合考试数学试卷参考答案一㊁单项选择题(本大题共20小题,1 10小题每小题2分,11 20小题每小题3分,共50分)1.D ʌ解析ɔȵA ɣB ={-1,0,1,3},ʑ2∉(A ɣB ).2.A ʌ解析ɔȵx =2,y =5,ʑx +y =7,反之不一定成立.3.D ʌ解析ɔ特殊值代入法或利用不等式的性质分析.4.C ʌ解析ɔȵA O ң=(0,0)-(2,0)=(-2,0),B O ң=(0,0)-(0,-1)=(0,1),ʑA O ң+B O ң=(-2,1).5.D ʌ解析ɔ由题意得4-x 2>0,x +1>0,{解得-1<x <2.6.C ʌ解析ɔ120ʎ-180ʎ=-60ʎ.7.D ʌ解析ɔP 44=24(种).8.C ʌ解析ɔ根据指数函数㊁对数函数的图像和性质进行比较.9.A ʌ解析ɔ画图或化为0ʎ~360ʎ范围内的角.10.B ʌ解析ɔ斜率k =-63-12+3=-33.11.D ʌ解析ɔ由题意得m +1ɤ0,解得m ɤ-1.12.C ʌ解析ɔȵ函数t (x )=c x 是减函数,ʑ0<c <1.令x =1,则g (1)=b >f (1)=a .ʑb >a >c .13.C ʌ解析ɔP =18.14.A ʌ解析ɔȵt a n α㊃s i n α=s i n αc o s α㊃s i n α=s i n 2αc o s α>0,且s i n 2α>0,ʑc o s α>0.15.C ʌ解析ɔȵT 4=C 36x 3(-2x )3=(-2)3C 36x 3㊃x -32,ʑ第4项的系数为-23C 36=-160.16.D ʌ解析ɔȵ点P (4,0),且|MP |=3,ʑ动点M 的轨迹方程为(x -4)2+y 2=9.17.D ʌ解析ɔȵf (1)=f (3)=0,ʑ对称轴方程为x =1+32,即x =2.又ȵ二次函数f (x )的图像开口向下,ʑf (6)<f (-1)<f (2).18.B ʌ解析ɔA 项中,A 1B 与B 1C 成60ʎ角;B 项中,A D 1与B 1C 是异面垂直关系,即成90ʎ角,正确;C 项中,A 1B 与底面A B C D 成45ʎ角;D 项中,连接A C (图略),A 1C 与底面A B C D 所成的角为øA C A 1ʂ30ʎ.故选B .19.B ʌ解析ɔȵa =|A F 1|=2,c =|O F 1|=1,ʑb 2=3,ʑ椭圆C 的标准方程为x 24+y 23=1.第2 页(共6页)20.D ʌ解析ɔ由题意得2b =a +c ,c -a =2,c 2=a 2+b 2,ìîíïïïï解得a =3,b =4,c =5,ìîíïïïïʑ双曲线C 的标准方程为x 29-y 216=1.二㊁填空题(本大题共7小题,每小题4分,共28分)21.-22 ʌ解析ɔȵx >0,ʑx +2x ȡ2x ㊃2x =22,ʑ-(x +2x)ɤ-22.当且仅当x =2x (x >0),即x =2时,等号成立.22.1 ʌ解析ɔȵf (-1)=-(-1)2+1=0,ʑf [f (-1)]=f (0)=0+1=1.23.1103 ʌ解析ɔS 10=(1+2+4+ +29)+(-1+1+3+ +17)=1ˑ(1-210)1-2+10ˑ(-1+17)2=1023+80=1103.24.4π3 ʌ解析ɔȵV 圆柱=πr 2h =πˑ22ˑ4=16π,V 圆锥=13πO A 2㊃O B =13πˑ22ˑ11=443π,ʑV 圆柱-V 圆锥=16π-44π3=4π3.25.20 ʌ解析ɔȵ抛物线y 2=16x 的焦点为F (4,0),代入直线方程得2ˑ4+0+m =0,解得m =-8,即y =8-2x .将其代入y 2=16x 得x 2-12x +16=0,由韦达定理得x 1+x 2=12.ʑ|A B |=(x 1+p 2)+(x 2+p 2)=x 1+x 2+p =12+8=20.26.31250 ʌ解析ɔȵs i n α=45,c o s α=-35,ʑs i n 2α=2s i n αc o s α=2ˑ45ˑ(-35)=-2425,c o s 2α=c o s 2α-s i n 2α=(-35)2-(45)2=-725,ʑs i n (2α+5π4)=s i n 2αc o s 5π4+c o s 2αs i n 5π4=(-2425)ˑ(-22)+(-725)ˑ(-22)=24250+7250=31250.27.(-ɕ,-2)ɣ(4,+ɕ) ʌ解析ɔ由题意得(m +2)(4-m )<0,ʑ(m +2)(m -4)>0,解得m <-2或m >4.三㊁解答题(本大题共8小题,共72分)(以下评分标准仅供参考,请酌情给分)28.(本题7分)解:原式=223ˑ32+l o g 225-l o g 334+1+C 19-4ˑ3ˑ2ˑ1=2+5-4+1+9-24每项正确各得1分,共6分 =-11.结果正确得1分29.(本题8分)解:(1)ȵs i n (π+α)=32,且αɪ(-π2,0),ʑα=-π3.1分第3 页(共6页)ʑf (x )=s i n (2x -π3)+c o s (2x +π3)+1=s i n 2x c o s π3-c o s 2x s i n π3+c o s 2x c o s π3-s i n 2x s i n π3+1=12s i n 2x -32c o s 2x +12c o s 2x -32s i n 2x +1=1-32s i n 2x +1-32c o s 2x +1=2-62s i n (2x +π4)+1,1分 ʑ函数f (x )的最小正周期T =2π2=π.1分 (2)当s i n (2x +π4)=1时,函数f (x )取最小值,最小值为2-6+22,2分 此时2x +π4=2k π+π2(k ɪZ ),解得x =k π+π8(k ɪZ ),2分 即函数f (x )取最小值时x 的集合为x x =k π+π8(k ɪZ ){}.1分 30.(本题9分)解:(1)联立x +y -5=0,2x -y -1=0,{解得x =2,y =3,{ʑ圆心Q (2,3).1分 又ȵ坐标原点(0,0)到直线y =2的距离d =2,ʑ半径r =2.1分 ʑ圆C 的标准方程为(x -2)2+(y -3)2=4.2分 (2)ȵM Q ʅMP ,ʑ直线MP 为圆C 的切线.1分①当直线MP 的斜率存在时,设直线MP 的方程为y -6=k (x -4),即k x -y +6-4k =0.由r =d 得|2k -3+6-4k |k 2+1=2,解得k =512,ʑ此时,直线MP 的方程为y -6=512(x -4),即5x -12y +52=0.2分 ②当直线MP 的斜率不存在时,直线MP 的方程为x -4=0.1分 综上所述,直线MP 的方程为5x -12y +52=0或x -4=0.1分 31.(本题9分)解:(1)在әA B C 中,由正弦定理得a s i n A =b s i n B ,即2s i n A =2s i n B,ʑs i n B =2s i n A .1分 又ȵc o s A =32,ʑøA 是әA B C 的一个内角,ʑøA =30ʎ.ʑs i n A =12,ʑs i n B =22.1分 ȵb >a ,ʑøB =45ʎ或135ʎ.1分第4 页(共6页)当øB =45ʎ时,øC =105ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2㊃c o s 105ʎ=6-42ˑ2-64=4+23,ʑc =3+1.1分 当øB =135ʎ时,øC =15ʎ,由余弦定理得c 2=a 2+b 2-2a b c o s C =(2)2+22-2ˑ2ˑ2ˑ2+64=4-23,ʑc =3-1.1分 注:只要答案正确,用其他方法解答也可得分.(2)当øC =105ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6+24=3+12;2分 当øC =15ʎ时,S әA B C =12a b s i n C =12ˑ2ˑ2ˑ6-24=3-12.2分 32.(本题9分)解:(1)ȵA C =1,A B =2,B C =3,ʑA B 2=A C 2+B C 2,ʑәA C B 是直角三角形,且øA C B =90ʎ.1分 ȵP A ʅ平面A B C ,B C ⊂平面A B C ,ʑP A ʅB C ,又ȵB C ʅA C ,且P A 与A C 交于点A ,ʑB C ʅ平面P A C ,ʑP B 与平面P A C 所成的角为øB P C .1分ȵP A =A C =1,P B =P A 2+A B 2=5,ʑP C =2,ʑ在R t әP C B 中,c o s øB P C =P C P B =25=105,1分 ʑP B 与平面P A C 所成角的余弦值为105.1分 (2)由(1)得B C ʅP C ,又ȵA C ʅB C ,ʑøP C A 为二面角P B C A 的平面角.1分 ȵ在R t әP A C 中,A P =A C =1,P A ʅ平面A B C ,ʑøP C A =45ʎ,即二面角P B C A 的大小为45ʎ.2分(3)V C P A B =V P A B C =13S әA B C ㊃P A =13ˑ12ˑ1ˑ3ˑ1=36.2分 33.(本题10分)解:(1)ȵa 2和a 3是一元二次方程x 2-3x +2=0的两个实数根,且数列{a n }单调递增,ʑa 2=1,a 3=2,ʑ公差d =a 3-a 2=1,首项a 1=a 2-d =0,ʑa n =n -1.1分 又ȵb 1=l o g 2a 3=l o g 22=1,b 2=l o g 2a 5=l o g 24=2,1分 ʑ公比q =b 2b 1=2,ʑb n =b 1q n -1=2n -1.1分第5 页(共6页)(2)ȵc n =a n +1+1b n,ʑc n =n +21-n .1分 ʑT n =c 1+c 2+ +c n=(1+2+3+ +n )+(1+12+14+ +12n -1)=n (n +1)2+1-12n 1-121分=n 2+n 2+2-12n -1.1分 (3)ȵd n =(2+a n )b n =(n +1)㊃2n -1,1分 ʑM n =d 1+d 2+d 3+ +d n ,即M n =2ˑ20+3ˑ21+4ˑ22+ +(n +1)㊃2n -1①ʑ2M n =2ˑ21+3ˑ22+4ˑ23+ +(n +1)㊃2n ②由①-②得-M n =2ˑ20+21+22+ +2n -1-(n +1)㊃2n 1分 =2+2(1-2n -1)1-2-(n +1)㊃2n =-n ㊃2n ,1分 ʑM n =n ㊃2n .1分 34.(本题10分)解:(1)ȵәA B F 2的周长为|A F 1|+|A F 2|+|B F 1|+|B F 2|=4a =8,ʑa =2.1分 又ȵe =c a =12,ʑc =1,ʑb 2=a 2-c 2=22-12=3.1分 ʑ椭圆C 的标准方程为x 24+y 23=1.1分 (2)ȵ椭圆C :x 24+y 23=1的右焦点为F 2(1,0),ʑ抛物线y 2=2p x 的焦点为(1,0),1分 ʑp =2,ʑ抛物线的标准方程y 2=4x .1分 ȵ直线l 的倾斜角为135ʎ,ʑ斜率k =t a n 135ʎ=-1,ʑ直线l 的方程为y =-x +1,联立y =-x +1,①y 2=4x ,②{将①代入②并消去y 得x 2-6x +1=0,ʑΔ=(-6)2-4ˑ1ˑ1=32,ʑ弦长|MN |=1+1ˑ321=8,1分第6 页(共6页)又ȵ坐标原点O 到直线y =-x +1的距离d =12=22,1分 ʑS әO MN =12|MN |㊃d =12ˑ8ˑ22=22.1分 (3)联立y =-x +1,①x 24+y 23=1,②ìîíïïïï将①代入②并消去y 得7x 2-8x -8=0,ʑΔ=(-8)2-4ˑ7ˑ(-8)=288,ʑ|P Q |=1+1ˑ2887=247,1分 ʑ247-8=-327<0,ʑ|P Q |<|MN |.1分 35.(本题10分)解:(1)设D C =2x ,则A B =2x ,D C ︵=A B ︵=πx ,1分 ʑA D =B C =l -(4x +2πx )2=l 2-(π+2)x ,2分 ʑS =S 矩形A B C D +πx 2=2x ˑ[l 2-(π+2)x ]+πx 21分=l x -2(π+2)x 2+πx 2=-(π+4)x 2+l x .2分 (2)由(1)得S =-(π+4)x 2+l x .由二次函数的性质得:当x =l 2(π+4)米时,S 取得最大值,S m a x =l 24(π+4)平方米.4分。

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案)

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案)

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB2.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-43.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.B.C.D.4.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)5.设复数z满足z+i=3-i,则=()A.-1+2iB.1-2iC.3+2iD.3-2i6.A.B.C.D.7.{已知集合A={-1,0,1},B={x|-1≤x<1}则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}8.等比数列{a n}中,若a2 =10, a3=20,则S5等于( )A.165B.160C.155D.1509.tan150°的值为()A.B.C.D.10.若集合M={3,1,a-1},N = {-2,a2},N为M的真子集,则a的值是( )A.-1B.1C.0D.11.A.B.{3}C.{1,5,6,9}D.{1,3,5,6,9}12.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/313.若等差数列{a n}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.014.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是( )A.1/5B.1/4C.1/3D.1/216.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=( )A.(1,2)B.[1,2]C.[1,2)D.(1,2]17.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}18.已知A={x|x+1>0},B{-2,-1,0,1},则(C R A)∩B=( )A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}19.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.4820.A.3B.4C.5D.6二、填空题(20题)21.等差数列的前n项和_____.22.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.23.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.24.25.在等比数列{a n}中,a5 =4,a7 =6,则a9 = 。

2024年高职单独招生考试数学模拟试题及答案

2024年高职单独招生考试数学模拟试题及答案

2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。

顺德高职高考数学模拟卷

顺德高职高考数学模拟卷

顺德高职高考数学模拟卷
数学模拟卷是高中学生备战高考的重要工具之一,它旨在帮助学生熟悉高考数学题型,提高解题能力和应对考试压力的能力。

顺德高职高考数学模拟卷是为顺德地区的高职高考学生量身定制的,以下是一份简单的数学模拟卷示例。

第一部分:选择题
1. 下列哪个集合不是整数的子集?
A. 自然数
B. 偶数
C. 有理数
D. 负数
2. 若x < y,下列哪个不等式成立?
A. x - y > 0
B. x - y < 0
C. y - x > 0
D. y - x < 0
3. 解方程:2x + 5 = 15
A. x = 5
B. x = 7
C. x = 3
D. x = 2
第二部分:计算题
4. 已知三角形ABC,AB = 5cm,角A = 60°,角B = 45°,求三角形ABC的面积。

5. 等比数列的首项是2,公比是3,前 n 项和为364,求n。

6. 若x² + 9 = 6x,则x的值是多少?
第三部分:解答题
7. 已知函数f(x) = 3x² + 2x - 5,求f(-1)的值。

8. 一个圆的直径为12 cm,求其面积和周长。

以上是一份简单的顺德高职高考数学模拟卷示例。

请考生认真阅读题目要求,根据自己的知识和能力,尽力完成每一道题目。

在答题过程中,要注意思路清晰,步骤准确,并仔细检查答案。

祝各位考生取得优异的成绩!。

高职单招《数学》模拟试题(一)

高职单招《数学》模拟试题(一)

高职单招《数学》模拟试题(一)-CAL-FENGHAI.-(YICAI)-Company One1高职单招《数学》模拟试题(一)(考试时间120分钟,满分150分)班级___________ 座号______ 姓名__________ 成绩_____一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干后的括号内。

本大题共12小题,每小题4分,共48分):1、设全集I={}210,,,集合M={}21,,N={}0,则C I M ∩N 是( ) A 、φ B 、M C 、N D 、I2、下列各组函数中,哪一组的两个函数为同一函数( )A 、y=lgx 2与y=2lgxB 、y=2x 与y=xC 、y=Sinx 与y=-Sin(-x)D 、y=Cosx 与y=-Cos(-x)3、设定义在R 上的函数f(x)=3x x ,则f(x)是( )A 、偶函数,又是增函数B 、偶函数,又是减函数C 、奇函数,又是减函数D 、奇函数,又是增函数4、若log 4x=3,则log 16x 的值是( )A 、23 B 、9 C 、3 D 、64 5、函数y=5-Sin2x 的最大值与周期分别是( )A 、4,πB 、6,2π C 、5,π D 、6,π 6、若Cosx=-23,x ∈)2,(ππ,则x 等于( ) A 、67π B 、34π C 、611π D 、35π 7、已知△ABC ,∠B=45°,C=23,b=22,那么∠C=( )A 、60°B 、120°C 、60°或120°D 、75°或105°8、下列命题:①若两个平面都垂直于同一个平面,则这两个平面平行。

②两条平行直线与同一个平面所成的角相等。

③若一个平面内不共线的三点到另一个平面的距离相等,则这两个平面平行。

④若一条直线一个平面相交,并且和这个平面内无数条直线垂直,则这条直线和这个平面垂直。

高职高考模拟数学试卷

高职高考模拟数学试卷

一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的图像开口向上,则该函数的对称轴为:A. x = -1B. x = 1C. x = 2D. x = 32. 已知等差数列{an}中,a1 = 3,d = 2,则第10项an等于:A. 17B. 18C. 19D. 203. 若复数z = 2 + 3i的模为√13,则z的共轭复数为:A. 2 - 3iB. 3 + 2iC. -2 + 3iD. -3 + 2i4. 下列不等式中,正确的是:A. 2x + 3 > 5B. 3x - 2 < 4C. x^2 + 1 > 0D. x^2 - 1 < 05. 已知函数y = log2(x - 1),则该函数的定义域为:A. x > 1B. x ≥ 1C. x < 1D. x ≤ 16. 若等比数列{bn}中,b1 = 3,公比q = 2,则第4项bn等于:A. 12B. 24C. 48D. 967. 下列各式中,正确的是:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^28. 已知函数y = sin(x + π/2),则该函数的周期为:A. πB. 2πC. 3πD. 4π9. 若等差数列{cn}中,c1 = 5,d = -2,则第n项cn等于:A. 5 - 2(n - 1)B. 5 + 2(n - 1)C. 5 - 2(n + 1)D. 5 + 2(n + 1)10. 下列函数中,单调递增的是:A. y = x^2B. y = 2xC. y = -xD. y = x^3二、填空题(每题5分,共50分)11. 已知函数f(x) = x^3 - 3x^2 + 4x - 6,则f(1)的值为______。

高职单招考试数学模拟题25

高职单招考试数学模拟题25

高职单招考试数学模拟题25第一大题(每小题3分,共60分;从A、B、C、D四个选项中选出最恰当的一项)第1题:【正确答案】:C第2题:【正确答案】:D第3题:【正确答案】:D第4题:【正确答案】:B 第5题:【正确答案】:B 第6题:【正确答案】:C 第7题:【正确答案】:A 第8题:【正确答案】:B 第9题:【正确答案】:C 第10题:【正确答案】:C 第11题:【正确答案】:A 第12题:【正确答案】:A 第13题:【正确答案】:A 第14题:【正确答案】:D第15题:在某段时间内,甲地下雨的概率是0.2,乙地下雨的概率是0.3,假定在这段时间内两地是否下雨相互之间没有影响,那么在这段时间内甲、乙两地都下雨的概率是()A. 0.5B. 0.2C. 0.1D. 0.06【正确答案】:D第16题:为开展健身运动,某市组织6个足球队进行单循环比赛(即每一个队都要和另一个队比赛一场),那么比赛的场数共有()A. 36场B. 30场C. 18场 D. 15场【正确答案】:D第17题:某地区对用户用电推出两种收费办法,供用户选择使用:一是按固定电价收取;二是按分时电价收取------在固定电价的基础上,平时时段电价每千瓦时上浮0 03元;低谷时段电价每千瓦时下浮0 25元。

若一用户某月平时时段用电140千瓦时,低谷时段用电60千瓦时,则相对于固定电价收费该月()A 付电费10 8元B 少付电费10 8元C 少付电费15元D 多付电费4 2元【正确答案】:B 第18题:【正确答案】:A 第19题:【正确答案】:A 第20题:【正确答案】:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012数学杭州市模拟考试卷 共2页 第1页
杭州市中等职业学校2012年 浙江省高等职业技术教育招生模拟考试
数 学 试 卷
考生须知:1.本试题卷共三大题, 34小题, 全卷共 2页。

满分120分,考试时间120
分钟
2.所有试题均需在答题纸上作答,在试卷或草稿上作答无效。

3.答卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔
填写在答题纸上。

一.选择题:(本大题共18小题,每小题2分,共36 分) 1.若集合{}(1)0Q y y y =-=,则集合Q 的列举表示法为 ( ).
A.{}1,0,1-
B.{}1,0-
C. {}0
D. {}0,1 2.不等式2
834x x ->的解集是 ( )
A .2(,)(2,)3-∞⋃+∞
B .2(,)3-∞
C .(2,)+∞
D .2
(,2)3
3.函数53y x =-+在区间[,]a b 上的最小值是( )
A .53a -+
B .53b -+
C .53a +
D .53b + 4.若lg lg M a N =-,则M = ( )
A .a N
B .10a N ⋅
C .10N
a - D .10a N
5.2
12sin
12
π
-= ( )
A
.2 B
.2
- C .12 D .12-
6.若等比数列{}n a 的前三项依次为,22,33,x x x x ++=则 ( )
A .2
B .4±
C .4-
D .4 7.若21tan(),tan()544παβα+=
-=,则tan()4
π
β+的值等于( ) A .313 B .1318 C . 332
D .322
8.有1克,2克,3克的砝码各一个,可以用它们称出不同重量的物品种类为( ) A .123
3
C C + (种) B .123
3
3
3C C C ++ (种) C .1
23
3
3
3C C C
(种) D .
1233
3
3
1C C C ++- (种)
9若0,x ≠则2
22
x x
+
的最小值是( ). A .2 B .3 C .4 D
.10.角72α︒
== ( ).
A .
10π (弧度) B .5
π(弧度) C .25π(弧度) D .35π(弧度) 11.直线a 和平面α都垂直于平面β,则直线a 和平面α的关系是( ).
A .//a α
B .a A α⋂=
C .a α⊆
D .//a α或a α⊆
12.函数2sin y x =-的图像是由sin y x =的图像 ( )得到 A .关于x 轴对称,并向上平移2个单位 B .关于x 轴对称,并向下平移2个单位
C .关于x 轴对称,并向左平移2个单位
D .关于x 轴对称,并向右平移2个单位 13.“x >0”是“sin x >0”的( )条件
A .充分不必要
B .必要不充分
C .充要
D .既不充分又不必要 14.在()15
1x -的展开式中,系数最大的项是( ).
A .第9项
B .第8项
C .第7项
D .第6项 15.如果3
4
cos ,tan 5
3
αα=-=
,则sin α= ( ). A .45- B.45 C .54 D .-54
16.直线43110x y -+=与圆2
2
20x y y +-=的位置关系是 ( ).
A .相切
B .相离
C .相交
D .相交且过圆心
17.已知向量(0,4),(3,0)a b ==-
,则下列运算结果为1的是 ( ).
A .a b +
B .a b -
C .a b -
D .a b ⋅ 18.若方程223kx y +=表示焦点在x 轴上的椭圆,则实数k 的取值范围是( ). A .(0,)+∞ B .(3,)+∞ C .(0,1) D .(0,3)
二、填空题:(本大题8小题,每小题3分,共24分)
19.函数()32f x x =-的定义域为{}1,2,3,4x ∈,则函数的值域是 △ 20.如果对数函数log a y x =的图像经过点(2,1)P -,则a = △ 21.在等差数列{}n a 中,若2111210,S a ==则 △
2012数学杭州市模拟考试卷 共2页 第2页
22.已知函数3sin()3
y x π
ω=+
的最小正周期3T π=,那么ω的值等于 △
23.若△ABC 是边长为2的正三角形,把它绕其某一对称轴旋转一周,可得旋转体的体积V = △
(体积单位) 24.过原点O,且与直线21y x =-垂直的直线方程的一般式是 △ 25.若点(1,2)M -在直线.0x y k -+=上,则直线不经过第 △ 象限. 26.双曲线2241x y -=的焦点坐标为 △
三、解答题:(本大题8小题,共60分,解答应写出文字说明及演算步骤)
27.(本题满分6分) 根据条件:①max 8y =;②当且仅当[1,3]x ∈-时0y ≥,求二次函数()y f x =的解析式.
28.(本题满分6分) 若数列{}n a 满足条件1125,3()n n a a a n N ++==+∈,求:数列的通项公式. 29.(本题满分7分) 在ABC ∆中,3sin 4cos 6,3cos 4sin 1,A B A B +=+=求C ∠. 30.(本题满分7分) 若点(0,7),(4,5),A B -重心1(0,)3
G .由条件判断ABC ∆的特征.
31.(本题满分7分) 在三棱锥S ABC -中,90SAB SAC ACB ∠=∠=∠=o (如图所示),
且2,AC BC SB =求侧面SBC 与底面ABC 所成的二面角. 32. (本题满分8分) 排列组合问题(注:最后结果请用排列数或组合数表示):
①10个人走进只放有6把不同椅子的教室里,若要求每一把椅子能且只能坐1人,求总共有多少种不同的坐法;
②6个人走进放有10把不同椅子的教室里,若要求每一把椅子能且只能坐1人,求总共有多少种不同的坐法。

33. (本题满分8分) 已知点1122(,),(,)A x y B x y 是抛物线2
4y x =过焦点弦的两端点,且123x x +=,求AB 的值。

34. (本题满分11分) 随着人民生活的不断提升,杭州市家庭小轿车的拥有量在逐年增加。

据统计,某小区2008年拥有家庭小轿车64辆,2010年拥有家庭小轿车100辆。

①假定小区家庭小轿车的拥有量的年平均增长率相同,求2012年该小区家庭小轿车的拥有量;②为缓和停车难得矛盾,小区计划投资15万元人民币再建造若干个停车位。

据测算,建造室内、外停车位的费用分别是5000
元/个、1000元/个。

考虑到实际情况,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种不同车位数。

(第31题图)
S
A
B
C。

相关文档
最新文档