Hollow mesoporous zirconia nanocontainers ofr storing and controlled releasing of corrosion inhibito
二氧化锆纳米颗粒荷载阿霉素经不同途径给药治疗兔VX2肝移植瘤
二氧化锆纳米颗粒荷载阿霉素经不同途径给药治疗兔VX2肝移植瘤赵璠【摘要】目的比较经不同途径给药后载阿霉素(DOX)的二氧化锆纳米颗粒及游离DOX兔VX2肝移植瘤生长情况及药物靶向性.方法建立兔VX2肝移植瘤模型25只,随机分为5组,A组经肝动脉给予载DOX二氧化锆纳米颗粒,B组外周静脉给予载DOX二氧化锆纳米颗粒,C组经肝动脉给予游离DOX,D组经外周静脉给予游离DOX,E组为空白对照组.通过CT检查测量给药后1、3、6天各组同期肿瘤体积,分别计算各组3天与1天、6天与3天、6天与1天肿瘤体积比.多组间肿瘤体积比比较采用单因素方差分析,两两比较采用LSD法或SNK法.对给药后各组模型的离体心脏标本进行组织学观察,评价药物的心脏毒性.结果各组间给药后3天与1天肿瘤体积比、6天与3天肿瘤体积比差异均无统计学意义(F=2.056、1.906,P=0.125、0.149);而各组间给药后6天与1天肿瘤体积比差异有统计学意义(F=4.230,P=0.012),A组明显低于其他组(P均<0.05),且除B组与E组外,B、C、D、E组间两两比较差异均无统计学意义(P均>0.05).组织学检查显示,A组及B组心肌几乎无损伤或损伤较轻,而C组及D组心肌损伤均较重.结论纳米药物载体与传统介入超选择性肝动脉化疗相结合,可更好地延缓兔VX2肝移植瘤生长,提高药物靶向性,且有助于降低DOX造成的心脏毒性.【期刊名称】《中国介入影像与治疗学》【年(卷),期】2019(016)005【总页数】5页(P299-303)【关键词】肝肿瘤;兔;二氧化锆纳米颗粒;阿霉素;药物释放系统【作者】赵璠【作者单位】中国医科大学附属盛京医院超声科,辽宁沈阳 110001【正文语种】中文【中图分类】R-332;R445.1对无法手术切除的中晚期肝癌或术后复发肝癌患者,目前临床常采用传统化疗法或经肝动脉化疗方法[1]。
因多数抗癌药物不能很好地区别肝癌细胞与正常细胞,导致系统性毒性和负面影响,使得传统化疗方法受到一定局限。
常用实验植物中文名拉丁名对照
常用实验植物中文名拉丁名对照绿色鞭毛藻(Ostreococcus lucimarinus)海链藻(Thalassiosira pseudonana)石莼(Ulva fasciata)细小微胞藻(micromonas pusilla)胶球藻(Coccomyxa subellipsoidea)C-169团藻( V olvox carteri)莱茵衣藻(Chlamydomonas reinhardtii)小立碗藓,苔藓,球蒴藓(Physcomitrella patens)江南卷柏(Selaginella moellendorffii )二穗短柄草(Brachypodium distachyon)柳枝稷(Panicum virgatum)小米(setaria italica)玉米(Zea mays)高粱(Sorghum bicolor)洛矶山耧斗菜(Aquilegia coerulea )玄参科猴面花(Mimulus guttatus)番茄(solanum lycopersicum)马铃薯(solanum tuberosum)酿酒葡萄(Vitis vinifera)大桉,巨桉,格兰桉(Eucalyptus grandis)克莱门柚(CITRUS CLEMENTINA)甜橙(Citrus sinensis)可可树(Theobroma cacao)雷蒙德氏棉(gossypium raimondii)番木瓜(Carica papaya)小盐芥(thellungiella halophila)白菜?(brassica rapa chiifu-401 v1.2)荠菜(Capsella rubella)深山南芥;拟南芥;琴叶拟南芥(arabidopsis lyrata)拟南芥;阿拉伯芥;鼠耳芥(arabidopsis thaliana)野草莓(Fragaria vesca)苹果(Malus domestica)紫叶桃(prunus persica)黄瓜(Cucumis sativus)橹豆,大豆(glycine max)菜豆(四季豆)( Phaseolus vulgaris)蒺藜苜蓿(Medicago truncatula)毛果杨,杨树(populus trichocarpa)亚麻(学名:Linum usitatissimum)蓖麻(Ricinus communis)木薯(植物)(manihot esculenta)莱哈衣藻(Chlamydomonas reinhardtii Dangeard )无芒雀麦(Hungarian grass)粟,谷子(foxtail millet)醉茄(Withania omnifera)生姜(Zingiber officinale)胡杨(Populus euphratica)野生猴面花的拉丁学名为Mimulus guttatus;矮猴面花的拉丁学名为M. nanus。
中英文对照微生物名称
中英文对照微生物名称及分类需氧革兰阳性球菌特征:呈单、双、四联、链状或簇状;触酶可阳性或阴性。
凝固酶阳性者包括金黄色葡萄球菌、猪葡萄球菌、中间葡萄球菌、路邓葡萄球菌和施氏葡萄球菌聚集亚种。
名称曾用名英文中文英文中文Catalase Positive触酶阳性CatalaseAlloiococcus otitis耳炎差异球菌Kocuria varians Micrococcu varians变异微球菌Kocuria kristinae Micrococcu kristinae克里斯廷微球菌Kocuria sedentarius Micrococcu sedentarius栖息微球菌Micrococcus luteus藤黄微球菌Micrococcus lytae里拉微球菌Staphylococcus aureus spp. 金黄色葡萄球菌aureus金黄色亚种Staphylococcus auricularis耳葡萄球菌Staphylococcus capitis spp.头状葡萄球菌capitis头亚种Staphylococcus capitis spp.头状葡萄球菌ureolytics解脲亚种Staphylococcus caprae山羊葡萄球菌Staphylococcus cohnii ssp.科氏葡萄球菌孔氏葡萄球菌cohnii科氏亚种Staphylococcus cohnii ssp.科氏葡萄球菌孔氏葡萄球菌urealyticum解脲亚种Staphylococcus epidermidis表皮葡萄球菌Staphylococcus albus白色葡萄球菌Staphylococcus hamolyticus溶血葡萄球菌Staphylococcus hominis spp人葡萄球菌人型葡萄球菌hominis人亚种Staphylococcus hyicus猪葡萄球菌Staphylococcus intermedius中间葡萄球菌Staphylococcus lugdunensis路邓葡萄球菌Staphylococcus pasteuri巴氏葡萄球菌Staphylococcus sacharolyticus解糖葡萄球菌Peptococcus sacharolyticus解糖消化球菌Staphylococcus saprophyticus spp.腐生葡萄球菌micrococcus subgroup 3微球菌亚组3saprophyticus腐生亚种Staphylococcus schleiferi spp.施氏葡萄球菌coagulans凝聚亚种Staphylococcus schleiferi spp.施氏葡萄球菌schleiferi施氏亚种Staphylococcus simulans模仿葡萄球菌Staphylococcus warneri沃氏葡萄球菌华纳氏葡萄球菌Staphylococcus xylosus木糖葡萄球菌Stomatococcus mucilaginosus粘滑口腔球菌Catalase negative触酶阴性CatalaseAbiotrophia adiacens Strptococcus adjacens毗邻链球菌Nutritionally variant strptococciAbiotrophia defectiva Strptococcus defectiva软弱链球菌Nutritionally variant strptococciAbiotrophia elegans Nutritionally variant strptococciAerococcus urinae脲气球菌Aerococcus viridans浅绿气球菌Dolosigranulum pigrum懒惰狡诈球菌Enterococcus avium鸟肠球菌Strptococcus avium鸟链球菌(Group D enterococcus)D组肠球菌Enterococcus casseliflavus铅黄肠球菌Strptococcus casseliflavus铅黄链球菌(Group D enterococcus)D组肠球菌Enterococcus cecorum盲肠肠球菌Strptococcus cecorum盲肠链球菌Enterococcus dispar殊异肠球菌Enterococcus durans耐久肠球菌Streptococcus durans耐久(坚忍)链球菌(Group D enterococcus)D组肠球菌Enterococcus faecalis粪肠球菌Streptococcus faecalis粪链球菌(Group D enterococcus)D组肠球菌Enterococcus faecium屎肠球菌Streptococcus faecium屎链球菌(Group D enterococcus)D组肠球菌Enterococcus flavescens黄色肠球菌Enterococcus gallinarum鹑鸡肠球菌Streptococcus gallinarum鸡链球菌Enterococcus mundtii蒙氏肠球菌Enterococcus pseudoavium类鸟肠球菌Faklamia hominisFaklamia ignavaFaklamia languidaFaklamia sourekiiGemella bereri Gemella bereriaeGemella haemolysans溶血孪生球菌Neisseria haemolysans溶血奈瑟氏菌Gemella morbilorium麻疹孪生球菌Streptococcus morbilorum麻疹链球菌Peptostreptococcus morbilorum麻疹消化链球菌Gemella sanguisGlobicatella sanguis血格露比卡氏菌Salt-tolerent viridans strptococci耐盐草绿色链球菌Helcococcus kunzii孔氏创伤球菌Ignavigranum ruoffiaeLactococcus garvieae格氏乳球菌Streptococcus garvieae牛乳腺炎链球菌Lancefield group NLactococcus lactis乳酸乳球菌Leuconostoc citreum柠檬明串珠菌Leuconostoc cremoris乳脂明串珠菌Leuconostoc dextranicum葡聚糖明串珠菌Leuconostoc lactis乳明串珠菌Leuconostoc mesenteroides肠膜明串珠菌Leuconostoc pseudomesenteroides假肠膜明串珠菌Oenococcus oeni酒酒球菌Leuconostoc oenos酒明串珠菌Pediococcus acidilactici乳酸片球菌Pediococcus damnosus有害片球菌Pediococcus dextrinicus糊精片球菌Pediococcus equinus马肠片球菌Streptococcus equinus马肠链球菌Pediococcus parvulus小片球菌Pediococcus pentosaceus戊糖片球菌Streptococcus acidominimus少酸链球菌Streptococcus bovis group牛链球菌组Group D nonenterococcus D组链球菌Streptococcus bovis牛链球菌Streptococcus equi马链球菌Streptococcus alactolyticus非解乳糖链球菌Streptococcus milleri group米氏链球菌组Viridans streptococci草绿色链球菌Streptococcus anginosus咽峡炎链球菌Streptococcus constellatusStreptococcus intermedius中间链球菌Streptococcus mitis group缓症链球菌组Viridans streptococci草绿色链球菌Streptococcus mitis缓症链球菌Streptococcus mitior温和链球菌Streptococcus sanguis II血链球菌 IIStreptococcus oralis口腔链球菌Streptococcus mutans group变异链球菌组Viridans streptococci草绿色链球菌Streptococcus cricetus大鼠链球菌Streptococcus mutans变异链球菌Streptococcus rattus 鼠链球菌Streptococcus sobrinus表兄链球菌Streptococcus pneumioniae肺炎链球菌Diplococcus pneumoniae肺炎双球菌Streptococcus pyogenes group酿脓链球菌组Streptococcus pyogenes酿脓链球菌Group A streptococci A组链球菌Streptococcus agalactiae无乳链球菌Group B streptococci B组链球菌Streptococcus canis狗链球菌Streptococcus dysgalactiae spp.停乳链球菌Group C streptococci C组链球菌equisimilis似马亚种Streptococcus equi马链球菌Streptococcus equi spp.zooepidemicus马链球菌兽瘟亚种Streptococcus equisimilis似(类)马链球菌Group G streptococci G组链球菌Streptococcus iniae海肠链球菌Streptococcus shiloi希氏(希利氏)链球菌 Streptococcus porcinus豕链球菌Streptococcus salivarius group唾液链球菌组Viridans streptococci草绿色链球菌Streptococcus salivarius唾液链球菌Streptococcus thermophilus嗜热链球菌Streptococcus vestibularis前庭链球菌Streptococcus sanguis group血链球菌组Viridans streptococci草绿色链球菌Streptococcus crista嵴链球菌Streptococcus gordonii格氏链球菌Streptococcus parasanguis副血链球菌Streptococcus sanguis I血链球菌IStreptococcus suis猪链球菌Vagococcus fluvialis河流漫游球菌Weissella paramesenteroides类肠膜魏斯氏菌Leuconostoc paramesenteroides类肠膜明串珠菌需氧革兰阴性球菌特征:呈单、双或簇状;触酶和氧化酶阳性。
植物病理学题库
普通植物病理学试题题库第一部分:拉丁学名一、病原菌拉丁学名1、真菌Plasmodiophora (根肿菌属) Physoderma (节壶菌属) Achlya (绵霉属) Pythium (腐霉属)Phytophthora(疫霉属)Peronospora(霜霉属)Spongospora (粉痂菌属) Polymyxa (多粘菌属)Saprolegnia (水霉属) Aphanomyces(丝囊霉属)Sclerospora(指梗霉属)Plasmopara (单轴霉属)Pseudoperonospora (假霜霉属) Bremia (盘梗霉属)Albugo(白锈属) Peronophthora(霜疫霉属)Rhizopus (根霉属) Mucor(毛霉属)Choanephora(笄霉属) Absidia(犁头霉属)Taphrina(外囊菌属) Blumeria(布氏白粉属)Ceratocystis(长喙壳属) Gibberella(赤霉属)Valsa(黑腐皮壳属)Elsinoe(痂囊腔菌属)Guignardia(球座菌属) Venturia (黑星菌属)Sclerotinia (核盘菌属)Erysiphe(白粉属属) Sphaerotheca(单丝壳属)Podosphaera (叉丝单囊壳属) Phyllactinia(球针壳属)Uncinula (钩丝壳属) Microsphaera(叉丝壳属)Meliola(小煤炱属)Glomerella (小丛壳属)Gaeumannomyces(顶囊壳属) Cryphonectria(隐球丛赤壳属) Gnomonia(日规壳属)Phyllachora(黑痣菌属)Diaporthe (间座壳属) Claviceps (麦角菌属)Myrangium(多腔菌属) Mycosphaerella(球腔菌属)Sphaerulina(亚球壳属) Pleospora(格孢腔菌属)Pyrenophora(核腔菌属) Cochliobolus(旋孢腔菌属)Rhytisma(斑痣盘菌属)Lophodermium (散斑壳属)Puccinia(柄锈菌属) Gymnosporangium(胶锈菌属)Ustilago (黑粉菌属)Tranzschelia(疣双胞锈菌属)Uromyces (单胞锈菌属)Phakopsora (层锈菌属) Melampsora(栅锈菌属)Urocystis(条黑粉菌属)Entyloma(叶黑粉菌属) Tilletia(腥黑粉菌属)Sphacelotheca(轴黑粉菌属) Neovossia(尾孢黑粉菌属)Doassansia(实球黑粉菌属)Septobasidium(隔担菌属)Helicobasidium(卷担子属)Exobasidium (外担菌属)Phragmidium(多胞锈菌属)Pyricularia(梨孢属属) Penicillium (青霉属) Bipolaris (平脐蠕孢属) Fusarium (镰孢属)Rhizoctonia(丝核菌属)Colletotrichum (炭疽菌属)Macrophomina(壳球孢属)Monilia (丛梗孢属) Botrytis(葡萄孢属)Trichothecium(聚瑞孢属) Ramularia(柱隔孢属)Oidium(粉孢属)Aspergillus (曲霉属)Verticillium (轮枝孢属) Cercospora (尾孢属)Alternaria (链格孢属) Cladosporium(枝孢属)Fusicladium (黑星孢属) Drechslera(内脐蠕孢属)Exserohilum (突脐蠕孢属) Curvularia (弯孢属)Sclerotium(小核菌属)Ustilaginoidea (绿核菌属)Sphaceloma(痂圆孢属) Marssonina (盘二孢属)Cylindrosporium(柱盘孢属)Pestalotia (盘多毛孢属)Phoma (茎点霉属) Phyllosticta (叶点霉属)Macrophoma (大茎点霉属) Phomopsis(拟茎点霉属)Septoria (壳针孢属) Cytospora (壳囊孢属)Diplodia (色二孢属) Ascochyta(壳二孢属)2.细菌Agrobacterium(土壤杆菌属) Erwinia (欧氏杆菌属)Pseudomonas (假单胞杆菌属) Xanthomonas (黄单胞杆菌属) Ralstonia(拉尔氏菌属)Burkholderia (布克氏菌属)Xylella (木质部小菌属) Liberobacter(韧皮部杆菌属)Clavibacter (棒形杆菌属) Arthrobacter (节杆菌属)Curtobacterium (短小杆菌属) Rhodococcus(红球菌属)Bacillus(芽孢杆菌属) Streptomyces(链丝菌属)Phytoplasma(植原体属) Spiroplasma(螺原体属)3.病毒Tobamovirus (烟草花叶病毒属) Cucumovius (黄瓜花叶病毒属)Potyvirus (马铃薯Y病毒属) Luteovirus (黄症病毒属)Nepovirus(蠕传病毒属) Furovirus(真菌传杆状病毒属)Sobemovirus(南方菜豆花叶病毒属) Phytoreovirus (植物呼肠孤病毒属)Geminivirus(联体病毒属)4.线虫Anguina (粒线虫属) Ditylenchus (茎线虫属)Heterodera (异皮线虫属) Meloidogyne (根结线虫属)Aphelenchoides(滑刃线虫属)5.寄生性种子植物Cuscuta(菟丝子属) Orobanche (列当属)Loranthus(桑寄生属) Viscum (槲寄生属)Striga(独脚金属)二、请写出引起下列病害的病原菌拉丁文属名(不写种名)十字花科霜霉病十字花科软腐病茄科青枯病马铃薯晚疫病小麦白粉病稻瘟病柑橘溃疡病棉花枯萎病第二部分:名词解释半寄生:孢囊孢子(sporangiospore):孢子(spore):孢子囊(sporangium):胞间联丝:胞囊(cyst):被动抗病性(passive resistance):闭囊壳(cleistothecium):避病性(avoidance):并发症(complex symptoms):病毒(Virus):病害三角(disease triangle):病害循环(disease cycle):病害严重度(disease severity):病情指数(disease index):病因:病原生物(pathogen):病征(sign):藏卵器(oogonitun):层出现象(proliferation):长生活史型(long life-cycle):初次侵染(Primary infection):初生菌丝体(primary myceliun):次生菌丝体(secondary mycelium):单分体病毒:单循环病害(monocyclic disease):单游现象(rnonoplanetism):单主寄生(autoecism):担孢子(basidiospore):担子(basidium):担子果(basidiocarp):垫刃型食道(Tylenchoid oesophagi):冬孢子(teliospore):毒素(toxin):短生活史型(short life-cycle):多分体病毒:多型现象(polymorphism):多循环病害(polycyclic disease):发病率(incidence):发病期(symptom appearance):非寄主抗性(non-host-resistance):非寄主专化性毒素(host-non-specifictoxin):非侵染性病害(Noninfectious diseases):非小种专化抗病性(race-nonspecific re-sistance):非循回型(noncirulative):分生孢子(conidiurn):分生孢子座(sporodochium):分生孢子梗(conidiophore):分生孢子盘(acervulus):分生孢子器(pycnidium):腐生物(saprogen):附生植物(adnascent plant):附属丝(appendage):附着胞(appressorium):复制增殖(multiplication):刚毛(seta):共栖(commensalism):共生〔symbiosis〕:过敏性坏死反应(necrotic hypersensitivereaction):合子(zygote):核配(karyogamy):厚垣孢子(chlamydospore):滑刃型食道(Aphelenchoid oesophagi):会阴花纹(perineal pattern):活体营养型(biotrophe):获毒(取食)期(acquisition period):基因对基因学说(gene-for-gene theory):季节流行曲线(disease progress curve):寄生物(parasite):寄生性(parasitism):寄生性植物(paraatic plaut):寄生专化性(specialized parasitism):寄主(host):寄主专化性毒素(host specific toxin):假根(rhizoid):假菌丝(pseudomycelium):假囊壳(psendoperithecium或pseudothecium):兼性寄生物(facultative parasite):减数分裂(meiosis):检疫法规(quarantine regulations):胶质(gum):接合孢子〔zygospore〕:节孢子(arthrospore):介体传播(vector transmission):经济阈值(economic threshold):菌核(sclerotium):菌落(colony):菌丝(hypha):菌丝融合(anastomosis):菌丝型分生孢子:菌索(rhizomorph):苗网(networks loops):抗病性(resistance to disease):抗逆性(resistance):柯赫氏法则(Koch's Rule),类病毒(Viroid):两游现象(diplanetism):卵孢子(oospore):卵囊(egg sac):卵球(oosphere):逻辑斯蒂增长期:矛型食道(Dorylaimoid oesophagi):木栓化(suberization):内含体(inclusions):耐病性(tolerance):拟薄壁组织(pseudoparenchyrna):农业防治:配子(gamete):配子囊配合(gametangial copulation):喷菌现象(bacteria exudation, BE):匍匐菌丝(stolon):潜育期(incubation period):侵染过程(infection process):侵染剂量(infection dosage):侵染性病害(infection disease):侵入期(penetration period):侵填体(tylose):全锈型(eu-form rust):缺素症(nutrition deficiencies):茸鞭(tinsel):神经环(nerve ring):生化变种(biovar):生活史(life cycle):生物防治(biological control):受精作用(spermatization):疏丝组织(prosenchyma):死体营养型(necrotroph):锁状联合(clamp connection):同宗配合(homothallism):微效基因抗病性(minor gene resistance):尾鞭(whiplash):卫星RNA(satellite RNA, sRNA):无隔菌丝(aseptate hypha):无性孢子(asexual spore):无性繁殖(asexual reproduction):无性阶段(imperfect stage):物理防治:吸器(haustonum):系统侵染(systemic infection):夏孢子(uredispore 或urediniospore):线虫(nematodes):小种(race):小种专化抗病性(race-specific resistance):性孢子(pycrrospore):性不亲和(sexual incompatible):性亲和(sexual compatible):雄器(antheridium)休眠孢子囊(resting sporangium):休止孢(cystcspore):锈孢子(aecicepore):循回期(circulative period):循回型关系(circulative):芽殖(blastic):亚种(subspecies,简称subsp.):异核体(heterokaryon):异宗配合(heterokaryon):隐症现象(masking of symptom):营养体(thallus或soma):游动孢子(zoospore):游动配子配合(planogametic copulation):有隔菌丝(septate hypha):有性孢子(sexual spore):有性阶段(perfect state或stage):有性生殖(sexual reproduction):诱发抗病性(inducing resistance):诱发植物(evocator plant):预测(prediction)和预报(forecasting):原担子(probasidium):原核生物(Procaryotes):原质团(plasnodium):越冬和越夏:再次侵染(secondary infection):黏菌(slime molds):真菌(fungus):症状(symptom):植物保卫素(phytoalexin):植物病害(plant disease):植物病害流行:植物检疫(plant quarantine):植原体(phytoplasma):指数增长期:质粒(plasmid):质配(plasmogamy):致病变种(pathovar,简称pv.):致病力(virulence):致病性(pathogenicity):致发根质粒(rhizogen inducing plasmid俗称Ri质粒):致瘤质粒(tumor inducing plasmid,俗称为Ti质粒):种(species):主效基因抗病性(major gene resistance):专性寄生物(obligate parasite):转主寄生(heteroecism):准性生殖(parasexuality):子囊(ascus):子囊孢子(ascospore):子囊果(ascocarp):子实层(hymenium):子实体(fruit body):子座(stroma):综合防治:综合症(syndrome):参考答案:半寄生:寄生物对寄主的寄生关系主要是水分和无机盐的依赖关系这种寄生方式称为半寄生,俗称为“水寄生”。
螺的分类
序号中文学名拉丁学名俗名/别名1瓜螺Cymbium melo油螺、红塔螺、红螺2大马蹄螺Trochus niloticus 马蹄钟螺、公螺3水字螺Lambis chiragra水形螺、六角螺4左旋香螺Busycon contrarium左口螺5厚角螺Hemifusus crassicaudus 海龙王螺6珍笛螺Tibia martinii马丁螺7海胆Echinoidea刺锅子、海刺猬8华贵类栉孔扇贝Mimachlamys nobilis9管角螺Hemifusus tuba响螺、響螺10大凤螺Eustrombus gigas女王凤凰螺、粉红凤凰螺11骨螺Murex Pecten Lightfoot维纳斯骨螺、栉棘骨螺12绶贝Mauritia mauritiana13怜鼬榧螺Oliva mustelina mustelina Lamarck马齿螺14寺町翁戎螺Entemnotrochus teramachii金凤螺15蝾螺Turbo petholatus Linnaeus猫眼螺、带蝾螺16澳大利亚香螺Syrinx aruanus香螺17瘤平顶蜘蛛螺Lambis truncata sebae笔架螺18蜘蛛螺Lambis lambis七角螺、普通蜘蛛螺19虎斑宝贝Cypraea tigris Linnaeus黑星宝螺、虎皮贝20土发螺Tutufa bubo石头螺、蛙螺21法螺Charonia tritonis凤尾螺、角螺22海星Solaster星鱼、sea star23强肋锥螺Turritella fortilirata Sowerby24大赤旋螺Pleuroploca trapezium 拳头螺25黄口荔枝螺Thais luteostoma26蛋白乳玉螺Polinices albumen27斑氏脊鸟蛤Fragum bannoi鸡心贝28斗嫁虫戚Cellana grata粒虫戚29心鸟蛤Corculum cardissa鸡心蛤、心贝30丽褶凤螺Strombus plicatus pulchellus Reeve31习见赤蛙螺Bufonaria rana习见蛙螺、赤蛙螺32美叶雪蛤Clausinella calophylla美叶帘蛤33海兔螺Ovula ovum卵梭螺、卵棱螺34企鹅珍珠贝Pteria penguin池水贝、企鹅贝35羊鲍Haliotis ovina Gmelin羊鲍36瑞氏海菊蛤Spondylus imperialis 海菊花37黑芋螺Conus marmoreus Linnaeus码芋螺38橘头骨螺Haustellum haustellum烟斗螺39岩棘芭蕉螺 Siratus pliciferoides岩棘千手螺、岩棘千手骨螺40长刺骨螺Murex troscheli Lischke41鳞砗磲Tridacna squamosa 砗磲42长笛螺Tibia fusus长鼻螺43扁玉螺Neverita didyma肚脐螺、海脐(唐山方言)44长旋螺Fusinus salisburyi45方斑东风螺Babylonia areolata花螺46塔形扭柱螺Tectus pyramis塔形马蹄螺、白面螺47眼球贝Erosaria erosa48冠螺Cassis cornuta唐冠螺49皱纹蛤Periglypta puerpera井条皱纹蛤、胀帘蛤50棘螺Chicoreus ramosus 千手螺、千寿螺51女王凤凰螺Strombus gigas (Linnaeus)胭脂螺52四角细带螺Pleuroploca trapezium53宝冠螺Cypraecassis rufa Linnaeus宝冠螺、冠螺54棘螺Chicoreus ramosus 黑千手螺英文名门/Phylum纲/ClassWhelk软体动物门(Mollusca)腹足纲/Gastropoda Commercial Trochus软体动物门(Mollusca)腹足纲/Gastropoda Chiragra Spider Conch软体动物门(Mollusca)腹足纲/Gastropoda Lightning Whelk软体动物门(Mollusca)腹足纲/Gastropoda Thic-tail False Fusus软体动物门(Mollusca)腹足纲/Gastropoda Martini's Tibia软体动物门(Mollusca)腹足纲/Gastropoda The wheel nut棘皮动物门(Echinoderma海胆纲Noble Scallop软体动物门(Mollusca)双壳纲/Bivalvia Tuba False Fusus软体动物门(Mollusca)腹足纲/Gastropoda Strombus gigas软体动物门(Mollusca)腹足纲/Gastropoda rock shell软体动物门(Mollusca)腹足纲/Gastropoda Humpback Cowrie软体动物门(Mollusca)腹足纲/Gastropoda Flow skunk fish软体动物门(Mollusca)腹足纲/Gastropoda Temple town WengRong screw软体动物门(Mollusca)腹足纲/Gastropoda Tapestry Turban软体动物门(Mollusca)腹足纲/Gastropoda Australian Trumpet软体动物门(Mollusca)腹足纲/Gastropoda Seba's Spider Conch软体动物门(Mollusca)腹足纲/Gastropoda Common Spider Conch软体动物门(Mollusca)腹足纲/Gastropoda Tiger Cowrie软体动物门(Mollusca)腹足纲/Gastropoda Giant Frog Shell软体动物门(Mollusca)腹足纲/Gastropoda Trumpet Triton软体动物门(Mollusca)腹足纲/Gastropoda starfish棘皮动物门(Echinoderma海星纲/Asteroidea Strong rib taper screw软体动物门(Mollusca)腹足纲/Gastropoda Trapezium Horse Conch 软体动物门(Mollusca)腹足纲/Gastropoda Thais luteostoma软体动物门(Mollusca)腹足纲/Gastropoda Egg-white Moon软体动物门(Mollusca)腹足纲/Gastropoda Spot's ridge cockle软体动物门(Mollusca)双壳纲/Bivalvia Common Turtle Limpet软体动物门(Mollusca)腹足纲/Gastropoda Corculum cardissa软体动物门(Mollusca)双壳纲/Bivalvia Pretty Conch软体动物门(Mollusca)腹足纲/Gastropoda Common Frog Shell软体动物门(Mollusca)腹足纲/Gastropoda Wooden Yenus软体动物门(Mollusca)双壳纲/Bivalvia Common Egg Cowrie软体动物门(Mollusca)腹足纲/Gastropoda Penguin Wing Oyster软体动物门(Mollusca)双壳纲/Bivalvia Oval Abalone软体动物门(Mollusca)腹足纲/Gastropoda wrightianus软体动物门(Mollusca)双壳纲/Bivalvia Marble Cone软体动物门(Mollusca)腹足纲/Gastropoda Snip's Bill Murex软体动物门(Mollusca)腹足纲/Gastropoda Japanese spike Murex 软体动物门(Mollusca)腹足纲/Gastropoda Murex tribulus软体动物门(Mollusca)腹足纲/Gastropoda Fluted Giant Clam软体动物门(Mollusca)双壳纲/Bivalvia Shin-bone Tibia软体动物门(Mollusca)腹足纲/Gastropoda Bladder Moon软体动物门(Mollusca)腹足纲/GastropodaSalisbury's Spindle软体动物门(Mollusca)腹足纲/Gastropoda Areola Babylon软体动物门(Mollusca)腹足纲/Gastropoda Noded Pyramis软体动物门(Mollusca)腹足纲/Gastropoda Erosa Cowrie软体动物门(Mollusca)腹足纲/Gastropoda Horned Helmet软体动物门(Mollusca)腹足纲/Gastropoda Youthful Venus软体动物门(Mollusca)双壳纲/Bivalvia Branched Murex软体动物门(Mollusca)腹足纲/Gastropoda Strombus gigas软体动物门(Mollusca)腹足纲/Gastropoda Trapezium Horse Conch 软体动物门(Mollusca)腹足纲/Gastropoda Bullmouth Helmet软体动物门(Mollusca)腹足纲/Gastropoda Ramose Murex软体动物门(Mollusca)腹足纲/Gastropoda亚纲/Subclass目/Order总科前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda涡螺总科/Volutacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda马蹄螺总科/Trochacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda美洲香螺总科前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda蛾螺总科/Buccinacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea不全口总目翼形亚纲/Pterimorphia珍珠贝目/Pteiroida扇贝总科/Pectinacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda蛾螺总科/Buccinacea前鳃亚纲(Prosobranchia)吸螺目前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda宝贝总科/Cypraeacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda涡螺总科/Volutacea前鳃亚纲(Prosobranchia)原始腹足目/Archaeogastropoda翁戎螺总科/Pleurotomariacea 前鳃亚纲(Prosobranchia)原始腹足目/Archaeogastropoda马蹄螺总科/Trochacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda宝贝总科/Cypraeacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda鹑螺总科/Doliacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda鹑螺总科/Doliacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda蟹守螺总科/Cerithiacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda玉螺总科/Naticacea异齿亚纲(Heterodonta)帘蛤目(Veneroida)鸟蛤总科/Cardiacea前鳃亚纲(Prosobranchia)原始腹足目/Archaeogastropoda帽贝总科/Patellacea异齿亚纲(Heterodonta)帘蛤目(Veneroida)鸟蛤总科/Cardiacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda鹑螺总科/Doliacea异齿亚纲(Heterodonta)帘蛤目(Veneroida)帘蛤总科/Veneracea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda宝贝总科/Cypraeacea翼形亚纲/Pterimorphia珍珠贝目/Pteiroida珍珠贝总科/Pteriacea前鳃亚纲(Prosobranchia)原始腹足目/Archaeogastropoda马蹄螺总科/Trochacea翼形亚纲/Pterimorphia珍珠贝目/Pteiroida扇贝总科/Pectinacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda涡螺总科/Volutacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea异齿亚纲(Heterodonta)帘蛤目(Veneroida)砗磲总科/Tridacnacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda玉螺总科/Naticacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda蛾螺总科/Buccinacea 前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda蛾螺总科/Buccinacea 前鳃亚纲(Prosobranchia)原始腹足目/Archaeogastropoda马蹄螺总科/Trochacea 前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda宝贝总科/Cypraeacea 前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda鹑螺总科/Doliacea异齿亚纲(Heterodonta)帘蛤目(Veneroida)帘蛤总科/Veneracea 前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea 前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda凤螺总科/Strombacea 前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda蛾螺总科/Buccinacea 前鳃亚纲(Prosobranchia)中腹足目Mesogastropoda鹑螺总科/Doliacea前鳃亚纲(Prosobranchia)新腹足目/Neogastropoda骨螺总科/Muricacea科/Family属/Genus种/Species涡螺科马蹄螺科/Trochidae大马蹄螺大马蹄螺凤螺科/Strombidae蜘蛛螺属香螺科Busycon contrarium Conrad 盔螺科 Melongenidae凤螺科/Strombidae凤凰螺属扇贝科/Pectinidae类栉孔扇贝属Mimachlamys nobilis盔螺科 Melongenidae凤凰螺科Eustrombus骨螺科/Muricidae宝贝科/Cypraeidae绶贝属榧螺科/Olividae榧螺属 Oliva翁戎螺科/Pleurotomariidae翁戎螺属,Entemnotrochus寺町翁戎螺,E,teramachii蝾螺科/Turbinidae香螺科Melongenidae凤螺科/Strombidae蜘蛛螺属 Lambis瘤平顶蜘蛛螺 Lambis truncata 凤螺科/Strombidae蜘蛛螺属 Lambis蜘蛛螺宝贝科/Cypraeidae宝螺属蛙螺科/Bursidae土发螺属/Tutufa嵌线螺科/Ranellidae海燕、海盘车科锥螺科/Turritellidae旋螺科大赤旋螺骨螺科/Muricidae荔枝螺属(Thais)黄口荔枝螺玉螺科/Naticidae乳玉螺属 Polinices蛋白乳玉螺鸟蛤科/Cardiidae脊鸟蛤属/Fragum Roding帽贝科/Patellidae嫁(虫戚)属Cellana斗嫁(虫戚)鸟蛤科/Cardiidae心鸟蛤属/Corculum Roding凤螺科/Strombidae蛙螺科/Bursidae 赤蛙螺属rana/习见蛙螺帘蛤科/Veneridae海兔螺科/梭螺科/Ovulidae Ovula 属海兔螺珍珠贝科/Pteriidae珍珠贝属/Pteria penguin鲍科/Haliotidae鲍属Haliotis海菊蛤科/Spondylidae海菊蛤属缘螺科/Marginellidae骨螺科/Muricidae骨螺科/Muricidae骨螺科/Muricidae骨螺属(murex)长刺骨螺砗磲科/Tridacnidae砗磲蛤属 Tridacna 鳞砗磲 T. squamosa凤螺科/Strombidae凤凰螺属长笛螺玉螺科/Naticidae细带螺科/Fasciolariidae蛾螺科/Buccinidae东风螺属马蹄螺科/Trochidae扭柱螺属塔形扭柱螺宝贝科/Cypraeidae冠螺科/Cassididae冠螺属(Cassis)冠螺帘蛤科/Veneridae皱纹蛤属(Periglypta)皱纹蛤骨螺科/Muricidae棘螺属 Chicoreus 棘螺凤螺科/Strombidae Eustrombus女王凤凰螺 E. gigas 细带螺科/Fasciolariidae细带螺属Fasciola四角细带螺冠螺科/Cassididae宝冠螺属骨螺科/Muricidae棘螺属Chicoreus棘螺。
半知菌类分类
半知菌亚门分类(2012-03-21 11:23:34)转载▼标签:杂谈半知菌亚门分为:3纲,8目,1880属, 26000种(Ainsworth1973).半知菌亚门分纲检索表1.营养体是单细胞或发育程度不同的菌丝体或假菌丝体,以芽孢子繁殖…… 芽孢纲(Blastomycetes)1.营养体是多细胞的菌丝体,以分生孢子繁殖 (2)2.分生孢子不产生在分生孢子盘或分生孢子器内……………………………… 丝孢纲(Hyphomycetes)2.分生孢子产生在分生孢子盘或分生孢子器内……………………………… 腔孢纲(Coelomycetes)丝孢纲(Hyphomycete)本纲真菌有发达的菌丝体,分生孢子直接生在菌丝或分生孢子梗上,不产生在分生孢子盘或分生孢子器内.有的不产生分生孢子.根据分生孢子形成和着生情况,分为4目.丝孢纲分目检索表1.除产生厚垣孢子外,不产生其它孢子………………………… 无孢目(Agonomycetales)1.分生孢子产生于分生孢子梗上 (2)2.分生孢子梗散生丛梗孢目(Moniliales)2.分生孢子梗不散生 (3)3.分生孢子梗形成束丝束梗孢目(Stilbellales)3.分生孢子梗着生在分生孢子座上瘤座孢目(Tuberculariales)一,无孢目(Agonomycetales)菌丝不发达,不产生分生孢子,有的属能形成厚垣孢子,有的属只形成菌核,本目仅一科——无孢科(Agonomycetaceae),28属约200种.1.丝核属(Rhizoctonia):菌丝褐色,直角分枝在分枝处略缢缩,离此不远处形成隔膜.菌核扁形,黑色,褐色或棕红色,内外颜色一致,常生于寄主表面,有菌丝连接.1.丝核属(Rhizoctonia):有性阶段为亡革菌属(Thanatephorus),不形成无性孢子.主要种:立枯丝核菌(Rhizoctonia Solani),主要引起植物苗期的立枯和猝倒病.水稻纹枯病2.小菌核属(Sclerotium):菌核圆形,椭圆形或长形,隆起或扁平,褐色至黑色,组织致密,干时极硬,内部颜色浅或无色,无菌丝连接.代表种:稻小菌核(S. oryzae),引起水稻杆腐病.整齐小菌核(S. rolfsii Sacc),大豆,向日葵,烟草,致猝倒,根腐,基腐等.二,丛梗孢目(moniliales)菌丝发达,呈疏松的棉絮状,有色或无色.根据孢子梗,孢子的形态,颜色分为2科.菌丝,孢梗及分生孢子无色或色鲜……丛梗孢科(Moniliaceae)菌丝,孢梗及分生孢子暗色或其中之一无色…… …… 暗色孢科(Dematiaceae)1.丛梗孢科的主要属:(1)粉孢属(Oidium)菌丝白色生于寄主体外,以吸器伸入寄主细胞内,外表呈白色粉层.分生孢子梗直立,无分枝,顶生椭圆形分生孢子.分生孢子无色,串生或单生,自上而下先后成熟.(1)粉孢属(Oidium)多数是子囊菌中白粉菌科的无性阶段.代表种:Oidium monilioides串珠状粉孢菌,引起小麦白粉病.有性时期为Blumeria graminis禾白粉菌.月季白粉病(2)丛梗孢属(Monilia)菌丝体白或灰色,生长茂盛,分生孢子单胞串生,短圆形到园形,向顶而生.孢子成团时为粉状,灰色或黄褐色.分生孢子梗丛生,与成熟孢子难区别.(2)丛梗孢属(Monilia)有性阶段为链核盘菌属(Monilinia)及脉孢菌属(Neurospora)代表种:M. fructigena仁果丛梗孢,造成苹果,梨的褐腐病.桃褐腐病桃褐腐病杏褐腐病(3)轮枝孢属(Verticillium):分生孢子梗直立,分枝轮生,顶端小梗下部膨大而尖端细削;分生孢子单生,很快脱落,单细胞,球形,椭圆形,卵形或梭形,无色或略带褐色.(3)轮枝孢属(Verticillium):种:V.albo-atrum黄萎轮枝孢V. dahliae 大丽花轮枝孢侵染植物维管束组织,引起萎蔫,如茄子黄萎病,棉花黄萎病.茄子黄萎病(4)梨孢霉属(Piricaulalia)分生孢子梗细长,淡褐色,分枝少,合轴式延伸,曲梗状,有孢子脱落留下的疤痕.孢子梨形,无色至淡橄榄色,2—3个细胞.(4)梨孢霉属(Piricaulalia)危害禾谷类作物,如谷子,水稻,造成谷瘟,稻瘟等.种P. Setarae粟梨孢,引起粟瘟病.稻瘟病(5) 小尾孢属(Cercosporella)分生孢子梗无色,不分枝或有短分枝,枝顶产生孢子;孢子单生,无色,多胞,长圆形,圆筒形至丝状,直或弯曲.种:(C. albo-maculans)白斑小尾孢,危害大白菜,引起白菜白斑病.(6) 葡萄孢属(Botrytis)分生孢子梗粗大,顶部分枝,分枝未端膨大,细或平截,常有小突起,从膨大体或突起上产生多数分生孢子(外观葡萄穗状).分生孢子单胞,椭圆形,圆形,无色或淡色,基部细.种:灰葡萄孢(B. cinerea)引起黄瓜,番茄灰霉病.2,暗色孢科主要属:(1)黑星孢属(Fusicladium)孢梗棕褐色,直立或弯曲不分枝,尖端稍钝,有少数横隔或明显的孢痕.分生孢子暗色,卵圆形,倒梨形,1—2个细胞,在孢梗顶端单生.有性阶段为黑星菌属(Venturia)种:(F. Pyrinum)梨黑星孢,引起梨黑星病.(2)枝孢属(Cladosporium):孢梗橄榄色,近顶端或中部分枝,分生孢子褐绿色,1—2个细胞,单生或簇生,卵圆,圆筒或不规则形.有性阶段为球腔菌属(Mycosphaerella).种:C. fulvum黄枝孢,引起蕃茄叶霉病.(3)尾孢属(Cercospora)孢梗不分枝或分枝,常成丛自叶片气孔伸出,青黄色至褐色.分生孢子线形或尾形,有数个横隔,无色至浅褐色.(3)尾孢属(Cercospora)种:C. beticola甜菜生尾孢,造成甜菜褐斑病.C.apii芹菜生尾孢,危害芹菜,烟草,蕃茄,莴笋等.菜豆尾孢①平脐蠕孢属(Bipolaris)(离蠕孢属)②内脐蠕孢属(Drechslera)(德氏霉属)③突脐蠕孢属(Exserohilum)以上三属过去均为长蠕孢属(蠕虫孢属)(Helminthosporium)①分生孢子具假膜;②产孢细胞多芽生或全壁产孢,合轴延伸,孢子梗曲膝状弯曲;③孢子脱落后产孢细胞上留下齿状突起等特征又另分出以上三属. 三属共同点:分生孢子梗粗壮,顶部合轴式延伸.分生孢子芽殖型.分生孢子深褐色.三属形态区别玉米大斑病菌(E. turcicum)玉蜀黍平脐蠕孢(B. maydis)(玉米小斑病)大麦条纹病菌(D. graminis)大表网纹病菌(D. teres)代表种亚中部出现在中部至亚中部分隔出基细胞分生孢子第一个隔膜位置强烈突出平截,稍突起腔孔式,向内凹陷脐点梭形,圆筒形,倒棍棒形长梭形圆筒状形状突脐蠕孢属(Exserohilum)平脐蠕孢属(Bipolaris)内脐蠕孢属(Drechslera)突脐蠕孢属玉米大斑病平脐蠕孢属水稻胡麻叶枯病(6)链格孢属(Alternaria)孢梗暗色,单枝,长短不一,顶生不枝或偶尔分枝的孢子链.分生孢子暗色,有纵横隔膜,倒棍棒形,椭圆形或卵形,常成链,单生的较少.顶端有喙状细胞(附属丝).(6)链格孢属(Alternaria)种:茄链格孢(A. solani)引起马铃薯,蕃茄早疫病及茄子轮纹病.云苔链格孢(A. brassicae)造成白菜黑斑病.番茄早疫病(7)褐孢霉属(Fulvia Ciferri)分生孢子梗基部细,上部较粗,具多数分隔,许多细胞上端向一侧膨大.分生孢子串生,孢子链通常分枝,圆柱状或椭圆形,淡褐色至褐色或橄褐色,光滑,具0—3隔膜. 种:褐孢霉F.fulva,寄生在番茄上,引起叶霉病.三,束梗孢目(Stilbellales):分生孢子梗聚合起成束状,在其顶部或侧面形成分生孢子.分生孢子圆形,棍棒形,单孢,淡色,鲜色,暗色均有.本目只有一科——束梗孢科(stilbellaceae)170属.500种.拟棒束孢属(Isariopsis)孢梗束暗色,由疏松孢梗组成,顶生分生孢子.分生孢子暗色或淡色,双胞或多胞,圆筒形至倒棍棒形,常弯曲.种:褐斑拟捧束孢(I.clavispora)引起葡萄褐斑病,莱豆角斑病.四,瘤痤孢目(Tuberculariales)分生孢子产生在垫状的菌丝结构上,这个结构称为分生孢子座.分生孢子座的颜色,质地有各种.分生孢子梗短(个别种较长).本目有一种——瘤痤孢科(Tuberculariaceae),160属,600种.多为腐生菌,少数为寄生菌.镰孢霉属(Fusarium)该属真菌一般称作镰刀菌,多为土壤习居菌,有腐生,也有寄生的.分生孢子梗单生或集成分生孢子座,细长或粗短,单枝或分枝.分生孢子无色,有两种:①大型分生孢子:镰刀形或椭圆形,多细胞,微弯或两端尖而弯曲显著.②小型分生孢子:椭圆形,卵圆形,单细胞(个别双胞)许多菌种在菌丝顶端或中间(有的大型分生孢子上)形成单生,对生,成串或成团的厚垣孢子. 菌丝体繁茂,絮状,在人工培养基上常产生红,紫,黄等色素.有性阶段为:赤霉属(Gibberella)赤壳属(Calonectria)丛赤壳属(Nectria)菌寄生属(Hypornyces)等子囊菌.代表种:F. oxysporum尖孢镰刀菌,引起瓜类枯萎病.棉花枯萎病腔孢纲(Coelomycetes)分生孢子各形,大都产生于无性孢子果中,孢子果有两类:①半球形的分生孢子器.②盘状的分生孢子盘.多为子囊菌的无性时期,有的是腐生菌,有的是寄生菌,引起病害.本纲分为2目,5种,870(+420)和属,约7000种.腔孢纲分目检索表1,分生孢子产生在分生孢子盘内…………………………黑盘孢目(Melanconicales)1.分生孢子产生在分生孢子器内…………………………球壳孢目(Sphaeropsidales)一,黑盘孢目(Melanconiales)分生孢子盘在寄主表皮或角质层下形成,孢梗紧密排列在孢盘上.分生孢子单个生在梗顶,成熟时突破表皮外露.分生孢子一般具胶粘物质,主要靠雨水和昆虫传播.引起植物的"炭疽病".本目只一科——黑盘孢科(Melanconiaceae),120属,1000种.(1)痂圆孢属(Sphaceloma)孢盘内盘状或垫状,腊质,分生孢子梗紧集,不分枝,分生孢子卵形或长圆形,单胞,无色.有性阶段:痂囊腔菌属(Elsinoe)种:柑桔痂圆孢(S. fawce ttii)引起柑桔疮痂病.葡萄痂圆孢(S. ampelinum)葡萄黑痘病.痂圆孢属(2)炭疽菌属(Colletotrichum)分生孢子盘平坦,上面敞开,下面略埋生于基质内.分生孢子自茁壮的梗上顶生,单孢无色,长椭圆形或弯月形,萌发后产生附着胞.有黑褐色刚毛生在分生孢子盘四周或混杂在孢梗中间.种:棉刺盘孢(C. gossypii)引起棉花炭疽病瓜刺盘孢(C. orbiculare)引起瓜类炭疽病.棉花炭疽病(3)盘二孢属(Marssonina)孢子盘小,位于寄主角质层下,分生孢子双细胞,椭圆或卵形,无色,分隔处溢缩.种:苹果盘二孢(M. mali)引起苹果褐斑病.盘二孢属二,球壳孢目(Sphaeropsidales):本目真菌大部分是植物寄生菌.分生孢子器各形,有孔口或无孔口,内壁生长长或短的分生孢子梗,其上产生分生孢子.分生孢子器生于基质内或表面,有的产生于子座中.(1)茎点霉属(Phoma)分生孢子器埋生于寄主组织内或处露,有明显或不明显的孔口.分生孢子小,长不到15 ,无色,单胞,卵形,椭圆形或长方形,孢梗短,不分枝,不明显. 多寄生于茎枝上.代表种:甜菜茎点霉(P.beta)引起甜菜蛇眼病.(2)大茎点菌属(Macrophoma):孢梗短或细长,分生孢子长于15 .代表种:轮纹大茎点菌(M. kawatsukai)引起苹果,梨的轮纹病.(3)拟茎点霉属(Phomopsis):在同一孢子器内产生两种分生孢子:①甲型孢子:纺锤形或椭圆形,一端较窄,含有两个油球.②乙型孢子:细长如线形,一端弯曲,有时呈钩形.有性阶段多为间座壳属(Diaporthe)代表种:茄褐纹拟茎点霉(P. vexans)引起茄褐纹病.(4)叶点霉属(Phyllosticta):形似Phoma,孢器黑色,有孔口,埋生于寄主组织内.分生孢子小,单胞,无色.寄生性较强,多寄生在叶片上.代表种:桃叶点霉(Phyllosticta ),引起桃穿孔病.(5)壳囊孢属(Cytospora)分生孢子器位于瘤状或球状子座器,不规则地分为数室,有一个共同的出口.分生孢子梗排列紧密,栅栏状,分生孢子无色,单胞,香蕉形或腊肠形.多寄生在树皮上,造成腐烂.代表种:梨壳囊孢(C. carphosperma)引起梨树腐烂病.壳囊孢属(6)色二孢属(Diplodia)分生孢子双细胞,长于15 ,深褐色至黑色.玉米色二孢(D. zeae)引起玉米干腐病.(7)壳二孢属(Ascochyta)分生孢子双胞,无色或浅色.高粱壳二孢(A. sorghi)引起高粱粗斑病.壳二孢属蚕豆褐斑病(8)壳针孢属(Septoria)分生孢子多细胞,无色,狭长至线形,直或弯曲. 番茄壳针孢(S. lycoyxersici)引起番茄斑枯病。
被子植物147个核心科
被子植物147个核心科:必须掌握的科静生核心科是所有被子植物分类系统都使用的科,核心科也多是其它被子植物科从其中分出去的“母亲科”。
被子植物核心科共计有147科11404属223005种(世界被子植物720科、13643属265156种),占到世界全部被子植物属、种数目的84%。
其中双子叶植物有119科9058属171667种;单子叶植物有28科,2346属51338种。
被子植物核心147科演化顺序排列(数字标准的被子植物新分类系统,基本反映各家分类系统对被子植物各科演化水平的认识)。
谁要是熟练掌握了这些科,肯定就会发生奇迹!中文科名单(M)双(D)子叶植物拉丁科名属/种数木兰科D Magnoliaceae 17/284番荔枝科D Annonaceae 113/2150腊梅科D Calycanthaceae 3/9肉豆蔻科D Myristicaceae 17/433檬立木科D Monimiaceae 31/284樟科D Lauraceae 53/2937毛茛科D Ranunculaceae 54/2256睡莲科D Nymphaeaceae 3/53防己科D Menispermaceae 71/494小檗科D Berberidaceae 12/673胡椒科D Piperaceae 8/2046金鱼藻科D Ceratophyllaceae 1/6罂粟科D Papaveraceae 40/740马兜铃科D Aristolochiaceae 11/224五桠果科D Dilleniaceae 10/244金缕梅科D Hamamelidaceae 31/133马齿苋科D Portulacaceae 22/299石竹科D Caryophyllaceae 70/1715悬铃木科D Platanaceae 1/8番杏科D Aizoaceae 126/1791仙人掌科D Cactaceae 99/1496木麻黄科D Casuarinaceae 4/95荨麻科D Urticaceae 54/1192紫茉莉科D Nyctaginaceae 33/558桦木科D Betulaceae 4/141杨梅科D Myricaceae 3/52金莲木科D Ochnaceae 24/351苋科D Amaranthaceae 70/780蓼科D Polygonaceae 53/1319杨柳科D Salicaceae 5/518堇菜科D Violaceae 22/833猪笼草科D Nepenthaceae 1/67山茶科D Theaceae 29/696沟繁缕科D Elatinaceae 2/34龙脑香科D Dipterocarpaceae 14/654 半日花科D Cistaceae 7/176白花菜科D Capparaceae 33/641西番莲科D Passifloraceae 17/598瓣鳞花科D Frankeniaceae 2/81柽柳科D Tamaricaceae 4/97胡桃科D Juglandaceae 10/67锦葵科D Malvaceae 110/1843十字花科D Brassicaceae 388/3605 大花草科D Rafflesiaceae 7/43毒鼠子科D Dichapetalaceae 3/161 秋海棠科D Begoniaceae 3/915葫芦科D Cucurbitaceae 121/850大戟科D Euphorbiaceae 321/8248 白花丹科D Plumbaginaceae 25/716 豆科D Fabaceae 679/18233茅膏菜科D Droseraceae 3/112景天科D Crassulaceae 41/1357蔷薇科D Rosaceae 113/3367虎耳草科D Saxifragaceae 31/665山龙眼科D Proteaceae 68/1522清风藤科D Sabiaceae 2/64马桑科D Coriariaceae 1/5安息香科D Styracaceae 12/163牛栓藤科D Connaraceae 14/197瑞香科D Thymelaeaceae 54/766亚麻科D Linaceae 12/231小二仙草科D Haloragaceae 9/146 柿树科D Ebenaceae 2/487蒺藜科D Zygophyllaceae 24/251山榄科D Sapotaceae 57/1279远志科D Polygalaceae 16/856牻牛儿苗科D Geraniaceae 5/779蛇菰科D Balanophoraceae 10/28杜鹃花科D Ericaceae 113/2634川苔草科D Podostemaceae 46/271 铁青树科D Olacaceae 23/176紫金牛科D Myrsinaceae 32/1164金虎尾科D Malpighiaceae 65/1103 红树科D Rhizophoraceae 14/107卫矛科D Celastraceae 84/1363鼠李科D Rhamnaceae 51/978千屈菜科D Lythraceae 28/605桃金娘科D Myrtaceae 123/4330报春花科D Primulaceae 20/841岩梅科D Diapensiaceae 7/19使君子科D Combretaceae 20/506野牡丹科D Melastomataceae 186/4332 芸香科D Rutaceae 151/1786橄榄科D Burseraceae 17/533檀香科D Santalaceae 36/556楝科D Meliaceae 51/632桑寄生科D Loranthaceae 68/851柳叶菜科D Onagraceae 20/723刺茉莉科D Salvadoraceae 3/11葡萄科D Vitaceae 15/834无患子科D Sapindaceae 138/1574漆树科D Anacardiaceae 70/992山茱萸科D Cornaceae 10/140五加科D Araliaceae 60/1519伞形科D Apiaceae 441/3625马钱科D Loganiaceae 13/156忍冬科D Caprifoliaceae 11/273夹竹桃科D Apocynaceae 171/1912木犀科D Oleaceae 28/749花荵科D Polemoniaceae 19/280龙胆科D Gentianaceae 76/1339旋花科D Convolvulaceae 61/1538茄科D Solanaceae 90/2920紫草科D Boraginaceae 138/1973车前科D Plantaginaceae 3/274茜草科D Rubiaceae 604/10949败酱科D Valerianaceae 9/301川续断科D Dipsacaceae 7/186紫葳科D Bignoniaceae 110/788胡麻科D Pedaliaceae 14/88玄参科D Scrophulariaceae 280/4868 桔梗科D Campanulaceae 82/2045花柱草科D Stylidiaceae 5/154苦苣苔科D Gesneriaceae 152/2993狸藻科D Lentibulariaceae 3/245菊科D Asteraceae 1480/21106爵床科D Acanthaceae 256/4064草海桐科D Goodeniaceae 13/407唇形科D Lamiaceae 226/5740泽泻科M Alismataceae 12/103霉草科M Triuridaceae 6/51百合科M Liliaceae 25/752百部科M Stemonaceae 2/27天南星科M Araceae 106/2674薯蓣科M Dioscoreaceae 6/880鸭跖草科M Commelinaceae 43/643 鸢尾科M Iridaceae 83/1698黄眼草科M Xyridaceae 5/420露兜树科M Pandanaceae 3/877雨久花科M Pontederiaceae 7/33偏穗草科M Rapateaceae 17/94花水藓科M Mayacaceae 1/4凤梨科M Bromeliaceae 52/2191须叶藤科M Flagellariaceae 1/4巴拿马草科M Cyclanthaceae 12/201 水玉簪科M Burmanniaceae 14/136 谷精草科M Eriocaulaceae 9/1148棕榈科M Arecaceae 201/2651田葱科M Philydraceae 3/6血皮草科M Haemodoraceae 13/55 灯心草科M Juncaceae 7/431香蒲科M Typhaceae 1/12姜科M Zingiberaceae 50/1056刺鳞草科M Centrolepidaceae 3/36 兰科M Orchidaceae 789/19376莎草科M Cyperaceae 110/4953禾本科M Poaceae 765/10826。
硫酸氧化锆催化正庚烷异构化
摘要过渡金属氧化物作为固体酸多相催化剂在催化研究中占有重要的地位。
氧化锆由于具有酸性和碱性表面活性中心,作为催化剂和催化剂载体受到广泛关注。
硫酸氧化锆因其具有超强酸性,在正庚烷异构化反应上有着很好的催化活性。
然而硫酸氧化锆却存在着比表面不高,硫组易流失等问题,限制其在工业中的应用。
通过掺杂金属元素的方法可以提高氧化锆的稳定性,增强酸性和相关的反应性能。
本论文致力于用溶胶-凝胶法制备掺铝介孔硫酸氧化锆,并通过引入助剂等,力争获得在正庚烷异构化反应中具有高催化性能的硫酸氧化锆催化剂。
本论文主要开展了以下几个方面的工作。
1.通过溶胶-凝胶法制备掺铝介孔硫酸氧化锆催化剂,并考察不同铝含量对催化剂性能的影响。
2.在铝含量为5%的情况下考察不同焙烧温度对催化剂性能的影响,寻找最佳的焙烧温度。
3.在催化剂中掺入稀土元素,考察稀土元素的影响。
4.通过红外,XRD等表征技术研究催化剂的结构。
关键词:氧化锆;介孔;溶胶-凝胶;硫酸化;正庚烷异构化AbstractTransition-metal oxides play an important role in catalysis as solid acid catalyst.Among them,zirconia has been paid much attention and has been used as acidic catalyst and catalyst support because of the presence of acidic and basic surface active center.As a strong acidic catalyst .SO42-/ZrO2 exhibit unique catalytic performance on n-heptane isomerization.However,SO42-/ZrO2 has main disadvantages of loss of sulfur species and relative low surface area,which limits its industrial process.Doping other metal species can improve the stability of zirconia to enhance the performance of the acid and related reactions.In this thesis ,the research work was mainly focused on the preparation of Al-SO42-/ZrO2with intracystalline mesopore by sol-gel method and the exploration of catalysis with high performance over n-heptane isomerization through lead into assistant.The major work may be summarized as the follows:1.composing Al-SO42-/ZrO2 with intracystalline mesopore by sol-gel method and considering the effect of the proportion of Al on the performance of catalyst.2.considering the effect of different calcination temperature on the performance of catalyst when the content of aluminium was 5%.3.leading rare earth into catalyst and observe the change of the performance of catalyst.4.Characterization by XRD,IR Techniques.Key words:zirconia ;mesoporous ;sol-gel ;sulfated ;n-heptane isomerization目录第1章概述 (1)1.1 氧化锆的研究及应用进展 (1)1.2 正庚烷异构化反应简介 (4)第2章实验部分 (12)2.1 实验所用试剂及仪器 (12)2.2 实验方法 (12)2.3 表征方法 (14)第3章制备条件对催化剂结构及性能的影响 (15)3.1 催化剂的表征 (16)3.2正庚烷临氢异构化反应测试结果 (18)结论 (22)参考文献 (23)致谢 .............................................................................................. 错误!未定义书签。
基础微生物必记的拉丁学名
Staphylococcus aureus
苏云金芽胞杆菌
Bacillus thuringiensis
满江红鱼腥蓝细菌
Anabaena azollae
古菌
甲烷球菌属
Methanococcus
盐杆菌属
Halobacter
真菌
裂殖酵母属
Schizosaccharomyces
假丝酵母属
Candida
基础微生物必记的拉丁文学名
(注意:细斜体标记的微生物名称既要会写拉丁文学名又要会认;粗体标记的只要求会认拉丁文学名,会写中文学名。)
细菌
假单胞菌属
Pseudomonas
固氮菌属
Azotobacter
根瘤菌属
Rhizobium
蛭弧菌属
Bdellovibrio
脱硫弧菌属
Desulfovibrio
衣原体属
Chlamydia
支原体属
Mycoplasma
鱼腥蓝细菌属
Anabaena
土壤杆菌属
Agrobacterium
链球菌属
Streptococcus
乳杆菌属
Lactobacillus
芽胞杆菌属
Bacillus
梭菌属
Clostridium
链霉菌属
Streptomyces
大肠杆菌
Escherichia coli
毛霉属
Mucor
根霉属
Rhizopus
曲霉属
Aspergillus
青霉属
Penicillium
酿酒酵母
Saccharomyces cerevisiae
葡枝根霉(黑根霉)
Rhizopus stolonifer
孢子虫、机会虫
七、防治原则
预防:
1. 宣传教育 2. 注意卫生 3. 加强对肉类检疫,不生食肉制品 4. 定期对孕妇做弓形虫抗体检查。
脑积水
脑钙化
四、致病
1.致病因子 2.致病机制 3.临床表现
免疫正常 隐性感染
免疫低下 弓形虫病
先天: 流、早产,死、畸胎
后天:淋巴结肿大、 脑炎、脑膜炎、 眼病 心肌炎、肺炎等
获得性弓形虫病
(1) 淋巴结肿大 患者淋巴结肿大,变硬,有橡 皮 样感,伴有长时间低热,疲倦,肌肉不适等。 (2) 脑炎、脑膜炎、癫痫和精神异常等中枢神经 系统病症。
长时间、大面积流行疟疾,致使百姓不能生产, 军队无法打仗,国力日衰,终于亡国。
19世纪末,世界上每年至少有3亿人患疟疾, 有300万人死于疟疾。
1880年 法国军医拉弗朗 确定了疟疾是由“疟 原虫”引起的。
? 疟原虫→红血球
?一个病人→另一个病人
英国医生罗纳德·罗斯1897年在一种“按蚊”的 胃里找到了拉弗朗报告里所描述的疟原虫,并且 证实只有雌性按蚊才会传播疟疾。
刚地弓形虫
Toxoplasma gondii
机会致病 人兽共患寄生虫病 艾滋病患者致死原因之一 当今致畸胎的四大原因之一
宠猫女士生畸儿 腹部撑破肠裸露
2000年2月3日晚12时许,家住成都市大弯镇 的曾女士剖腹产生下一名重2.7公斤的男婴。医护 人员发现,新生儿腹部的皮肤被内脏胀破,结肠 全部裸露并鼓出体外,肉眼甚至可以看到肠子的 蠕动。经医生诊断,这是因曾女士患了一种对胎 儿极为不利的弓形虫病所致,而罪魁祸首则是她 养的那些猫……
三聚磷酸钠陶瓷泥浆中的作用
三聚磷酸钠陶瓷泥浆中的作用1. 引言三聚磷酸钠陶瓷泥浆是一种常用于油井钻探中的特殊泥浆。
它由三聚磷酸钠等成分组成,具有许多独特的化学和物理特性。
本文将深入探讨三聚磷酸钠陶瓷泥浆在油井钻探中的作用。
2. 陶瓷泥浆的基本特性2.1 成分三聚磷酸钠陶瓷泥浆的主要成分是三聚磷酸钠、水和其他辅助添加剂。
三聚磷酸钠作为主要的胶结剂,具有较高的温度稳定性和粘结能力。
2.2 物理性质三聚磷酸钠陶瓷泥浆具有较高的黏度和流变性,可以有效地携带钻屑并形成较强的膜状滤饼。
此外,陶瓷泥浆还具有较高的密度和较低的滤失率。
2.3 化学性质三聚磷酸钠陶瓷泥浆在高温下具有较好的稳定性和抗酸性能,可以抵御井底温度和酸性环境的影响。
此外,陶瓷泥浆还能够与一些钙镁盐等井下矿物质发生化学反应,形成稳定的钙镁磷酸盐沉淀层。
3. 陶瓷泥浆在油井钻探中的作用3.1 钻井液的环境控制陶瓷泥浆能够在钻井过程中有效地控制井内环境。
其中,三聚磷酸钠以其优异的化学稳定性和抗酸性能,可以抵御钻井液中的酸性物质对井壁的腐蚀。
此外,三聚磷酸钠还可以与井下的钙镁等盐相互作用,形成稳定的沉淀层,减少井壁崩塌和井眼稳定性问题。
3.2 钻井液的流变性调控陶瓷泥浆具有较高的黏度和流变性,在钻井过程中可以有效地携带钻屑。
通过调整三聚磷酸钠的加入量和稀释剂的使用,可以控制陶瓷泥浆的黏度,满足不同地层环境对流变性的要求。
3.3 井壁滤失控制陶瓷泥浆可以形成较强的膜状滤饼,在井壁上形成一道过滤层,有效地控制井漏问题。
通过三聚磷酸钠的吸附作用和胶结能力,陶瓷泥浆可以减少井壁滤失,保持井眼清洁,提高钻井液回收率。
3.4 井下环境保护陶瓷泥浆在井下环境保护方面发挥着重要作用。
其中,三聚磷酸钠以其较低的毒性和环境友好性,不会对地下水资源和周边环境产生污染。
陶瓷泥浆的有效应用可以减少排放量,降低环境风险。
4. 结论三聚磷酸钠陶瓷泥浆在油井钻探中扮演着重要的角色。
通过环境控制、流变性调控、井壁滤失控制和井下环境保护等方面的作用,陶瓷泥浆可以提高钻井过程的效率和安全性。
模式生物_精品文档
1996年4月, 在国际互联网的公共数据库中公 布了酿酒酵母的完整基因组顺序, 它被称为遗 传学上的里程碑。 首先, 这是人们第一次获得真核生物基因组的 完整核苷酸序列; 其次, 这是人们第一次获得一种易于操作的实 验生物系统的完整基因组。
拟南芥 科学分类 域: 真核域 Eukarya 界: 植物界 Plantae 门: 被子植物门 Magnoliophyta 纲: 双子叶植物纲 Magnoliopsida 目: 白花菜目(Brassicales) 科: 十字花科(Brassicaceae) 属: 鼠耳芥属(Arabidopsis) 种: 拟南芥(A. thaliana) 二名法
模式生物有何特点?
模式生物的特点有:
1)生理特征能够代表生物界的某一大类群; 2)容易获得并易于在实验室内饲养繁殖; 3)容易进行实验操作,特别是遗传学分析。
模式生物——动物篇之“果蝇”揭示遗传规律的王牌
科学分类 界: 动物界 Animalia 门: 节肢动物门 Arthropoda 纲: 昆虫纲 Insecta 亚纲: 有翅亚纲 Pterygota 目: 双翅目 Diptera 科: 果蝇科 Drosophilidae 属: 果蝇属 Drosophila 种: 黑腹果蝇 D. melanogaster 二名法 Drosophila melanogaster
拟南芥作为模式生物的特点:
(1).基因组小有利于基因定位和测序。其基因组大约为15,700 万碱基对和5个染色体。
(2).植株小, 生活周期短, 且单个植株能产生几千个种子 (3).属自花传粉, 有利于遗传实验。 尽管拟南芥在农业上并无多少直接的贡献, 但鉴于以上几点, 使
主要的地衣检索表
主要的地衣检索表1.壳状,固着在基物上,下皮层缺乏………………………………………………Ⅴ壳状地衣1.地衣体部分固着,非壳状2.地衣体呈丝状……………………………………………………………………Ⅱ丝状地衣2.地衣体叶状、枝状、鳞片状3.叶状,裂片扁平,具有背腹性4.鳞片状,周边分裂开…………………………………………………Ⅴ鳞片状地衣4.叶片状5.地衣体分层,髓层白色至黄色,有绿藻存在…………………Ⅳ异层叶状地衣5.地衣同层,髓层暗淡至黑色…………………………………………Ⅲ胶质地衣3.地衣体枝状,非叶状…………………………………………………………Ⅰ枝状地衣Ⅰ枝状地衣1.地衣体内部中空…………………………………………………Cladonia / Cladia / Thamnolia 1.地衣体内部实心2.地衣体有中轴,多为下垂状………………………………………………Usnea / Letharia 2.地衣体无中轴3.地衣体基部有颗粒状结构,或呈鳞片状,具有次生枝状体(假象),因此,形成两种子实体4.地衣体上面呈头状结构…………………………………Stereocaulon / Pilophoron4.地衣体上面不呈头状体结………………………Baeomyces / Glossodium /Thysanothecium / Multiclavula3.地衣体的叶体与再生子柄分化,整体呈现树枝状5.地衣体上有头状体结构…………………………………………Stereocaulon5.地衣体上没有头状体结构6.地衣体直立,地面生长7.地衣体顶端由叶状变成管状………………………………Cetraria7.地衣体顶端呈圆桶状………………………Sphaerophorus / Siphura 6.地衣体由直立到下垂状,生在树皮上至岩石上8.子囊器能发育、培养……………………………Sphaerophorus8.子囊器不能发育、培养…………………Usneaceae科LeprocaulonⅡ丝状地衣1.共生藻是绿藻………………………………………………Coenogonium/Racodium1.共生藻是蓝细菌………………………Ephebe/Polychidium/Spilonema/DictyonemaⅢ胶质地衣1.共生藻是念珠蓝细菌(Nostoc)…………………………………………Collemataceae2.共生藻是念珠蓝细菌(Nostoc)以外的蓝细菌…………………………LichinaceaeⅣ异层叶状地衣1.地衣体腹面中央有脐状体…………………………………Umbilicaria/Dermatocarpon1.地衣体没有脐状体2.地衣体腹面有脉纹,有孔3.有脉纹……………………………………………Peltigera/Solorina/Erioderma3.有孔(有杯点或假杯点)………………………………Sticta/Pseudocyphellaria 2.地衣体腹面无脉纹和孔4.地衣共生藻为蓝细菌,如有绿藻存在,蓝细菌形成内衣瘿5.子囊器,蜡盘型…………………………………………………Coccocarpia5.子囊器,茶渍型6.孢子一室…………………………………………………………Pannaria6.孢子二室以上…………………………Nephroma/Solorina/Massalongia 4.地衣体有蓝细菌,共生藻为绿藻7.地衣体橙色到红色,K+紫色………………………………Xanthoria8.孢子一室,无色……………………………………Parmeliaceae / Anzia8.孢子二室,暗色……………………………………………PhysciaceaeⅤ鳞片状地衣1.共生藻为蓝细菌………………Placynthium/Peltula/Normandina/Parmeliella/Pyrenopsis 1.共生藻为绿藻2.地衣体毛毡状,散铺状,周边鳞片状………………………………………Lepraria2.地衣体坚固,不散开3.子囊果是裸子器,或没有子囊果4.地衣体黄色…………………………………………………………Candelaria4.地衣体主体灰白色至绿色…………………Psoroma / Placopsis / Solenospora /Erioderma/Omphalina/GymnodermaⅥ壳状地衣1.子囊果形成“孢丝粉”…………………………………………………………Caliciales1.子囊果没有形成“孢丝粉”2.子囊果2层壁…………………………………小房型子囊菌类Loculoascomycetes2.子囊果1层壁3.子囊果发育成被子器…………………………………………………Sphaeriales3.子囊果发育成裸子器4.子囊果伸长,曲线型、长圆形………………………………Graphidaceae4.子囊果圆盘状,埋生于地衣体5.孢子无色6.一个子囊中有孢子通常8个甚至32,孢子直径4μ以上7.孢子1室8.没有果托………………………………………………Lecidea8.有果托………Pertusariaceae/Lecanora/Candelariella/Placopsis9.孢子2室,分极…………………………………Caloplaca9.孢子2室,不分极10.没有果托11.盘淡色……………Dimerella / Catillaria/Baeomyces11.盘黑色…………Catillaria / Rhizocarpon / Megalospora10.有果托(有时发育的初期有果托)7.孢子3室以上,同时石垣状多室12.孢子成熟后有4室13.果壳横向扩散,能在菌丝形成以保持松散状态(特别是在发育初期的子器)…………………Byssoloma14.有果托……………………Lecanactis/petractis/Gyalecta/Lecania14.没有果托……………………Bacidia/Haematomma12.孢子有5室以上15.子囊果埋在地衣体内16.子囊盘黑色…………………………BombiliosporaBacidia/Diploschiste/Lecanactis/Rhizocarpon16.子囊盘红色、褐色、淡色……………………………………Bacidia/Gyalecta/Haematomma/Tricharia 6.子囊中孢子40-300个,孢子4μm以下,小型………………………………………………………………………Acarospora / Biatorella 5.孢子成熟后呈褐色或黑色17.孢子2室;有时分极…………………………………Buellia/Rinodina17.孢子3-9室,或更多……………………………………RhizocarponBuellia/Diploschistes Bombiliospora / Lopadium子囊地衣Ascomycetes茶渍目Lecanorales黄枝衣科Teloschistaceae分属检索表1.地衣体叶状,腹面有皮层,假根粘着在基物上……………………………………Xanthoria 1.地衣体壳状或鳞状,腹面无皮层,无假根,髓层菌丝直接固着在基物上………Caloplaca石黄衣属Xanthoria橙衣属Caloplaca蜈蚣衣科Physciaceae分属检索表1.子器是网衣型,子囊上层K+赤紫色…………………………………………………Pyxine1.子器是茶渍型,子囊上层K—2.表面皮层是纤维状菌丝组织……………………………………………………Anaptychia2.表面皮层背面皮层为异型菌丝组织3.子囊下层茶褐色,子囊呈黑色………………………………………………Dirinaria3.子囊下层无色,盘茶褐色到黑褐色4.孢子宽长圆形,30-40×20μm,地衣体背面皮层的菌丝呈倾斜状……Physconia4.孢子长圆形,18-25×9-12μm,地衣体背面皮层菌丝垂直走向………Physcia 雪花衣属Anaptychia蜈蚣衣属Physcia (P. caesia P. endococcina P. hirtuosa P. imbricata)大孢蜈蚣衣属Physconia黑囊基衣属Dirinaria (D. applanata)黑盘衣属Pyxine雪花衣属(Anaptychia)分种检索表1.地衣体腹面有皮层2.地衣体绿褐色到褐色,孢子细胞壁薄,不含黑茶渍素Zai ao lin(rin)3.无裂芽……………………………………………………………………A.palmulata3.有裂芽……………………………………………………………………A.isidiza 2.地衣体灰白色,孢子细胞膜肥厚,含油黑茶渍素Zai ao lin(rin)4.髓层P+淡黄色或P-,不含ji sai ku tao5.无裂芽,无粉芽……………………………………………………A.diademata5.有裂芽,或粉芽6.有裂芽…………………………………………………………A.isidiophora6.有粉芽7.髓K+黄后呈赤色……………………………………A.pseudospeciosa7.髓K-………………………………………………A.tremulans 4.髓P+深黄色,含ji sai ku tao8.裂片边缘分裂,裂芽状………………………………A.dissecta8.裂片边缘不分裂………………………………………A.angustiloba1.地衣体腹面无皮层9.地衣体在基物上是平卧,裂片不斜上生长10.假根端部有时呈暗色,常为灰白色,孢子长30μm以下,2室,室内不产生囊泡11.无裂芽、粉芽…………………………………………………A.hypoleuca11.裂片的边缘有裂片,为裂芽状,裂芽呈颗粒状………………A.microphylla 10.假根是黑色,孢子呈30μ以上,孢子2室,每室成熟时出现小囊泡12.不含降斑点酸(norstictic acid)、水杨嗪酸(salazinic acid)13.无粉芽,裂片边缘细裂成裂芽状……………………A.fragilissima13.有粉芽,裂片边缘没有细裂14.腹面无黄色色素……………………………………A.japonica14.腹面有黄色色素……………………………………A.obscurata 12.含降斑点酸(norstictic acid)、水杨嗪酸(salazinic acid)15.裂片边缘分裂成裂芽状…………………A.dendritica/Var.dissecta15.裂片边无分裂16.无粉芽………………………………………………A.dendritica16.有粉芽17.含水杨嗪酸,无降斑点酸………………………A.hypocaesia17.含水杨嗪酸,有降斑点酸18.腹面不是黄色…………………A.japonica/Var.reasons18.腹面面积少,裂片顶部黄色………………………………………………………A.dendritica/Var.propagulifera 9.裂片少,端部斜上19.裂片伸长;通常由2叉分支,端部向上斜20.含水杨嗪酸……………………………………………………A.leucomela20.不含水杨嗪酸………………………………………………………A.boryi 19.裂片直立,斜向上,有时呈枝状21.裂片端部有枕状粉芽块…………………………………A.subascendens21.裂片没有粉芽块22.不含ji sai ku tao (P+深黄色)23.髓K-,不含降斑点酸,水杨嗪酸……………………A.hypochraea23.髓K+黄后变红色,含有降斑点酸、水杨嗪酸…………A.pacifica22.含ji sai ku tao (P+深黄色)……………………………A. pandurata黑盘衣属(Pyxine)分种检索表1.地衣体有粉芽2.地衣体裂片边缘有粉芽3.髓层硫黄色………………………………………………………………P. endochrysina3.髓层白色…………………………………………………………………P. connectans2.地衣体裂片腹面有粉芽……………………………………………………P. sorediata1.地衣体没有粉裂,髓层有少许黄色……………………………………………P. berteriana黑瘤衣科Buelliaceae分属检索表1.孢子器网衣型,孢子壁薄………………………………………………………………Buellia2.子囊器茶渍型,孢子分极,2室,壁薄………………………………………………Rinodina 黑瘤衣属Buellia (B. crocata)饼干衣属Rinodina (R. nephroidea)松萝科Usneaceae分属检索表1.髓由软骨质的中轴2.分枝的基部到端口是纵向连续有3-4条沟………………………………Letharia 2.分枝上没有连续数条沟……………………………………………………Usnea 1.髓无软骨质的中轴3.皮层是两层,外层比较薄,中轴垂直菌丝,内层的菌丝平行于中轴……………………………………………………………………………………………Cornicularia 3.皮层均一4.皮层的菌丝是与长轴垂直…………………………………………………Evernia4.皮层上菌丝沿着长轴的方向5.孢子有1室………………………………………………………………Alectoria5.孢子有2室,石垣状,多室6.子囊中有8孢,2(-4)室,无色7.孢子无色…………………………………………………………Ramalina7.孢子成熟后呈褐色………………………………………Alectoria sulcata 6.子囊中1孢子,石垣状多室,褐色……………………………Oropogon金丝属Letharia(L. togashii)松萝属Usnea(p25)藓茎衣属Cornicularia (p47)扁枝衣属Evernia(p40)树发属Alectoria(p42)树花属Ramalina(p20)槽枝属Alectoria (p42)砖孢发属Oropogon (O. asiaticus)松萝属Usnea分种检索表(p25)藓茎衣属Cornicularia 分种检索表(p47)扁枝衣属Evernia分种检索表1.地衣体扁平,被腹明显,两叉分支同长………………………………………E. prunastri 1.地衣体扁平,被腹不明显,分枝不规则………………………………………E. escorediosa树发属Alectoria分种检索表(p42)树花属Ramalina分种检索表(p20)槽枝属Alectoria 分种检索表(p42)绵腹衣科Anziaceae绵腹衣属Aazia分种检索表(p49)梅衣科Parmeliaceae分属检索表1.皮层是异型菌丝组织…………………………………………………………Cetraria1.皮层是由菌丝横向走向渐形成纤维状菌丝组织2.有假根3.在地衣体背面粘着子器,粉子器4.背面有穿孔,子囊有2个孢子………………………………Menegazzia4.背面无穿孔,子囊有8个孢子………………………………Hypogymnia 3.地衣背面分散生长着子器和粉子器,粘着在地衣体边缘部分…………Asahinea 2.没有假根5.地衣体背面散生着粉子器和子器6.地衣体腹面观没有海绵状组织,孢子长圆形,子囊2-8孢子7.粉子顶生……………………………………………………Parmeliopsis7.粉子侧生……………………………………………………Parmelia 6.地衣体腹面有海绵状组织,孢子三日月状,子囊多孢子………………………………………………………………………………Anzia(an qi gao kai科)5.粉子器,子器粘在地衣体边缘8.皮层上部I-,孢子11-12×6-12μ…………………Cetrelia8.皮层上部I+,孢子5-8×3-5μ……………………Platismatia岛衣属Cetraria(p88)孔叶衣属Menegazzia(P56 两个种:M. terebrata和M. asahinae )袋衣属Hypogymnia(p52)裸腹叶属Asahinea(p102两个种:A. kurodakensis和A. chrysantha)Parmeliopsis(p86)梅衣属Parmelia(p58)绵腹衣属Anzia(p49)斑叶属Cetrelia(p96)宽叶衣属Platismatia(p101两个种P. interrupta和P. erosa)岛衣属Cetraria分种检索表(p88)孔叶衣属Menegazzia分种检索表(P56 两个种:M. terebrata和M. asahinae )袋衣属Hypogymnia分种检索表(p52)裸腹叶属Asahinea分种检索表(p102两个种:A. kurodakensis和A. chrysantha)Parmeliopsis分种检索表(p86)梅衣属Parmelia分种检索表(p58)绵腹衣属Anzia分种检索表(p49)斑叶属Cetrelia分种检索表(p96)宽叶衣属Platismatia分种检索表(p101两个种P. interrupta和P. erosa)黄烛衣科Candelariaceae1.地衣体叶状,背腹面部有皮层…………………………………………………Candecaria 1.地衣体壳状,腹面没有皮层……………………………………………………Candelariella Candecaria (C. concolor)黑茶渍属Candelariella (C. vitellina)茶渍科Lecanoraceae1.孢子一室2.地衣体没有头状体……………………………………………………………Lecanora2.地衣体有头状体………………………………………………………………Placopsis 1.孢子2室以上3.地衣体鳞片状………………………………………………………………Solenospora3.地衣体壳状4.孢子线型,多数情况下弯曲,长30μ以上,4-10室,盘常红色,有时呈褐色………………………………………………………………………Haematomma 4.孢子长20μ以下,2-4室,盘黄褐色……………………………Lecania茶渍属Lecanora (L. decorata L. atra L. allophana L. pulverulenta)瘿茶渍属Placopsis (P. cribellans)霜降鳞衣属Solenospora (S. asahinae)赤星衣属Haematomma副茶渍属Lecania (L. erysibe)赤星衣属Haematomma 分种检索表(p107)鸡皮衣科Pertusariaceae1.侧丝略分枝……………………………………………………………………Coccotrema1.侧丝多分枝,呈网络状2.孢子1室3.孢子膜薄,厚在1μ左右,盘状,盘水平,有时成子座样……………Ochrolechia3.孢子膜厚,厚在2μm以上,子器埋生于地衣体中,盘不张开,较常见…………………………………………………………………………………Pertusaria 2.孢子2室………………………………………………………………………V aricellaria球孔衣属Coccotrema (C. porinopsis C. cucurbitula)肉疣衣属Ochrolechia (O. upsaliensis O. yasudae O. chrolechia O. trochophora O. parellula)鸡皮衣属Pertusaria (P. corallina P. flavicans P. velata P. commutata P. multipuncta P. laeviganda P. subobductans )果疣衣属Varicellaria (V. rhodocarpa)微孢衣科Acarosporaceae1.子器茶渍型………………………………………………………………Acarospora1.子器网衣型………………………………………………………………BiatorellaAcarospora (A. fuscata)Biatorella (B. zeorina)石耳科Umbilicariaceae石耳属Umbilicaria(p118)石磊科Cladoniaceae1.地衣体呈颗粒状,壳状没有皮层2.果柄是圆桶状,中空,比较发达,细长,多分枝,长5㎝以上,顶部没有特别的膨胀…………………………………………………………………………Cladonia 2.果柄长3㎝以下,几乎不分枝,顶端有时呈二旁章,有扁平管状,中间实心3.子囊下部内有皮层,果柄髓层有多条肥厚的菌丝束,构造不均一……………………………………………………………………………………Thysanothecium 3.子囊下部内没有皮层,果柄髓层疏的脉络状菌丝,构造均一…………………………………………………………………………………………Glossodium1.地衣体鳞片状,叶状,有皮层。
种子植物分科检索表
二、种子植物分科检索表1.胚珠裸露,不包藏在子房内,不形成果实;木本…………………………裸子植物门Gymnospermae2.茎常不分枝;叶大型,羽状,集生于粗大的树干或分枝的顶端…………………苏铁科Cycadaceae2.茎或树干通常分枝;叶较小,单生,不集于树干的顶端。
3.叶呈扇形,有多数二叉分枝的叶脉;落叶乔木………………………………银杏科Ginkgoaceae3.叶不为扇形,也不具二叉分枝的叶脉;常绿乔木或灌木,稀落叶。
4.雌球花发育成球果状;种子无肉质假种皮。
5. 雌球花的珠鳞与苞鳞互相分离;每珠鳞有2颗胚珠;花粉具气囊…………松科Pinaceae5. 雌球花的珠鳞与苞鳞互相半合生或完全合生; 每珠鳞有1至多颗胚珠; 花粉无气囊。
6.种鳞与叶均螺旋状排列,少交互对生;每种鳞有2-9粒种子…………杉科Taxodiaceae6.种鳞与叶均对生或轮生;每种鳞有1至多粒种子……………………柏科Cupressaceae4.雌球花发育为单粒种子,不形成球果;种子有肉质假种皮。
7.雄蕊有2花药,花粉常具气囊;胚珠常倒生…………………………罗汉松科Podocarpaceae7.雄蕊有3-9花药,花粉无气囊;胚珠直立。
8.雌球花具长梗;雄花数朵或多朵聚生成头状花序或穗状花序…三尖杉科Cephalotaxaceae8.雌球花无梗或近无梗;雄花单生在叶腋内………………………………红豆杉科Taxaceae1. 胚珠包藏在子房内,形成果实;木本或草本。
……………………………被子植物门Angiospermae9.乔木、灌木、半灌木或木质藤本植物。
10.寄生或半寄生的绿色植物。
11.灌木或草本,常寄生在其它植物的根上;果为坚果或核果………………檀香科Santalaceac11.灌木,常着生在其它木本植物的茎上;果为浆果,有粘性……………桑寄生科Loranthaceae10.自养的绿色植物。
12.叶片极小,叶小,鳞形,无叶柄和托叶…………………………………柽柳科Tamaricaeae12.叶片不退化。
环境微生物学3-真核微生物
原生动物的一般特征
(三) 原生动物的繁殖
在营养丰富、环境良好的条件下,原生动物大量繁殖。
繁殖方式
无性生殖 (分裂法)
有性生殖
纵分裂 (主要繁殖方式) 横分裂 出芽生殖 (如:吸管虫) 多分裂法 (如:寄生的孢子虫)
钟虫二分裂法,在环境条件差时出现有性生殖。有些种群需 要有性和无性交替进行,以有性生殖增强其活力。
、霉菌、藻类、比自身小的原生动物和有机颗粒)为食。绝大多 数原生动物为全动性营养。 2.植物性营养(holophytic)
有色素的原生动物如绿眼虫、衣滴虫和植物类似,植物性营养 是在有阳光的条件下,吸收CO2和无机盐进行光合作用,合成有机 物供自身营养。 3.腐生性营养(saprophytic)
某些无色鞭毛虫和寄生的原生动物,借助体表的原生质膜吸收 环境和寄主中的可溶性的有机物为营养。
纤毛虫在水体自净和污水处理中的指示作用
α—中污带 游动性纤毛虫多数
β—中污带 生活在
寡污带中(少数)
在污水生物处理中 在活性污泥培养中期
出现
在处理效果较差时
扭头虫、草履虫出 缺氧
现
厌氧
漫游虫
喜在较清洁水中生活
吸管虫(多数)
β—中污带 α—中污带 多污带 在污水生物处理效果一般时出现
钟虫 累枝虫
是水体自净程度高, 污水生物处理好的指示生物。
伞菌(Agaricus)
第一节 原生动物 第二节 微型后生动物 第三节 藻类 第四节 真菌
第一节 原生动物
1. 原生动物的一般特征 2. 原生动物的分类及各纲简介 3. 原生动物的胞囊
原生动物的一般特征
(一)原生动物的概念、细胞结构及功能 原生动物(Protozoa)是最原始、最低等、结构最简单的单细胞动物 。其形体微小,在10~300μm之间。
多篇脑科学研究入选CellPress2021年十篇最受关注的生命科学论文
多篇脑科学研究入选CellPress2021年十篇最受关注的生命科学论文本合辑是2021年在Cell Press旗下生命科学期刊上发表的一些除新冠外,依旧鼓舞人心的科学研究。
这些研究反映了人们对生物医学进展、动物行为和人类祖先的强烈兴趣。
本合辑并不反映文章本身的质量或被引数量,但它汇总了过去12个月中那些产生了轰动效应的研究,希望大家会喜欢!1.海蛞蝓自断头颅,再生躯体你听说过有些动物可以在失去尾巴或肢体后再生。
但科学家们发现了两种囊舌类海蛞蝓(sacoglossan sea slug),它们更厉害,可以在整个躯干脱落以后,再生出包括心脏和其他内部器官的完整身体。
这纯粹是一个偶然的发现。
有一天,在日本奈良女子大学(Nara Women’s University)Yoichi Yusa实验室工作的Sayaka Mitoh观察到了一个意想不到的现象:一只没有身体的海蛞蝓正在移动。
几天之内,它后脑勺的伤口就闭合了;而大约三周之后,躯干就完成了再生。
Mitoh和Yusa不清楚海蛞蝓是如何做到这一点的。
但是,Mitoh 表示,他们怀疑海蛞蝓脖子切口处有类似干细胞的细胞,从而使得海蛞蝓的躯体能够再生。
▲长按识别二维码阅读论文2.培养皿中的泪腺也会流泪干细胞衍生的类器官产生了泪水!这一突破或可帮助阐明流泪和干眼症的生物学原理。
来自荷兰Hubrecht研究所的研究人员证明,这种类器官在移植到小鼠泪腺中后,可以进行吞噬、整合,并产生成熟的泪液产物。
该研究的通讯作者Hans Clevers希望有朝一日这种可以分泌泪液的类器官能够移植到患有泪腺疾病的患者身上。
▲长按识别二维码阅读论文3.研究人员正在对奶牛进行如厕训练,以减少奶牛排泄物造成的氨气排放农场里,奶牛在吃草时随地排泄,排泄物的积累和传播往往会污染当地的土壤和水流。
这一问题可以通过把奶牛关在牛棚里得到控制,但是在牛棚这种局限的环境中,奶牛的尿液和粪便会结合在一起产生氨气,这是一种间接的温室气体。
蓝藻简介
概
述
蓝藻是地球上最早出现的绿色自养生物,它是在地球 上几乎还是绝对无氧的还原环境下,第一个利用太阳能将 二氧化碳制造成有机物并释放出游离氧气的先驱生物,它 对地球上的其他自养生物和异养生物的产生和演化,乃至 人类的起源有着无可替代的重大意义。 蓝藻的固氮能力在地球生态系统的N素循环中也具有十 分重要的作用。此外蓝藻还在环境保护、资源开发等人类 生产生活的许多领域中扮演着重要角色。因此蓝藻的研究 一直是植物学研究中令人十分关注的重要方面。
分类和分布 蓝藻门植物为地球上最原始、最古老的一植物类群。 蓝藻门植物为地球上最原始、最古老的一植物类群。 约有150 150属 1500种 分布很广,从两极到赤道, 约有150属,1500种,分布很广,从两极到赤道,从高 山到海洋,到处都有它们的踪迹。 山到海洋,到处都有它们的踪迹。根据其植物体的形 态不同而分为三个纲: 态不同而分为三个纲: 色球藻纲:包括所有单细胞体和单细胞群体种类。 1、色球藻纲:包括所有单细胞体和单细胞群体种类。 藻殖段纲: 2、藻殖段纲:包括所有不分枝或假分枝丝状体种类及 丝状群体种类。 丝状群体种类。 真枝藻纲:包括所有具真分枝的丝状体种类。 3、真枝藻纲:包括所有具真分枝的丝状体种类。
NaCl K2SO4 KNO3 H3PO4 NaHCO3 EDTA FeSO4.7H2O 微量元素A液 微量元素B液
1.0g 1.0g 3.0g 0.25ml 16.8g 0.08g 0.01g 1ml 1ml
返回
赤潮
返回
用蓝藻作为转基因材料的优点 原核生物结构简单,易于分子遗传操作。 生长迅速易培养易于分离收集。 光合自养,适应性强可在自然环境下生长。 可不含内毒素,对产品不必严格纯化。 本身含丰富营养成分可直接利用。 目前专利尚少
简介真菌类担子菌纲木耳科木耳属植物木耳Auricularia
黑木耳简介:真菌类担子菌纲木耳科木耳属植物木耳Auricularia auricula (L.)Underw.,以子实体入药。
夏秋采收,晒干。
色泽黑褐,质地柔软,味道鲜美,营养丰富,可素可荤,不但为中国菜肴大添风采,而且能养血驻颜,令人肌肤红润,容光焕发,并可防治缺铁性贫血。
药理作用:1.对血液系统的影响(1)抗凝血作用300%木耳煎剂1ml/100g灌胃,连续20d,实验结果表明,木耳能延长白陶土部分凝血活酶时间12.06s,提高血浆抗凝血酶Ⅲ活性,具有明显的抗凝血作用。
黑木耳多糖50mg/kg给小鼠静注、腹腔注射、灌胃,均有明显的抗凝血作用;在体外实验中,黑木耳多糖亦有很强的抗凝血活性。
(2)抗血小板聚集作用黑木耳的磷酸缓冲盐水提取物在试管内明显抑制ADP引起的血小板聚集,并阻断低于16μmol/L 的ADP激活血小板释放5-羟色胺,黑木耳抗血小板作用的有效成分是水溶性的。
人口服70g 黑木耳后3h内即开始出现血小板功能降低,并持续24h。
木耳菌丝体酸提取物体内(大鼠静注10g/kg或灌胃10g/kg连续15d),体外(25mg/ml,50mg/ml及100mg(菌丝体)/ml)能明显抑制ADP诱导大鼠血小板聚集。
醇提取物5g/kg,7g/kg灌胃,共15d,能明显缩短红细胞电泳时间。
黑木耳酸性杂多糖小鼠腹腔注射试验结果表明,该多糖具有促进白细胞增加,抗凝血和降低血小板的作用,其活性随着多糖分子量和糖醛酸含量降低而增大,即生物活性依赖于多糖在水中的溶解度。
(3)抗血栓形成兔口服木耳多糖18.5mg/kg,可明显延长特异性血栓及纤维蛋白血栓的形成时间,缩短血栓长度,减轻血栓湿重和干重,减少血小板数,降低血小板粘附率和血液粘度,并可明显缩短豚鼠优球蛋白溶解时间,降低血浆纤维蛋白原含量,升高纤溶酶活性,结果表明,木耳多糖有明显的抗血栓作用。
(4)升白细胞作用小鼠腹腔注射黑木耳多糖2mg/只,连续7d,有较好地对抗环磷酰胺引起的白细胞下降的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CERAMICSINTERNATIONALAvailable online at Ceramics International 40(2014)10457–10463Hollow mesoporous zirconia nanocontainers for storing and controlledreleasing of corrosion inhibitorsArunchandran Chenan,S.Ramya,R.P.George,U.Kamachi Mudali nCorrosion Science and Technology Group,Indira Gandhi Centre for Atomic Research,Kalpakkam 603102,IndiaReceived 8February 2014;accepted 4March 2014Available online 17March 2014AbstractRelease of inhibitor molecules on demand from nanocontainers dispersed in a passive barrier coatings offer great promise for active corrosion protection coatings of metals and alloys with self healing ability.In the present study,hollow mesoporous zirconia nanospheres (hm -ZrO 2)with a hollow core /porous shell structure are proposed as effective containers for corrosion inhibitor loading and releasing.Hollow mesoporous zirconia nanocontainers were synthesized using solid silica nanoparticles as templates.The morphology and phase of zirconia nanocontainers were studied using high resolution transmission electron microscopy and laser Raman spectroscopy.2-Mercaptobenzothiazole was selected as the model corrosion inhibitor for the encapsulation.The storage and release properties of hm -ZrO 2were investigated using UV –visible spectroscopy.The encapsulation ef ficiency of hm -ZrO 2was 63%and we observed a faster and higher release of 2-MBT from hm -ZrO 2when the pH was shifted from neutral value.&2014Elsevier Ltd and Techna Group S.r.l.All rights reserved.Keywords:A.Calcination;C.Corrosion;C.Diffusion;D.ZrO 21.IntroductionCorrosion of metals and alloys is a global problem resulting in huge economic loses and causing environmental concerns.Application of coatings on metals and alloys are one of the most effective methods employed to prevent corrosion [1].The main attribute of anticorrosion coatings is to avoid the contact of metals from its environment and they function either passively or actively.In passive corrosion protection,coatings act as an impermeable physical barrier to the corrosive environment.However,these class of coatings work only when the coatings remain intact.Any damage in the coatings will lead to corrosion.On the contrary,in active corrosion protection corrosion inhibitors are incorporated in the barrier coatings and corrosion inhibition would be initiated when the barrier coating is damaged [2].The corrosion inhibitors cannot be added directly into the barrier coatings,as it can disrupt coating integrity due toundesired leaching of inhibitors and inhibitor deactivation [2–7].But this disadvantage can be smartly overcome by the encapsu-lation of corrosion inhibitor in nanocontainers and uniformly dispersing them in the coating.These nanocontainers dispersed in the coating can release inhibitor on demand during corrosion process and protect the underlying metal.Many encapsulation techniques have been reported so far for effective storage and on demand release of corrosion inhibitors.Emulsion polymeriza-tion encapsulation,layer by layer assembly of oppositely charged polyelectrolyte and inhibitor layers on the surface of nanoparticles and adsorption of inhibitor molecules on the porous metal oxides are some of the encapsulation techniques reported [4–7].This smart strategy helps in storing the inhibitor and thereby avoiding any unfavorable interaction of inhibitor with the coating.Nanocontainers are used to load high amount of inhibitor,avoid detrimental leaching of inhibitor and ensure sustained and intelligent release of inhibitor on demand.The release of inhibitor is induced by changes in the local environ-ment in the damaged area of the coating,such as changes in local pH,ionic strength,or presence of aggressive ions [8].Heterocyclic organic compounds consisting of oxygen,nitrogen,/locate/ceramint/10.1016/j.ceramint.2014.03.0160272-8842/&2014Elsevier Ltd and Techna Group S.r.l.All rights reserved.nCorresponding author.Tel.:þ914427480121;fax:þ914427480301.E-mail addresses:kamachi@.in ,ukmudali@ (U.Kamachi Mudali).sulfur,and phosphorus are generally used as corrosion inhibi-tors.2-mercaptobenzothiazole,a thiazole derivative,was chosen as model inhibitor molecule for encapsulation in this study. Zheludkevich et al.employed silica nanoparticles covered layer-by-layer with polyelectrolyte and layers of inhibitor as nanocontainer for active corrosion protection[2].Even though a layer-by-layer assembled shell could ensure sustained release of inhibitor molecules for active corrosion protection,their complexities limit the scaling up and industrial application. These difficulties can be overcome by using hollow and porous nanomaterials with high pore volume and large surface area to load corrosion inhibitors.Porous metal oxides have been successfully employed as nanocontainers to encapsulate corro-sion inhibitors.Recently,inorganic porous materials have been widely investigated as reservoirs for loading corrosion inhibi-tors[9–16].Compared to porous metal oxides and inorganic porous materials,hollow mesoporous nanomaterials can func-tion as a better container for encapsulation.The hollow inner cavity of these porous nanomaterials can effectively store the inhibitor molecules and release in a controlled way through its mesopore channels.This work describes a new contribution to the design of nanocontainer for the encapsulation of corrosion inhibitor. Hollow mesoporous zirconia nanocapsules with a hollow core/porous shell structure were synthesized through a hard template method[17–19].In this method,the size and the size distribution of the hollow spheres are controlled by the size of the template.The template is then removed through the pores of thefinal spheres obtained.Monodispersed solid silica nanoparticles were used as template for the synthesis of hm-ZrO2.The silica nanoparticles were coated with zirconium oxide layer and later these silica templates were removed using sodium hydroxide.The present study reports the synthesis, characterization and inhibitor storage and release properties of hollow mesoporous zirconia spheres.2.Experimental section2.1.MaterialsAll chemicals were used as received without further purifica-tion.Zirconium butoxide solution(80wt.%in1-butanol), tetraethoxysilane(TEOS),ethanol,concentrated ammonia solu-tion(25%NH3in water),sodium hydroxide(NaOH),and Brij30were used to synthesize hollow mesoporous zirconia spheres.2-mercaptobenzothiazole(MBT)was used as corrosion inhibitor,acetone was used for inhibitor loading experiments and sodium chloride(NaCl)was used for releasing experiments. All the chemicals used were of reagent grade and the water used in the study was purified in a three stage Millipore Milli-Q plus 185purification system,which had a resistivity higher than 18MΏ.cm.2.2.Preparation of SiO2template particlesThe stober method was used to synthesize monodispersed silica nanoparticles[20].75mL of ethanol,10mL of water and3.15mL of concentrated ammonia solution were mixed and stirred.After30minutes of stirring,6mL of TEOS was added dropwise and the reaction mixture was stirred for8h. The resultant white silica powders were collected by centrifu-gation and washed several times with water and ethanol.Then the solid silica powders were again dispersed in water and dried at room temperature.2.3.Preparation of hm-ZrO22g of SiO2template particles were dispersed in200mL of ethanol and1mL Brij30and1mL water was added into it. After30min of stirring of the reaction mixture,6mL of Zr (BuO)4was added and the mixture was further stirred for8h. The white colored powder was collected after centrifugation and redispersed in water.These particles were aged in water for3days at298K and this aging step has a very important role on the structure of the shell.After aging,the removal of the organic material and the crystallization of the amorphous zirconium oxide layer were carried out by calcination.The white powder was calcined at8501C for2h.Finally,the silica templates were removed by a treatment with NaOH(5M)for 48h.The powders were kept in NaOH solution with stirring and after24h NaOH solution was exchanged with fresh alkaline solution and the stirring continued for another24h. After removing the silica template,the core-shell zirconia spheres were washedfive times with water and dried at1001C for further use.2.4.Characterization of hm-ZrO2The high resolution images of silica template and hm-ZrO2 were taken using a JEOL JEM2100(Japan)electron micro-scope operated at200kV.The powder samples were dispersed in ethyl alcohol under ultrasonication and few drops of the dispersed samples were placed on the sample holder and analyzed without further treatment.The phase analysis of the hm-ZrO2was carried out using laser Raman spectroscopy(Lab RAM HR800,HORIBA JOBIN YVON Raman spectrometer equipped with1800grooves/mm holographic grating).The sample was placed under Olympus BXFM-ILHS microscope mounted at the entrance of the Raman spectrograph.Arþlaser of488nm was used as excitation source and the power of the laser at the sample was$8.6mW.The Raman spectra were recorded using a super cooled(oÀ1101C)1024Â256 pixels charge coupled detector(CCD)in static mode over the range of80–1000cmÀ1with10s exposure time and10 CCD accumulations.Nitrogen adsorption/desorption isotherms were recorded at77K on a Sorptomatic1990(Thermo Quest, CE Instruments,Italy).The specific surface area was calculated by Brunauer–Emmett–Teller(BET)method[21].The HMS sample wasfirst degassed for24h at1501C in vacuum.The average pore size and pore size distributions were obtained from the desorption branch using Barrett–Joyner–Halenda (BJH)method[22].A.Chenan et al./Ceramics International40(2014)10457–10463 104582.5.Loading and releasing of2-MBT50mg of hm-ZrO2was mixed with3mL of1mg mLÀ1 MBT solution.The mixture was then sonicated for30m and stirred further for24h in a glass vial.After24h of stirring of the mixture,the nanocontainers loaded with inhibitor molecules were taken out by centrifugation and cleaned with water.The MBT loaded hm-ZrO2was obtained by drying at room temperature.Thefiltrate was extracted from the vial and used for UV-visible spectroscopy studies to confirm the encapsulation of MBT.UV–visible spectroscopy(UV-2450,SHIMADZU make,Japan)was used for UV–vis analysis.25mg of MBT loaded hm-ZrO2was dispersed in150mL of releasing medium(0.05M NaCl)at different pH values of3, 7and10at room temperature and the solution was stirred at a rate of500rpm using a magnetic stirrer.1mL of the solution was pipetted out at given time intervals for UV-visible analysis.After the measurement,the solution was poured back immediately to the solution.3.Results and discussion3.1.Synthesis and characterization of hm-Zirconia spheresHollow mesoporous zirconia nanocontainers with approxi-mate size of400nm were synthesized using a modified method published elsewhere[17–19].Thefive steps involved in the preparation of hollow mesoporous zirconia are described below.1.Monodispersed silica template nanoparticles were synthe-sized using the well known stober method.2.The prepared monodispersed silica nanoparticles were thencoated with amorphous layer of zirconium hydroxide during the hydrolysis of zirconium butoxide in the presence of Brij30.3.The silica core with the zirconia shell containing Brij30was aged in water for3days at room temperature.ter the silica core with zirconia shell was calcined at8501C to remove the organics and to achieve the crystal-lization of the shell.5.Finally,the template,silica core was removed using NaOH(5M)treatment for48h.The silica particles were leached out through the pores present in the zirconia shell.The removal of solid silica core particles resulted in the formation of hollow mesoporous zirconia nanocontainers. Fig.1depicts the HRTEM images of silica template particles having average diameter of375nm.Fig.2presents the HRTEM images of hollow mesoporous zirconia obtained after the removal of silica templates.As presented in the HRTEM images,the average thickness of zirconia layer was 30nm.The perfectly shaped spherical morphology of the zirconia nanocontainer was maintained after calcination and the removal of silica template with NaOH treatment(Fig.2). The porous structure of the shell helped the NaOH solution to access the core of the nanocontainer and dissolve the silica. The removal of silica particle from the interior confirmed that the zirconia nanocontainer had a porous structure.As shown in the HRETM image(Fig.(2d))the hollowness was the most important structural feature of the as prepared zirconia nano-spheres.Both the porous structure and hollowness are very essential for high loading capacity of the inhibitor molecules. During encapsulation,the pores on the shell facilitate the diffusion of the inhibitor molecules and the empty space inside the zirconia sphere facilitates the storage of inhibitor mole-cules.Moreover,the porous structure of the shell makes ease on demand release of the inhibitor molecules.The phase of the as prepared hollow mesoporous zirconia was investigated using laser Raman spectroscopy.Fig.3shows Fig.1.HRTEM images of solid silica nanoparticles at different magnifications.A.Chenan et al./Ceramics International40(2014)10457–1046310459the Raman spectrum of hollow mesoporous zirconia.As revealed by Fig.3,the characteristic phonon modes of tetragonal phase of zirconia were observed in the Raman spectra.Five Raman active modes of tetragonal phase were observed.The bands at 149cm À1,274cm À1,and 463cm À1are assigned to the E g mode of vibration of tetragonal phase [23].The bands at 318cm À1and 648cm À1were of B 1g mode.The mesoporosity of the sample was con firmed by N 2adsorption-desorption isotherm analysis presented in Fig.4.The hollow zirconia particles showed a sorption isotherm of type IV with a hysteresis loop characteristic for materials with mesoporous structure.The hysteresis loop was due to the capillary condensation in mesopore structures.The type IV adsorption isotherm is a characteristic feature of mesoporous materials.The speci fic surface area of hollow zirconia products was obtained using the BET method and it was found tobeFig.2.HRTEM images of hollow mesoporous zirconia nanocontainers at different magni fications.Fig.3.Raman spectra of as prepared hollow mesoporouszirconia.Fig. 4.N 2adsorption-desorption isotherms of hm -ZrO 2and pore size distribution (inset).A.Chenan et al./Ceramics International 40(2014)10457–1046310460145.97m 2g À1.Barrett –Joyner –Halenda (BJH)analyses revealed that the hollow zirconia products exhibited pore size centered at 3.9nm and cumulative pore volume of 0.0993cm 3g À1.The high surface area,mesopore distributions and hollow structure of the nanocontainer are very important for inhibitor loading and controlled inhibitor release properties.3.2.Inhibitor loading and releasing properties of hm-ZrO 2nanocontainers2-Mercaptobenzothiazole was successfully loaded into hm -ZrO 2nanocontainers by mixing hm -ZrO 2nanocontainers with 2-MBT solution in acetone and followed by stirring for 24h.Fig.5presents the UV –vis spectra of MBT solution before and after the interactions with hm -ZrO 2nanocontainers.λmax for2-mercaptobenzothiazole is at 325nm.The UV –visible spectra (Fig.5)showed that,the absorption maxima for 2-MBT was decreased after the interaction of MBT molecules with hm -ZrO 2nanocontainers.Moreover,there were no new absorption bands and the position of the peaks was not changed.This decrease in the absorption intensity of MBT after the interaction with hm -ZrO 2nanocontainers con firmed the decrease of the MBT concentration in the solution as well as the successful loading of the MBT molecules in the pores and interiors of hm -ZrO 2nanocontainers.The loading of the organic inhibitor molecules in inorganic nanocontainers are made possible through weak non covalent interactions such as physical adsorption,electrostatic interaction,hydrogen bond-ing and π–πstacking [19].The loading ef ficiency was calculated as follows:Loading efficiency ð%Þ¼ðTotal amount of MBT ÀFree MBT in solution =Total amount of MBT ÞÂ100The loading ef ficiency of MBT in the HMS nanocontainer was found to be 63%.The release behavior of 2-MBT loaded hm -ZrO 2was investigated by UV –visible analysis of NaCl (0.05M)suspen-sions of 2-MBT loaded hm -ZrO 2at different pH values.The absorption intensity at ca.325nm was measured at given time interval for 28h and the results are shown in Fig.6.Fig.6shows the release of MBT and the increase of concentration of MBT with time and attained equilibrium after 5h.When the releasing medium had in filtrated into the pores and channels of hm -ZrO 2nanocontainers,the inhibitor mole-cules (2-MBT)gets dissolved in the medium and released by diffusion through the pores along the aqueouspathways.Fig.5.UV –visible spectra of MBT before and after interaction with hm-ZrO 2.Fig.6.UV –vis spectra at different times of the 0.05M NaCl media in which 2-MBT was released from 2-MBT loaded hm -ZrO 2nanocontainers (a)at pH 3,(b)at pH 7,(c)at pH 10and (d)corresponding pH-dependent releasing behavior of 2-MBT from hm -ZrO 2-MBT system.A.Chenan et al./Ceramics International 40(2014)10457–1046310461The releasing of MBT from hm-ZrO2followed similar release kinetics at different pH values.A faster release was observed under alkaline and acidic conditions compared to neutral condition.The release of MBT was leveled off and reached equilibrium in4h at pH10.It was observed that higher amount of2-MBT was released from the hm-ZrO2at pH3and10compared to pH7.The amount of MBT released after28h under acidic and alkaline conditions were0.66mg mLÀ1and0.53mg mLÀ1respec-tively,while in neutral conditions it was0.45mg mLÀ1only. The difference in the release rate and quantity of MBT released from hm-ZrO2can be explained by the variation of solubility of MBT and the differences in the surface charge of both MBT and zirconia particles with pH.The solubility of2-MBT is low in neutral pH,but relatively higher in alkaline and acidic conditions[24].Both the zirconia particles and the inhibitor molecules have the same surface charge when the pH values vary from neutral pH values.Under acidic pH conditions zirconia particles have positive surface charge whereas;at alkaline pH zirconia particles acquire negative surface charge [25].At acidic pH,MBT could be protonated due to the presence of a lone pair of electrons on the N atom and carries a positive charge[26,27].Thus under acidic conditions,both the zirconia particles and MBT had positive charge and this led to larger electrostatic repulsion between them,thereby facilitating faster release of MBT from hm-ZrO2nanocontainers in high amount.Similarly,under alkaline conditions,MBT exists in ionized form with a negative charge on the S atom and thus the MBT molecules carry negative surface charge[28].It is clear from Fig.6(c)that the absorption band at325nm is shifted to 309nm since in basic medium(pH49)2-MBT exists in ionized form with negative charge on the sulfur atom.Again this led to electrostatic repulsion between the hm-ZrO2 nanocontainers and2-MBT,thereby facilitating the diffusion of MBT through the pores of hm-ZrO2nanocontainers and faster release under alkaline condition.Hence,it could be stated that the release of loaded2-MBT from hm-ZrO2 nanocontainers was pH specific since when the pH was shifted from neutral value,the amount of2-MBT release was more. This dependency of inhibitor release on pH confirmed the stimuli responsive intelligent releasing property of hm-ZrO2 nanocontainers.This observation can be extrapolated to a corrosion process,as corrosion of metals is always accom-panied by changes in local pH.Thus the above mentioned results are encouraging for the use of inhibitor loaded hm-ZrO2 nanocontainers in anticorrosive active coating systems with self-healing ability.4.ConclusionsThe present paper reports the successful synthesis of hollow mesoporous zirconia nanocapsules and its utility as containers for storing and on demand releasing of inhibitor molecules. Hollow mesoporous zirconia was synthesized using silica nanoparticles as templates.The synthesized nanocontainers were monodispersed spherical particles with average size of 400nm.The phase of the hollow mesoporous zirconia was tetragonal.2-MBT,corrosion inhibitor molecules,was suc-cessfully loaded into hollow mesoporous zirconia and the loading efficiency was found to be63%.The release study revealed that hollow mesoporous nanocontainers release higher amounts of2-MBT in acidic as well as alkaline pH conditions compared to neutral pH.Work is in progress to apply this new nanocontainer-inhibitor system as smart anticorrosion coatings forfield testing.AcknowledgmentsThe D.A.E research fellowship awarded to Arunchandran Chenan is greatly acknowledged.The authors thank Dr.P. Chandramohan,WSCD,BARCF for BET analysis and Dr. Anuradha.M.Ashok,PSG Institute of Advanced Studies for HRTEM examinations.References[1]P.A.Sorensen,S.Kiil,K.D.Johansen,C.E.Weinell,Anticorrosiovecoatings:a review,J.Coat.Technol.Res.6(2009)135–176.[2]M.L.Zheludkevich, D.G.Shchukin,K.A.Yasakau,H.Mohwald,M.G.S.Ferreira,Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor,Chem.Mater.19 (2007)402–411.[3]C.Arunchandran,S.Ramya,R.P.George,U.Kamachi Mudali,Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers,J.Electrochem.Soc.159(2012)C552–C559.[4]M.L.Zheludkevich,J.Tedim,M.G.S.Ferreira,Smart coatings for activecorrosion protection based on multi-functional micro and nanocontainers, Electrochim.Acta82(2012)314–323.[5]D.G.Shchukin,maka,K.A.Yasakau,M.L.Zheludkevich,M.G.S.Ferreira,H.Möwhald,Active anticorrosion coatings with halloysite nanocontainers,J.Phys.Chem.C112(2008)958–964. [6]D.G.Shchukin,M.Zheludkevich,K.A.Yasakau,maka,M.G.S.Ferreira,H.Möhwald,Layer-by-layer assembled nanocontainers for self-healing corrosion protection,Adv.Mater.18(2006)1672–1678.[7]D.G.Shchukin,H.Mohwald,Self repairing coatings containing activenanoreservoirs,Small3(2007)926–943.[8]D.V.Andreeva,D.G.Shchukin,Smart self-repairing protective coatings,Mater.Today11(2008)24–30.[9]M.L.Zheludkevich,R.Serra,M.F.Montemor,M.G.S.Ferreira,Oxidenanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors,mun.7(2005)836–840.[10]D.Borisova,H.Mohwald,D.G.Shchukin,Mesoporous silica nanopar-ticles for active corrosion protection,ACS Nano5(2011)1939–1946.[11]I.A.Kartsonakis, A.C.Balaskas, E.P.Koumoulos, C.A.Charitidis,G.C.Kordas,Incorporation of ceramic nanocontainers into epoxy coat-ings for the corrosion protection of hot dip galvanized steel,Corros.Sci.57(2012)30–41.[12]C.Arunchandran,S.Ramya,R.P.George,U.Kamachi Mudali,Corro-sion inhibitor storage and releasing properties of TiO2nanotube powders synthesized by rapid breakdown anodization method,Mater.Res.Bull.48(2013)635–639.[13]I.A.Kartsonakis,I.Danilidis,G.S.Pappas,G.Kordas,Encapsulation andrelease of corrosion inhibitors into titania nanocontainers,J.Nanosci.Nanotechnol.10(2010)5912–5926.[14]I.A.Kartsonakis,I.Danilidis,G.Kordas,Encapsulation of corrosioninhibitor8-hydroxyquinoline into ceria nanocontainers,J.Sol–Gel Sci.Technol.48(2008)24–31.[15]D.Snihirova,maka,M.F.Montemor,Smart protective ability ofwater based epoxy coatings loaded with CaCO3micro beads impregnated with corrosion inhibitors applied on AA2024substrates,Electrochim.Acta83(2012)439–447.A.Chenan et al./Ceramics International40(2014)10457–10463 10462[16]A.Joshi,E.Abdullayev,A.vasiliev,O.Volkova,Y.Lvov,Interfacialmodification of clay nanotubes for the sustained release of corrosion inhibitors,Langmuir29(2013)7439–7448.[17]P.M.Arnal,C.Weidenthaler,F.Schuth,Highly monodisperse zirconia-coated silica spheres and zirconia/silica hollow spheres with remarkable textural properties,Chem.Mater.18(2006)2733–2739.[18]P.M.Arnal,otti,F.Schuth,High temperature stable catalysts byhollow sphere encapsulation,Angew.Chem.Int.Ed.45(2006) 8224–8227.[19]S.Tang,X.Huang,X.Chen,N.Zheng,Hollow mesoporous zirconiananocapsules for drug delivery,Adv.Funct.Mater.20(2010) 2442–2447.[20]W.Stober,A.Fink,E.Bohn,Controlled growth of monodispersed silicaspheres in micron size range,J.Colloid.Interface Sci.26(1968)62–69.[21]S.Brunauer,P.H.Emmett, E.Teller,Adsorption of gases in multi-molecular layers,J.Am.Chem.Soc.160(1938)309–319.[22]E.P.Barrett,L.G.Joyner,P.P.Halenda,The determination of porevolume and area distribution in porous putation from nitrogen isotherms,J.Am.Chem.Soc.73(1951)373–380.[23]P.Bouvier,G.Lucazeau,Raman spectra and vibrational analysis ofnanometric tetragonal zirconia under high pressure,J.Phys.Chem.Solids 61(2000)569–578.[24]F.Maia,J.Tedim, A.D.Lisenkov, A.N.Salak,M.L Zheludkevich,M.G.S.Ferreira,Silica nanocontainers for active corrosion protection, Nanoscale4(2012)1287–1298.[25]V.V.Srdic´,M.Winterer,A.Mo l ler,G.Miehe,H.Hahn,Nanocrystallinezirconia surface-doped with alumina:chemical vapor synthesis,charac-terization,and properties,J.Am.Ceram.Soc.84(2001)2771–2776. [26]R.K.Shervedani,A.H.Mehrjardi,M.K.Babadi,Comparative electro-chemical study of self-assembled monolayers of2-mercaptobenzoxazole, 2-mercaptobenzothiazole,and2-mercaptobenzimidazole formed on poly-crystalline gold electrode,Electrochim.Acta52(2007)7051–7060. [27]J.Wang,B.Zeng,C.Fang,X.Zhou,Electrochemical characteristic of2-mercaptobenzothiazole self-assembled monolayer on gold,Anal.Sci.16(2000)457–461.[28]M.Oshawa,W.Suetaka,Spectro-electrochemical studies of the corrosioninhibition of copper by mercaptobenzothiazole,Corros.Sci.19(1979) 709–722.A.Chenan et al./Ceramics International40(2014)10457–1046310463。