高中数学必修5第三章不等式单元测试(含答案)
新人教必修五第三章不等式单元综合测试(含答案)
新人教必修五第三章不等式单元综合测试(含答案)新人教必修五第三不等式单元综合测试(含答案)一、选择题:1、若,且,则下列不等式一定成立的是()A.B..D.2、函数的定义域为()A.B..D.3、已知,则()A.B..D.4、不等式的解集为()A.B..D.、已知等比数列的各项均为正数,公比,设,,则与的大小关系是()A.B..D.无法确定6、已知正数、满足,则的最小值是()A.18B.16.8D.107、下列命题中正确的是( )A.当且时B.当,.当,的最小值为D.当时,无最大值8、设直角三角形两直角边的长分别为a和b,斜边长为,斜边上的高为h,则和的大小关系是( )A.B..D.不能确定9、在约束条下,当时,目标函数的最大值的变化范围是()A.B..D.10、若关于的不等式对任意恒成立,则实数的取值范围是()A.B..D.或11、某商品以进价的2倍销售,由于市场变化,该商品销售过程中经过了两次降价,第二次降价的百分率是第一次的两倍,两次降价的销售价仍不低于进价的%,则第一次降价的百分率最大为()A 10%B 1%20%D 2%12、在使成立的所有常数中,把的最大值叫做的“下确界”,例如,则故是的下确界,那么(其中,且不全为的下确界是()A.2B..4D.二、填空题13、设满足且则的最大值是___________14、已知变量满足约束条,若目标函数仅在点处取得最大值,则的取值范围为___________1、设,且,函数有最小值,则不等式的解集为___________16、某公司一年购买某种货物吨,每次都购买吨,运费为万元/次,一年的总存储费用为万元,要使一年的总运费与总存储费用之和最小,则_______三、解答题17、已知, 都是正数,并且,求证:18、关于的不等式的解集为空集,求实数的取值范围19、已知正数满足,求的最小值有如下解法:解:∵且∴,∴判断以上解法是否正确?说明理由;若不正确,请给出正确解法.20、制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能出的最大盈利率分别为100%和0%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过18万元,问投资人对甲、乙两个项目各投资多少万元?才能使可能的盈利最大?21、已知函数,当时,;当时,。
(完整版)必修五第三章不等式练习题(含答案),推荐文档
等式练习题 第一部分1.下列不等式中成立的是(7.在R 上定义运算 :xy x(1 y),若不等式(x a)(x a) 1对任意实数x 成立,贝U 实数a 的取值范围是().A. {a| 1 a 1}B .{a| 0 a 2}1 3 C {a| 1 a £} D.{a| 3 11-a -}2 28已知正实数x,y 满足x 2y4,则丄 4x 丄的最小值为y•9 .设x, y 为正实数,aJ x 22xy y ,bpjxy,c xy .试比较a 、c 的大小.A. b a C. D. a cB. b c a b ca c bA.若a 则ac 2 bc 2 .若 a b ,贝U a 2b 2 C.若aab b 21.若 a b 0,贝U -a2.已知a 1 3,b14,(A). c a3.已知a,b,c 满足c (B)3 5a b3 4,则a,b,c 的大小关系是()(C) b a c a 且ac 0,下列选项中不一定(D) c成立的是((A ) ab ac(B )(C) cb 2 ab 2(D) ac(a c) 04 .规定记号“O”表示一种运算,定义若1O k 2<3,则k 的取值范围为A . 1 k 1B aO b^/ab a (a , b 为正实数),5 .若a,b,c 为实数, 则下列命题正确的是(A.若a 则ac 2bc 2B.若a ab b 2C.若aD.若a 1bab6.设a0.5. I,b log 3,c log 4 2,则(6.226函数y = 3x + x^+1的最小值是()A.10 .已知不等式ax 2 5x 2 0的解集是M .(1)若2 M ,求a 的取值范围;(2)若 M x2x2,求不等式ax 2 5x a 2 10的解集.第二部分1.给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>|b|,则 a>b ; ④若 a>b ,则 a 2>b 2.其中正确的是(A.②④ B .②③ C .①② D ①③2.设 a , b € R, A. b -a>0 B若a -1 b|>0,贝U 下列不等式中正确的是( .a 3+ b 2<0)C . b + a>0D . a — b <0 3.在下列函数中,最小值是 2的是() A.x + 2 .y =尸(x >0)C. y = sin x + cscx , x € (0 ,ny )4. 已知log a (a 2+ 1)vlog a 2a<0,则a 的取值范围是( A. (0,1) B ・(扌,1)C. (0, 2)5. f (x) = ax 2+ ax - 1 在 R 上满足 f (x)<0, 则a 的取值范围是( )A. (-X, 0]B. (-X,- 4)C. (-4,0)D. (-4,0]B.C.6.41 17.设a>0, b>0.若{3是3与3的等比中项,则o +b 的最小值为( )A. 8D-4&已知当x>0时,不等式x 2— m)+ 4>0恒成立,则实数m 的取值范围是 9.已知 A = {x|x 2— 3x + 2<0},{x|x 2— (a + 1)x + a <0}.⑴若A B,求a 的取值范围; ⑵若B? A 求a 的取值范围1 910.已知x>0, y>0,且x + y = 1,求X + y 的最小值.11.已知a , b , c 都是正数,且a +b + c = 1.求证:(1 — a)(1 — b)(1 — c) >8abc. 证明•/ a 、b 、c 都是正数,且a +b + c = 1,•-1 — a = b + c 寸 bc>0, 1—b=a+c >2ac>0, 1 — c = a + b 寸 ab>0.••• (1 — a)(1 — b)(1 — C) •^Oc •2ab= 8abc.212.不等式 kx — 2x + 6kv0(k 工0).(1) 若不等式的解集为{x|x< — 3或x> — 2},求k 的值; (2) 若不等式的解集为R,求k 的取值范围.B. 4C. 11. D. 【解析】对于A ,若c 不成立;对于C,若a2. D 【解析】 参考答案 第一部分,显然ac 2b 0,则 a 2;故选Dbc 2不成立;对于B ,若b a 0,则a 2ab b 2b 2,所以C 错;对于D,若a b33 4 2 3. C 【解析】 1所以c 综上,所以答案为:D.Qa c, ac 0, 0,a (1) Qb c,a 0,ab ac;⑵ Q b a,0,0, c b 0 ;(3) Q c a,,Q ac 0, ac a0 ■⑷b a 且c 0, a 0, 0或b 0或b 0, cb 2和ab 2的大小不能确定,即C 选项不一定成立■故选C.4. A 【解析】根据题意1e k 2 1 k 2 3化简为k 2绝对值如下: 原不等式为 k 2k 2 0解得2 0时, 原不等式为 0成立,所以k k 2 0 ,对k 分情况去 k 1,所以0 k 原不等式为 k 2k 2 0,解得 1 k 2,所以1 综上, 5. B 【解析】对于 所以选择 A. 当c 0时, 0,所以1a 所以a b,故D 错,所以选b a两边同时除以 A, ab 故A 错;对于C, 不等式不成立, 11,故C 错;对于D,因为a b 0 , b因为a 1bB .6. A【解析】••• a 20.5, b log 3 , c log42 , 1>2 0.51log 3 >1, Iog 42= -b >a >c .故选: 27. C8. 1 【解析】【解析】根据题意化简不等式为(X a )(1 (X a)) 1,即 X 2 X(a 2 a 1) 0 对任意实数X 成立,所以根据二次恒成立 0,解得(当且仅当“X y 4”时,取“ ”),故最小值为1.39.a 2 X 22 2 2 22 2xy y 2, c 2X 22xy y 2c 2 a 2xy ;X 0, y0, xy 0,即 c a ;10. (1) a12 (2) X3 X 1【解析】(1)由2 M ,说明元素2满足不等式ax 2 5x 2 0,代入即可求出a的取值范围; (2)由M x2 X 2,2,2是方程ax 25x 20的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;(1)v 2 M 2,二 a 2 5 2 20,••• a 2(2)v Mx1 X 2 ,••• 1,2是方程ax 2 5x 20的两个根,11 y X 8 yX y 1 4 5 25 21 / y X 4点 1 -1 8尸y4x A.由X 2y 4化为4x4 X 2 4x1 2x1 2xX 2y 4,因为o,y所以1 8所以 X + y = (x+ y)( 1+ 9) = y+ — + 10>2 ' 八 X y X y y 9x 1 9当且仅当x =—时,等号成立,又因为X +y = 1.所以当 x = 4, y = 12 时,(X + y) min = 16.•••由韦达定理得2 1/•不等式ax 2 5x a0即为:2x 2 5x 3 0其解集为X第二部分2.解析 由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C.3.解析X 2y=- + -的值域为(一X,— 2] U [2,+X);X + 2 --- 1y〒=也〒 + k >2(X >0);1y = SinX + CSCX = SinX + 茹>2(0<Sin X <1);y = 7x + 7—x>2(当且仅当x = 0时取等号).7.解析 V s 是 3a 与 3b 的等比中项? 3a •3b= 3a + b= 3? a + b = 1, v a>0,b>0, /^ab1 1 a + b 1 1 「a +萨石=Ob ^ 1=4.411.解析因为 x>0, y>0, X + 9= 1,9X-—+ 10= 16. y。
最新人教版高中数学必修5第三章不等式单元测试题及答案
人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)5、不等式0322>-+x x 的解集是 ( )A {x|-1<x <3}B {x|x >3或x <-1}C {x|-3<x <1}D {x|x>1或x <-3}6、二次不等式20ax bx c ++>的解集是全体实数的条件是 ( )A ⎩⎨⎧>∆>00aB ⎩⎨⎧<∆>00aC ⎩⎨⎧>∆<00aD ⎩⎨⎧<∆<00a2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-3 8.已知集合A ={x |x 2-x-2<0},B ={x |-1<x <1},则( )A. A B ⊆B.B AC. A = BD. A ∩B =∅8、已知,,22,,xy c y x R y x ==+∈+那么c 的最大值为 ( )A 1B 21C 22D 41 10、设b a ,为实数且,3=+b a 则ba22+的最小值是 ( )A 6B 24C 22D 6211、不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 ( )A.右上方B.右下方C.左上方D.左下方 10. 设U =R ,M ={x |x 2-2x >0},则 C U M =( )A.[0,2]B.RC.(-∞,0)∪(2,+∞)D.(-∞,0]∪[2,+∞)12、在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是( )二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15、不等式255122x x -+>的解集是 .三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0; (3) 0322322≤--+-x x x x18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.19、当1>x 时,求11222-+-=x x x y 的最小值. (12分)20、已知15,13a b a b ≤+≤-≤-≤,求32a b -的取值范围。
(典型题)高中数学必修五第三章《不等式》检测卷(有答案解析)
一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .953.已知x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,若34z x y =-的最大值为9,则m 的值为( ) A .32-B .28-C .2D .34.己知x ,y 满足()2403300220x y x y a x ay -+≥⎧⎪--≤>⎨⎪+-≥⎩,且22z x y =+,若z 的最大值是其最小值的654倍,则a 的值为( ) A .1B .2C .3D .45.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .46.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-7.若实数,x y 满足121x y y x -+<⎧⎨≥-⎩,则22x y +的取值范围是( )A.1[2 B .1[,13)4C. D .1[,13)58.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >nD .不确定9.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .210.若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .1b a< C .lg(a -b )>0D .11()()33ab<11.设x ,y 满足约束条件1x y ax y +≥⎧⎨-≤-⎩,且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.如果0a b >>,0t >,设b M a =,b t N a t+=+,那么( ) A .M N < B .M N >C .MND .M 与N 的大小关系和t 有关 二、填空题13.已知正实数a 、b 满足21a b +=,则11a ba b+--的最小值为____________. 14.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若x ,y 满足约束条件210,10,2,x y x y x +-≥⎧-+≥≤⎪⎨⎪⎩则3z x y =-的最小值为______.17.已知圆1C :()224x a y ++=和圆2C :()2221x y b +-=(,a b ∈R ,且0ab ≠),若两圆外切,则2222a b a b+的最小值为______.18.已知,a b 为正实数,直线2y x a =-+与曲线1x b y e +=- 相切,则11a b+的最小值为________.19.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________.三、解答题21.已知函数()()()23f x x a x =-+. (1)当72a >-时,解关于x 的不等式()46f x x >+; (2)若关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,求实数a 的取值范围. 22.已知函数()243f x ax ax =-- (1)当a=-1时,求不等式f(x)>0的解集;(2)若对于任意的x ∈R,均有不等式f(x)≤0成立,求实数a 的取值范围. 23.(1)若0x >,0y >,1x y +=,求证:114x y+≥. (2)已知实数0a >,0b >,且1ab =,若不等式()a bx y m x y+⋅+>(),对任意的正实数,x y 恒成立,求实数m 的取值范围.24.某公司生产某种产品,其年产量为x 万件时利润为()R x 万元,当035x <≤时,年利润为21()2R x x =-20250x ++,当35x >时,年利润为()18005202R x x x=--+. (1)若公司生产量在035x <≤且年利润不低于400万时,求生产量x 的范围;(2)求公司年利润()R x 的最大值.25.已知函数()0f x m =≥恒成立.(1)求m 的取值范围;(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.26.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.3.D解析:D 【分析】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,再利用数形结合分析得()max 33439z m =⨯--=,解得参数即可. 【详解】作出x ,y 满足约束条件20030x y x y m x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域如图中阴影部分所示,由z =3x -4y 得344z y x =-,它表示斜率为34纵截距为4z-的一系列直线, 当直线经过点A 时,直线的纵截距4z-最小,z 最大.由03x y m x +-=⎧⎨=⎩,解得A (3,m -3),故()max 33439z m =⨯--=,解得3m =. 故选:D. 【点睛】方法点睛:线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量,x y ; (2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数).4.A解析:A 【分析】作出不等式组表示的图象,22z x y =+可看作可行域内的点到原点距离的平方,由图可观察出最远的点和最近的点,分别求出距离做比值列出等式可得答案. 【详解】根据不等式组作出图象,则阴影部分即为可行域,由240330x y x y -+=⎧⎨--=⎩解得23x y =⎧⎨=⎩,即(2,3)A , 220x ay +-≥恒过(1,0)且0a >,因为22z x y =+, z 的几何意义是可行域内的点到原点距离的平方, 由图点(2,3)A 到原点的距离的平方最大,22max 2313z =+=,z 的最小值为原点到直线BC 的距离的平方,2min22444z a a ⎛⎫== ⎪++⎝⎭, 根据题意可得maxmin21365444z z a ==+,整理得245a +=,解得1a =或1a =-(舍去). 故选:A. 【点睛】本题考查简单的线性规划问题,关键点是作出可行域,利用z 的几何意义确定点,考查了数形结合思想,属于基础题.5.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值,又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.7.D解析:D 【详解】根据实数,x y 满足121x y y x -+<⎧⎨≥-⎩,画出可行域如图所示22x y +表示可行域内的点与坐标原点O 距离的平方,O 与直线AB :210x y +-=220015521⨯+-=+, O 与(2,3)C 222313+=∵可行域不包含(2,3)C∴21135r ≤<,即22x y +的取值范围是1[,13)5 故选:D 【点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.8.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--()122242a a +-⋅=-,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .9.B解析:B 【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值. 【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大, 此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=. 即目标函数z x y =+的最大值为4. 故选:B . 【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.10.D解析:D 【详解】试题分析:A 中1,2a b ==-不成立,B 中1,12a b =-=-不成立,C 中0,1a b ==-不成立,D 中由指数函数单调性可知是成立的11.B解析:B【分析】画出可行域,讨论当0a =时,当0a <时,当0a >时三种情况,分别求出目标函数的最值,即可筛选出符合题意的a 的值.【详解】根据题中约束条件1x y a x y +≥⎧⎨-≤-⎩可画出可行域如图所示, 两直线交点坐标为:11,22a a A -+⎛⎫ ⎪⎝⎭, 当0a =时,z x ay =+无最小值; 当0a <时,z x ay =+在11,22a a A -+⎛⎫⎪⎝⎭处取最大值,无最小值. 当0a >时,z x ay =+在11,22a a A -+⎛⎫ ⎪⎝⎭处有最小值: 21121222a a a a z a -++-=+⨯=,则22172a a +-=,解得3a =,故选B. 【点睛】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.12.A解析:A【分析】对M 与N 作差,根据差值的正负即可比较大小.【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<,又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <. 故选:A【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.【分析】将所求代数式变形为将所求代数式与相乘展开后利用基本不等式可求得的最小值【详解】已知正实数满足则当且仅当时即当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其12【分析】 将所求代数式变形为1121121a b a b b b+=+----,将所求代数式与()1b b +-⎡⎤⎣⎦相乘,展开后利用基本不等式可求得11a b a b +--的最小值. 【详解】已知正实数a 、b 满足21a b +=,则1211112112121a b b b a b b b b b--++=+=+-----()111111122112222b b b b b b b b -⎛⎫=+-+-=+-≥=⎡⎤ ⎪⎣⎦--⎝⎭.当且仅当1b -=时,即当1b =时,等号成立,因此,11a b a b +--12.12. 【点睛】 易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值.【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b c b c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.15.【解析】由题意知且2和3是方程的两个根即答案为7【点睛】本题考查一元二次不等式的解法与应用问题解题的关键是根据一元二次不等式与对应方程之间的关系求出的值解析:7【解析】由题意知0a > 且2和3是方程250ax x b -+=的两个根,5321,7632a a a b b b a=,=⎧+⎪=⎧⎪∴∴+=⎨⎨=⎩⎪⨯⎪⎩. 即答案为7. 【点睛】本题考查一元二次不等式的解法与应用问题,解题的关键是根据一元二次不等式与对应方程之间的关系,求出a b ,的值16.【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解把最优解的坐标代入目标函数得答案【详解】解:由约束条件作出可行域如图化目标函数为由图可知当直线过时直线在轴上的截距最大有最小 解析:1-【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件210102x y x y x +-⎧⎪-+⎨⎪⎩作出可行域如图,化目标函数3z x y =-为3y x z =-,由图可知,当直线3y x z =-过(0,1)A 时, 直线在y 轴上的截距最大,z 有最小值为1-.故答案为:1-.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.17.1【分析】根据题意分析两圆的圆心与半径由两圆外切可得变形可得:据此可得结合基本不等式的性质分析可得答案【详解】解:根据题意圆其圆心为半径圆其圆心为半径若两圆外切则有变形可得:当且仅当时等号成立故的最 解析:1【分析】根据题意,分析两圆的圆心与半径,由两圆外切可得12||C C R r =+,变形可得:2249a b +=,据此可得22222211a b a b a b +=+,结合基本不等式的性质分析可得答案. 【详解】解:根据题意,圆221:()4C x a y ++=,其圆心1C 为(,0)a -,半径2r,圆222:(2)1C x y b +-=其圆心2C 为(0,2)b ,半径1R =, 若两圆外切,则有2212||(0)(20)3C C a b R r ++-=+=,变形可得:2249a b +=, 222222222222222222111111414(4)()(5)(52)1999a b a b a b a b a b a b a b b a b a +=+=++=+++⨯=,当且仅当222a b =时等号成立,故2222a b a b+的最小值为1; 故答案为:1.【点睛】本题考查圆与圆的位置关系,涉及基本不等式的性质以及应用,属于中档题. 18.【分析】直线与曲线相切则切点在直线与曲线上且切点处的导数相等求出的关系再利用基本不等式求所求分式的最值【详解】解:由得;由得;因为直线与曲线相切令则可得代入得;所以切点为则所以故当且仅当时等号成立此 解析:2【分析】直线与曲线相切,则切点在直线与曲线上,且切点处的导数相等,求出a ,b 的关系,再利用基本不等式求所求分式的最值.【详解】解:由2y x a =-+得1y '=;由1x b y e+=-得x b y y e +'==; 因为直线2y x a =-+与曲线1x b y e +=-相切,令1x b e +=,则可得x b =-,代入1x b y e +=-得0y =;所以切点为(,0)b -.则20b a --+=,所以2a b +=. 故11111()()112222222b a a b a b a b a b a b b a+=++=+++=, 当且仅当1a b ==时等号成立,此时取得最小值2.故答案为:2.【点睛】本题主要考查导数的意义及基本不等式的综合应用.关于直线与曲线相切,求未知参数的问题,一般有以下几步:1、分别求直线与曲线的导函数;2、令两导数相等,求切点横坐标;3、代入两方程求参数关系或值,属于中档题.19.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1;由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C , 故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最 解析:4【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B +的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--.所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B+的最小值为4. 故答案为:4【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)3|2x x ⎧<-⎨⎩或}2x a >+;(2)112a <-或51325a <<. 【分析】(1)对一元二次不等式分解因式,通过72a >-得出322a +>-,可得不等式的解集; (2)关于x 的方程()80f x +=在(–),1∞上有两个不相等实根,可得0∆>,设()22(32)38g x x a x a =+--+,则有()10g >且对称轴小于1,解不等式可得实数a 的取值范围.【详解】(1)∵()()()2346f x x a x x =-+>+∴22(12)3(2)0x a x a -+-+>,即()3202x x a ⎛⎫+--> ⎪⎝⎭ 73,222a a >-+>- 3|2x x ⎧∴<-⎨⎩或}2x a >+ (2)解法一:∵22(32)380x a x a +--+=在(–),1∞上有两个不相等实根∴2412550a a ∆=+->112a <-或52a > 设()22(32)38g x x a x a =+--+,则()10g >∴()232380a a +--+> ∴135a <, 又()g x 的对称轴为324a x -=-,∴3214a --<,∴72a < ∴综上112a <-或51325a <<. 解法二: ∵22(32)380x a x a +--+=在(,1)-∞上有两个不相等实根∴223823x x a x ++=+ 令2238()23x x g x x ++=+令()()23,00,5t x =+∈-∞ 则2316()2t t g t t-+=,即183()22g t t t =+- 由图象可知,该题转化为y a =与18322y t t =+-有两个不同的交点 ∴112a <-或51325a << 【点睛】 方法点睛:本题考查一元二次不等式的解法,考查一元二次方程根的分布,考查了学生计算能力,不妨设一元二次方程所对应的二次函数()f x 开口向上,则两根都小于k 时,则()020b k af k ∆>⎧⎪⎪-<⎨⎪>⎪⎩; 2.两根都大于k 时,则()020b k af k ∆>⎧⎪⎪->⎨⎪>⎪⎩ 3.一根小于k ,一根大于k 时,则()0f k <.22.(1)()1,3; (2)3,04⎡⎤-⎢⎥⎣⎦. 【分析】(1)解一元二次不等式得结果,(2)先讨论0a =时的情况,再根据二次函数图象确定0a ≠时,参数满足的条件,最后求并集得结果.【详解】(1)当1a =-时,不等式()0f x >,即2430x x -+->,即2430x x -+<,即()()130x x --<,解得13x <<,故不等式()0f x >的解集为()1,3.(2)①当0a =时,()30f x =-≤恒成立;②当0a ≠时,要使得不等式()0f x ≤恒成立,只需0,0,a <⎧⎨∆≤⎩即()()20,4430,a a a <⎧⎪⎨--⨯⨯-≤⎪⎩ 解得0,30,4a a <⎧⎪⎨-≤≤⎪⎩即304a -≤<.综上所述,a 的取值范围为3,04⎡⎤-⎢⎥⎣⎦. 【点睛】 研究形如20ax bx c ++>恒成立问题,注意先讨论0a =的情况,再研究0a ≠时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果.23.(1)见解析;(2)(,4)-∞.【详解】试题分析:(1)第(1)问,利用常量代换和基本不等式证明. (2)第(2)问,利用基本不等式求解.试题(1)证明:∵1,0,0x y x y +=>>∴0,0y x x y >> ∴11224x y x y y x x y x y x y+++=+=++≥+= 当且仅当12x y ==时,等号成立. (2)因为,,,a b x y 为正实数,所以()a b ay bx x y a b a b x y x y ⎛⎫+⋅+=+++≥++≥= ⎪⎝⎭ 4=,当且仅当a b =,ay bx x y=,即a b =,x y =时等号成立,故只要4m <即可,所以实数m 的取值范围是(),4-∞24.(1)1030x ;(2)480.【分析】(1)令21()202504002R x x x =-++,解之即可; (2)利用二次函数的最值和基本不等式分别求出()R x 两段函数的最大值,再比较大小即可.【详解】(1)当035x <时,令21()202504002R x x x =-++, 即2403000x x -+≤,解得1030x ,所以生产量x 的范围是1030x ;(2)当035x <时,222111()20250(40)250(20)450222R x x x x x x =-++=--+=--+, 故此时()R x 在(0,20)上单调递增,在(20,35)上单调递减,则此时()R x 最大值为(20)450R =;当35x >时,116001()()52052048022R x x x =-++≤-⨯=, 当且仅当160040x x==时,等号成立, 则此时()R x 最大值为(40)480R =,综上公司年利润()R x 的最大值为480万元.【点睛】本题考查了函数的应用,利用二次函数的性质和基本不等式求最值是解题的关键,考查了推理能力与计算能力,属于中档题.25.(1)4m ≤;(2)94. 【分析】(1)函数()0f x m =≥恒成立,即+130x x m +--≥恒成立,设函数()+13g x x x =+-,则()min m g x ≤,利用绝对值不等式的性质求得()min g x 即可得解;(2)由(1)可得21432a b a b +=++,然后利用基本不等式计算即可求得74a b +的最小值.【详解】(1)函数()0f x m =≥恒成立, 即+130x x m +--≥恒成立, 设函数()+13g x x x =+-,则()min m g x ≤, 又13(1)(3)4x x x x ++-≥+--=,即()g x 的最小值为4,所以4m ≤;(2)由(1)知4n =,正数a ,b 满足21432a b a b+=++, 所以()1217474432a b a b a b a b ⎛⎫+=++ ⎪++⎝⎭ ()()121622432a b a b a b a b ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭ ()()222315432a b a b a b a b ++⎡⎤=++⎢⎥++⎣⎦ 54944+≥=,当且仅当23a b a b +=+即3210b a ==时,等号成立, 所以74a b +的最小值为94. 【点睛】 本题考查绝对值不等式的应用,考查基本不等式的应用,考查逻辑思维能力和计算能力,属于常考题.26.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得2ab a b =+≥1,进而求得1≥ab ,注意等号成立的条件,得到结果.【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+. (2)∵0a >,0b >, ∴2ab a b =+≥2ab ≥ ∴1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.。
(好题)高中数学必修五第三章《不等式》测试(包含答案解析)
一、选择题1.设x ,y R +∈,1x y +=,求14x y+的最小值为( ). A .2B . 4C .8D .92.若实数x ,y 满足约束条件21010x y x y -+≥⎧⎨--≤⎩,则2z x y =-的最大值是( )A .1-B .2C .3D .4 3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .5.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-6.已知0x >,0y >,21x y +=,若不等式2212m m x y+>+恒成立,则实数m 的取值范围是( ) A .4m ≥或2m ≤- B .2m ≥或4m ≤- C .24m -<<D .42m -<<7.在各项均为正数的等差数列{}n a 中,n S 为其前n 项和,7S =14,则2614t a a =+的最小值为( ) A .9 B .94C .52D .28.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R9.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m =n B .m <n C .m >n D .不确定10.已知变量,x y 满足不等式组22003x y x y y +-≥⎧⎪-≤⎨⎪≤⎩,则2z x y =-的最大值为( )A .3-B .23-C .1D .211.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若实数m 和n 满足242329231m m n n m n ⨯-⋅+⨯=++,则23m n +的取值范围为______.14.已知0x >,0y >,且212+=x y ,若2322+≥-x y m m 恒成立,则实数m 的取值范围_______.15.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____.16.已知变量,x y 满足约束条件04010x y x y y -≥⎧⎪+-≤⎨⎪-≥⎩,若目标函数(0)z ax by a b =+>>的最小值为1,则28a b+的最小值为__________. 17.已知正实数,x y 满足 20x y xy +-=,则2x y +的最小值为 ,y 的取值范围是 .18.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF x AB y AC =+,则xy 的最大值为________.19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a 距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知函数()223f x x x =--+. (1)解不等式()0f x ≥;(2)若对任意实数x ,都有()3f x a x ≥-,求实数a 的取值范围.22.已知实数x ,y 满足不等式组204030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,求目标函数23z x y =-的最值及相应的最优解.23.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3m a b +=,求212a b +的最小值.24.已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.25.已知定义域在()0,∞+上的函数()f x 满足对于任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+,当且仅当1x >时,()0f x <成立.(1)设(),0,x y ∈+∞,求证()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较x 1与x 2的大小; (3)若13a -<<,解关于x 的不等式()2110f x a x a ⎡⎤-+++>⎣⎦.26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.2.D解析:D 【分析】画出不等式组对应的平面区域,利用z 的几何意义,利用数形结合即可得到结论. 【详解】画出约束条件210110x y x x y -+≥⎧⎪≥⎨⎪--≤⎩或210110x y x x y -+≥⎧⎪<⎨⎪+-≥⎩所表示的平面区域,如图所示,.目标函数2z x y =-,可化为2y x z =-, 由图象可知,当直线2y x z =-经过点A 时, 使得目标函数2z x y =-取得最大值, 又由10210x y x y --=⎧⎨-+=⎩,解得(3,2)A ,所以目标函数的最大值为2324z =⨯-=, 故选:D. 【点睛】思路点睛:本题主要考查线性规划中,利用可行域求目标函数的最值,属于中等题. 求目标函数最值的一般步骤是“一画、二移、三求”: (1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.A解析:A 【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象. 【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<,∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C . 【点睛】关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.5.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.6.D解析:D 【分析】先根据已知结合基本不等式得218x y+≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立, 由于不等式2212m m x y+>+成立,故228m m +<,解得:42m -<<. 故实数m 的取值范围是:42m -<<. 故选:D. 【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题.7.B解析:B 【分析】根据等差数列的性质和前n 项和公式求得26a a +,然后由“1”的代换应用基本不等式求得最小值. 【详解】 由题意172677()7()1422a a a a S ++===,∴264a a +=, ∴26262614114()()4t a a a a a a =+=++62264119(5)(5444a a a a =++≥+=,当且仅当62264a a a a =,即622a a =时等号成立. 故选:B . 【点睛】本题考查等差数列的性质,考查基本不等式求最值.解题基础是掌握等差数列的性质,掌握基本不等式求最值中“1”的代换法.8.A解析:A【解析】分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集.详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.9.C解析:C 【解析】因为a >2,所以a -2>0,所以()112222m a a a a =+=-++≥--24+=,当且仅当a =3时取等号,故[4m ∈,)+∞.由b ≠0得b 2>0,所以2-b 2<2,所以222b -<4,即n <4,故()0,4n ∈.综 上可得m >n ,故选C .10.B解析:B 【分析】画出不等式组表示的区域,将目标函数2z x y =-转化为22x zy =-,表示斜率为12截距为2z-平行直线系,当截距最小时,z 取最大值,由图即可求解. 【详解】解:画出不等式组表示的区域,如图中阴影部分所示:故将目标函数2z x y =-转化为22x z y =-, 表示斜率为12截距为2z -平行直线系, 所以当截距最小时,z 取最大值,由图可知,使得直线22x zy =-经过可行域且截距最小时的解为22,33C ⎛⎫ ⎪⎝⎭, 此时242333max z =-=-. 故选:B 【点睛】本题考查了线性规划的应用,注意将目标函数化成斜截式,从而由截距的最值确定目标函数的最值.11.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以121212()12()()22233333x x x x x x f x f x -----+++⋅=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】设方程化简为得到再结合基本不等式得到根据一元二次不等式不等式的解法即可求解【详解】设因为可得所以解得或又由当且仅当时即时等号成立整理得解得所以即则的取值范围为故答案为:【点睛】方法点睛:设利解析:(1,2]. 【分析】设23m n t =+,方程化简为221523m n t t --=⨯⨯,得到2210t t -->,再结合基本不等式,得到23440t t --≤,根据一元二次不等式不等式的解法,即可求解. 【详解】 设23m n t =+,因为242329231m m n n m n ⨯-⋅+⨯=++,可得221523m n t t --=⨯⨯, 所以2210t t -->,解得1t >或12t <-, 又由222235215235()24m n mnt t t +--=⨯⨯≤⨯=, 当且仅当23m n =时,即0m n ==时等号成立,整理得23440t t --≤,解得223t -≤≤, 所以12t <≤,即则23m n +的取值范围为(1,2].故答案为:(1,2]. 【点睛】方法点睛:设23m n t =+,利用换元法把方程化简为221523m n t t --=⨯⨯,根据指数函数的性质和基本不等式,得出不等式2210t t -->和23440t t --≤是解答的关键.14.【分析】利用1的替换求出的最小值再解不等式即可【详解】因为当且仅当即时等号成立所以解得故答案为:【点睛】本题主要考查基本不等式求最值涉及到解一元二次不等式是一道中档题解析:3,32⎡⎤-⎢⎥⎣⎦【分析】利用“1”的替换求出2x y +的最小值92,再解不等式23922m m -≤即可.【详解】 因为121122192()(2)(5)(54)2222y x x y x y x y x y +=++=++≥+=,当且仅当22y x x y=, 即32x y ==时等号成立,所以23922m m -≤,解得332m -≤≤.故答案为:3,32⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查基本不等式求最值,涉及到解一元二次不等式,是一道中档题.15.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案.【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭, 当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.16.【解析】分析:画出不等式组表示的平面区域因为直线的斜率为由可得因为直线的斜率为-1所以当直线过点时取得最小值1可得利用基本不等式可得详解:画出不等式组表示的平面区域为及其内部如图由可得点当直线过点时解析:【解析】分析:画出不等式组表示的平面区域,因为直线(0)z ax by a b =+>>的斜率为a kb =-,由0a b >>可得10ak b-<=-<,因为直线40x y +-=的斜率为-1,所以当直线z ax by =+过点(1,1)B 时,取得最小值1.可得1a b +=.282828()()10b a a b a b a b a b+=++=++,利用基本不等式可得2828281010218b a b a a b a b a b+=++≥+⨯=. 详解:画出不等式组表示的平面区域为ABC ∆及其内部,如图. 由10y x y -=⎧⎨-=⎩ 可得点(1,1)B .当直线z ax by =+过点(1,1)B 时,取得最小值1.所以1a b +=. 所以28282828()()1010218b a b a a b a b a b a b a b+=++=++≥+⨯=. 当且仅当2810,0b aa b a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩即12,33a b ==时,上式取“=”号.所以28a b+的最小值为18. 点睛:⑴ 线性规划问题应先画出平面区域,求(0)z ax by a b =+>>的最值时,当0b >时,直线z ax by =+越向上平移,z 取值越大;当0b <时,直线z ax by =+越向上平移,z 取值越小;⑵ 用基本不等式求最值时,和定积最大,积定和最小.若,a b m m +=为常数,则111111()()(2)b aa b a b m a b m a b+=++=++,然后利用基本不等式求最值即可. 17.【解析】试题分析:因故又因为因故即所以故应填答案考点:基本不等式的运用【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知 解析:()8,1,+∞【解析】试题分析:因20x y xy +-=,故,又因为.因,故,即,所以.故应填答案.8,1y >.考点:基本不等式的运用.【易错点晴】基本不等式是高中数学中的重要内容和解答数学问题的重要工具之一.本题设置的目的是考查基本不等式的灵活运用和灵活运用所学知识去分析问题解决问题的能力.求解时先将已知20x y xy +-=,变形为,然后将其代入可得,最后达到获解之目的.关于的范围问题,则借助题设条件,推得,解之得.18.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF x AB y AC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.19.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围. 【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭. 因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解. 【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)5{|5}3x x -≤≤;(2) 5a ≤. 【解析】试题分析:(1) 零点分段法去绝对值,将()f x 表示成分段函数,由此解得解集为55,3⎡⎤-⎢⎥⎣⎦;(2)原不等式等价于23x x a -++≥恒成立.左边()23235x x x x -++≥--+=,故5a ≤.(1)1.当0x ≤时,()22322350f x x x x x x =--+=-++=+≥ 解得50x -≤≤2.当2x ≥时,()22322310f x x x x x x =--+=--+=-+≥ 解得无解3.当02x <<时,()223223350f x x x x x x =--+=--+=-+≥ 解得503x <≤综上可知不等式解集5{|5}3x x -≤≤(2)()3f x a x ≥-恒成立,即()23f x x x a =-++≥恒成立()23235x x x x -++≥--+=,故有5a ≤.22.在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【分析】作出可行域,作出目标函数对应的直线,平移直线可得最优解. 【详解】作出可行域,如图ABC 内部(含边界),由2=030x y x -+⎧⎨-=⎩得()3A ,5,由+4=030x y x -⎧⎨-=⎩得()31B ,,由2=0+40x y x y -+⎧⎨-=⎩得()13C ,,作直线:230l x y -=,向上平移直线l ,z 减小,当l 过点()3A ,5时,z 取得最小值23359⨯-⨯=-;向下平移直线l ,z 增大,当l 过点()31B ,时,z 取得最大值23313⨯-⨯=;所以目标函数23z x y =-在35x y =⎧⎨=⎩时,取得最小值min 9z =-,在31x y =⎧⎨=⎩时,取得最大值max 3z =.【点睛】本题考查简单的线性规划问题,解题方法是作出可行域,作出线性目标函数对应的直线,平移直线求得最优解,如果目标函数不是线性的,则可根据其几何意义求解,如直线的斜率、两点间的距离等,属于中档题.23.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=,则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立). 故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型. 24.(1)证明见解析;(2)1.【分析】(1)对不等式两边式子作差,分解因式,判断作差的结果的符号,可得证.(2)根据2a b ab +=,可得2ab a b =+≥1,进而求得1≥ab ,注意等号成立的条件,得到结果. 【详解】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥, ∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥ ∴1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1. 【点睛】该题主要是考查不等式的证明和运用基本不等式求最值,在证明不等式时,可以运用综合法也可以运用分析法,一般的比较大小的最重要的方法就是作差法,然后结合综合法和分析法来一起证明,属于中档题.25.(1)证明见解析;(2)12x x >;(3)答案见解析 【分析】 (1)取yy x x=⋅,代入已知等式即可证得结果; (2)由()()12f x f x <,结合(1)中等式()()y f f y f x x ⎛⎫=-⎪⎝⎭,得到120x f x ⎛⎫< ⎪⎝⎭,再根据当且仅当1x >时,()0f x <成立得到121x x >,从而得到12x x >; (3)在已知等式中取特值1x y ==求出()10f =,由(2)可知函数f (x )在定义域()0,∞+上是减函数,在不等式()2110f x a x a ⎡⎤-+++>⎣⎦中,用()1f 替换0后利用函数的单调性脱掉“f ”,则不等式的解集可求. 【详解】(1)证明:∵()()()f xy f x f y =+,∴()()y f f x f y x ⎛⎫+=⎪⎝⎭, ∴()()y f f y f x x ⎛⎫=-⎪⎝⎭; (2)解:∵()()12f x f x <,∴()()120f x f x -<,又()()11220x f f x f x x ⎛⎫=-< ⎪⎝⎭,所以120x f x ⎛⎫< ⎪⎝⎭,∵当且仅当1x >时,()0f x <成立,∴当()0f x <时,1x >,∴121x x >,12x x >; (3)解:1x y ==代入()()()f xy f x f y =+得()()()111f f f =+,即()10f =, ∴()2110f x a x a ⎡⎤-+++>⎣⎦可得()()2111f x a x a f ⎡⎤-+++>⎣⎦,由(2)可知函数()f x 在定义域()0,∞+上是减函数,∴()20111x a x a <-+++<,当13a -<<时,()()22141230a a a a ∆=+-+=--<, 所以()2110x a x a -+++>恒成立;故只需满足()2111x a x a -+++<即()210x a x a -++<成立即可;即()()10x a x --<.当11a -<<时,1<<a x ;当1a =时,x ∈∅; 当13a <<时,1x a <<;综上可得:当11a -<<时,(),1x a ∈;当1a =时,x ∈∅;当13a <<时,()1,x a ∈ 【点睛】本题考查了函数单调性的定义,考查了含参一元二次不等式的求解.本题的关键是由已知不等式结合函数的单调性得含有参数的不等式.26.(1)25-;(2)6⎛⎫-∞ ⎪ ⎪⎝⎭,-. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴k <∴k 的取值范围是(6-∞,- 【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式 与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
(好题)高中数学必修五第三章《不等式》测试题(含答案解析)
一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( ) A .12 B .45 C .92 D .4192.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4 B .[)0,4 C .()0,2 D .[)0,2 3.已知()()22log 1log 24a b -++=,则+a b 的最小值为( )A .8B .7C .6D .34.已知正实数a ,b 满足231a b +=,则12a b +的最小值为( ) A .15 B.8+C .16 D.8+5.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6-6.设x ,y 满足约束条件22032600,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则22a b +的最小值为( )A .254B .499C .14425D .225497.设,x y 满足约束条件0{4312x y x x y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5 B .2,6 C .[]2,10D .[]3,11 8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9> 9.已知点(x ,y )在直线x +2y =4上移动,则24x y +的最小值是( )A.B.C .6 D .8 10.已知0,0x y >>,且21x y +=,则xy 的最大值是( )A .14B .4C .18D .811.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.如果0a b >>,0t >,设b M a =,b t N a t +=+,那么( ) A .M N <B .M N >C .M ND .M 与N 的大小关系和t 有关二、填空题13.已知正数a ,b 满足30a b ab +-+=,则ab 的最小值是________.14.若,0x y >满足35x y xy +=,则34x y +的最小值是___________.15.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.16.已知关于x 的一元二次不等式220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,则228(0)a b b c b c+++≠+的最小值是___________. 17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 19.已知,x y 满足约束条件22022x y x y y +-≥⎧⎪+≤⎨⎪≤⎩,则目标函数z x y =-的最大值为_____.20.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.三、解答题21.设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集为(1,3)-,求,a b 的值;(2)若(1)2,0,0f a b =>>,求19a b+的最小值.22.用铁皮做一个体积为350cm ,高为2cm 的长方体无盖铁盒,这个铁盒底面的长与宽各为多少cm 时,用料最省?23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-.(1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数()f x = (1)若()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,求实数a 的值; (2)若()f x 的定义域为R ,求实数a 的取值范围.25.已知a >0,b >0,a +b =3.(1)求11+2+a b的最小值; (2)证明:92+a b b a ab26.已知关于x 的一元二次不等式()22600kx x k k -+<≠.(1)若不等式的解集是{|3x x <-或}2x >-,求k 的值;(2)若不等式的解集是R ,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值.【详解】作出可行域,如图ABC 内部(含边界), ()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min 2PM ==,(点M 到直线BC 的距离)∴()222x y +-的最小值是2922⎛= ⎝⎭.故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y b x a--:两点连线斜率, 2.B解析:B【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解.【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立,当0a =时,10>恒成立,满足题意,当0a ≠时,则2040a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4.故选:B.【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立.3.B解析:B【分析】由对数运算可得出()()1216a b -+=,利用基本不等式可求得+a b 的最小值.【详解】因为()()22log 1log 24a b -++=,即()()2log 124a b -+=⎡⎤⎣⎦,所以,()()1216a b -+=且有10a ->,20b +>,由基本不等式可得()()128a b -++≥=,所以,7a b +≥, 所以(1)(2)16a b -+=,且10a ->,20b +>,当且仅当124a b -=+=时等号成立.因此,+a b 的最小值为7.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=,则()121223888348a b a b a b a b a b ⎛⎫+=++=++≥+=+=+ ⎪⎝⎭仅当34b a b a =,即a b ==时等号成立,故12a b +的最小值为8+ 故选:D.【点睛】思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立.(1)积定,利用x y +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值; (3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.5.C解析:C【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由23z x y =-得到233z y x =-, 平移直线233z y x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A , 所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6.C解析:C【分析】根据z 的最大值求得,a b 的关系式,结合点到直线的距离公式,求得22a b +的最小值.【详解】由2203260x y x y -+=⎧⎨--=⎩解得43x y =⎧⎨=⎩. 画出可行域如下图所示,由于0,0a b >>,所以目标函数()0,0z ax by a b =+>>在点()4,3取得最大值4312a b +=.22a b +的最小值等价于原点到直线43120x y +-=的距离的平方,原点到直线43120x y +-=的距离为221212534-=+, 所以22a b +的最小值为212144525⎛⎫= ⎪⎝⎭. 故选:C【点睛】本小题主要考查根据线性规划的最值求参数,考查数形结合的数学思想方法,属于中档题. 7.D解析:D【分析】试题分析:作出不等式组0{4312x y x x y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.8.C解析:C【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围【详解】由()()()123f f f -=-=-可得184********a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<,故选C .【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.D解析:D【分析】 运用基本不等式2422422x y x y +≥=【详解】因为20,40x y >>,所以224228x y x y ++≥===,(当且仅当24x y =时取“=”).故答案为D.【点睛】利用两个数的基本不等式求函数的最值必须具备三个条件:①各项都是正数; ②和(或积)为定值; ③等号取得的条件.10.C解析:C【分析】根据基本不等式求解即可得到所求最大值.【详解】由题意得,221121112222228x y xy xy +⎛⎫⎛⎫=⨯≤⨯=⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当11,42x y ==时等号成立,所以xy 的最大值是18. 故选C .【点睛】 运用基本不等式解题时,既要掌握公式的正用,也要注意公式的逆用,例如222a b ab+≥逆用就是222a b ab +;,0)2a b a b +≥>逆用就是2(,0)2a b ab a b +⎛⎫> ⎪⎝⎭等.当应用不等式的条件不满足时,要注意运用“添、拆项”等技巧进行适当的变形,使之满足使用不等式的条件,解题时要特别注意等号成立的条件. 11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C ,平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.A解析:A【分析】对M 与N 作差,根据差值的正负即可比较大小.【详解】()()()()()b a t a b t t b a b b t M N a a t a a t a a t +-+-+-=-==+++,因为0a b >>,所以0b a -<, 又0t >,所以0a t +>,所以()()0t b a a a t -<+,即0M N -<,所以M N <. 故选:A【点睛】本题主要考查作差法比较大小,考查学生的化简分析能力,属于常规题型.二、填空题13.9【分析】由已知结合基本不等式即可直接求解【详解】为正实数当且仅当时取等号即解得:或(舍去)当且仅当时取等号即的最小值是9故答案为:9【点睛】关键点点睛:本题主要考查了利用基本不等式求最值解题的关键解析:9 【分析】由已知结合基本不等式a b +≥,即可直接求解. 【详解】30a b ab +-+=,3a b ab ∴+=-,a b 为正实数,a b ∴+≥a b =时取等号,3ab ∴-≥30ab ∴-≥,即)310≥3≥1≤-(舍去),9ab ∴≥,当且仅当3a b ==时取等号,即ab 的最小值是9.故答案为:9 【点睛】关键点点睛:本题主要考查了利用基本不等式求最值,解题的关键是利用基本不等式将已的一元二次不等式,进而解不等式得解,考查学生的转化思想与运算能力,属于基础题.14.【分析】化简得到结合基本不等式即可求解【详解】由满足可得则当且仅当时即时等号成立所以的最小值是故答案为:【点睛】通过常数代换法利用基本不等式求解最值的基本步骤:(1)根据已知条件或其变形确定定值(常 解析:5【分析】化简35x y xy +=,得到315x y +=,134(34)()531x y x y x y⋅+++=,结合基本不等式,即可求解. 【详解】由,0x y >满足35x y xy +=,可得315x y+=, 则311134(34)()(13123)55y x x y x y y x yx +=⋅++=++⨯11(13(1312)555≥⋅+=+=,当且仅当123y x x y =时,即21x y ==时等号成立,所以34x y +的最小值是5. 故答案为:5.【点睛】通过常数代换法利用基本不等式求解最值的基本步骤: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求的最值的表达式相乘或相除,进而构造或积为定值的形式; (4)利用基本不等式求最值.15.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可. 【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B .代入目标函数z y x =-,得044z =-=-. 所以z y x =-的最小值是4-. 故答案为:4- 【点睛】方法点睛:线性规划问题解题步骤如下: (1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域); (5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.16.【分析】根据一元二次不等式的解集求得的关系再根据均值不等式求得最小值【详解】因为的解集为得得又所以所以由均值不等式得所以当时取等号故的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点 解析:【分析】根据一元二次不等式的解集求得,,a b c 的关系,再根据均值不等式求得最小值. 【详解】因为220bx x a -->的解集为{}(,,)xx c a b c R ≠∈∣,得0b >,440ab ∆=+=,得1ab =-,又1c b=,所以a c =-,所以0b c +>,由均值不等式得2b c +≥=, 所以()()22222228688b c bc b c a b c b b c b c b c b c+-+++++++===++++ ()6b cb c =++≥+,当b c +=228a b b c+++的最小值是故答案为:【点睛】用均值不等式解最值问题是本题的解题关键点.17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2 【详解】根据题意得到如图可行域 是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22zy x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.18.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题 解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()3199933366212b a a a b b a b a b a b a b a b ⎛⎫++=+++=++≥+⋅= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.19.【分析】画出可行域和目标函数根据目标函数的几何意义得到答案【详解】如图所示:画出可行域和目标函数则则表示直线在轴的截距的相反数根据图像知当直线过点时即时有最大值为故答案为:【点睛】本题考查了线性规划 解析:2【分析】画出可行域和目标函数,根据目标函数的几何意义得到答案. 【详解】如图所示:画出可行域和目标函数,z x y =-,则y x z =-,则z 表示直线在y 轴的截距的相反数,根据图像知当直线过点()2,0时,即2x =,0y =时,z 有最大值为2. 故答案为:2.【点睛】本题考查了线性规划问题,画出图像是解题的关键.20.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.三、解答题21.(1)14a b =-⎧⎨=⎩;(2)16.【分析】(1)由不等式()0f x >的解集(1,3)-.1-,3是方程()0f x =的两根,由根与系数的关系可求a ,b 值;(2)由()12f =,得到1a b +=,将所求变形为1(9)()a ba b ++展开,利用基本不等式求最小值. 【详解】解:(1)∵()2230ax b x +-+>的解集为()1,3-,1,3∴-是()2230ax b x +-+=的两根,21313413b a a b a -⎧-+=-⎪=-⎧⎪∴⇒⎨⎨=⎩⎪-⨯=⎪⎩.(2)由于()12f =,0a >,0b >, 则可知232a b +-+=, 得1a b +=,所以199()()101016b a a b a b a b ++=++≥+=, 当且仅当9b aa b=且1a b +=, 即1434a b ⎧=⎪⎪⎨⎪=⎪⎩时成立,所以19a b +的最小值为16. 【点睛】易错点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 22.铁盒底面的长与宽均为5cm 时,用料最省. 【分析】法一:因为体积为350cm 高为2cm ,所以底面积是定值25,设长为xcm ,则宽为25x,列出表面积结合基本不等式即可;法二:列出表面积后,利用求导函数的方法求最值. 【详解】解法1:设铁盒底面的长为xcm ,宽为25x,则.. 表面积251002544425S x x x x=++⨯=++..2565≥=.. 当且仅当25x x=,即5x =时,表面积有最小值65. 所以这个铁盒底面的长与宽均为5cm 时,用料最省. 答:这个铁盒底面的长与宽均为5cm 时,用料最省. 解法2:设铁盒底面的长为xcm ,宽为25x,表面积为2ycm ,则. ()2510025444250y x x x x x=++⨯=++>22210041004x y x x -'=-=.. 令2241000x y x-'==得,5x =. 当()0,5x ∈时,0y '<,函数224100x y x -'=为减函数; 当()5,+∈∞x 时,0y '>,函数224100x y x -'=为增函数;所以当5x =时,y 有最小值65.答:这个铁盒底面的长与宽均为5cm 时,用料最省. 23.(1)2()2f x x =-,()g x x =;(2)答案见解析. 【解析】试题分析:(1)根据函数奇偶性的性质利用方程组法即可求f (x )和g (x )的解析式;(2)()()h x g x < 即()23130mx m x +--<,讨论当0m =时,当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m =,23x =-,比较1m与-3的大小,进行讨论; 试题(1)由题意()()22f x g x x x -+-=--,即()()22f x g x x x -=--,又()()22f x g x x x +=+-联立得()22f x x =-,()g x x =.(2)由题意不等式即()23130mx m x +--<,当0m =时,即30x --<,解得3x >-;当0m ≠时,即()()130mx x -+<,对应方程的两个根为11x m=,23x =-, 故当0m >时,易知13m >-,不等式的解为13x m-<<; 当0m <时,若13m >-,即13m <-时,不等式的解为3x <-或1x m>; 若13m =-,即13m =-时,不等式的解为3x ≠-; 若13m <-,即13m >-时,不等式的解为1x m<或3x >-; 综上所述,当13m <-时,不等式的解为1|3x x x m 或⎧⎫-⎨⎬⎩⎭;当103m -≤<时,不等式的解集为1|3x x x m ⎧⎫-⎨⎬⎩⎭或;当0m =时,不等式的解集为{}3x x -; 当0m >时,不等式的解集为1|3x x m ⎧⎫-<<⎨⎬⎩⎭. 点睛:本题主要考查根据奇偶性的定义利用方程组法求函数解析式及求含参的一元二次不等式解集;在讨论时从二次项系数等于0,不等于0入手,当不等于0时,往往先对式子进行因式分解得出对应二次方程的根,然后比较根的大小,讨论要不重不漏. 24.(1) 2a = (2) 7,19a ⎡⎤∈-⎢⎥⎣⎦【分析】(1)根据题意定义域为2,13⎡⎤-⎢⎥⎣⎦,可知不等式()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦,根据一元二次不等式解集与一元二次方程根的关系即可求解. (2)()f x 的定义域为R ,可知不等式()()221120a x a x ---+≥恒成立,然后讨论二次项系数,借助二次函数的性质即可求解. 【详解】解:(1)()f x 的定义域为2,13⎡⎤-⎢⎥⎣⎦,即()()221120a x a x ---+≥的解集为2,13⎡⎤-⎢⎥⎣⎦, 故()()()()22210221*********a a a a a ⎧-<⎪⎪⎛⎫-⋅---+=⎨ ⎪⎝⎭⎪⎪---+=⎩,解得2a =;(2)()f x 的定义域为R ,即()()221120ax a x ---+≥恒成立,当210a -=时,1a =±,经检验只有1a =满足条件;当210a -≠时,()()222101810a a a ⎧->⎪⎨∆=---≤⎪⎩,解得7,19a ⎡⎫∈-⎪⎢⎣⎭, 综上,7,19a ⎡⎤∈-⎢⎥⎣⎦. 【点睛】本题主要考查函数的定义域、一元二次不等式的解法、一元二次不等式与二次函数的关系,综合性比较强. 25.(1)45;(2)证明见解析【分析】 (1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】(1)3a b +=,()215a b ++∴=,且200a b +>>,,∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a bb aab,需证2292a b +≥,因为()222239222a b a b ++≥==, 所以92+a bb a ab ,当且仅当32a b ==时等号成立. 【点睛】本题考查条件等式求最值、基本不等式的应用,属于中档题.26.(1)25-;(2)6⎛⎫-∞ ⎪ ⎪⎝⎭,-. 【分析】(1)由不等式的解集为{}32x x x <->-或知0k <,且3-,2-是方程2260kx x k -+=的两根,代入可解.(2)不等式的解集为R ,知二次函数图像恒在x 轴下方,则利用0k <且24240k ∆=-<可解【详解】(1)∵不等式的解集为{}32x x x <->-或 ∴3-,2-是方程2260kx x k -+=的两根,且0k < ∴25k =-(2)∵不等式的解集为R ∴0k <且24240k ∆=-<∴k<-6∴k的取值范围是(-∞,【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.。
(好题)高中数学必修五第三章《不等式》测试(有答案解析)
一、选择题1.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .952.已知正实数a ,b 满足231a b +=,则12a b+的最小值为( ) A .15B.8+C .16D.8+3.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.若,x y 满足条件11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩,则2z x y =-+的最大值为( )A .1B .12-C .2D .-57.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .18.设,x y 满足约束条件0{4312x y xx y ≥≥+≤,且231x y z x ++=+,则z 的取值范围是( ) A .[]1,5B .2,6C .[]2,10D .[]3,119.已知实数x ,y 满足222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,3z x y =-,则z 的最小值是( )A .2-B .4-C .6-D .8-10.下列函数中最小值为4 的是( ) A .4y x x=+ B .4sin sin y x x=+(0πx << ) C .343xx y -=+⨯D .lg 4log 10x y x =+11.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( ) A.BC .1D .212.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .2二、填空题13.设,x y 满足约束条件20240280x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则z y x =-的最小值是__________.14.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.15.正实数,x y 满足1x y +=,则12y x y++的最小值为________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.已知实数x ,y 满足x y 10x y 20x 0-+≤⎧⎪+-≤⎨⎪≥⎩,则z x 2y =-的最大值为______.18.已知不等式24xa x ≤+对任意的[]1,3x ∈恒成立,则实数a 的范围为_______. 19.已知0,0ab >>,且33+122a b =++,则2+a b 的最小值为______________.20.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 三、解答题21.设函数2()f x x ax b =-+.(1)若不等式()0f x <的解集是{23}xx <<∣,求不等式210bx ax -+<的解集; (2)当3b a =-时,()0f x ≥恒成立,求实数a 的取值范围.22.给出下面三个条件:①函数()y f x =的图象与直线1y =-只有一个交点;②函数(1)f x +是偶函数;③函数()f x 的两个零点的差为2,在这三个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定问题:二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-,且___________(填所选条件的序号).(1)求()f x 的解析式;(2)若对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立,求实数m 的取值范围; (3)若函数()()(21)3232xxg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (*x ∈N )名员工从事第三产业,调整后他们平均每人每年创造利润为310500x a ⎛⎫-⎪⎝⎭万元(0a >),剩下的员工平均每人每年创造的利润可以调高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?25.已知函数()245y x x x R =-+∈.(1)求关于x 的不等式2y <的解集;(2)若不等式3y m >-对任意x R ∈恒成立,求实数m 的取值范围. 26.已知函数()0f x m =≥恒成立.(1)求m 的取值范围;(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩ ,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242x y z x +-=-,并理解z 的几何意义,利用数形结合分析问题.2.D解析:D 【分析】妙用“1”的代换,利用()121223a b a b a b ⎛⎫+=++ ⎪⎝⎭拼凑基本不等式,求和式的最小值即可. 【详解】正实数a ,b 满足231a b +=, 则()12122388282343412843a b a b a b a b a b a b a b⎛⎫+=++=++≥+⋅=+=+ ⎪⎝⎭仅当34b a b a =,即3133,46a b -==时等号成立,故12a b +的最小值为843+ 故选:D. 【点睛】 思路点睛:利用基本不等式求最值时,需注意取等号条件是否成立. (1)积定,利用2x y xy +≥,求和的最小值;(2)和定,利用()24x y xy +≤,求积的最大值;(3)已知和式(倒数和)或为定值时,妙用“1”拼凑基本不等式求最值.3.A解析:A【分析】根据约束条件作出可行域,将目标函数变形为122zy x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值. 【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122zy x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-. 故选:A 【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是: (1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z =3x ﹣2y 变形为y =32x ﹣2z,由024y x y =⎧⎨-=⎩,解得B (2,0)当此直线经过图中B 时,在y 轴的截距最大,z 最小, 所以z 的最小值为3×2﹣2×0=6; 故选C .【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A 【解析】作出不等式组11x y x y y ≥⎧⎪+≤⎨⎪≥-⎩表示的平面区域,如图,得到如图的ABC 及其内部,其中()()111,1,2,1,,22A B C ⎛⎫--- ⎪⎝⎭,设2z x y =-+,将直线:2l z x y =-+进行平移,当l 经过点A 时,目标函数z 达到最大值,∴()=211=1Z -⨯--最大值,故选A.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.C解析:C 【分析】作出约束条件的可行域,将目标函数转化为122zy x =-,利用线性规划即可求解. 【详解】解:由2z x y =-得122z y x =-, 作出x ,y 满足约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC ):平移直线122z y x =-, 由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小,420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.8.D解析:D 【分析】试题分析:作出不等式组0{4312x y xx y ≥≥+≤表示的平面区域,如下图阴影部分所示,目标函数()()12123112111x y x y y z x x x ++++++===+⨯+++表示可行域内的点到()1,1--的连线的斜率,其斜率的最小值为min 1,k =最大值为 ()()max 41501k --==--,所以z 的取值范围是[]3,11,故选D.考点:简单的线性规划.【方法点晴】本题主要考查了简单的线性规划,属于中档题.线性规划问题首先要作出准确、清晰的可行域,这是正确解题的前提,其次是找准目标函数的几何意义,常见的有“截距型”、“距离型”和“斜率型”,本题中通过吧目标函数231x y z x ++=+变形可知其表示可行域内的点到点 ()1,1--连线斜率的2倍在加上 1,这样问题就转化为求可行域内的点与定点连线的斜率的范围问题,通过数形结合就容易解答了.9.D解析:D 【分析】根据约束条件画出可行域,将问题转化为133zy x =-在y 轴截距最大值的求解问题,利用数形结合的方式可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由3z x y =-得:133zy x =-, ∴当z 取最小值时,133zy x =-在y 轴截距最大; 由图象可知,当133zy x =-过点A 时,在y 轴截距最大,由222x x y =-⎧⎨+=⎩得:()2,2A -,min 2328z ∴=--⨯=-. 故选:D .【点睛】本题考查线性规划中的最值问题的求解,关键是能够将所求最值转化为直线在y 轴截距的最值的求解问题,属于常考题型.10.C解析:C【解析】 A. 4y x x=+,定义域为()(),00,-∞⋃+∞,故A 的最小值不为4; B .令2440110sinx t y t y t t (,),,<,=∈∴=+'=- 因此函数单调递减,5y ∴>,不成立.C .4y ≥=, 当且仅当0x =时取等号,成立.D .01x ∈(,)时,330x log x log ,<, 不成立. 故选C .11.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.B解析:B【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值.【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4.故选:B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.二、填空题13.【分析】作出不等式组对应的平面区域利用目标函数的几何意义结合数形结合进行求解即可【详解】由得作出不等式组对应的平面区域如图(阴影部分平移直线由图象可知当直线经过点时直线的截距最小此时也最小由解得即代 解析:4-【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.【详解】由z y x =-得y =x+z ,作出不等式组对应的平面区域如图(阴影部分):ABC平移直线y =x+z 由图象可知当直线y =x+z 经过点B 时,直线y =x+z 的截距最小,此时z 也最小,由240280x y x y +-=⎧⎨--=⎩,解得40x y =⎧⎨=⎩,即(4,0)B . 代入目标函数z y x =-,得044z =-=-.所以z y x =-的最小值是4-.故答案为:4-【点睛】方法点睛:线性规划问题解题步骤如下:(1)根据题意,设出变量,x y ;(2)列出线性约束条件;(3)确定线性目标函数(,)z f x y =;(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系()(y f x z =为参数);(6)观察图形,找到直线()(y f x z =为参数)在可行域上使z 取得欲求最值的位置,以确定最优解,给出答案.14.【分析】由已知条件得出由得出可得出利用基本不等式可求得所求代数式的最小值【详解】已知实数均为正实数且可得所以可得令则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最 211- 【分析】由已知条件得出43y x =,2443z x x =-,由0z >得出03x <<,可得出71143x y x y t z t ++-=+-,利用基本不等式可求得所求代数式的最小值. 【详解】已知实数x 、y 、z 均为正实数,且3z x y +=,4z y x+=,可得34z y xy x xy =-=-,43y x ∴=,所以,2443z x x =-, ()2717134343343x x y x y x x z x x x +∴+-=-=---, ()24443033z x x x x =-=->,可得03x <<,令()30,3t x =-∈,则3x t =-, 所以,()()717171311143343433x y x y x t t z x t t ++-=-=--=+-≥=--.当且仅当2t =时,等号成立, 因此,x y x y z ++-的最小值为13-.故答案为:13-. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】根据题中条件由展开后利用基本不等式即可求出结果【详解】因为正实数xy 满足所以当且仅当即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三 解析:7【分析】根据题中条件,由1222()2212y x y x y y x x y x y x y++++=+=+++,展开后,利用基本不等式,即可求出结果.【详解】因为正实数x ,y 满足1x y +=,所以1222()221237y x y x y y x x y x y x y ++++=+=+++≥+=, 当且仅当y x x y =,即1212x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 故答案为:7.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点 解析:10【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论.【详解】解:作出不等式组对于的平面区域如图:由32z x y =+,则322z y x =-+, 平移直线322z y x =-+, 由图象可知当直线322z y x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由20y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=,故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键. 17.-2【详解】根据题意得到如图可行域是封闭的三角形顶点是(01)()(02)目标函数可得到当目标函数过点A(01)有最大值-2故得到答案为:-2点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内解析:-2【详解】根据题意得到如图可行域是封闭的三角形,顶点是(0,1) (13,22)(0,2)目标函数2z x y =-,1,22z y x =-可得到当目标函数过点A(0,1),有最大值-2, 故得到答案为:-2.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a ++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值. 18.【分析】利用基本不等式求得在的最大值即可求得实数的范围【详解】因为则当且仅当时即等号成立即在的最大值为又由不等式对任意的恒成立所以即实数的范围为故答案为:【点睛】本题主要考查不等式的恒成立问题其中解 解析:1[,)4+∞. 【分析】 利用基本不等式求得24x x +在[]1,3x ∈的最大值,即可求得实数a 的范围. 【详解】 因为[]1,3x ∈,则211444x x x x =≤=++,当且仅当4x x =时,即2x =等号成立, 即24x x +在[]1,3x ∈的最大值为14, 又由不等式24x a x ≤+对任意的[]1,3x ∈恒成立,所以14a ≥ 即实数a 的范围为1[,)4+∞. 故答案为:1[,)4+∞. 【点睛】 本题主要考查不等式的恒成立问题,其中解答中熟练应用基本不等式求得24x x +的最大值是解答的关键,着重考查推理与运算能力. 19.【分析】先利用基本不等式求得的最小值进而求得的最小值即可得到答案【详解】由题意设又由当且仅当时即时等号成立即的最小值为所以的最小值是故答案为【点睛】本题主要考查了利用基本不等式求最值问题其中解答中先解析:3【分析】先利用基本不等式求得(2)2(2)a b +++的最小值,进而求得2+a b 的最小值,即可得到答案.【详解】由题意,设26(2)2(2)z a b a b =++=+++, 又由()()3232336(2)6(2)[(2)2(2)]()992962222222a a b b a b a b a b a b +++++++⋅+=++≥+⨯=+++++++,当且仅当()326(2)=22a b a b ++++时,即22(2)a b +=+时等号成立, 即z 的最小值为962+,所以2+a b 的最小值是623+.故答案为623+.【点睛】本题主要考查了利用基本不等式求最值问题,其中解答中先利用基本不等式求得(2)2(2)a b +++的最小值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.20.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A , 联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤, 所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.三、解答题21.(1)13x x ⎧<⎨⎩或12x ⎫>⎬⎭;(2)62a -≤≤. 【分析】 (1)先由一元二次不等式的解集确定对应方程的根,再利用根与系数的关系即得结果; (2)开口向上的二次函数大于等于恒成立,只需限定判别式0∆≤,即解得参数范围.【详解】解:(1)因为不等式20x ax b -+<的解集是{}|23x x <<,所以 2 3x x ==,是方程20x ax b -+=的解 由韦达定理得: 5 6a b ==,, 故不等式210bx ax -+>为26510x x -+>,解不等式26510x x -+>得其解集为13x x ⎧<⎨⎩或12x ⎫>⎬⎭(2)当3b a =-时,2()30f x x ax a =-+-≥恒成立,则2Δ4(3)0a a =--≤,即24120a a +-≤,解得62a -≤≤,所以实数a 的取值范围为62a -≤≤.【点睛】二次函数2()f x ax bx c =++的恒成立问题的解决方法:(1)0a >时()0f x ≥在R 上恒成立等价于对应方程的判别式Δ0≤成立;(2)0a <时()0f x ≤在R 上恒成立等价于对应方程的判别式Δ0≤成立.22.(1). 2()2f x x x =-;(2). 16m ≤- (3). 12t >或12t -= 【分析】(1).首先根据(1)()21f x f x x +-=-求得,a b 的值,再根据① ② ③ 解得c 的值;(2). 将任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立问题转化为2()m f t ≤-在[]2,3t ∈-上恒成立的问题,从而转化为最值问题进行求解;(3).将问题转化为方程()(21)220m t f m ---=有且仅有一个正实根,接着对参数进行分类讨论即可.【详解】(1)因为二次函数2()f x ax bx c =++满足(1)()21f x f x x +-=-又22(1)()(1)(1)2f x f x a x b x c ax bx c ax a b +-=++++---=++,所以212x ax a b -=++,221a a b =⎧∴⎨+=-⎩解得:12a b =⎧∴⎨=-⎩ 因为二次函数2()2f x x x c =-+选① :因为函数()y f x =的图象与直线1y =-只有一个交点,所以2(1)11f c -=+=- 0c ∴=;选② :因 为 函数(1)f x +是偶函数,所以22(1)=(1)2(1)1f x x x c x c ++-++=+-,所以c 取任意值.选③ :设 12,x x 是函数()f x 的两个零点,则122x x -=,由韦达定理可知:12122,x x x x c +==所以122x x -=解得:0c ;综上:()f x 的解析式为2()2f x x x =-.(2) 因为对任意()31,27,2log 09x f x m ⎡⎤∈+⎢⎥⎣⎦恒成立, 32(log )m f x ∴≤-,[]31,27,log 2,39x x ⎡⎤∈∴∈-⎢⎥⎣⎦令3log t x =, 原不等式等价于2()m f t ≤-在[]2,3t ∈-上恒成立min (2())2(2)16m f t f ∴≤-=--=-,所以实数m 的取值范围为16m ≤-.(3) 因为函数()()(21)3232x x g x t f =--⨯-有且仅有一个零点, 令30x m =>,所以方程()(21)220m t f m ---=有且仅有一个正实根,因为2()2f x x x =-即2(21)420t m tm ---=有且仅有一个正实根,当21=0t -即12t =时,220m --=解得1m =-不合题意; 当210t ->即12t >时, 2(21)420t m tm ---=表示的二次函数对应的函数图像是开口向上的抛物线,又恒过点(0,2)-,所以方程2(21)420t m tm ---=恒有一个正实根;当210t -<即12t时, 要想2(21)420t m tm ---=有且仅有一个正实根, 只有()21682102021t t t x t ⎧=+-=⎪⎨=>⎪-⎩对解得:12t -=, 综上:实数t 的取值范围为12t >或12t -=. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.23.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1)最多调整500名员工从事第三产业;(2)(]0,5.【分析】(1)根据题意可列出()()10100010.2%101000x x -+≥⨯,进而解不等式求得x 的范围,确定问题的答案.(2)根据题意分别表示出从事第三产业的员工创造的年总利润和从事原来产业的员工的年总利润,进而根据题意建立不等式,根据均值不等式求得求a 的范围.【详解】(1)由题意,得()()10100010.2%101000x x -+≥⨯,即25000x x -≤,又0x >,所以0500x <≤,即最多调整500名员工从事第三产业;(2)从事第三产业的员工创造的年总利润为310500⎛⎫-⎪⎝⎭x a x 万元, 从事原来产业的员工的年总利润为110(1000)1500⎛⎫-+ ⎪⎝⎭x x 万元, 则311010(1000)1500500x a x x x ⎛⎫⎛⎫-≤-+ ⎪ ⎪⎝⎭⎝⎭, 所以23500x ax -≤2110002500x x x +--, 所以221000500x ax x ≤++,即210001500x a x ≤++在(]0,500x ∈时恒成立,因为210004500x x+≥=, 当且仅当21000500x x =,即500x =时等号成立,所以5a ≤, 又0a >,所以05a <≤,所以a 的取值范围为(]0,5.【点睛】本题主要考查了基本不等式在求最值问题中的应用,考查了学生综合运用所学知识,解决实际问题的能力,属于常考题. 25.(1){|13}x x <<;(2)()24.,【分析】(1)利用一元二次不等式的解法求解即得;(2)根据不等式恒成立的意义,确定求函数245y x x =-+的最小值,并利用配方法求得最小值,将问题转化为解关于m 的简单的绝对值不等式,根据绝对值的意义即可求解.【详解】(1)由2y <得2430x x -+<,即13x <<,所以2y <的解集为{|13}x x <<;(2)不等式3y m >-对任意x R ∈恒成立3min m y ⇔-<,由()224521y x x x =-+=-+得y 的最小值为1, 所以31m -<恒成立,即131m -<-<,所以24m <<,所以实数m 的取值范围为()2,4.【点睛】本题考查不含参数的一元二次不等式的求解;考查不等式在实数集上恒成立问题,涉及二次函数的最值和简单绝对值不等式的求解,属基础题,难度一般.26.(1)4m ≤;(2)94. 【分析】(1)函数()0f x m =≥恒成立,即+130x x m +--≥恒成立,设函数()+13g x x x =+-,则()min m g x ≤,利用绝对值不等式的性质求得()min g x 即可得解;(2)由(1)可得21432a b a b +=++,然后利用基本不等式计算即可求得74a b +的最小值.【详解】(1)函数()0f x m =≥恒成立, 即+130x x m +--≥恒成立, 设函数()+13g x x x =+-,则()min m g x ≤, 又13(1)(3)4x x x x ++-≥+--=,即()g x 的最小值为4,所以4m ≤;(2)由(1)知4n =,正数a ,b 满足21432a b a b +=++, 所以()1217474432a b a b a b a b ⎛⎫+=++ ⎪++⎝⎭ ()()121622432a b a b a b a b ⎛⎫=++++⎡⎤ ⎪⎣⎦++⎝⎭ ()()222315432a b a b a b a b ++⎡⎤=++⎢⎥++⎣⎦54944+≥=, 当且仅当23a b a b +=+即3210b a ==时,等号成立, 所以74a b +的最小值为94. 【点睛】 本题考查绝对值不等式的应用,考查基本不等式的应用,考查逻辑思维能力和计算能力,属于常考题.。
高中数学必修五第三章《不等式》单元测试题(含答案)
A.b-a>0
B. a3+b2<0
C.b+a>0
D.a2-b2<0
答案 C
解析 由 a- |b|>0? |b|<a? - a<b<a? a+b>0,故选 C.
3.设集合 U=R,集合 M={ x|x>1} ,P= { x|x2>1} ,则下列关系中正确的是 ( )
A.M=P
B. P M
C.M P
高中数学必修五第三章单元测试题
《不等式》
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
有一项是符合题目要求的 )
1.给出以下四个命题:
11 ①若 a>b,则 a<b;
②若 ac2>bc2,则 a>b;
③若 a>|b|,则 a>b; ④若 a>b,则 a2>b2.
(1)试解释 f(0)=10, g(0)=20 的实际意义; 1
(2)设 f(x)= 4x+10, g(x)= x+20,甲、乙公司为了避免恶性竞争,经过协商,同意在双 方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?
高中数学必修五第三章单元测试题
《不等式》参考答案
一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只
范围是 ( )
A.[ -2,- 1]
B. [- 2,1]
C.[ -1,2]
D.[1,2]
8.不等式 (x-2y+ 1)(x+y-3)<0 表示的区域为 ( )
9.f(x)=ax2+ax- 1 在 R 上满足 f(x)<0,则 a 的取值范围是 ( )
新课标人教版必修5高中第3章不等式单元检测试卷及答案解析(原始打印版)
新课标人教版必修5高中数学 第3章 不等式单元检测试卷1.设a b <,c d <,则下列不等式中一定成立的是 ( )A .d b c a ->-B .bd ac >C .d b c a +>+D .c b d a +>+2. “0>>b a ”是“222b a ab +<”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.不等式b ax >的解集不可能是 ( )A .φB .RC .),(+∞a bD .),(ab --∞ 4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于 ( ) A .-14 B .14 C .-10 D .105.不等式||x x x <的解集是 ( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.若011<<ba ,则下列结论不正确的是 ( ) A .22b a < B .2b ab < C .2>+ba ab D .||||||b a b a +>+7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为 ( )A .)()(x g x f >B .)()(x g x f =C .)()(x g x f <D .随x 值变化而变化 8.下列各式中最小值是2的是 ( )A .y x +x yB .4522++x x C .tan x +cot x D . x x -+229.下列各组不等式中,同解的一组是 ( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是 ( )A. }8|{<a aB. }8|{>a aC. }8|{≥a aD. }8|{≤a a 11.若+∈R b a ,,则b a 11+与ba +1的大小关系是 .12.函数121lg+-=x xy 的定义域是 . 13.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.14. 已知0()1,0x x f x x ≥⎧=⎨-<⎩,, 则不等式3)2(≤+x f 的解集___ _ ____.15.已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是___ _ ____. 16.解不等式:21582≥+-x x x17.已知1<a ,解关于x 的不等式12>-x ax.18.已知0=++c b a ,求证:0≤++ca bc ab 。
人教新课标A版高中数学必修5第三章不等式单元测试题(含答案)
绝密★启用前人教新课标A版高中数学必修5第三章不等式单元测试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间150分钟。
一、选择题(共12小题,每小题5.0分,共60分)1.某高速公路对行驶的各种车辆的最大限速为120km/h,行驶过程中,同一车道上的车间距d不得小于10 m.用不等式表示为()A.v≤120 km/h或d≥10 mB.C.v≤120 km/hD.d≥10 m2.若a>0,b>0,则下列不等式中不成立的是()A.a2+b2≥2abB.a+b≥2C.a2+b2≥(a+b)2D.+<(a≠b)3.设a=2-1,b=-1(t∈R),则a与b的大小关系是()A.a≥bB.a≤bC.a<bD.a>b4.不等式组的解集为()A. {x|-2<x<-1}B. {x|-1<x<0}C. {x|0<x<1}D. {x|x>1}5.设f(x)=x2+bx-3,且f(-2)=f(0),则f(x)≤0的解集为()A. (-3,1)B. [-3,1]C. [-3,-1]D. (-3,-1]6.函数y=的定义域是()A. {x|x<-4或x>3}B. {x|-4<x<3}C. {x|x≤-4或x≥3}D. {x|-4≤x≤3}7.若不等式mx2+2mx-4<2x2+4x的解集为R,则实数m的取值范围是()A. (-2,2)B. (-2,2]C. (-∞,-2)∪[2,+∞)D. (-∞,2)8.若a>0,b>0,则不等式-b<<a等价于()A.-<x<0或0<x<B.-<x<C.x<-或x>D.x<-或x>9.当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A. (0,+∞)B. [0,+∞)C. [0,4)D. (0,4)10.在平面直角坐标系中,点在直线的右上方,则的取值范围是()A.(1,4)B.(-1,4)C.(-∞,4)D.(4,+∞)11.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为()A.-3B. 3C.-1D. 112.设正实数x,y,z满足x2-3xy+4y2-z=0,则当取得最大值时,+-的最大值为() A. 0B. 1C.D. 3第ⅠⅠ卷二、填空题(共4小题,每小题4.0分,共16分)13.已知|a|<1,则与1-a的大小关系为________.14.已知关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的取值范围是________.15.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a的取值范围是________.16.设x,y为实数,若,则的最大值是________.三、解答题(共6小题,第17-21题每小题12.0分,第22题14分,共74分)17.(1)设x≥1,y≥1,证明:x+y+≤++xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c.18.已知a>0,b>0,m>0,n>0,求证:a m+n+b m+n≥a m b n+a n b m.19.已知定义在R上的函数f(x)=x2-(3-a)x+2(1-a)(其中a∈R).(1)解关于x的不等式f(x)>0;(2)若不等式f(x)≥x-3对任意x>2恒成立,求a的取值范围.20.营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06 kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14 kg蛋白质,0.07 kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?将已知数据列成下表:21.已知实数x,y满足(1)试求z=的最大值和最小值;(2)试求z=x2+y2的最大值和最小值.22.已知函数.(1) 当时,求函数f(x)的最小值;(2) 若对任意,恒成立,试求实数的取值范围.答案解析1.【答案】B【解析】考虑实际意义,知v≤120 km/h且d≥10 m.2.【答案】D【解析】显然有a2+b2≥2ab,a+b≥2,又a2+b2-(a+b)2=a2+b2-ab=(a-b)2≥0,所以a2+b2≥(a+b)2,故选D.3.【答案】B【解析】∵t2≥0,∴t2-1≥-1,∵函数y=2x在x∈R上是单调递增的,∴2-1≤-1,即a≤b,故选B.4.【答案】C或【解析】由得所以0<x<1,所以原不等式组的解集为{x|0<x<1},故选C.5.【答案】B【解析】∵f(-2)=f(0),∴x=-==-1,∴b=2,∴f(x)≤0⇒x2+2x-3≤0⇒(x+3)(x-1)≤0,∴-3≤x≤1.6.【答案】C【解析】由x2+x-12≥0,即(x+4)(x-3)≥0,x≥3或x≤-4.7.【答案】B8.【答案】D【解析】-b<<a⇔或⇔或⇔x>或x<-.9.【答案】C【解析】当k=0时,不等式变为1>0,成立;当k≠0时,不等式kx2-kx+1>0恒成立,则即0<k<4,所以0≤k<4.10.【答案】D【解析】取原点(0,0),因为,且原点在直线的左下方,所以不等式表示的区域在直线的左下方.11.【答案】A【解析】-==,∴a=-3.12.【答案】B【解析】由已知得z=x2-3xy+4y2(*)则==≤1,当且仅当x=2y时取等号,把x=2y代入(*)式,得z=2y2,所以+-=+-=-2+1≤1.13.【答案】≥1-a【解析】-(1-a)=+a-1==,∵|a|<1,即-1<a<1,∴a+1>0,a2≥0,∴≥0,故≥1-a.14.【答案】[-2,)【解析】由题意知(a2-4)x2+(a+2)x-1<0恒成立,当a=-2时,不等式化为-1<0,显然恒成立;当a≠-2时,则即-2<a<,综上实数a的取值范围是[-2,).15.【答案】【解析】直线y=a(x+1)恒过定点P(-1,0)且斜率为a,作出可行域后数形结合可解.不等式组所表示的平面区域D为如图所示阴影部分(含边界),且A(1,1),B(0,4),C.直线y=a(x+1)恒过定点P(-1,0)且斜率为a.由斜率公式可知kAP=,kBP=4.若直线y=a(x+1)与区域D有公共点,数形结合可得≤a≤4.16.【答案】【解析】∵,∴,即∴,∴,即.17.【答案】证明(1)由于x≥1,y≥1,所以要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2,只需证[y+x+(xy)2]-[xy(x+y)+1]≥0,即(xy-1)(x-1)(y-1)≥0,因为x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=,log b a=,log c b=,log a c=xy,于是,所要证明的不等式即为x+y+≤++xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.18.【答案】证明a m+n+b m+n-(a m b n+a n b m)=(a m+n-a m b n)-(a n b m-b m+n)=a m(a n-b n)-b m(a n-b n)=(a m-b m)(a n-b n).当a>b时,a m>b m,a n>b n,∴(a m-b m)(a n-b n)>0;当a<b时,a m<b m,a n<b n,∴(a m-b m)(a n-b n)>0;当a=b时,a m=b m,a n=b n,∴(a m-b m)(a n-b n)=0.综上,(a m-b m)(a n-b n)≥0.故a m+n+b m+n≥a m b n+a n b m.19.【答案】(1)f(x)=(x-2)[x-(1-a)],设函数f(x)=0的两根为x1=2,x1=1-a,且x1-x2=2-1+a=a+1,f(x)>0等价于(x-2)[x-(1-a)]>0,于是当a<-1时,x1<x2,原不等式的解集为(-∞,2)∪(1-a,+∞);当a=-1时,x1=x2,原不等式的解集为(-∞,2)∪(2,+∞);当a>-1时,x1>x2,原不等式的解集为(-∞,1-a)∪(2,+∞).(2)不等式f(x)≥x-3,即a≥-恒成立,又当x>2时,-=-(x-2+)≤-2(当且仅当x=3时取“=”号),∴a≥-2.20.【答案】每天食用食物A kg,食物B kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【解析】设每天食用x kg食物A,y kg食物B,总成本为z,那么⇒目标函数为z=28x+21y.作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-x+,它表示斜率为-且随z变化的一族平行直线.是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组得M点的坐标为.所以z min=28x+21y=16.21.【答案】(1)z=的最大值为3和最小值为;(2)z=x2+y2的最大值为13和最小值为.【解析】解(1)由于z==,所以z的几何意义是点(x,y)与点M(-1,-1)连线的斜率,因此的最值就是点(x,y)与点M(-1,-1)连线的斜率的最值,如图所示,直线MB的斜率最大,直线MC的斜率最小,又∵B(0,2),C(1,0),∴z max=kMB=3;z min=kMC=.∴z的最大值为3,最小值为.(2)z=x2+y2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点A的距离最大,原点到直线BC的距离最小.故z max=|OA|2=13,z min=2=2=.反思与感悟当斜率k,两点间的距离,点到直线的距离与可行域相结合求最值时,注意数形结合思想方法的灵活运用.22.【答案】【解析】(1) ∵,∴, 当时取等号.即当时,.(2),恒成立,即,恒成立.等价于在上恒成立,令,,∴,即.∴的取值范围是。
(完整版)必修5第三章不等式单元测试题及答案
第三章不等式单元测试题一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x 的解集是( )A .{x |x ≥2}B .{x |x ≤2}C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2} 2.下列说法正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2)4.不等式x -1x +2>1的解集是( )A .{x |x <-2}B .{x |-2<x <1}C .{x |x <1}D .{x |x ∈R } 5.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则有( ) A .M >N B .M ≥N C .M <N D .M ≤N 6.不等式组⎩⎪⎨⎪⎧2x -y +2≥0,x +y -2≤0,y ≥0表示的平面区域的形状为( )A .三角形B .平行四边形C .梯形D .正方形7.设z =x -y ,式中变量x 和y 满足条件⎩⎪⎨⎪⎧x +y -3≥0,x -2y ≥0,则z 的最小值为( )A .1B .-1C .3D .-38.若关于x 的函数y =x +m 2x在(0,+∞)的值恒大于4,则( )A .m >2B .m <-2或m >2C .-2<m <2D .m <-2 9.已知定义域在实数集R 上的函数y =f (x )不恒为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-1<f (x )<0 C .f (x )>1 D .0<f (x )<110.若x +23x -5<0,化简y =25-30x +9x 2-(x +2)2-3的结果为( )A .y =-4xB .y =2-xC .y =3x -4D .y =5-x二、填空题(本大题共5小题,每小题5分,共25分)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是_________.12.不等式log 12(x 2-2x -15)>log 12(x +13)的解集是_________.13.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.14.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.三、解答题(本大题共2小题,共25分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.17.(12分)解下列不等式:(1)-x 2+2x -23>0; (2)9x 2-6x +1≥0.18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z =x +3y 的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a 4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元. 经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边;②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.必修5第三章《不等式》单元测试题命题:水果湖高中 胡显义1.解析:原不等式化为x 2-2x ≥0,则x ≤0或x ≥2. 答案:D2.解析:A 中,当c =0时,ac 2=bc 2,所以A 不正确;B 中,当a =0>b =-1时,a 2=0<b 2=1,所以B 不正确;D 中,当(-2)2>(-1)2时,-2<-1,所以D 不正确.很明显C 正确.答案:C3.解析:当x =y =0时,3x +2y +5=5>0,所以原点一侧的平面区域对应的不等式是3x +2y +5>0,可以验证,仅有点(-3,4)的坐标满足3x +2y +5>0.答案:A4.解析:x -1x +2>1⇔x -1x +2-1>0⇔-3x +2>0⇔x +2<0⇔x <-2.答案:A5.解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0, 所以M ≥N . 答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC . 答案:A7.解析:画出可行域如下图中的阴影部分所示.解方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y =0.得A (2,1).由图知,当直线y =x -z 过A 时,-z 最大,即z 最小,则z 的最小值为2-1=1.答案:A8.解析:∵x +m 2x≥2|m |,∴2|m |>4.∴m >2或m <-2. 答案:B9.解析:令x =y =0得f (0)=f 2(0), 若f (0)=0,则f (x )=0·f (x )=0与题设矛盾. ∴f (0)=1.又令y =-x ,∴f (0)=f (x )·f (-x ),故f (x )=1f (-x ).∵x >0时,f (x )>1,∴x <0时,0<f (x )<1,故选D.答案:D10.解析:∵x +23x -5<0,∴-2<x <53.而y =25-30x +9x 2-(x +2)2-3=|3x -5|-|x +2|-3=5-3x -x -2-3=-4x .∴选A.答案:A二、填空题(填空题的答案与试题不符)11.对于x ∈R ,式子1kx 2+kx +1恒有意义,则常数k 的取值范围是__________.解析:式子1kx 2+kx +1恒有意义,即kx 2+kx +1>0恒成立.当k ≠0时,k >0且Δ=k 2-4k <0,∴0<k <4;而k =0时,kx 2+kx +1=1>0恒成立,故0≤k <4,选C.答案:C ?12.函数f (x )=x -2x -3+lg 4-x 的定义域是__________.解析:求原函数定义域等价于解不等式组⎩⎪⎨⎪⎧x -2≥0,x -3≠0,4-x >0,解得2≤x <3或3<x <4.∴定义域为[2,3)∪(3,4). 答案:[2,3)∪(3,4)13.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________. 解析:如下图中阴影部分所示,围成的平面区域是Rt △OAB .可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 答案:8+4 214.已知函数f (x )=x 2-2x ,则满足条件⎩⎪⎨⎪⎧f (x )+f (y )≤0,f (x )-f (y )≥0的点(x ,y )所形成区域的面积为__________.解析:化简原不等式组⎩⎪⎨⎪⎧(x -1)2+(y -1)2≤2,(x -y )(x +y -2)≥0, 所表示的区域如右图所示,阴影部分面积为半圆面积. 答案:π 15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x 的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x %),八月份销售额为500×(1+x %)2,一月份至十月份的销售总额为3860+500+2[500(1+x %)+500(1+x %)2],可列出不等式为4360+1000[(1+x %)+(1+x %)2]≥7000.令1+x %=t ,则t 2+t -6625≥0,即⎝⎛⎭⎫t +115⎝⎛⎭⎫t -65≥0.又∵t +115≥0,∴t ≥65,∴1+x %≥65,∴x %≥0.2,∴x ≥20.故x 的最小值是20. 答案:20三、解答题(本大题共6小题,共75分)16.(12分)已知a >b >0,c <d <0,e <0,比较e a -c 与eb -d的大小.解:e a -c -eb -d =e (b -d )-e (a -c )(a -c )(b -d )=(b -a )+(c -d )(a -c )(b -d )e .∵a >b >0,c <d <0,∴a -c >0,b -d >0,b -a <0,c -d <0.又e <0,∴e a -c -e b -d >0.∴e a -c >eb -d.17.(12分)解下列不等式:(1)-x 2+2x -23>0;(2)9x 2-6x +1≥0.解:(1)-x 2+2x -23>0⇔x 2-2x +23<0⇔3x 2-6x +2<0.Δ=12>0,且方程3x 2-6x +2=0的两根为x 1=1-33,x 2=1+33,∴原不等式解集为{x |1-33<x <1+33}.(2)9x 2-6x +1≥0⇔(3x -1)2≥0. ∴x ∈R .∴不等式解集为R .18.(12分)已知m ∈R 且m <-2,试解关于x 的不等式:(m +3)x 2-(2m +3)x +m >0. 解:当m =-3时,不等式变成3x -3>0,得x >1; 当-3<m <-2时,不等式变成(x -1)[(m +3)x-m ]>0,得x >1或x <mm +3;当m <-3时,得1<x <mm +3.综上,当m =-3时,原不等式的解集为(1,+∞);当-3<m <-2时,原不等式的解集为⎝⎛⎭⎫-∞,mm +3∪(1,+∞);当m <-3时,原不等式的解集为⎝⎛⎭⎫1,mm +3.19.(12分)已知非负实数x ,y 满足⎩⎪⎨⎪⎧2x +y -4≤0,x +y -3≤0.(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z =x +3y 的最大值.解:(1)由x ,y 取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l :x +3y =0,将直线l 向上平移至l 1与y 轴的交点M 位置时,此时可行域内M 点与直线l 的距离最大,而直线x +y -3=0与y 轴交于点M (0,3).∴z max =0+3×3=9. 20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g (t )=80-2t (件),价格近似满足f (t )=20-12|t -10|(元).(1)试写出该种商品的日销售额y 与时间t (0≤t ≤20)的函数表达式; (2)求该种商品的日销售额y 的最大值与最小值. 解:(1)y =g (t )·f (t )=(80-2t )·(20-12|t -10|)=(40-t )(40-|t -10|) =⎩⎪⎨⎪⎧(30+t )(40-t ), 0≤t <10,(40-t )(50-t ), 10≤t ≤20. (2)当0≤t <10时,y 的取值范围是[1200,1225], 在t =5时,y 取得最大值为1225;当10≤t ≤20时,y 的取值范围是[600,1200], 在t =20时,y 取得最小值为600.21.(14分)某工厂有一段旧墙长14 m ,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m 2的厂房,工程条件是:(1)建1 m 新墙的费用为a 元;(2)修1 m 旧墙的费用为a4元;(3)拆去1 m 的旧墙,用可得的建材建1 m 的新墙的费用为a2元.经讨论有两种方案:①利用旧墙x m(0<x <14)为矩形一边; ②矩形厂房利用旧墙的一面长x ≥14. 试比较①②两种方案哪个更好.解:方案①:修旧墙费用为ax4(元),拆旧墙造新墙费用为(14-x )a2(元),其余新墙费用为(2x +2×126x-14)a (元),则总费用为y =ax 4+(14-x )a 2+(2x +2×126x -14)a =7a (x 4+36x-1)(0<x <14),∵x 4+36x ≥2x 4·36x=6, ∴当且仅当x 4=36x即x =12时,y min =35a ,方案②:利用旧墙费用为14×a 4=7a2(元),建新墙费用为(2x +252x-14)a (元),则总费用为y =7a 2+(2x +252x -14)a =2a (x +126x )-212a (x ≥14),可以证明函数x +126x在[14,+∞)上为增函数,∴当x =14时,y min =35.5a . ∴采用方案①更好些.。
高中数学必修5第三章《不等式》单元质量测评(含答案)
高中数学必修5第三章《不等式》单元质量测评(含答案)满分150分,考试时间120分钟.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a <0,-1<b <0,则( )A .-a <ab <0B .-a >ab >0C .a >ab >ab 2D .ab >a >ab 22.已知集合{}2|540A x N x x =∈-+≤, {}2|40B x x =-=,下列结论成立的是( )A. B A ⊆B. A B A ⋃=C. A B A ⋂=D. {}2A B ⋂= 3.区域113x y x y ≥⎧⎪≥⎨⎪+≤⎩构成的几何图形的面积是( )A. 2B. 1C.14 D. 124.若集合20{|}6A x x x +=-<,230B x xx =≤⎧+⎫⎨⎬-⎩⎭,则A B I 等于( ) A .()3,3- B .[)2,2-C .()2,2-D .[)2,3-5.不等式2103x x ->+的解集是( ) A. 1,2⎛⎫+∞⎪⎝⎭ B. ()4,+∞ C. ()(),34,-∞-⋃+∞ D. ()1,3,2⎛⎫-∞-⋃+∞ ⎪⎝⎭6.已知关于x 的不等式24x x m -≥对任意(]0,1x ∈恒成立,则有( )A. 3m ≤-B. 3m ≥-C. 30m ≤<-D. 4m ≥-7.若实数x,y 满足x 12104x y x y ≥⎧⎪--≤⎨⎪+≤⎩,则z 2+x y =的最大值为( )A. 2B. 5C. 7D. 88.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有( )A .最小值12和最大值1B .最小值34和最大值1C .最小值12和最大值34D .最小值19.设满足约束条件y 01030x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z 3x y =-的最大值为( )A. 3B.C. 1D.10.已知直线l 过点P (2,1),且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则△OAB 面积的最小值为( )A .1B . 2C .2 2D .411.某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),若要使其营运的年平均利润最大,则每辆客车需营运()A .3年B .4年C .5年D .6年12.若直线20ax by +-=(0,0a b >>)始终平分圆22222x y x y +--=的周长,则112a b+的最小值为( )A.34-B. 32-C. 32+D. 34+ 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 14.对任意实数x ,不等式2()(2)2240a x a x ---<-恒成立,则实数a 的取值范围是_______.15.已知x 、y 满足条件040328x y x y ≤≤⎧⎪≤≤⎨⎪+≤⎩,则25z x y =+的最大值为________.16.若不等式20x ax b --<的解集为{}23x x <<,则不等式2b 10x ax -->的解集为__________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知直角三角形两条直角边的和等于10 cm ,求面积最大时斜边的长.18. (本小题满分10分)求函数2710,(1)1x x y x x ++=>-+的值域. 19.(本小题满分10分) 已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集是B . (1)求AB ;(2)若不等式20x ax b ++<的解集是,AB 求20ax x b ++<的解集.20.(本小题满分12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16.(1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围.21.(本小题满分14分)实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx,求z 的最大值和最小值,并求z 的取值范围; (2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围.22.(本小题满分14分)已知关于x 的不等式2320ax x -+≤的解集为{|1}x x b ≤≤. (1)求实数,a b 的值; (2)解关于x 的不等式: 0x cax b->-(为常数)参考答案 一.选择题二.填空题13.x <y 14. (-2,2] 15.19 16.11--23x x ⎧⎫<<⎨⎬⎩⎭三、解答题17. 解:设一条直角边长为x cm(0<x <10),则另一条直角边长为(10-x ) cm ,面积S =12x (10-x )≤12⎣⎢⎡⎦⎥⎤x +10-x 22=252(cm 2), 等号在x =10-x ,即x =5时成立, ∴面积最大时斜边长L =x 2+10-x 2=52+52=52(cm).18. 解:27104(1)5,11x x y x x x ++==+++++当1x >-,即10x +>时,59y ≥=,当且仅当1x =时取等号.19.解:(1)解2-230x x -<得,-13x <<,所以(1,3)A =-.解260x x +-<得,-32x <<,所以(3,2)B =-,(1,2)A B ∴⋂=-.(2)由2+a 0x x b +<的解集是(1,2)-,所以1-a 0420b a b +=⎧⎨++=⎩,解得a -1-2b =⎧⎨=⎩所以2-+-20x x <,解得解集为R 。
人教A版高中数学必修5第三章不等式单元测试(有答案)
不等式单元测试一、选择题(本大题共12小题,每小题5分,共60分) 1.不等式x (x -2)>0的解集是( ) A .(-∞,-2)∪(0,+∞) B .(-2,0) C .(-∞,0)∪(2,+∞)D .(0,2)2.直线a >b >0,那么下列不等式成立的是( )A .-a >-bB .a +c <b +c C.1a >1bD .(-a )2>(-b )23.y =log a ⎝⎛⎭⎪⎫x 2-4x +3·1x 2+x -2的定义域是( )A .{x |x ≤1或x ≥3}B .{x |x <-2或x >1}C .{x |x <-2或x >3}D .{x |x ≤-2或x >3} 4.若x ,y ∈R, x 2+y 2=1,则(1-xy )(1+xy )有( ) A .最小值12和最大值1 B .最小值34和最大值1C .最小值12和最大值34D .最小值15.若x ,y 满足条件⎩⎪⎨⎪⎧x ≥y ,x +y ≤1y ≥-1,,则z =-2x +y 的最大值为( )A .1B .-12 C .2 D .-56.设a =log 37,b =21.1,c =0.83.1,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b 7.已知a >0,b >0,则1a +1b+2ab 的最小值是( )A .2B .2 2C .4D .58.不等式3x 2+2x +2x 2+x +1≥m 对任意实数x 都成立,则实数m 的取值范围是( )A .m ≤2B .m <2C .m ≤3D .m <39.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1 10.在△ABC 中,角A ,B ,C 所对边长分别为a ,b ,c ,若b 2+c 2=2a 2,则cos A 的最小值为( ) A.32 B.22 C.12 D .-1211.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4912.若对满足条件3x +3y +8=2xy (x >0,y >0)的任意x 、y ,(x +y )2-a (x +y )+16≥0恒成立,则实数a 的取值范围是( )A .(-∞,8]B .[8,+∞)C .(-∞,10]D .[10,+∞) 二、填空题(本大题共4小题,每小题5分,共20分)13.设常数a >0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.14.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≤1,x ≥0,y ≥0,则w =4x +2y -16x -3的取值范围是________.15.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.16.已知x >0,y >0,且2x +8y -xy =0,则x +y 的最小值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知a ,b ,c 为不相等的正数,且abc =1.求证:a +b +c <1a +1b +1c.18.(12分)解不等式0<x -12x +1<1,并求适合此不等式的所有整数解.19.(12分)(1)已知x >0,求f (x )=2x+2x 的最小值和取到最小值时对应x 的值;(2)已知0<x <13,求函数y =x (1-3x )的最大值.20.(12分)已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.21.(12分)设不等式组⎩⎪⎨⎪⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的整点个数为a n (n ∈N +).(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对一切的正整数n ,总有T n ≤m ,求实数m 的取值范围.22.(12分)某糖果厂生产A 、B 两种糖果,A 种糖果每箱可获利润40元,B 种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).混合 烹调 包装 A 1 5 3 B24130 h ,包装的设备最多只能用机器15 h ,每种糖果各生产多少箱可获得最大利润?答案与解析1.C 不等式x (x -2)>0, ∴x <0或x >2,故选C.2.D ∵a >b >0,∴a 2>b 2,(-a )2=a 2,(-b )2=b 2,∴D 成立.3.C 由题意得⎩⎪⎨⎪⎧x 2-4x +3>0,1x 2+x -2>0,即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2+x -2>0,解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-2,∴x >3或x <-2,故选C.4.B 由x 2+y 2=1, 0≤y 2=1-x 2≤1, ∴(1+xy )(1-xy )=1-x 2y 2=1-x 2(1-x 2)=x 4-x 2+1=⎝⎛⎭⎪⎫x 2-122+34.∵0≤x 2≤1, ∴当x 2=12时有最小值34.当x 2=0或1时有最大值1,故选B. 5.A 不等式组所表示的平面区域如图示.直线z =-2x +y 过B 点时z 有最大值,由⎩⎪⎨⎪⎧y =x ,y =-1,得B (-1,-1),∴z max =1.6.B ∵a =log 37,∴1<a <2.∵b =21.1,∴b >2.∵c =0.83.1,∴0<c <1.故b >a >c . 7.C 1a +1b +2ab ≥21ab+2ab ≥22×2=4,当且仅当1a =1b且21ab=2ab ,即a =b =1时,“=”号成立,故选C.8.A ∵x 2+x +1>0恒成立,∴不等式可化为3x 2+2x +2≥m (x 2+x +1),即(3-m )x 2+(2-m )x +2-m ≥0对任意实数x 都成立,当m =3时,不等式化为-x -1≥0不恒成立.当m ≠3时,有⎩⎪⎨⎪⎧3-m >0,2-m 2-4×3-m ×2-m ≤0,即m ≤2.综上,实数m 的取值范围是m ≤2,故选A. 9.D 作出可行域如图中阴影部分所示.由z =y -ax 得y =ax +z ,知z 的几何意义是直线在y 轴上的截距. 故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.C cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+c 222bc =b 2+c 24bc ≥2bc 4bc =12,当且仅当b =c 时等号成立,故选C.11.C 作出可行域如图(阴影部分).由题意知,圆心C (a ,b ),半径r =1,且圆C 与x 轴相切,所以b =1.由⎩⎪⎨⎪⎧x +y -7=0,y =1,得A (6,1),由⎩⎪⎨⎪⎧x -y +3=0,y =1,得B (-2,1),而目标函数z =a 2+b 2表示点C 到原点距离的平方,所以当点C 与A (6,1)重合时,a 2+b 2取到最大值37.12.C ∵xy ≤⎝⎛⎭⎪⎫x +y 22,∴3x +3y +8=2xy ≤x +y22,∴x +y22-3(x +y )-8≥0,解得x +y ≥8,∵(x +y )2-a (x +y )+16≥0恒成立,即a ≤x +y +16x +y, 又x +y +16x +y≥10.∴只需a ≤10,故选C. 13.⎣⎢⎡⎭⎪⎫15,+∞ 解析:∵a >0,x >0,∴9x +a 2x ≥29x ·a 2x =6a .当且仅当9x =a 2x,即3x =a 时取等号,要使9x +a 2x≥a +1成立,只要6a ≥a +1,即a ≥15.∴a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞.14.[5,6]解析:w =4x +2y -16x -3=4x -3+2y -4x -3=4+2×y -2x -3,设k =y -2x -3.则k 的几何意义是区域内的点到定点D (3,2)的斜率, 作出不等式组对应的平面区域如图:由图象得AD 的斜率最小,BD 的斜率最大,其中A ⎝ ⎛⎭⎪⎫0,12,B (1,0),此时k AD =12-20-3=12,此时w 最小为w =4+2×12=4+1=5,k BD =0-21-3=1,此时w 最大为w =4+2×1=6, 故5≤w ≤6. 15.6解析:画出可行域如图所示,其中z =x +y 取得最小值时的整点为(0,1),取得最大值时的整点为(0,4),(1,3)(2,2)(3,1)及(4,0)共5个整点.故可确定5+1=6条不同的直线.16.18解析:由2x +8y -xy =0得2y +8x=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫2y +8x =10+2x y +8y x≥18.当且仅当2x 2=8y 2,即x =2y 时,等号成立.17.证明:证法一:∵a ,b ,c 为不等正数,且abc =1,∴a +b +c = 1bc+1ca+1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 证法二:∵a ,b ,c 为不等正数,且 abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc 2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立. 18.解:∵0<x -12x +1<1,∴⎩⎪⎨⎪⎧x +1>0,x -12<x +1,x -1≠0,∴0<x <3,且x ≠1.故不等式的解集为{x |0<x <3,且x ≠1}, ∴适合此不等式的所有整数解为x =2.19.解:(1)f (x )=2x +2x ≥22x·2x =4,当且仅当2x=2x ,即x =1时,等号成立,∴f (x )的最小值为4,此时对应的x 的值为1. (2)∵0<x <13,∴1-3x >0.y =x (1-3x )=13·3x (1-3x )≤13·⎝⎛⎭⎪⎫3x +1-3x 22=112,当且仅当3x =1-3x ,∴x =16时,等号成立,∴y =x (1-3x )的最大值为112.20.解:(1)由已知得f (1)=-a 2+6a +3>0. 即a 2-6a -3<0.解得3-23<a <3+2 3.∴不等式f (1)>0的解集为{a |3-23<a <3+23}.(2)∵f (x )>b ,∴3x 2-a (6-a )x +b -6<0,由题意知,-1,3是方程3x 2-a (6-a )x +b -6=0的两根,∴⎩⎪⎨⎪⎧a 6-a3=2,b -63=-3.∴⎩⎨⎧a =3±3,b =-3.21.解:(1)由x >0, y >0, y =3n -nx >0, 得0<x <3.所以x =1或x =2,即D n 内的整点在直线x =1和x =2上.记y =-nx +3n 为l, l 与x =1, x =2的交点的纵坐标分别为y 1, y 2, 则y 1=2n, y 2=n, ∴a n =3n (n ∈N +).(2)∵S n =3(1+2+…+n )=3nn +12,∴T n =n n +12n. 又T n +1T n =n +22n>1⇒n <2, ∴当n ≥3时, T n >T n +1,且T 1=1<T 2=T 3=32.所以实数m 的取值范围为⎣⎢⎡⎭⎪⎫32, +∞. 22.解:设生产A x 箱,生产B y 箱,可获利润z 元,即求z =40x +50y 在约束条件⎩⎪⎨⎪⎧x +2y ≤720,5x +4y ≤1 800,3x +y ≤900,x ≥0, y ≥0下的最大值.解得z max =40×120+50×300=19 800.所以生产A 120箱,生产B 300箱时,可以获得最大利润19 800元.。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
必修五第三章《不等式》单元水平检测题及答案
必修五第三章《不等式》单元水平检测题一、选择题。
(60分)1.设a<b<0,则下列不等式中不能成立的是( )A .1a >1bB .1a-b >1aC .a bD .22b a >2.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。
A. 10 B. 10- C. 14 D. 14-3、一元二次不等式02>++n mx mx 的解集是{}12|<<-x x ,则m ,n 的值分别是( )A 、3,23=-=n mB 、3,23==n mC 、3,23-==n mD 、3,23-=-=n m 4、不等式0322>-+x x 的解集是( )A.{x|-1<x <3}B.{x|x >3或x <-1}C.{x|-3<x <1}D.{x|x>1或x <-3}-5、若对于任何实数,二次函数y=a x 2-x+c 的值恒为负,那么a 、c 应满足( )A 、a >0且a c ≤41 B 、a <0且a c <41 C 、a <0且a c >41 D 、a <0且a c <0 6、在坐标平面上,不等式组⎪⎩⎪⎨⎧≥+-≥+≤020,3y x y x x 所表示的平面区域的面积为( )A .28B .16C .439 D .121 7、不等式6)23)(5(-≥-+x x 的解集是( )A 、}29,1|{≥-≤x x x 或B 、}291|{≤≤-x xC 、}1,29|{≥-≤x x x 或D 、}129|{≤≤-x x 8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( )A .最小值21和最大值 1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值2而无最小值9、不等式1213≥--xx 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或 D .{}2|<x x 【10、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-111、、对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 取值范围是( )A 、()2,∞-B 、(]2,∞-C 、(-2,2)D 、(]2,2-12、的取植范围是的两侧,则)在直线,)和(,点(a a y x 0236413=+--( ) A .24,7>-<a a 或 B. 24,7=-=a a 或 C. 247<<-a D. 724<<-a 二填空题。
(典型题)高中数学必修五第三章《不等式》测试卷(答案解析)
一、选择题1.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4192.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .83.已知实数x ,y 满足221x y x m-≤-≤⎧⎨≤≤⎩且2z y x =-的最小值为-6,则实数m 的值为( ). A .2 B .3 C .4 D .8 4.设,x y 满足24122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则z x y =+的最小值是( )A .7-B .2C .3D .5-5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .7 6.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+7.若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( )A .2B .1CD .8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( ) A .c 3≤ B .3c 6<≤ C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.对于任意实数a ,b ,若a >b ,则下列不等式一定成立的是( )A .11a b< B .a 2>b 2 C .a 3>b 3 D .a b b a> 11.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .912.已知正数a ,b 满足2a b +=,则2238a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( ) A .36B .42C .49D .60二、填空题13.若实数a ,b 满足22221a b +=,则22141a b ++的最小值为___________. 14.若0x >,0y >,若()()144x y --=则x y +的最小值为_________. 15.若正数,x y 满足113122x y xy++=,则xy 的最小值为_________. 16.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.17.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.18.已知实数,x y 满足40{1010x y x y +-≤-≥-≥,则x yx+的取值范围是__________. 19.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.20.已知函数245x y a +=-(0a >,且1a ≠)的图像横过定点P ,若点P 在直线20Ax By ++=上,且0AB >,则12A B+的最小值为_________. 三、解答题21.已知定义域为R 的函数()22x xb n f x b +=--是奇函数,且指数函数xy b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知函数2()(21)f x ax a x c =-++,且(0)2f =. (1)若()0f x <的解集为{|28}x x <<,求函数()f x y x=的值域; (2)当0a >时,解不等式()0f x <.23.为摆脱美国政府针对中国高科技企业的封锁,加强自主性,某企业计划加大对芯片研发部的投入.据了解,该企业研发部原有100名技术人员,年人均投入a 万元,现把原有技术人员分成两部分:技术人员和研发人员,其中技术人员x 名(x ∈N 且4575x ≤≤),调整后研发人员的年人均投入增加()4%x ,技术人员的年人均投入调整为225x a m ⎛⎫- ⎪⎝⎭万元.(1)要使这100x -名研发人员的年总投入不低于调整前100名技术人员的年总投入,求调整后的技术人员的人数最多多少人?(2)是否存在这样的实数m ,使得技术人员在已知范围内调整后,同时满足以下两个条件:①技术人员的年人均投入始终不减少;②研发人员的年总投入始终不低于技术人员的年总投入.若存在,求出m 的范围;若不存在,说明理由.24.设矩形ABCD 的周长为20,其中AB AD >,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AD x =,DP y =.(1)将y 表示成x 的函数,并求定义域; (2)求ADP △面积的最大值.25.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供([0,10])∈x x (万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([0.5,1]k ∈).A 公司生产t 万件防护服还需投入成本(20950)x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)在复工率为k 时,政府补贴多少万元才能使A 公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,A 公司才能不产生亏损?(精确到0.01).26.已知a >0,b >0,a +b =3. (1)求11+2+a b的最小值; (2)证明:92+a b b aab【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是232922⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型:(1)22()()x a y b -+-,两点间的距离公式;(2)y bx a--:两点连线斜率, 2.C解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.C解析:C 【分析】作出不等式组221x y x m -≤-≤⎧⎨≤≤⎩对应的区域,利用数形结合平移直线即可得到结论 .【详解】由题意可作图:当2z y x =-经过点P 时,z 取最小值6,此时P 符合:2x my x =⎧⎨=-⎩,即(,2)P m m -代入2z y x =-得:m -2-2m =-6,解得m =4 故选:C 【点睛】简单线性规划问题的解题步骤: (1)画出可行域;(2)作出目标函数所表示的某条直线(通常选作过原点的直线),移动此直线并观察此直线经过可行域的哪个(些)点时,函数有最大(小)值; (3)求(写)出最优解和相应的最大(小)值; (4)下结论.4.B解析:B 【分析】由约束条件可得可行域,将问题转化为y x z =-+在y 轴截距最小值的求解问题,利用数形结合的方法可得到结果. 【详解】由约束条件可得可行域如下图阴影部分所示:由z x y =+得:y x z =-+,当z 取最小值时,y x z =-+在y 轴截距最小, 由图象可知:当y x z =-+过A 时,在y 轴截距最小, 又()2,0A ,min 202z ∴=+=. 故选:B. 【点睛】方法点睛:线性规划问题中,通常有三种类型的最值或取值范围问题: (1)截距型:形如z ax by =+的形式,转化为a zy x b b=-+,将问题转化为直线在y 轴截距的求解问题;(2)斜率型:形如cy d z ax b+=+的形式,转化为d y c c b a x a+⋅+,将问题转化为(),x y 与,b d a c ⎛⎫-- ⎪⎝⎭连线斜率的求解问题; (3)距离型:形如z Ax By C =++的形式,转化为2222Ax By C z A B A B ++=++题转化为(),x y 到直线0Ax By C ++=的距离的求解问题.5.C解析:C 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.A解析:A【分析】当x>0时,不等式x2﹣mx+9>0恒成立⇔m<(x9x+)min,利用基本不等式可求得(x9x+)min=6,从而可得实数m的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥9xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m 是关键,考查等价转化思想与基本不等式的应用,属于中档题.7.D解析:D 【解析】分析:根据基本不等式的性质求出2a+b+c 的最小值即可. 详解:由题得:因为a 2+ac+ab+bc=2, ∴(a+b )(a+c )=2,又a ,b ,c 均为正实数,∴2a+b+c=(a+b )+(a+c ), 当且仅当a+b=a+c 时,即b=c 取等号. 故选D.点睛:本题考查了绝对值的意义,考查基本不等式的性质,是一道基础题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x,y满足约束条件261322x yx yy-≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y=-+可化为1y x z=+-,当直线1y x z=+-过点A时,此时直线在y轴上的截距最大值,此时目标函数取得最小值,又由2132yx y=⎧⎪⎨+=⎪⎩,解得(2,2)A,所以目标函数的最小值为min2211z=-+=.故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.C解析:C【解析】根据题意,依次分析选项:对于A,当2a=,2b=-时,11a b>,故A错误;对于B,当1a=,2b=-时,22a b<,故B错误;对于C,由不等式的性质可得C正确;对于D,当1a=,1b=-时,a bb a=,故D错误;故选C.11.D解析:D【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.12.C解析:C 【分析】由已知可得2294(3)(8)(4)(9)37b a b aa b a b a b++=++=++,然后结合基本不等式即可求解.【详解】解:因为正数a ,b 满足2a b +=,所以229494(3)(8)(4)(9)3737249b a b a b aa b a b a b a b++=++=+++=,当且仅当65a =,45b =时取等号. 故选:C . 【点睛】本题主要考查了利用基本不等式求解最值,属于基础题.二、填空题13.6【分析】由条件可得则由均值不等式可得答案【详解】实数满足即所以则当且仅当又即时取得等号故答案为:6【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各解析:6 【分析】由条件可得()22312a b ++=,则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭由均值不等式可得答案. 【详解】实数a ,b 满足22221a b +=,即2212a b +=,所以()22312a b ++=则()222222142141131a b a b a b ⎛⎫⎡⎤+=⨯+++ ⎪⎣⎦++⎝⎭()2222214221455463133b a a b ⎛⎛⎫+=⨯+++≥⨯+=⨯+= ⎪ +⎝⎭⎝ 当且仅当2222141b a a b +=+, 又2212a b +=,即22120a b ⎧=⎪⎨⎪=⎩ 时,取得等号. 故答案为:6 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.14.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()455941x y x y x y y x x y +⎛⎫+=+=++≥+=⎪⎝⎭,当且仅当4x yy x=即3,6x y ==时取等号. 故答案为:9. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.【分析】将化为后利用基本不等式得再解一元二次不等式可得结果【详解】由得因为所以当且仅当时等号成立所以所以所以或所以或(舍)所以即的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必解析:92【分析】将113122x y xy++=化为232y x xy ++=后,利用基本不等式得23xy -≥一元二次不等式可得结果. 【详解】 由113122x y xy++=得232y x xy ++=,因为0,0x y >>,所以232xy y x -=+≥2y x =时,等号成立.所以2302≥,所以2)22≥2-≥2≤,2≥2≤-(舍),所以92xy ≥,即xy 的最小值为92. 故答案为:92. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方16.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322z y x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由2y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.17.【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得化简得即可得解【详解】设不等式和不等式的解集分别为和则为方程的两个根为方程的两个根由韦达定理得所以即又所以所以即故答案 解析:56π 【分析】由对偶不等式的定义结合一元二次不等式与一元二次方程的关系以及韦达定理可得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=,化简得tan 23θ=即可得解. 【详解】设不等式()243220x x θ-+<和不等式()224sin 210x x θ++<的解集分别为(),a b 和11,b a⎛⎫ ⎪⎝⎭, 则a ,b 为方程()243220x x θ-+=的两个根,1a ,1b为方程()224sin 210x x θ++=的两个根, 由韦达定理得432a b θ+=,2ab =,112sin 2a b θ+=-,1112a b ⋅=, 43cos 22sin 2θθ=-即tan 23θ= 又 ,2πθπ⎛⎫∈⎪⎝⎭,所以()2,2θππ∈,所以523πθ=即56πθ=. 故答案为:56π. 【点睛】本题考查了一元二次不等式和一元二次方程之间的关系,考查了对于新概念的理解和三角函数的以值求角,属于中档题.18.【解析】先画出可行域如图:因为目标函数表示动点与定点连线斜率再加1;由图可知;最小最大;联立可得即联立可得即故:∴所以:故答案为点睛:本题考查线性规划问题难点在于目标函数几何意义近年来高考线性规划问解析:4,43⎡⎤⎢⎥⎣⎦【解析】先画出可行域如图:因为目标函数表示动点()P x y ,与定点00O (,)连线斜率k 再加1; 由图可知;OC k 最小,OA k 最大;联立1{4x x y =+=,可得13x y ,即()1,3A ,联立1{4y x y =+=,可得31x y =⎧⎨=⎩,即()3,1C ,故:13OC k =,3OA k =,∴133OP k ≤≤,所以:041[4]03x y y u x x +-=+∈-=,,故答案为4,43⎡⎤⎢⎥⎣⎦. 点睛:本题考查线性规划问题,难点在于目标函数几何意义,近年来高考线性规划问题高考数学考试的热点,数形结合是数学思想的重要手段之一,是连接代数和几何的重要方法.随着要求数学知识从书本到实际生活的呼声不断升高,线性规划这一类新型数学应用问题要引起重视;①画可行域②明确目标函数几何意义,目标函数表示动点()P x y ,与定点()00O ,连线斜率k 再加1,③过O 做直线与可行域相交可计算出直线PO 斜率,从而得出所求目标函数范围.19.【分析】作出可行域表示与(00)连线的斜率结合图形求出斜率的最小值最大值即可求解【详解】如图不等式组表示的平面区域(包括边界)所以表示与(00)连线的斜率因为所以故【点睛】本题主要考查了简单的线性规解析:1,22⎡⎤⎢⎥⎣⎦【分析】 作出可行域,yx表示(),x y 与(0,0)连线的斜率,结合图形求出斜率的最小值,最大值即可求解. 【详解】如图,不等式组201030y x y x y -⎧⎪--⎨⎪+-⎩表示的平面区域ABC (包括边界),所以yx 表示(),x y 与(0,0)连线的斜率,因为()()1,22,1A B ,,所以122OA OB k k ==,,故1,22y x ⎡⎤∈⎢⎥⎣⎦.【点睛】本题主要考查了简单的线性规划问题,涉及斜率的几何意义,数形结合的思想,属于中档题.20.4【分析】先求出定点的坐标由题得再利用基本不等式求的最小值得解【详解】令所以定点的坐标为所以所以当且仅当时取等号所以的最小值为4故答案为:4【点睛】本题主要考查指数型函数的定点问题考查基本不等式求最解析:4 【分析】先求出定点P 的坐标,由题得22A B +=,再利用基本不等式求12A B+的最小值得解.【详解】令020,2,451x x y a +=∴=-∴=⨯-=-,所以定点P 的坐标为(2,1)--. 所以(2)20,22,0,0,0A B A B A B A B ⨯--+=∴+=⋅>∴>>.所以12112141(2)()(4)[44222A B A B A B A B B A +=⨯+⨯+=++≥+=. 当且仅当1,12A B ==时取“等号”. 所以12A B +的最小值为4. 故答案为:4 【点睛】本题主要考查指数型函数的定点问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥.【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可. 【详解】(Ⅰ)由指数函数xy b =的图象过点(2,4),得2b =,所以2()222x xnf x +=-⋅-, 又()f x 为R 上的奇函数, 所以()00f =, 得1n =-,经检验,当1n =-时,符合()()f x f x -=-,所以121()22x x f x +-+=+;(Ⅱ)12111()22221x x xf x +-+==-+++, 因为21xy =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减, 由于()f x 为R 上的奇函数, 所以由()23()0f x x f a x ++-+=, 可得()()23()f x x f a x f a x +=--+=-,则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根, 即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数,由()22(1)0f t a f at -+-≥,得()()221f ta f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立, 令()221g t t at a =+--,由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩,得0a ≥,所以实数a 的取值范围为:{}0a a ≥. 【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键.22.(1)91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭;(2)答案见解析.【分析】(1)由()0f x <的解集转化为2和8是方程2(21)20ax a x -++=的两根,求得18a =,得出()12584f x x x x =+-,再分0x >和0x <两种情况,结合基本不等式,即可求解; (2)由题意,得到(1)(2)0ax x --<,分类讨论,即可求得不等式的解集.【详解】(1)由题意,函数2()(21)f x ax a x c =-++,且(0)2f c ==,所以2()(21)2f x ax a x =-++,因为()0f x <的解集为{|28}x x <<,即2和8是方程2(21)20ax a x -++=的两根,所以228c a a ⨯==,所以18a =,所以()12584f x y x x x ==+-,当0x >时,125518444x x +-≥=-,当且仅当4x =时等号成立;当0x <时,12512559848444x x x x ⎡⎤⎛⎫⎛⎫+-=--+--≤-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 当且仅当4x =-时等号成立. 故函数()f x y x =的值域城为91,,44⎛⎤⎡⎫-∞-⋃-+∞ ⎪⎥⎢⎝⎦⎣⎭.(2)由2()(21)2(1)(2)0f x ax a x ax x =-++=--<,因为0a >时,分三种情况讨论: ①当12a <,即12a >时,1()02f x x a<⇒<<; ②当12a =,即12a =时,无解; ③当12a >,即102a <<时,1()02f x x a<⇒<<,综上所述,当12a >时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭; 当12a =时,不等式()0f x <的解集为∅; 当102a <<时,不等式()0f x <的解集为1|2x x a ⎧⎫<<⎨⎬⎩⎭. 【点睛】解含参数的一元二次不等式的步骤:(1)若二次项含有参数,应先讨论参数是等于0、小于0,还是大于0,然后整理不等式;(2)当二次项系数不为0时,讨论判别式与0的关系,判断方程的根的个数;(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.23.(1)最多75人;(2)存在,{}7m ∈.【分析】(1)根据题意直接列出不等式可求解;(2)由①可得2125x m ≥+,由②可得100325x m x ≤++,分别利用函数单调性和基本不等式即可求解.【详解】(1)依题意可得调整后研发人员的年人均投入为()14%x a +⎡⎤⎣⎦万元,则()()10014%100x x a a -+≥⎡⎤⎣⎦,(0a >)解得075x ≤≤, 4575x ,所以调整后的技术人员的人数最多75人;(2)①由技术人员年人均投入不减少有225x a m a ⎛⎫-≥ ⎪⎝⎭,解得2125x m ≥+. ②由研发人员的年总投入始终不低于技术人员的年总投入有()()210014%25x x x a x m a ⎛⎫-+≥-⎡⎤ ⎪⎣⎦⎝⎭, 两边同除以ax 得1002112525x x m x ⎛⎫⎛⎫-+≥-⎪⎪⎝⎭⎝⎭, 整理得100325x m x ≤++, 故有2100132525x x m x +≤≤++,因为10033725x x ++≥=,当且仅当50x =时等号成立,所以7m ≤, 又因为4575x ≤≤,当75x =时,225x 取得最大值7,所以7m ≥, 77m ∴≤≤,即存在这样的m 满足条件,使得其范围为{}7m ∈.【点睛】本题考查不等式的应用,解题的关键是正确理解题中数量关系,建立正确的不等式,进而求解.24.(1)501010y x=--,(0,5)x ∈;(2)75-(1)由题意得10AB CD x ==-,则10CP x y =--,根据ADP Rt CBP ≌,可得DP BP y ==,所以222+(10)y x x y =--,化简整理,即可求得y 与x 的关系,根据AB AD >,即可求得x 的范围,即可得答案;(2)由(1)可得501010y x=--,(0,5)x ∈,则ADP △的面积12505(10)75210S xy x x ==-++-,根据x 的范围,结合基本不等式,即可求得答案. 【详解】(1)由题意得:10AB CD x ==-,则10CP x y =--,因为在Rt ADP 和Rt CBP 中,,APD CPB AD BC ∠==,所以ADP Rt CBP ≌,即DP BP y ==,所以在Rt CBP 中,222+(10)y x x y =--,所以2222+10020202y x x y x y xy =++--+, 化简可得501010y x=--, 因为AB AD >,所以100x x ->>,解得05x <<, 所以501010y x=--,(0,5)x ∈; (2)由(1)可得501010y x =--,(0,5)x ∈, 所以ADP △面积115025250(10)55(10)7522101010x S xy x x x x x x ==⋅-=-=-++---, 因为(0,5)x ∈,所以100x -<,所以2502505(10)[5(10)]1010x x x x -+=--+≤-=---当且仅当2505(10)10x x-=-,即10x =-时等号成立,此时面积250[5(10)]757510S x x =--++≤--即ADP △面积最大值为75-【点睛】解题的关键是根据条件,表示出各个边长,根据三角形全等,结合勾股定理,进行求解,易错点为:利用基本不等式求解时,需满足“①正”,“②定”,“③相等”,注意检验取等条件是否成立,考查分析理解,计算化简的能力,属中档题.25.(1)3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈;(2)4-;(3)0.65(1)根据已知条件列出关系式,即可得出答案;(2)由()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦,进而结合基本不等式求出()4544k x x +++的最小值,此时y 取得最大值,从而可求出答案; (3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,可知36018082004k k x x ---≥+在[0,10]x ∈上恒成立,利用参变分离,可得()()20841802x x k x ++≥+,求出()()20842x x x +++的最大值,令()()max20841802x x k x ++⎡⎤≥⎢⎥+⎣⎦,即可得出答案. 【详解】(1)由题意,80(20950)y x t x t =+-++30820t x =--123068204k x x ⎛⎫=⋅--- ⎪+⎝⎭3601808204k k x x =---+, 即3601808204k y k x x =---+,[0,10]x ∈,[0.5,1]k ∈. (2)()36045180820180128444k k y k x k x x x ⎡⎤=---=+-++⎢⎥++⎣⎦, 因为[0,10]x ∈,所以4414x ≤+≤,所以()4544k x x ++≥=+4544k x x +=+,即4x =时,等号成立.所以()451801284180124k y k x k x ⎡⎤=+-++≤+-⎢⎥+⎣⎦故政府补贴为4万元才能使A 公司的防护服利润达到最大,最大为18012k +-.(3)对任意的[0,10]x ∈(万元),A 公司都不产生亏损,则36018082004k k x x ---≥+在[0,10]x ∈上恒成立,不等式整理得,()()20841802x x k x ++≥+, 令2m x =+,则[]2,12m ∈,则()()()()208484288202x x m m m x m m++++==+++,由函数()8820h m m m=++在[]2,12上单调递增,可得()()max 821281*********h m h ==⨯++=+, 所以21801163k ≥+,即211630.65180k +≥≈. 所以当复工率k 达到0.65时,对任意的[0,10]x ∈(万元),A 公司都不产生亏损.【点睛】本题考查函数模型及其应用,考查利用基本不等式求最值,考查不等式恒成立问题,考查学生分析问题、解决问题的能力,属于中档题.26.(1)45;(2)证明见解析 【分析】(1)由所给等式得()215a b ++=,再利用基本不等式即可求得最小值;(2)利用()2222a b a b ++≥即可逐步证明.【详解】 (1)3a b +=,()215a b ++∴=,且200a b +>>,, ∴()1111112++2225252b a a b a b a b a b +⎛⎫⎛⎫=++=++ ⎪ ⎪+++⎝⎭⎝⎭14255⎛≥+= ⎝,当且仅当2=2b a a b ++即1522a b ==,时等号成立, ∴11+2+a b 的最小值为45. (2)因为a >0,b >0,所以要证92+a b b a ab ,需证2292a b +≥, 因为()222239222a b a b ++≥==, 所以92+a b b aab ,当且仅当32a b ==时等号成立. 【点睛】 本题考查条件等式求最值、基本不等式的应用,属于中档题.。
必修5第三章不等式单元测试题及答案
必修5第三章《不等式》单元测试题 班级 姓名 座号 分数一、选择题(本大题共6小题,每小题6分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(x -1)(x -3)>0的解集为 ( ) A.{x |x <1} B. {x |x >3} C. {x |x <1或x >3} D.{x |1<x <3}2.不等式2x+y+1<0表示的平面区域在直线2x+y+1=0( )A 、右上方B 、右下方C 、左上方D 、左下方3.设中最大的是 ( )A. B. b C. 2ab D.4.给出平面区域如下图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a 的值是( )A .32B .21C .2D .235.已知1273,023++=-+y x y x 则的最小值是 ( )A. 393B. 221+C. 6D. 76.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( )A 、11{|}32x x -<<B 、11{|}32x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或二、填空题(本大题共4小题,每小题6分,共24分,将答案填在题后的横线上)1.已知集合M={x |x >6},N={x |x 2-6x -27<0},则M ∩N=2.若关于x 的不等式342+++x x a x >0的解集为{x|-3<x<-1或x>2},则a= 3.已知x >2,则y =21-+x x 的最小值是 . 4.对于任意实数x ,不等式()()222240a x a x ----<恒成立,则实数a 的取值范围是三、解答题(本大题共3小题,共40分,解答应写出文字说明,证明过程或演算步骤)1.解下列关于x 的不等式:(1)x 2-5x +6>0; (2)(x+a)(x-2a+1) <02.已知x 、y 满足不等式⎪⎩⎪⎨⎧-≥≥+-≤-+10303y y x y x ,求z =3x +y 的最大值与最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题(本大题共5小题,每小题4分,共20分) 13.对于x∈R,式子恒有意义,则常数k的取值范围是_________. 14.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________.
15.当时,函数的最小值是________。 16.若,用不等号从小到大 连结起来为____________。 三、解答题(本大题共6小题,共75分) 17.(8分)已知a>b>0,c<d<0,e<0,比较与的大小.
(2)当0≤t<10时,y的取值范围是[1200,1225], 在t=5时,y取得最大值为1225; 当10≤t≤20时,y的取值范围是[600,1200], 在t=20时,y取得最小值为600. 22.(14分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面 建造平面图形为矩形,面积为126 m2的厂房,工程条件是: (1)建1 m新墙的费用为a元; (2)修1 m旧墙的费用为元; (3)拆去1 m的旧墙,用可得的建材建1 m的新墙的费用为元. 经讨论有两种方案: ①利用旧墙x m(0<x<14)为矩形一边; ②矩形厂房利用旧墙的一面长x≥14. 试比较①②两种方案哪个更好. 解:方案①:修旧墙费用为(元), 拆旧墙造新墙费用为(14-x)(元), 其余新墙费用为(2x+-14)a(元), 则总费用为y=+(14-x)+(2x+-14)a=7a(+-1)(0<x<14), ∵+≥2=6, ∴当且仅当=即x=12时,ymin=35a, 方案②: 利用旧墙费用为14×=(元), 建新墙费用为(2x+-14)a(元), 则总费用为y=+(2x+-14)a=2a(x+)-a(x≥14), 可以证明函数x+在[14,+∞)上为增函数, ∴当x=14时,ymin=35.5a. ∴采用方案①更好些.
答案:A 8.解析:∵x+≥2|m|,∴2|m|>4. ∴m>2或m<-2. 答案:B 9. D 方程的两个根为和, 10. B 11.解析:令x=y=0得f(0)=f2(0), 若f(0)=0,则f(x)=0·f(x)=0与题设矛盾. ∴f(0)=1.又令y=-x,∴f(0)=f(x)·f(-x), 故f(x)=. ∵x>0时,f(x)>1,∴x<0时,0<f(x)<1,故选D. 答案:D 12.解析:∵<0,∴-2<x<.而y=--3=|3x-5|-|x+2|-3=5 -3x-x-2-3=-4x.∴选A. 答案:A 二、填空题 13.对于x∈R,式子恒有意义,则常数k的取值范围是 __________. 解析:式子恒有意义,即kx2+kx+1>0恒成立.当k≠0时,k>0且
满足3x+2y+5>0. 答案:A 4.答案:D 对于A:不能保证,对于B:不能保证, 对于C:不能保证, 对于D: 5.解析:M-N=2a(a-2)+3-(a-1)(a-3)=a2≥0, 所以M≥N. 答案:B 6.解析:在平面直角坐标系中,画出不等式组表示的平面区域, 如下图中的阴影部分.
则平面区域是△ABC. 答案:A 7.解析:画出可行域如下图中的阴影部分所示.解方程组得 A(2,1).由图知, 当直线y=x-z过A时,-z最大,即z最小,则z 的最小值为2-1=1.
三、解答题(本大题共6小题,共75分) 17.(12分)已知a>b>0,c<d<0,e<0,比较与的大小. 解:-==e. ∵a>b>0,c<d<0, ∴a-c>0,b-d>0,b-a<0,c-d<0. 又e<0,∴->0.∴>. 18.(12分)解下列不等式: (1)-x2+2x->0; (2)9x2-6x+1≥0. 解:(1)-x2+2x->0⇔x2-2x+<0⇔3x2-6x+2<0. Δ=12>0,且方程3x2-6x+2=0的两根为x1=1-,x2=1+, ∴原不等式解集为{x|1-<x<1+}. (2)9x2-6x+1≥0⇔(3x-1)2≥0. ∴x∈R.∴不等式解集为R. 19.(12分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2- (2m+3)x+m>0. 解:当m=-3时,不等式变成3x-3>0,得x>1; 当-3<m<-2时,不等式变成(x-1)[(m+3)x -m]>0,得x>1或x<; 当m<-3时,得1<x<. 综上,当m=-3时,原不等式的解集为(1,+∞);当 -3<m<-2时,原不等式的解集为∪(1,+∞);当m<-3时,原不 等式的解集为. 20.(12分)已知非负实数x,y满足 (1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z=x+3y的最大值.
解:(1)由,y取非负实数,根据线性约束条件作出可行域,如下 图所示阴影部分.
(2)作出直线l:x+3y=0,将直线l向上平移至l1与y轴的交点M位 置时,此时可行域内M点与直线l的距离最大,而直线x+y-3=0与y轴 交于点M(0,3). ∴zmax=0+3×3=9. 21.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商 品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数, 且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=20-|t- 10|(元). (1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达 式; (2)求该种商品的日销售额y的最大值与最小值. 解:(1)y=g(t)·f(t) =(80-2t)·(20-|t-10|) =(40-t)(40-|t-10|) =
C.
D.
11.已知定义域在实数集R上的函数y=f(x)不恒为零,同时满足f(x+y) =f(x)·f(y),且当x>0时,f(x)>1,那么当x<0时,一定有( ) A.f(x)<-1 B.-1<f(x)<0 C.f(x)>1 D.0<f(x)<1 12.若<0,化简y=--3的结果为( ) A.y=-4x B.y=2-x C.y=3x-4 D.y=5-x
18.(8分)解下列不等式: (1)-x2+2x->0;
(2)9x2-6x+1≥0.
19.(8分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2-(2m+ 3)x+m>0.
20.(8分)已知非负实数x,y满足 (1)在所给坐标系中画出不等式组所表示的平面区域; (2)求z=x+3y的最大值.
21.(8分)经市场调查,某超市的一种小商品在过去的近20天内的销售量 (件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80- 2t(件),价格近似满足f(t)=20-|t-10|(元). (1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式; (2)求该种商品的日销售额y的最大值与最小值.
高中数学必修五第三章不等式单元测试
一、选择题(本大题共10小题,每小题3分,共30分) 1.不等式x2≥2x的解集是( ) A.{x|x≥2} B.{x|x≤2} C.{x|0≤x≤2} D.{x|x≤0或 x≥2} 2.设,则下列不等式中恒成立的是 ( ) A. B. C. D. 3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一 区域的是( ) A.(-3,4) B.(-3,-4) C.(0,-3) D.(-3,2) 4.下列各函数中,最小值为的是 ( ) A. B., C. D. 5.设M=2a(a-2)+3,N=(a-1)(a-3),a∈R,则有( ) A.M>N B.M≥N C.M<N D.M≤N 6.不等式组表示的平面区域的形状为( ) A.三角形 B.平行四边形 C.梯形 D.正方形 7.设z=x-y,式中变量x和y满足条件则z的最小值为( ) A.1 B.-1 C.3 D.-3 8.若关于x的函数y=x+在(0,+∞)的值恒大于4,则( ) A.m>2 B.m<-2或m>2 C.-2<m<2 D.m<-2 9.一元二次不等式的解集是,则的值是( )。 A. B. C. D. 10.若方程只有正根,则的取值范围是( ). A.或 B.
Δ=k2-4k<0,∴0<k<4;而k=0时,kx2+kx+1=1>0恒成立,故 0≤k<4 14.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________. 解析:如下图中阴影部分所示,围成的平面区域是Rt△OAB.
可求得A(4,0),B(0,4),则OA=OB=4, AB=4,所以Rt△OAB的周长是4+4+4=8+4. 答案:8+4 15. 16.
必修5第三章《不等式》单元测试题答案
1.解析:原不等式化为x2-2x≥0,则x≤0或x≥2. 答案:D 2.C 对于A,B,倒数法则:,要求同号, ,对于的反例: 3.解析:当x=y=0时,3x+2y+5=5>0,所以原点一侧的平面区 域对应的不等式是3x+2y+5>0,可以验证,仅有点(-3,4)的坐标
22.(10分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面建造 平面图形为矩形,面积为126 m2的厂房,工程条件是:(1)建1 m新墙的 费用为a元;(2)修1 m旧墙的费用为元; (3)拆去1 m的旧墙,用可得的建材建1 m的新墙的费用为元. 经讨论有两种方案: ①利用旧墙x m(0<x<14)为矩形一边;②矩形厂房利用旧墙的一面长 x≥14. 试比较①②两种方案哪个更好.