初三数学圆测试题和答案
初三圆的练习题及答案
初三圆的练习题及答案初三圆的练习题及答案在初三数学学习中,圆是一个重要的几何概念。
掌握圆的性质和相关的计算方法对于解题非常关键。
本文将为大家提供一些圆的练习题及其答案,希望能够帮助大家更好地理解和应用圆的知识。
一、填空题1. 半径为5cm的圆的面积是多少?答案:面积=πr²=π×5²=25π cm²2. 已知一个圆的半径为8cm,求该圆的周长。
答案:周长=2πr=2π×8=16π cm3. 如果一个圆的面积是36π cm²,求该圆的半径。
答案:面积=πr²,36π=πr²,r²=36,r=6 cm二、选择题1. 以下哪个选项是圆的定义?A. 一个平面上的所有点到一个固定点的距离相等。
B. 一个平面上的所有点到一个固定点的距离之和相等。
C. 一个平面上的所有点到一个固定直线的距离相等。
D. 一个平面上的所有点到一个固定点的距离比例相等。
答案:A. 一个平面上的所有点到一个固定点的距离相等。
2. 以下哪个选项是圆的面积公式?A. 面积=πr²B. 面积=2πrC. 面积=πdD. 面积=πr答案:A. 面积=πr²三、计算题1. 已知一个圆的直径为12cm,求该圆的面积和周长。
答案:半径r=直径/2=12/2=6 cm面积=πr²=π×6²=36π cm²周长=2πr=2π×6=12π cm2. 一个圆的周长为18π cm,求该圆的半径和面积。
答案:周长=2πr=18π cm,解得r=9 cm面积=πr²=π×9²=81π cm²四、应用题1. 一个圆形花坛的半径为5 m,围绕花坛建一个小路,小路的宽度为2 m。
求小路的面积。
答案:外圆的半径=花坛半径+小路宽度=5+2=7 m内圆的半径=花坛半径=5 m小路的面积=外圆面积-内圆面积=π(外圆半径²-内圆半径²)=π(7²-5²)=π(49-25)=24π m²2. 一个圆形游泳池的直径为10 m,池边修建一条环形的跑道,跑道的宽度为2 m。
初中初三数学圆试题及答案
初中初三数学圆试题及答案一、选择题(每题2分,共10分)1. 圆的半径是10,那么圆的直径是()A. 5B. 20C. 15D. 252. 已知圆心为O,点A在圆上,OA的长度是半径的2倍,那么点A()A. 在圆内B. 在圆上C. 在圆外D. 不存在3. 圆的周长公式是()A. C = πdB. C = 2πrC. C = πrD. C = 4r4. 圆的面积公式是()A. S = πr²B. S = πd²C. S = 2πrD. S = πd5. 如果一个圆的半径增加1cm,那么它的面积将增加多少平方厘米?(π取3.14)A. 3.14B. 6.28C. 2πD. π二、填空题(每题2分,共10分)1. 半径为r的圆的周长是______。
2. 半径为r的圆的面积是______。
3. 如果一个扇形的圆心角为30°,半径为5cm,那么它的弧长是______。
4. 一个圆的直径是20cm,那么它的半径是______。
5. 圆周角定理指出,圆周上一点到圆心的两条半径所夹的角是圆心角的______。
三、解答题(每题5分,共30分)1. 已知圆O的半径为5cm,点P在圆O上,求OP的长度。
答案:OP的长度为5cm。
2. 一个圆的周长是44cm,求这个圆的半径。
答案:设半径为r,根据周长公式C = 2πr,44 = 2 × 3.14 × r,解得r = 7cm。
3. 一个圆的面积是78.5平方厘米,求这个圆的半径。
答案:设半径为r,根据面积公式S = πr²,78.5 = 3.14 × r²,解得r = √(78.5 / 3.14) ≈ 5cm。
4. 已知圆心角为60°,半径为10cm的扇形,求这个扇形的弧长。
答案:弧长= (60/360) × 2π × 10 = π × 10 = 31.4cm。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 相交B. 相切B. 相离D. 无法确定2. 一个圆的半径为4,圆心在原点,那么圆上任意一点到圆心的距离是多少?A. 4B. 3C. 5D. 63. 点A(2,3)与圆心O(0,0)的距离是多少?A. 2B. 3C. 4D. 54. 已知点P在圆上,OP=r,其中O是圆心,r是半径,那么点P与圆的位置关系是什么?A. 在圆内B. 在圆上C. 在圆外D. 不在圆上5. 圆的面积公式是什么?A. πr²B. 2πrC. πrD. πr³答案:1-A 2-A 3-C 4-B 5-A二、填空题6. 圆的周长公式是______。
7. 如果圆的半径增加1,那么它的周长将增加______。
8. 已知圆的直径为10,那么它的半径是______。
9. 圆的内接四边形的对角线的关系是______。
10. 如果一个点到圆心的距离等于半径,那么这个点是圆上的______。
答案:6-C=2πr 7-2π 8-5 9-互相平分 10-点三、计算题11. 已知圆的半径为7,求圆的周长和面积。
12. 已知圆的周长为44cm,求圆的半径。
答案:11. 周长:C = 2πr = 2 × 3.14 × 7 = 43.96cm面积:A = πr² = 3.14 × 7² = 153.86cm²12. 半径:r = C / (2π) = 44 / (2 × 3.14) ≈ 7cm四、解答题13. 已知点P(-3,4),求点P到圆心O(0,0)的距离。
14. 已知圆的半径为5,圆心在(1,1),求圆上任意一点(x,y)到圆心的距离公式。
答案:13. 点P到圆心O的距离为:d = √[(-3-0)² + (4-0)²] = √(9 + 16) = √25 = 514. 圆上任意一点(x,y)到圆心(1,1)的距离公式为:d = √[(x-1)² + (y-1)²],且d = 5五、证明题15. 已知圆O的半径为r,点A、B在圆上,证明弦AB的长度等于圆心O到弦AB的垂直距离的两倍。
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。
A. 圆的直径是半径的2倍B. 圆的周长是直径的π倍C. 圆的面积是半径的平方乘以πD. 圆的周长是半径的2π倍答案:D2. 圆的面积公式为()。
A. S = πrB. S = πr²C. S = πdD. S = πd²答案:B3. 圆的周长公式为()。
A. C = 2πrB. C = 2πdC. C = πrD. C = πd答案:A4. 圆心角为60°的扇形面积是()。
A. πr²/6B. πr²/3C. πr²/2D. πr²答案:A5. 一个圆的半径为3cm,其面积为()。
A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C6. 圆的直径增加1倍,其面积增加()。
A. 1倍B. 2倍C. 4倍D. 8倍答案:C7. 圆的半径增加1倍,其周长增加()。
A. 1倍B. 2倍C. 3倍D. 4倍答案:B8. 一个圆的周长为12.56cm,其直径为()。
A. 2cmB. 4cmC. 6cmD. 8cm答案:B9. 圆的半径为4cm,其直径为()。
A. 2cmB. 4cmC. 8cmD. 16cm答案:C10. 圆的半径为2cm,其周长为()。
A. 4π cmB. 8π cmC. 12π cmD. 16π cm答案:B二、填空题(每题3分,共30分)1. 圆的周长公式为______。
答案:C = 2πr2. 圆的面积公式为______。
答案:S = πr²3. 圆的直径是半径的______倍。
答案:24. 圆的周长是直径的______倍。
答案:π5. 圆的面积是半径的平方乘以______。
答案:π6. 圆心角为90°的扇形面积是圆面积的______。
答案:1/47. 圆心角为180°的扇形面积是圆面积的______。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。
A. 相离B. 相切C. 相交D. 内含2. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = 4πrD. C = 8πr3. 圆的面积公式是()。
A. S = πr^2B. S = 2πrC. S = 4πr^2D. S = 8πr4. 已知圆的半径为4,求圆的直径是()。
A. 8B. 12C. 16D. 205. 一个圆的半径增加2,面积增加了()。
A. 4πB. 8πC. 12πD. 16π二、填空题6. 圆心角的度数是360°的圆心角所对的弧是______弧。
7. 已知扇形的半径为6,圆心角为60°,求扇形的面积是______。
8. 已知两圆的半径分别为r1和r2,两圆的圆心距为d,若d = r1 + r2,则两圆的位置关系是______。
9. 已知圆的半径为3,求圆的内接正六边形的边长是______。
10. 已知圆的半径为5,求圆的内接正三角形的边长是______。
三、计算题11. 已知圆的半径为7,求圆的周长和面积。
周长为______,面积为______。
12. 已知圆的半径为10,圆上一点P到圆心的距离为9,求点P所对的圆心角的度数。
四、解答题13. 已知圆的半径为8,圆内接正六边形的边长为a,求圆的周长和正六边形的面积。
14. 已知圆的半径为15,求圆内接正十二边形的边长。
答案:1. C2. B3. A4. A5. B6. 优弧7. 18π8. 外切9. 610. 1011. 周长为44π,面积为49π12. 圆心角的度数为60°13. 圆的周长为16π,正六边形的面积为144π - 72√314. 正十二边形的边长为15(√3 - 1)结束语:本测试题涵盖了圆的基本性质、周长和面积的计算、内接多边形的边长等知识点,旨在帮助学生巩固圆的相关知识,提高解题能力。
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。
如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。
2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。
3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。
初三数学圆精选练习题及答案
圆精选练习题及答案一一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24 分):1. 下列说法正确的是()A.垂直于半径的直线是圆的切线B. 经过三点一定可以作圆C.圆的切线垂直于圆的半径D. 每个三角形都有一个内切圆2. 在同圆或等圆中,如果AB = 2CD ,则AB与CD的关系是()(A)AB > 2CD (B)AB = 2CD (C)AB V 2CD (D)AB = CD3. 如图(1),已知PA切O O于B,OP交AB于C,则图中能用字母表示的直角共有()个A.3B.4C.5D.6⑵4. 已知O O的半径为10cm,弦AB// CD,AB=12cm,CD=16cr则AB和CD的距离为()A.2cmB.14cmC.2cm 或14cmD.10cm 或20cm5. 在半径为6cm的圆中,长为2 - cm的弧所对的圆周角的度数为()A.30 °B.100C.120°D.130 °6. 如图(2),已知圆心角/ AOB勺度数为100° ,则圆周角/ ACB的度数是()A.80 °B.100 °C.120°D.130 °7. O O的半径是20cm,圆心角/ AOB=120 ,AB是O O弦,则S. AOB等于()A.25 .3 cmB.50 、3 cnfC.100 \ 3 cn iD.200 、3 cnf8. 如图(3),半径0A 等于弦AB,过B 作O 0的切线BC,取BC=AB,O 交O 0于E,AC 交O 0于点D,则BD 和DE 的度数分别为()、填空题:(每小题4分,共20分):11. 一条弦把圆分成1 :3两部分,贝U 劣弧所对的圆心角的度数为 12. 如果O O 的直径为10cm,弦AB=6cm 那么圆心O 到弦AB 的距离为 13. 在O O 中,弦AB 所对的圆周角之间的关系为 14. 如图(4), 。
初三数学圆测试题及答案
初三数学圆测试题及答案初三数学圆测试题及答案一、填空题1、圆的位置由________决定,圆的大小决定于________的大小。
2、在平面上,到定点(0,0)和定直线x=-2的距离相等的所有点构成图形是________;在球面上,到定点(-1,-1,-1)和定直线x +y+z=0的距离相等的所有点构成图形是________.3、圆可以看作是所有到定点(0,0)和定直线x=+t,y=-t(t≥0)的距离相等的点的________.4、证明定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.5、木工椎木螺钉的螺纹是依据________制成的.6、计算公式=________.7、等腰三角形两底角的平分线相等.;反之,等腰三角形两底角的平分线相等的三角形是.二、选择题8、雨花台区实验中学准备在体育场举办校运会,现将跑道内侧(跑道的内侧即是与终点线重合的短线)的直道部分改造为塑胶跑道,如果用半径为rcm的圆钢煨制(每个半径为rcm的圆钢可以将直道部分煨制30cm),那么r为任意有理数时,所需的圆钢的总长度最少为( ) A. 60πcm B. 120πcm C. 75πcm D. 90πcm81、下列命题中正确的是( ) A. 平分弦的直径垂直于弦 B. 三角形的重心是其三条中线的交点 C. 能够完全重合的两个图形全等 D.一组对边平行且一组对角相等的四边形是平行四边形811、四边形ABCD内接于⊙O,则∠A,∠B,∠C,∠D这四个角之间的关系为( ) A. ∠A+∠B+∠C+∠D=360° B. ∠A+∠B+∠C+∠D=2π C. ∠A+∠B+∠C+∠D=π D. 无法确定三、解答题11、在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径的圆与线段AB只有一个公共点,则半径r的取值范围是什么?111、小红在学习本节时,根据初步的几何知识知道半径相等的两个圆全等.她发现所有的圆形纸片都只有一条对称轴(即通过圆心的直线),于是她大胆猜想:任何一个半径相等的圆都只有一条对称轴.你认为她的猜想正确吗?请说明理由.1111、等边三角形的半径为r,高为h,面积为S,根据已知条件填空:当等边三角形的半径为2时,高为________,面积为________;当等边三角形的半径为3时,高为________,面积为________;当等边三角形的半径为6时,高为________,面积为________.观察以上各题中半径、高和面积的数值关系,你发现了什么?。
数学初三圆的试题及答案
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
初三中考圆的试题及答案
初三中考圆的试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为5,圆心为坐标原点,则圆的方程为()A. (x-0)^2 + (y-0)^2 = 25B. (x-5)^2 + (y-5)^2 = 25C. (x+5)^2 + (y+5)^2 = 25D. (x-5)^2 + (y+5)^2 = 25答案:A2. 圆与直线相切的条件是()A. 圆心到直线的距离等于半径B. 圆心到直线的距离小于半径C. 圆心到直线的距离大于半径D. 圆心到直线的距离等于直径答案:A3. 已知圆的半径为3,圆心坐标为(-2, 3),求圆上的点(1, 4)与圆心的距离为()A. 2B. 3C. 4D. 5答案:D4. 圆的直径是()A. 圆上任意两点间最长的线段B. 圆上任意两点间最短的线段C. 圆上任意两点间距离的两倍D. 圆上任意两点间距离的一半答案:A5. 圆的周长公式为()A. C = 2πrB. C = πrC. C = 4πrD. C = πr^2答案:A6. 圆的面积公式为()A. S = πr^2B. S = 2πrC. S = πrD. S = 4πr^2答案:A7. 圆内接四边形的对角线()A. 相等B. 不相等C. 垂直D. 平行答案:A8. 圆的切线与半径的关系是()A. 切线与半径垂直B. 切线与半径平行C. 切线与半径相交D. 切线与半径重合答案:A9. 圆的内切圆与外切圆的半径之和等于()A. 圆的直径B. 圆的半径C. 圆的周长D. 圆的面积答案:A10. 圆的内接三角形的面积公式为()A. S = 1/2 * a * b * sin(C)B. S = 1/2 * a * b * cos(C)C. S = 1/2 * r * (a + b + c)D. S = 1/2 * r * (a - b + c)答案:C二、填空题(每题3分,共30分)1. 圆的方程为(x-2)^2 + (y+3)^2 = 16,则圆心坐标为______。
九年级数学圆测试题及答案
九年级数学圆测试题一、选择题1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),则此圆的半径为( )A .2b a +B .2b a - C .22b a b a -+或 D .b a b a -+或 2.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( )A .20°B .40°C .50°D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位D .15个单位图24—A —5 图24—A —1图24—A —2 图24—A —3 图24—A —46.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26mB .26m πC .212mD .212m π9.如图24—A —6,两个同心圆,大圆的弦AB 及小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,则△ABC 的内切圆的半径为( )A .310B .512C .2D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点图24—A —6图24—A —7二、填空题12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC=。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 已知直径为14cm的圆的周长是多少?A. 14cmB. 28cmC. 44cmD. 66cm2. 若AB是⊙O的直径,且OB=15cm,则其周长是多少?A. 15cmB. 30cmC. 45cmD. 60cm3. 已知⊙O的半径为5cm,则其面积是多少?A. 25πcm²B. 50πcm²C. 100πcm²D. 125πcm²4. 若一正方形的对角线长为18cm,则其边长是多少?A. 6cmB. 9cmC. 12cmD. 18cm5. 图中AB切⊙O于点C,若AC=10cm,BC=6cm,则⊙O的半径为多少?(图略)A. 4cmB. 5cmC. 6cmD. 11cm二、填空题1. 若C是边长为8cm的正方形ABCD的中点,则AC的长为______cm。
2. 已知矩形的长为12cm,宽为8cm,则其对角线的长为______cm。
3. 半径为3cm的圆的直径长度为______cm。
4. 若⊙O的周长为50πcm,则其半径长为______cm。
5. 已知正方形ABCD的边长为6cm,则其对角线的长为______cm。
三、解答题1. 已知AB是⊙O的直径,AC是⊙O的弦,且∠ABC=45°。
求∠AOC的度数。
解答步骤:由AB为⊙O的直径可得,∠ABC为⊙O的周角。
由于周角的度数为360°,而∠ABC=45°,所以∠AOC=180°-∠ABC=180°-45°=135°。
2. 一个正方形的对角线长15cm,求其边长。
解答步骤:设正方形的边长为x,则根据勾股定理得:x² + x² = 15²化简上述方程得:2x² = 225将方程两边除以2得:x² = 112.5取平方根得:x = √112.5 ≈ 10.61所以,正方形的边长约为10.61cm。
初三数学圆试题及答案
初三数学圆试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为5,则圆的面积是()A. 25πB. 50πC. 25D. 50答案:B2. 圆的直径是10,那么它的半径是()A. 5B. 10C. 15D. 20答案:A3. 圆周率π的近似值是()A. 3.14B. 3.14159C. 2.718D. 3.1416答案:A4. 一个圆的周长是62.8厘米,那么它的直径是()A. 20厘米B. 10厘米C. 5厘米D. 2厘米答案:A5. 圆的内接四边形的对角互补,那么这个四边形是()A. 矩形B. 菱形C. 梯形D. 任意四边形答案:A6. 一个圆的半径增加3倍,那么它的面积增加()A. 3倍B. 6倍C. 9倍D. 12倍答案:C7. 圆的周长公式是()A. C=2πrB. C=πdC. C=πrD. C=2d答案:A8. 圆的面积公式是()A. S=πr²B. S=2πrC. S=πdD. S=2πr²答案:A9. 圆的直径增加2倍,那么它的周长增加()A. 2倍B. 4倍C. 3倍D. 6倍答案:A10. 圆的半径是4,那么它的直径是()A. 8B. 2C. 4D. 16答案:A二、填空题(每题4分,共20分)1. 圆的半径为7,则它的周长是______。
答案:14π 或 442. 圆的周长为31.4,则它的半径是______。
答案:53. 圆的直径为6,则它的面积是______。
答案:9π 或 28.264. 圆的面积为50π,则它的半径是______。
答案:5√2 或 7.075. 圆的周长为44厘米,则它的直径是______。
答案:22厘米三、解答题(每题10分,共50分)1. 已知圆的半径为8,求圆的面积和周长。
答案:面积为64π,周长为16π。
2. 一个圆的直径是12厘米,求它的半径和面积。
答案:半径为6厘米,面积为36π平方厘米。
3. 一个圆的周长是100π厘米,求它的半径。
初三数学圆练习题及答案
初三数学圆练习题及答案一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。
A. 相交B. 相切C. 相离D. 包含2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 25 \),点P(1, 5)在圆上,求过点P的圆的切线斜率。
A. 0B. 1C. -1D. 不存在3. 已知点A(2, 3)和点B(-1, -2),求以线段AB为直径的圆的方程。
A. \( (x-0.5)^2 + (y-0.5)^2 = 13.5 \)B. \( (x-0.5)^2 + (y-0.5)^2 = 5 \)C. \( (x-0.5)^2 + (y-0.5)^2 = 10 \)D. \( (x-0.5)^2 + (y-0.5)^2 = 18 \)二、填空题4. 已知圆心O(0, 0),半径r=4,点P(4, 3),求点P到圆心O的距离OP。
\( OP = \) ______5. 若圆x²+y²=r²内有一点P(1, 1),求过点P的最短弦所在直线的方程。
\( 直线方程 = \) ______6. 已知圆的方程为 \( x^2 + y^2 - 6x - 8y + 16 = 0 \),求圆心坐标和半径。
圆心坐标为( , ),半径为______。
三、解答题7. 已知圆C的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求圆C的圆心坐标和半径。
8. 在平面直角坐标系中,圆x²+y²=9与直线y=2x+3相交于A、B两点,求AB的长度。
9. 已知圆心在直线x-y+c=0上,且经过点P(2, 3),求圆的方程。
四、证明题10. 已知圆O的半径为5,点P在圆上,PA、PB是圆的两条切线,PA 和PB的长度相等,证明PA垂直于PB。
答案:1. A2. C3. B4. \( OP = 5 \)5. \( 直线方程 = x + y - 6 = 0 \)6. 圆心坐标为(3, 4),半径为 \( \sqrt{5} \)7. 圆C的圆心坐标为(2, 3),半径为3。
初三圆练习题和答案
初三圆练习题和答案在初三数学学习中,圆是一个非常重要的几何概念。
为了帮助同学们更好地掌握圆的相关知识,本文将提供一些初三圆练习题和答案。
一、选择题1. 已知圆的半径为4cm,求其直径是多少?A. 2cmB. 4cmC. 8cmD. 16cm答案:C. 8cm2. 如果一张圆形饼干的半径为6cm,那么它的周长是多少?A. 6cmB. 12cmC. 18cmD. 36cm答案:C. 18cm3. 已知圆的半径为2.5cm,求其面积是多少?A. 3.14 cm²B. 7.85 cm²C. 15.7 cm²D. 19.63 cm²答案:B. 7.85 cm²4. 若扇形的圆心角为60°,圆的半径为5cm,求扇形的面积是多少?A. 3.14 cm²B. 6.28 cm²C. 7.85 cm²D. 15.7 cm²答案:B. 6.28 cm²5. 已知圆的半径为3cm,求圆心角为120°的弧长是多少?A. 1.57 cmB. 3.14 cmC. 9.42 cmD. 18.85 cm答案:D. 18.85 cm二、填空题1. 已知圆的半径为8cm,求其周长是______cm。
答案:16π cm2. 若圆的周长为18π cm,求其半径的长是______cm。
答案:9 cm3. 已知圆心角为90°,圆的半径为6cm,求扇形的面积是______cm²。
答案:π·3² cm²4. 若扇形的半径为10cm,扇形面积为50π cm²,求圆心角的度数是______°。
答案:72°5. 若弧长为12π cm,圆心角的度数是______°。
答案:180°三、解答题1. 一个圆的直径为10cm,求其周长和面积。
解答:已知直径 d = 10cm则半径 r = 10 ÷ 2 = 5cm周长= 2πr = 2π × 5 = 10π cm面积= πr² = π × 5² = 25π cm²2. 计算一个圆心角为45°的扇形的面积,已知圆的半径为8cm。
圆初三试题及答案
圆初三试题及答案一、选择题(每题2分,共20分)1. 圆的周长公式是:A. C = 2πrB. C = πr²C. C = 2πdD. C = πd2. 圆的面积公式是:A. A = πr²B. A = 2πrC. A = πd²D. A = 2πd3. 圆的半径是直径的:A. 1/2B. 1/3C. 2倍D. 3倍4. 圆的切线与半径在切点处的关系是:A. 垂直B. 平行C. 重合D. 相交5. 圆心角所对的弧长与半径的关系是:A. 弧长等于半径B. 弧长是半径的2倍C. 弧长是半径的π倍D. 弧长是半径的π/180倍二、填空题(每题2分,共20分)6. 如果圆的半径为r,那么圆的直径是______。
7. 圆的周长是圆的直径的______倍。
8. 圆的面积是半径平方的______倍。
9. 圆的内接四边形的对角线______。
10. 圆的外切四边形的对角线______。
三、简答题(每题10分,共30分)11. 请简述圆周角定理。
12. 请解释什么是圆的切线,并说明其性质。
13. 请描述圆的内接多边形和外切多边形的特点。
四、计算题(每题15分,共30分)14. 已知圆的半径为5cm,求该圆的周长和面积。
15. 已知圆的周长为44cm,求该圆的半径。
五、解答题(10分)16. 一个直径为10cm的圆内接一个正六边形,求该正六边形的边长。
答案:一、选择题1. A2. A3. A4. A5. D二、填空题6. 2r7. π8. π9. 互相平分10. 垂直且相等三、简答题11. 圆周角定理指出,一个圆的圆周角等于它所对弧所对的圆心角的一半。
12. 圆的切线是指在圆上某一点处与圆相切的直线,其性质是切线与半径在切点处垂直。
13. 圆的内接多边形的顶点都在圆上,其对角线相交于圆心;圆的外切多边形的边都与圆相切,其对边长度相等。
四、计算题14. 周长:C = 2πr = 2 × 3.14 × 5 = 31.4cm面积:A = πr² = 3.14 × 5² = 78.5cm²15. 半径:r = C / (2π) = 44 / (2 × 3.14) ≈ 7cm五、解答题16. 正六边形的边长等于圆的半径,所以边长为5cm。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
初三圆试题及答案数学
初三圆试题及答案数学一、选择题1. 圆的半径为5厘米,圆心角为60°的扇形的弧长是多少?A. 5π厘米B. 10π厘米C. 2π厘米D. 15π厘米答案:B2. 已知圆的直径为10厘米,求圆的周长。
A. 15π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C3. 点P在圆O的内部,PA和PB是点P到圆O的两条半径,PA=6厘米,PB=8厘米,求圆O的半径。
A. 5厘米B. 7厘米C. 9厘米D. 10厘米答案:B二、填空题1. 圆的面积公式是 _______。
答案:πr²2. 已知圆的半径为7厘米,求圆的直径。
答案:14厘米3. 圆的周长是半径的 _______ 倍。
答案:2π三、解答题1. 已知圆的半径为4厘米,求圆的面积。
解:根据圆的面积公式,面积A = πr²。
代入r = 4厘米,得到A = π × 4² = 16π平方厘米。
2. 已知圆的周长为31.4厘米,求圆的半径。
解:根据圆的周长公式,周长C = 2πr。
设圆的半径为r厘米,代入C = 31.4厘米,得到31.4 = 2πr。
解得r = 31.4 ÷ (2π) ≈ 5厘米。
3. 圆内接四边形ABCD中,AB=6厘米,BC=8厘米,CD=10厘米,DA=12厘米,求圆的半径。
解:由于圆内接四边形的对角和为180°,所以∠A和∠C的和为180°。
设圆的半径为r厘米,根据余弦定理,可得:(6² + 8² - 10²) / (2 × 6 × 8) = (12² + 10² - 8²) / (2 × 12 × 10)。
解得r = √((6² + 8² - 10²) / 2) = √(36 + 64 - 100) / 2 = √0 / 2 = 0厘米。
九年级数学圆试题及答案
九年级数学圆试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()A. 圆的半径是圆心到圆上任意一点的距离B. 圆的直径是圆心到圆上任意一点的线段C. 圆的周长是圆的直径与π的积D. 圆的面积是圆的半径的平方与π的积答案:A2. 已知圆的半径为5cm,那么圆的周长是()A. 10π cmB. 15π cmC. 20π cmD. 25π cm答案:C3. 圆的面积公式为()A. πr²B. 2πrC. πdD. 2πr²答案:A4. 圆心角为60°的弧长是圆的周长的()A. 1/6B. 1/3C. 1/2D. 2/3答案:A5. 圆的直径是半径的()A. 2倍B. 1/2倍C. 1/4倍D. 1/3倍答案:A6. 圆的半径增加1倍,圆的面积增加()A. 1倍B. 2倍C. 3倍D. 4倍答案:D7. 圆的周长与直径的比值是()A. πB. 2πC. 4πD. 6π答案:A8. 一个圆的半径是2cm,那么它的直径是()A. 4cmB. 6cmC. 8cmD. 10cm答案:A9. 圆的周长公式为()A. πr²B. 2πrC. πdD. 2πr²答案:B10. 圆的半径为3cm,圆心角为90°的弧长是()A. 3π cmB. 4.5π cmC. 6π cmD. 9π cm答案:B二、填空题(每题4分,共20分)1. 圆的周长公式为C=____,面积公式为S=____。
答案:2πr;πr²2. 圆的直径是半径的____倍。
答案:23. 圆心角为120°的弧长是圆的周长的____。
答案:1/34. 已知圆的半径为4cm,那么圆的周长为____cm。
答案:8π5. 圆的面积是半径的平方与π的____。
答案:积三、解答题(每题10分,共50分)1. 已知圆的半径为7cm,求圆的周长和面积。
答案:周长为14π cm,面积为49π cm²。
初三数学圆测试 题和答案
已经助攻冲到 B 点 . 有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门
.仅
从射门角度考虑,应选择 ________种射门方式 .
13. 如果圆的内接正六边形的边长为 6cm,则其外接圆的半径为 ___________.
14 如图,直角坐标系中一条圆弧经过网格点 在圆的圆心坐标为 _____________.
.
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
.
A. 相离或相切
B. 相切或相交
C. 相离或相交
D. 无法确定
10.如图,把直角△ ABC的斜边 AC放在定直线 上,按顺时针的方向在直线 上转动两次,使它转到 △A2B2C2 的位置,设 AB= , BC=1,则顶点 A 运动到点 A2 的位置时,点 A 所经过的路线为 ( )
A.
B.
C.
D.
二、填空题
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆测试题和答
案
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
圆练习
一、选择题
二、1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心
三、在三角形的一条边上的三角形是直角三角形,其中真命题共有( )
四、个个个个
五、2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆
六、的位置关系是( )
七、 A.外离 B.相切 C.相交 D.内含
八、3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
九、°°°°
(3题图)(4题图)
4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( )
≤OM≤5 ≤OM≤5 <OM<5 <OM<5
5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( )
°°°°
(5题图)(6题图)
6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( )
7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图中阴
影部分的面积为( )
A. B. C. D.
8.已知⊙O
1与⊙O
2
外切于点A,⊙O
1
的半径R=2,⊙O
2
的半径r=1,若半径为4的⊙C与
⊙O
1、⊙O
2
都相
切,则满足条件的⊙C有( )
个个个个
9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程
有实数
根,则直线与⊙O的位置关系为( )
A.相离或相切
B.相切或相交
C.相离或相交
D.无法确定
10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两
次,使它转到
△A
2B
2
C
2
的位置,设AB=,BC=1,则顶点A运动到点A
2
的位置时,点A所经过的
路线为( )
A. B. C. D.
二、填空题
11.某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包
装侧面,则需________________的包装膜(不计接缝,取3).
(11题图)(12题图)12.如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙
已经助攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅
从射门角度考虑,应选择________种射门方式.
13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为___________.
14如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所
在圆的圆心坐标为_____________.
(14题图)(15题图)
15.如图,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分别记为S
1
、
S
2
,若圆心到两
弦的距离分别为2和3,则|S
1-S
2
|=__________.
三、解答题
16.为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到厘米)
AC BC AB r S
图甲
图乙
(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
(3)
(4)
(5) 17.如图,以等腰三角形的一腰为直径的⊙O交底边于点,交
于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除
外)是:
(6) (1)________________;(2)________________;(3)________________.
(7)
(8)
(9) 18.如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?
(10)
(11)
(12) 19.如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .
(13)
(14) 20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ与⊙O的位置关系,并说明理由.
(15)
21.有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.
请探究下列变化:
变化一:交换题设与结论.
已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.
说明:RQ为⊙O的切线.
变化二:运动探求.
(1)如图2,若OA向上平移,变化一中的结论还成立吗(只需交待判断) 答:_________.
(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结
论还成立吗为什么
22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点
P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗请充分说明理由.
答案与解析:
一、选择题
提示:易证得△AOC≌△BOD,
二、填空题
12.第二种14.(2,0)
(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)
三、解答题
16.(1)略;
(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:
17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG 等).
18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′
B=25,
所以圆形凳面的最大直径为25(-1)厘米.
19.扇形OAB的圆心角为45°,纸杯的表面积为44.
解:设扇形OAB的圆心角为n°
弧长AB等于纸杯上开口圆周长:
弧长CD等于纸杯下底面圆周长:
可列方程组,解得
所以扇形OAB的圆心角为45°,OF等于16cm
纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积
=
即S
纸杯表面积
=
20.连接OP、CP,则∠OPC=∠OCP.
由题意知△ACP是直角三角形,又Q是AC的中点,因此QP=QC,∠QPC=∠QCP.
而∠OCP+∠QCP=90°,所以∠OPC+∠QPC=90°即OP⊥PQ,PQ与⊙O相切.
21.解:连接OQ,
∵OQ=OB,∴∠OBP=∠OQP
又∵QR为⊙O的切线,∴OQ⊥QR
即∠OQP+∠PQR=90°
而∠OBP+∠OPB=90°
故∠PQR=∠OPB
又∵∠OPB与∠QPR为对顶角
∴∠OPB=∠QPR,∴∠PQR=∠QPR
∴RP=RQ
变化一、连接OQ,证明OQ⊥QR;
变化二、(1)结论成立 (2)结论成立,连接OQ,证明∠B=∠OQB,则∠P=∠PQR,所以RQ=PR.
22.(1)在矩形OABC中,设OC=x 则OA=x+2,依题意得
解得:
(不合题意,舍去) ∴OC=3, OA=5
(2)连结O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90°,CE=BE=
∴△OCE≌△ABE ∴EA=EO ∴∠1=∠2
在⊙O′中,∵ O′O= O′D ∴∠1=∠3
∴∠3=∠2 ∴O′D∥AE,∵DF⊥AE ∴ DF⊥O′D
又∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线.
(3)不同意. 理由如下:
①当AO=AP时,
以点A为圆心,以AO为半径画弧交BC于P
1和P
4
两点
过P
1点作P
1
H⊥OA于点H,P
1
H=OC=3,∵AP
1
=OA=5
∴AH=4,∴OH =1
求得点P
1(1,3) 同理可得:P
4
(9,3)
②当OA=OP时,同上可求得:P
2(4,3),P
3
(4,3)
因此,在直线BC上,除了E点外,既存在⊙O′内的点P
1
,又存在⊙O′外
的点P
2、P
3
、P
4
,
它们分别使△AOP为等腰三角形.。