新人教版九年级数学圆单元测试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1文档来源为:从网络收集整理.word 版本可编辑.

O

B

A

第4题图

D

C O 第5题图

C

B A

第8题图

O E D

C

B

A

圆测试题

一、选择题:

1、下列命题:①直径是弦;②弦是直径;③半圆是弧;④弧是半圆.其中真命题有( )。 A 、1个 B 、2个 C 、3个 D 、4个

2、如图4,⊙O 的直径AB 垂直于弦CD 于点P ,且点P 是半径OB 的中点,CD =6cm ,则直径AB 的长是( )。 A 、

cm B 、4cm C 、2cm D 、4cm

3、如图5,

点A 、B 、C 在⊙O 上,AO ∥

BC ,∠OAC =

20°,

则∠AOB 的度数是( )。 A 、

10° B 、20° C 、

40°

D 、70°

4、如图6,△ABC 三顶点在⊙O 上,∠C =45°,AB =4,则⊙O 的半径是( )。 A 、

B 、2

C 、4

D 、2

5、如图8,AB 是⊙O 的直径,⊙O 过BC 的中点D ,DE ⊥AC 于E ,连结AD ,则下列结论正确的个数是 。

①AD ⊥BC ;②∠EDA =∠B ;③OA =AC ;④DE 是⊙O 的切线。 A 、1个 B 、2个 C 、3个 D 、4个

6、从⊙O 外一点P 向⊙O 作两条切线PA 、PB ,切点分别为A 、B.下列结论:①PA =PB ;②OP 平分∠APB ;③AB 垂直平分OP ;

④△AOP ≌△BOP ; 其中正确结论的个数是 。 A 、5 B 、4 C 、3 D 、2

7、若两圆的半径之比为1∶2,当两圆相切时,圆心距为6cm ,则大圆的半径为 。 A 、12cm B 、4cm 或6cm C 、4cm D 、4cm 或12cm 8、正六边形的边长、外径、边心距的比是 。 A 、1∶2∶

B 、1∶1∶

C 、2∶2∶

D 、4∶4∶3

1文档来源为:从网络收集整理.word

第15题图

D

第16题图

第17题图

E 二、填空题:

9、P 为⊙O 内一点,OP =3cm ,⊙O 的半径为5cm ,则经过点P 的最短弦长为 ;最长弦长为 。

10、圆的半径为3,则弦AB 的取值范围是 。

11、如图15,在半圆中,A 、B 是半圆的三等分点,若半圆的半径为5cm ,则弦AB 长 。 12、如图16,点D 在以AC 为直径的⊙O 上,如果∠BDC =20°,则∠ACB = 。

13、如图

17

所示,

已知∠AOB =30°,M 为OB 边上一点,以M 为圆心,2cm 长为半径作⊙M ,若点

M 在OB 边上运动,那么当OM = cm 时,⊙M 与OA 相切。

14、直角三角形的两条直角边长是5cm ,12cm ,则它的外接圆半径R = ,内切圆半径r = 。

15、半径分别为R cm 和r cm 的两个同心圆,大圆的弦AB 与小圆相切于点C ,且AB =8cm ,则两圆的环形面积为 。

16、已知关于x 的一元二次方程x 2

-2x +=0没有实数根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为两圆圆心距,则两圆的位置关系是 。 三、解答题:(本大题共52分)

17、(6分)如图,DE 是⊙O 的直径,弦AB ⊥DE ,垂足为点C ,已知AB =6,CE =1,求CD 的长。

18、(10分)如图,已知菱形ABCD 的边长为1.5cm ,B 、C 两点在扇形AEF 的弧EF 上,求弧BC 的长度及扇形ABC 的面积。

19、(10分)如图,A 是半径为2的⊙O 外一点,且OA ∥弦BC =4,且AB 切⊙O 于点B ,连接AC ,求图中阴影部分的面积。 20、(10分)如图,⊙O 1与⊙O 2为等圆,相交于A 、B 两点,AC ⊙O 2的直径,直线BC 交⊙O 1于D ,E 为AB 延长线上一点,连接DE.求证:

(1)A 、O 1、D 三点在一条直线上;

1文档来源为:从网络收集整理.word 版本可编辑.

第25题图

A

第26题图

第24题图

F

E

D C

B

A

(2)若∠E =60°,求证:DE 是⊙O 1的切线。

21、(10分)如图,⊙O 的半径为1,过点A (2,0)的直线与⊙O 相切于点B ,交y 轴于点C. ⑴求线段AB 的长;⑵求直线AC 的解析式。

参考答案: 三、解答题:

18、解:连OB ,设⊙O 的半径为r , ∵DE 为⊙O 的直径,DE ⊥AB ,∴BC =AB =3, 又∵OC 2

+BC 2

=OB 2

∴r 2

+=32

解之 r =5 ∴CD =DE -CE =2r -1=9 19、解:∵四边形ABCD 是菱形且边长为1.5, ∴AB =BC =1.5

又∵B 、C 两点在扇形AEF 的弧EF 上, ∴△ABC 是等边三角形,∴∠BAC =60° 弧长BC =(cm ) LR =××1.5= (cm 2

20、解:过点B 作BD ⊥AO 于D ,OE ⊥BC 于E , ∵OA ∥BC ∴OE =DB ∵AB 切⊙O 于B ,∴AB ⊥OB 在Rt △ABO 中,OB =2,OA =4 ∴∠OAB =30°,AB ==2 又∵×OB ×AB =×OA ×DB

∴OB ×AB =OA ×BD ∴2×2=4×BD ∴BD =,∴ OE = 在Rt △OBE 中,BE==1, ∴BC =2BE =2∴△OBC 是等边三角形. 26.证明:⑴连AD , ⊙O 2中,AC 是直径, ∴∠ABC =90° 即 ∠ABD =90°

∴在⊙O 1中,AD 是直径, ∴AD 经过圆心O 1

∴A 、O 1、D 三点在一条直线上.

(2)连O 1O 2,O 2B. ∵O 1、O 2是AD 、AC 的中点,∴O 1O 2=DC

∵AD =AC ,AB ⊥CD ,∴BC =DC ∴O 1O 2=BC ,∴△O 2BC 是等边三角形,∴∠C =∠ADC =60°.∵∠E =60°,∠DBE =90°,∴∠BDE =30°∴∠ADE =∠ADB +∠BDE =90°∵点D 在⊙O 1上,AD 是直径, ∴DE 是⊙O 1的切线.

相关文档
最新文档