初一数学上册有理数的认识及加减法计算题精选116
七年级上册数学有理数的加减法练习题
七年级上册数学有理数的加减法练习题想要学好数学,一定要多做同步练习,以下是应届毕业生店铺为大家编辑整理的七年级上册数学有理数的加减法练习题(有答案),希望对大家有所帮助!一、填空题(每小题3分,共24分)1、+8与-12的和取___号,+4与-3的和取___号。
2、小华记录了一天的温度是:早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的温度是____℃。
3、3与-2的和的倒数是____,-1与-7差的绝对值是____。
4、小明存折中原有450元,取出260元,又存入150元,现在存折中还有____元。
5、-0.25比-0.52大____,比- 小2的数是____。
6、若一定是____(填“正数”或“负数”)7、已知,则式子 _____。
8、把下列算式写成省略括号的形式: =____。
二、选择题(每小题3分,共24分)1、已知胜利企业第一季度盈利26000元,第二季度亏本3000元,该企业上半年盈利(或亏本)可用算式表示为( )A、B、C、D、2、下面是小华做的数学作业,其中算式中正确的是( )① ;② ;③ ;④A、①②B、①③C、①④D、②④3、小明今年在银行中办理了7笔储蓄业务:取出9.5元,存进5元,取出8元,存进12无,存进25元,取出1.25元,取出2元,这时银行现款增加了( )A、12.25元B、-12.25元C、12元D、-12元4、-2与的和的相反数加上等于( )A、-B、C、D、5、一个数加上-12得-5,那么这个数为( )A、17B、7C、-17D、-76、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A、10米B、15米C、35米D、5米7、计算:所得结果正确的是( )A、B、C、D、8、若,则的值为( )A、B、C、D、三、解答题(共52分)1、列式并计算:(1)什么数与的和等于 ?(2)-1减去的和,所得的差是多少?3、下列是我校七年级5名学生的体重情况,(1)试完成下表:姓名小颖小明小刚小京小宁体重(千克) 34 45体重与平均体重的差 -7 +3 -4 0(2)谁最重?谁最轻?(3)最重的与最轻的相差多少?4、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。
人教版七年级数学上册有理数加减法练习(含答案)
1.3有理数加减法知识要点:1.有理数的加法加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数。
加法运算律:①交换律a+b=b+a;②结合律(a+b)+c=a+(b+c)。
2.有理数的减法减法法则:减去一个数,等于加这个数的相反数。
即:a -b= a +(-b)。
一、单选题1.﹣2﹣1的结果是()A.﹣1B.﹣3C.1D.3【答案】B2.计算:1﹣(﹣13)=()A.23B.﹣23C.43D.﹣43【答案】C3.下列运算中,正确的是:()A.(3)(4)34-+-=-+-B.-7-2×5=-9×5 C.(3)(4)34---=-+D.5252()7777-+=-+【答案】C4.把前2018个数1,2,3,4,…,2018的每一个数的前面任意填上“+”号或“﹣”号,然后将它们相加,则所得之结果为()A.偶数B.奇数C.正数D.有时为奇数,有时为偶数【答案】B5.若ab≠0,m=|a|a +|b|b+|ab|ab,则m的值是()A.3B.−3C.3或−1D.3或−3【答案】C6.蜗牛在井里距井口18米处,它每天白天向上爬行6米,但每天晚上又下滑3米.蜗牛爬出井口需要的()天数是A.4天B.5天C.6天D.7天【答案】B7.1+(−2)+3+(−4)+⋯+2017+(−2018)的结果是()A.0B.1009C.-1009D.-2018【答案】C8.下列算式中正确的是()A.(−5)−6=−1B.0−(−5)=5C.5−(−5)=−10D.|8−3|=−(8−3)【答案】B9.下列交换加数位置的变形中正确的是()A.−7−4+6−2=−7−4+2−6B.−3−2+3−5=2+3+5−3C.4−1−2+3=4−2+3−1D.−13+34−16−14=14+34−13−16【答案】C10.如果|a|=3,|b|=1,且a > b ,那么a -b 的值是()A.4 B.2 C.-4 D.4或2【答案】D11.计算111111261220309900+++++⋅⋅⋅⋅⋅⋅+的值为()A.1100B.10099C.199D.99100【答案】D二、填空题12.一架直升机从高度为450m 的位置开始,先以20m /s 的速度上升60s ,然后以12m /s 的速度下降120s ,这时,直升机的高度是_____. 【答案】210m .13.气象部门测定高度每增加1km ,气温约下降5℃,现在地面气温是15℃,那么4km 高空的气温是__________. 【答案】5-℃14.已知|a |=2 019,|b |=2 018,且a >b ,则a +b 的值为__________. 【答案】4037或115.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最大值是___________【答案】1216.数轴上100个点所表示的数分别为123100,,,,a a a a ,且当i 为奇数时,12i i a a +-=,当i 为偶数时,11i i a a +-=,℃51a a -=________,℃若11001a a m -=,则m =________.【答案】6;13417.北京与纽约的时差为13h(负号表示同一时刻纽约时伺比北京时间晚),如果现在是北京时间16:00,那么纽约时间是________.【答案】3:00三、解答题18.某检修小组乘汽车检修供电线路,向南记为正,向北记为负.某天自A地出发,所走路程(单位:千米)为:+22,-3,+4,-2,-8,+17,-2,+12,+7,-5.问:(1)最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?(2)若每千米耗油0.06升,则今天共耗油多少升?【答案】(1)他们没有回到出发点,在A地的南方,距离A地42千米;(2)4.92升19.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江东大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,-6,+3,-7,+8,+4,-9,-4,+3,+3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2)上午8:00~9:15沈师傅开车的平均速度是多少?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?【答案】(1)东面,距离是3千米;(2)44千米/小时;(3)130元.20.计算:(1)25−(+214)−|−25|−(−2.75);(2)0.25+(−318)+(−14)+(−534);(3)(−14)+(+56)+(−12)+(−13);(4)338+(−1.75)+258+(+1.75).【答案】(1)12(2)−878(3)−14(4)621.阅读下面文字:对于(556-)+(293-)+1734+(132-),可以按如下方法计算:原式=[(-5)+(56-)]+[(-9)+(23-)]+(3174+)+[(-3)+(12-)]=[(-5)+(-9)+17+(-3)]+[(56-)+(23-)+34+(12-)]=0+(1 14 -)=-11 4 .上面这种方法叫拆项法.仿照上面的方法,请你计算:(-201856)+(-201723)+(-112)+4036.【答案】-2.。
初一数学上册有理数加减法练习题
初一数学上册有理数加减法练习题一填空:1已知两数为 556和-823,这两个数的相反数的和是 ,两数和的绝对值是 . 2. 绝对值不大于5的所有正整数的和为 .3. 若m ,n 互为相反数,则|m -1+n |= .4. 已知x.y ,z 三个有理数之和为0,若x=812,y=-512,则z= . 5. 已知m 是6的相反数,n 比m 的相反数小2,则m-n 等于 。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 . 7.-13的绝对值的相反数与323的相反数的和为______________。
二计算:1.(-8)+(-15) 2.(-20)+15 3.16+(-25)4.2.7+(-3.8) 5.12()23+- 6.11()()43-+- ⑴(+3.41)-(-0.59) ⑵ ⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-75137413⑶ ()85.30--⑷ (-0.6)+1.7+(+0.6 )+(-1.7 )+(-9 ) ⑸ -3-4+19-11+2⑹ ()[]()5.13.42.56.34.1---+-- ⑺ ()212115.2212--+---(8) 8+(-14)-5-(-0.25) 9)435()41()813()25.0(-+-+-++.三分析计算题:1. 某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?2. 将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.3某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?4某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:(向东记为正,向西记为负,单位:千米)+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7(1)到晚上6时,出租车在什么位置。
初一上册数学有理数的加减法试题及答案
初⼀上册数学有理数的加减法试题及答案 初⼀是从⼩学过渡到中学的重要时期,要想顺利通过这个过渡期,多做初⼀数学试卷必不可少。
下⾯请欣赏店铺编辑为你带来的初⼀数学有理数的加减法试题,希望你能够喜欢! 初⼀上册数学有理数的加减法试题及答案 ⼀、选择题(共26⼩题) 1.计算(﹣3)+(﹣9)的结果等于( )A.12B.﹣12C.6D.﹣6 【考点】有理数的加法. 【分析】根据有理数的加法法则,先确定出结果的符号,再把绝对值相加即可. 【解答】解:(﹣3)+(﹣9)=﹣12; 故选B. 【点评】本题考查了有理数的加法,⽤到的知识点是有理数的加法法则,⽐较简单,属于基础题. 2.计算:﹣2+1的结果是( )A.1B.﹣1C.3D.﹣3 【考点】有理数的加法. 【分析】符号不相同的异号加减,取绝对值较⼤的符号,并⽤较⼤的绝对值减去较⼩的绝对值,所以﹣2+1=﹣1. 【解答】解:﹣2+1=﹣1. 故选B. 【点评】此题主要考查了有理数的加法法则:符号不相同的异号加减,取绝对值较⼤的符号,并⽤较⼤的绝对值减去较⼩的绝对值. 3.﹣2+3的值是( )A.﹣5B.5C.﹣1D.1 【考点】有理数的加法. 【分析】根据有理数的加法法则:绝对值不等的异号加减,取绝对值较⼤的加数符号,并⽤较⼤的绝对值减去较⼩的绝对值,进⾏计算即可. 【解答】解:﹣2+3=1, 故选:D. 【点评】此题主要考查了有理数的加法,关键是掌握有理数的加法法则. 4.计算(+2)+(﹣3)所得的结果是( )A.1B.﹣1C.5D.﹣5 【考点】有理数的加法. 【分析】运⽤有理数的加法法则直接计算. 【解答】解:原式=﹣(3﹣2)=﹣1.故选B. 【点评】解此题关键是记住加法法则进⾏计算. 5.⽓温由﹣1℃上升2℃后是( )A.﹣1℃B.1℃C.2℃D.3℃ 【考点】有理数的加法. 【分析】根据上升2℃即是⽐原来的温度⾼了2℃,就是把原来的温度加上2℃即可. 【解答】解:∵⽓温由﹣1℃上升2℃, ∴﹣1℃+2℃=1℃. 故选B. 【点评】此题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进⾏计算. 6.计算﹣2+3的结果是( )A.﹣5B.1C.﹣1D.5 【考点】有理数的加法. 【专题】计算题. 【分析】原式利⽤异号两数相加的法则计算即可得到结果. 【解答】解:﹣2+3=1. 故选B. 【点评】此题考查了有理数的加法法则,熟练掌握运算法则是解本题的关键. 7.计算:5+(﹣2)=( )A.3B.﹣3C.7D.﹣7 【考点】有理数的加法. 【分析】根据有理数的加法运算法则进⾏计算即可得解. 【解答】解:5+(﹣2)=+(5﹣2)=3. 故选A. 【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键. 8.计算﹣|﹣3|+1结果正确的是( )A.4B.2C.﹣2D.﹣4 【考点】有理数的加法;绝对值. 【分析】⾸先应根据负数的绝对值是它的相反数,求得|﹣3|=3,再根据有理数的加法法则进⾏计算即可. 【解答】解:﹣|﹣3|+1=﹣3+1=﹣2. 故选C. 【点评】此题考查了有理数的加法,⽤到的知识点是有理数的加法法则、绝对值,理解绝对值的意义,熟悉有理数的加减法法则是解题的关键. 9.下⾯的数中,与﹣2的和为0的是( )A.2B.﹣2C.D. 【考点】有理数的加法. 【分析】设这个数为x,根据题意可得⽅程x+(﹣2)=0,再解⽅程即可. 【解答】解:设这个数为x,由题意得: x+(﹣2)=0, x﹣2=0, x=2, 故选:A. 【点评】此题主要考查了有理数的加法,解答本题的关键是理解题意,根据题意列出⽅程. 10.⽐﹣1⼤1的数是( )A.2B.1C.0D.﹣2 【考点】有理数的加法. 【分析】根据有理数的加法,可得答案. 【解答】解:(﹣1)+1=0, 故⽐﹣1⼤1的数是0, 故选:C. 【点评】本题考查了有理数的加法,互为相反数的和为0. 11.计算(﹣2)+(﹣3)的结果是( )A.﹣5B.﹣1C.1D.5 【考点】有理数的加法. 【专题】计算题. 【分析】原式利⽤同号两数相加的法则计算即可得到结果. 【解答】解:原式=﹣(2+3)=﹣5. 故选:A. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键. 12.﹣3+(﹣5)的结果是( )A.﹣2B.﹣8C.8D.2 【考点】有理数的加法. 【分析】根据同号两数相加,取相同的符号,并把绝对值相加,可得答案. 【解答】解:原式=﹣(3+5) =﹣8. 故选:B. 【点评】本题考查了有理数的加法,先确定和的符号,再进⾏绝对值得运算. 13.计算:﹣2+3=( )A.1B.﹣1C.5D.﹣5 【考点】有理数的加法. 【专题】计算题. 【分析】根据异号两数相加,取绝对值较⼤的加数的符号,再⽤较⼤的绝对值减去较⼩的绝对值,可得答案. 【解答】解:﹣2+3=+(3﹣2)=1. 故选:A. 【点评】本题考查了有理数的加法,先确定和的符号,再进⾏绝对值得运算. 14.计算:(﹣3)+4的结果是( )A.﹣7B.﹣1C.1D.7 【考点】有理数的加法. 【分析】根据异号两数相加,取绝对值较⼤的数的符号,再⽤较⼤的绝对值减去较⼩的绝对值,可得答案. 【解答】解:原式=+(4﹣3)=1. 故选:C. 【点评】本题考查了有理数的加法,先确定和的符号,再进⾏绝对值的运算. 15.计算﹣2+3的结果是( )A.1B.﹣1C.﹣5D.﹣6 【考点】有理数的加法. 【专题】计算题. 【分析】根据异号两数相加的法则进⾏计算即可. 【解答】解:因为﹣2,3异号,且|﹣2|<|3|,所以﹣2+3=1. 故选:A. 【点评】本题主要考查了异号两数相加,取绝对值较⼤的符号,并⽤较⼤的绝对值减去较⼩的绝对值. 16.若( )﹣(﹣2)=3,则括号内的数是( )A.﹣1B.1C.5D.﹣5 【考点】有理数的加法. 【专题】计算题. 【分析】根据题意列出算式,计算即可得到结果. 【解答】解:根据题意得:3+(﹣2)=1, 则1﹣(﹣2)=3, 故选:B. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.。
有理数计算专练62题(含加减乘除混合运算知识点以及运算题) 苏科版七年级上册数学第二章有理数
有理数计算专练62题(含加减乘除混合运算)要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。
注意点:(1)任意两个数都可以进行减法运算.(2)几个有理数相减差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有:.一、有理数的加减法运算 1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭;(3) (+2)+(-11); (4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9); (6)(-5)+0.有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言 a+b =b+a加法结合律文字语言 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c =a+(b+c)(7)113343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭(8)(+10)+(-11);(9)⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭12-1+-23(10)(+2)-(-25).(11)﹣75+(+110);(12)90﹣(﹣3);(13)﹣0.5﹣(﹣314)+2.75﹣(+712);(14)7121 (4)(3)(2)(6)9696----++-.(15)232(1)(1)( 1.75)343-----+-(16)132.1253(5)(3.2)58-+---+(17)21772953323+---(18)231321234243--++-+(19)2312()() 3255 ---+--+-(20)-1+2-3+4-5-6+……-2011+2022要点三、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点四、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a bb÷=≠.法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.二、有理数的乘除法则(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯-⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20);(3)(-5)×(-8.1)×3.14×0.(4)5105(12)6⎛⎫-⨯+ ⎪⎝⎭(5)(-0.25)×0.5×(-100)×4(6)111(5)323(6)3333-⨯+⨯+-⨯(7)(-32)÷(-8) (8)112(1)36÷-(8) 1.25(0.375)-÷- (10)(1) 753796418⎛⎫-+- ⎪⎝⎭×(-36); (11) -56×21220.65⎛⎫-- ⎪⎝⎭; (12) (-0.25)×0.5×247⎛⎫- ⎪⎝⎭×4; (13) 132×57⎛⎫- ⎪⎝⎭-57⎛⎫- ⎪⎝⎭×122-57×12⎛⎫- ⎪⎝⎭; (14) 124×314⎛⎫- ⎪⎝⎭×23⎛⎫- ⎪⎝⎭×87⎛⎫- ⎪⎝⎭; (15) -264927×3;(16)719172×(-36).(17)112⎛⎫-⎪⎝⎭112⎛⎫+⎪⎝⎭113⎛⎫-⎪⎝⎭113⎛⎫+⎪⎝⎭…1110⎛⎫-⎪⎝⎭1110⎛⎫+⎪⎝⎭.(18) (-15)÷(-3);(19) (-12)÷12-⎛⎫⎪⎝⎭÷(-10);(20) (-5)÷725-⎛⎫⎪⎝⎭+(-12)÷725;(21) -0.125÷83;(22) -72×124×49÷335-⎛⎫⎪⎝⎭;(23)1142313245-+⎛⎫⎪⎝⎭÷116-⎛⎫⎪⎝⎭.(24) -24÷131243-+-⎛⎫⎪⎝⎭.(25)142-⎛⎫⎪⎝⎭÷132261437-+-⎛⎫⎪⎝⎭.要点五、有理数的乘方;有理数的混合运算1.乘方的概念:求几个相同因数积的运算,叫做乘方。
专题 有理数的加减法计算题(50题)(原卷版)-2024-2025学年七年级数学上册同步精讲精练(苏
(苏科版)七年级上册数学《第二章 有理数》专题 有理数的加减法计算题(50题)1.(2021秋•渭滨区月考)计算题:(1)(﹣8)+(﹣9) (2)(−12)+(−13)(3)(﹣2.2)+3 (4)(−215)+(+0.8)(5)−23−(−35) (6)0﹣11(7)(﹣2.4)+3.5+(﹣4.6)+3.5 (8)57−(−134)2.(2022秋•金东区校级月考)计算:(1)(﹣1.25)+(+5.25);(2)(﹣7)+(﹣2);(3)﹣27+(﹣32)+(﹣8)+72;(4)8+(−14)﹣5﹣(﹣0.25).3.(2021秋•利通区校级期末)计算:20+(﹣14)﹣(﹣18)+13.4.(2022秋•济南期末)计算:4﹣(﹣2)+(﹣6)﹣11.5.(2022秋•西城区校级期中)计算:(﹣16)+5﹣(﹣18)﹣(+7).6.(2022秋•天山区校级期末)24﹣(﹣16)+(﹣25)﹣15.7.(2022秋•密云区期末)计算:(﹣20)+(+3)﹣(﹣5)﹣(+7)8.计算:﹣23+(﹣37)﹣(﹣12)+45.9.(2022秋•阳东区期中)计算:4+(﹣2)+|﹣2﹣3|﹣5.10.(2022秋•陈仓区期中)计算:(﹣8)+(−710)+(﹣12)﹣(﹣1.2).11.(2022秋•通州区期中)计算:(−413)+(−517)+413−(+1217).12.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318.13.计算:225+217+(−517)−(−535).14.(2022秋•甘井子区校级月考)计算:(1)(﹣8)+10+(﹣1)+3;(2)(﹣7)﹣(+5)﹣(﹣10)+(﹣3).15.(2022春•哈尔滨期中)计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).16.(2022秋•涪城区期中)计算:(1)12﹣(﹣18)+(﹣7)﹣15;(2)﹣24+3.2﹣16﹣3.5+0.3.17.(2022秋•杏花岭区校级月考)计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)(﹣49)﹣(﹣91)﹣(+51)+(﹣9).18.(2022秋•宁津县校级月考)计算:(1)﹣18+(﹣14)﹣(﹣18)﹣13;(2)﹣17.2+(﹣33.8)﹣(﹣8)+42.19.(2022秋•九龙坡区校级月考)计算:(1)﹣2+(﹣3)﹣(﹣10)﹣(+4);(2)﹣40﹣28﹣(﹣19)+(﹣24)﹣(﹣32).20.(2022秋•香洲区校级月考)计算:(1)12﹣(﹣18)+(﹣12)﹣15;(2)1+(−23)−(−45)−13.21.(2022秋•张店区校级月考)计算:(1)(−35)+15−45;(2)(−5)−(−12)+7−73.22.(2022秋•花垣县月考)计算:(1)14﹣(﹣12)+(﹣25)﹣17;(2)(−56)+(−16)−(−14)−(+12).23.计算:(1)﹣9+5﹣(﹣12)+(﹣3)(2)﹣(+1.5)﹣(﹣414)+3.75﹣(+812)24.(2022秋•九龙坡区校级期中)计算:(1)﹣414+1.5﹣3.75+812; (2)﹣1.25﹣334+|−12−1|.25.(2022秋•丰泽区校级月考)计算:(1)6+(﹣7)﹣(﹣4);(2)0﹣(−23)+(−45)−15+(−23)﹣(﹣1).26.(2022•南京模拟)计算.(1)(−34)−(−12)+(+34)+(+8.5)−13;(2)0−(−256)+(−527)−(−216)−|−657|.27.(2022秋•定远县校级月考)计算:(1)(﹣15)+(+7)﹣(﹣3);(2)(+0.125)﹣(﹣334)+(﹣318)﹣(﹣1023)﹣(+1.25).28.(2022秋•庐阳区校级月考)计算:(1)8+(−114)−5−(−34);(2)34−72+(−16)−(−23)−1.29.(2022秋•宁远县校级月考)计算:(1)(+12)﹣(﹣18)+(﹣7)﹣(+15);(2)213+635+(﹣213)+(﹣525).30.(2022•南京模拟)计算:(1)423+[8.6−(+323)+(−75)+(−235)]; (2)﹣2−(+712)+(−715)−(−14)−(−13)+715.31.(2022秋•二道区校级月考)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)3.25﹣[−12−(−52)+(−54)+434].32.(2022秋•冷水滩区月考)计算:(1−12)+(12−13)+(13−14)+……(12005−12006).33.计算下列式子:(1)12﹣(﹣18)+(﹣7)﹣20;(2)+5.7+(﹣8.4)+(﹣4.2)﹣(﹣10);(3)3.14×7﹣(﹣5)+5.4;(4)10+[50+(﹣250)﹣(﹣10)].34.(2022秋•小店区校级月考)计算题:(1)8+(﹣11)﹣|﹣5|;(2)12+(−12)﹣(﹣8)−52;(3)0.125+314−18+523−0.25; (4)(﹣515)﹣(﹣1247)﹣(+345)+(+637).35.(2022秋•文圣区校级月考)计算:(1)﹣3﹣3;(2)﹣0.8﹣5.2+11.6﹣5.6;(3)﹣2+(﹣3)﹣(﹣5);(4)11.125﹣114+478−4.75; (5)﹣165+265﹣78﹣22+65;(6)(﹣7.3)﹣(﹣656)+|﹣3.3|+116.36.(2022秋•昭阳区校级月考)计算下列各题(1)|﹣3|+|﹣10|﹣|﹣5|(2)2﹣(5﹣7)(3)﹣11﹣7+(﹣9)﹣(﹣6)(4)(﹣3.5)+(+823)﹣(﹣5.5)+(﹣223).37.(2022秋•管城区校级月考)计算:(1)﹣7﹣|﹣9|﹣(﹣11)﹣3;(2)5.6+(﹣0.9)+4.4+(﹣8.1);(3)(−16)+(+13)+(−112); (4)25−|﹣112|﹣(+214)﹣(﹣2.75).38.(2022秋•雁塔区校级月考)计算:(1)(+7)+(﹣19)+(+23)+(﹣15);(2)﹣0.5+(﹣314)+(﹣2.75)+(+712); (3)(﹣8)﹣(﹣1.5)﹣9﹣(﹣2.5);(4)15﹣(﹣556)﹣(+337)﹣(﹣216)﹣(+647).39.计算:(1)(﹣3)+(﹣12)﹣(﹣11)﹣(+19);(2)12﹣(﹣18)+(﹣10);(3)(﹣11)﹣(﹣7.5)﹣(+9)+2.5;(4)(−612)−(−414)+(−312)−(−534).40.(2022秋•九龙坡区校级月考)计算题:(1)(﹣83)+(+26)+(﹣41)+15;(2)﹣418+(﹣314)﹣22.75+(﹣1578); (3)|﹣212|﹣(﹣2.5)+1﹣|1﹣212|; (4)﹣556+(﹣923)﹣312+1734.41.(2022秋•张店区校级月考)计算下列各题:(1)(+512)+(﹣734); (2)(+38)﹣(−18);(3)38+(﹣22)+62+(﹣78);(4)1﹣(+112)﹣(−12)﹣(+14).42.(2022秋•新泰市校级月考)计算:(2)(﹣1.24)﹣(+4.76);(3)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(4)4.7﹣(﹣8.9)﹣7.5+(﹣6);(5)(﹣33)+(+48)+(﹣27);(6)(﹣2.8)+(﹣3.6)+3.6.43.(2022秋•张店区校级月考)计算(1)31+(﹣28)+28+69;(2)(﹣423)+(﹣313)+612+(﹣214); (3)(﹣5)﹣(−12)+773; (4)(﹣12)﹣(−65)+(﹣8)−710.44.(2022秋•南江县校级月考)计算(1)﹣5﹣(﹣3)+(﹣4)﹣[﹣(﹣2)];(2)﹣20+(﹣14)﹣(﹣18)﹣1;(3)13﹣[26﹣(﹣21)+(﹣18)];(4)(﹣134)﹣(+613)﹣2.25+103.45.(2022秋•阳谷县校级月考)计算:(2)(﹣3)﹣(﹣17)﹣(﹣33)﹣81;(3)12+(−23)+45+(−12)+(−13); (4)﹣5.5﹣(﹣3.2)﹣(﹣2.5)﹣(﹣4.8).46.(2022秋•乐陵市校级月考)用简便方法计算:(1)(﹣23)+72+(﹣31)+(47);(2)0.85+(0.75)﹣(+234)+(﹣1.85)+(+3);(3)(+145)−(+23)+11012−(﹣0.2)﹣(+1013)﹣110.5.47.(2022秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156.48.(2022秋•邻水县期末)数学张老师在多媒体.上列出了如下的材料:计算:−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+(−3)+17]+[(−56)+(−23)+(−12)+34]=0+(−114)=−114.上述这种方法叫做拆项法.请仿照上面的方式计算:(−202127)+(−202247)+4044+17.49.(2022秋•新邵县期中)阅读:对于(−556)+(−923)+1734+(−312),可以按如下方法计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−114)=−114.上面这种方法叫拆项法.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044.50.(2022秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)] =[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114) =﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).。
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案
人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。
3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。
七年级数学上册有理数加减法的计算题
七年级数学上册有理数加减法的计算题 ⾟勤做七年级数学练习题的蜜蜂永没有时间的悲哀。
下⾯是店铺为⼤家精⼼推荐的七年级数学上册有理数加减法的计算题,希望能够对您有所帮助。
七年级数学上册有理数的加减法计算题⽬ ⼀、选择题(共13⼩题) 1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18 2.(2014•哈尔滨)哈市某天的最⾼⽓温为28℃,最低⽓温为21℃,则这⼀天的最⾼⽓温与最低⽓温的差为( )A.5℃B.6℃C.7℃D.8℃ 3.某地某天的最⾼⽓温是8℃,最低⽓温是﹣2℃,则该地这⼀天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃ 4.⽐1⼩2的数是( )A.3B.1C.﹣1D.﹣2 5.如果崇左市市区某中午的⽓温是37℃,到下午下降了3℃,那么下午的⽓温是( )A.40℃B.38℃C.36℃D.34℃ 6.计算,正确的结果为( ) A. B. C. D. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3 9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5 10.桂林冬季⾥某⼀天最⾼⽓温是7℃,最低⽓温是﹣1℃,这⼀天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃ 11.如图,这是某⽤户银⾏存折中2012年11⽉到2013年5⽉间代扣电费的相关数据,从中可以看出扣缴电费最多的⼀次达到( )A.147.40元B.143.17元C.144.23元D.136.83元 12.五个城市的国际标准时间(单位:时)在数轴上表⽰如图所⽰,我市2013年初中毕业学业检测与⾼中阶段学校招⽣考试于2015年6⽉16⽇上午9时开始,此时应是 A.纽约时间2015年6⽉16⽇晚上22时 B.多伦多时间2015年6⽉15⽇晚上21时 C.伦敦时间2015年6⽉16⽇凌晨1时 D.汉城时间2015年6⽉16⽇上午8时 13.与﹣3的差为0的数是( )A.3B.﹣3C.D. ⼆、填空题(共5⼩题) 14.计算:0﹣7= . 15.)计算:3﹣(﹣1)= . 16.计算:3﹣4= . 17.计算:2000﹣2015= . 18.|﹣7﹣3|= . 七年级数学上册有理数的加减法计算题参考答案 ⼀、选择题(共13⼩题) 1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:﹣10﹣8=﹣18. 故选D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 2.哈市某天的最⾼⽓温为28℃,最低⽓温为21℃,则这⼀天的最⾼⽓温与最低⽓温的差为( )A.5℃B.6℃C.7℃D.8℃ 【考点】有理数的减法. 【专题】常规题型. 【分析】根据有理数的减法,减去⼀个数等于加上这个数的相反数,可得答案. 【解答】解:28﹣21=28+(﹣21)=7, 故选:C. 【点评】本题考查了有理数的减法,减去⼀个数等于加上这个数的相反数. 3.某地某天的最⾼⽓温是8℃,最低⽓温是﹣2℃,则该地这⼀天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃ 【考点】有理数的减法. 【专题】计算题. 【分析】⽤最⾼温度减去最低温度,然后根据有理数的减法运算法则,减去⼀个数等于加上这个数的相反数进⾏计算即可得解. 【解答】解:8﹣(﹣2)=8+2=10(℃). 故选D. 【点评】本题考查了有理数的减法运算法则,熟记减去⼀个数等于加上这个数的相反数是解题的关键. 4.⽐1⼩2的数是( )A.3B.1C.﹣1D.﹣2 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:1﹣2=﹣1. 故选C. 【点评】本题考查了有理数的减法,是基础题. 5.如果崇左市市区某中午的⽓温是37℃,到下午下降了3℃,那么下午的⽓温是( )A.40℃B.38℃C.36℃D.34℃ 【考点】有理数的减法. 【专题】应⽤题. 【分析】⽤中午的温度减去下降的温度,然后根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:37℃﹣3℃=34℃. 故选:D. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 6.计算,正确的结果为( ) A. B. C. D. 【考点】有理数的减法. 【分析】根据有理数的减法运算法则进⾏计算即可得解. 【解答】解:﹣ =﹣ . 故选D. 【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键. 7.计算:1﹣(﹣ )=( ) A. B.﹣ C. D.﹣ 【考点】有理数的减法. 【分析】根据有理数的减法法则,即可解答. 【解答】解:1﹣(﹣ )=1+ = . 故选:C. 【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则. 8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3 【考点】有理数的减法. 【分析】根据有理数的减法法则:减去⼀个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可. 【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3, 故选:B. 【点评】有本题考查的是有理数的减法法则:减去⼀个数等于加上这个数的相反数,掌握法则是解题的关键. 9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5 【考点】有理数的减法. 【分析】减去⼀个数等于加上这个数的相反数,再运⽤加法法则求和. 【解答】解:2﹣3=2+(﹣3)=﹣1. 故选B. 【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法. 10.桂林冬季⾥某⼀天最⾼⽓温是7℃,最低⽓温是﹣1℃,这⼀天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃ 【考点】有理数的减法. 【专题】应⽤题. 【分析】根据“温差”=最⾼⽓温﹣最低⽓温计算即可. 【解答】解:7﹣(﹣1)=7+1=8℃. 故选D. 【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最⾼⽓温﹣最低⽓温. 11.如图,这是某⽤户银⾏存折中2012年11⽉到2013年5⽉间代扣电费的相关数据,从中可以看出扣缴电费最多的⼀次达到( )A.147.40元B.143.17元C.144.23元D.136.83元 【考点】有理数的加减混合运算;有理数⼤⼩⽐较. 【专题】应⽤题. 【分析】根据存折中的数据进⾏解答. 【解答】解:根据存折中的数据得到:扣缴电费最多的⼀次是⽇期为121105,⾦额是147.40元. 故选:A. 【点评】本题考查了有理数⼤⼩⽐较的应⽤.解题的关键是学⽣具备⼀定的读图能⼒. 12.五个城市的国际标准时间(单位:时)在数轴上表⽰如图所⽰,我市2013年初中毕业学业检测与⾼中阶段学校招⽣考试于2015年6⽉16⽇上午9时开始,此时应是( A.纽约时间2015年6⽉16⽇晚上22时 B.多伦多时间2015年6⽉15⽇晚上21时 C.伦敦时间2015年6⽉16⽇凌晨1时 D.汉城时间2015年6⽉16⽇上午8时 【考点】有理数的加减混合运算. 【专题】应⽤题. 【分析】求出两地的时差,根据北京时间求出每个地⽅的时间,再判断即可. 【解答】解:A、∵纽约时间与北京差:8+5=13个⼩时,9﹣13=﹣4, ∴当北京时间2015年6⽉16⽇9时,纽约时间是2015年6⽉15⽇21时,故本选项错误; B、∵多伦多时间与北京差:8+4=12个⼩时,9﹣12=﹣3, ∴当北京时间2015年6⽉16⽇9时,纽约时间是2015年6⽉15⽇22时,故本选项错误; C、∵伦敦时间与北京差:8﹣0=8个⼩时,9﹣8=1, ∴当北京时间2015年6⽉16⽇9时,伦敦时间是2015年6⽉16⽇1时,故本选项正确; D、∵汉城时间与北京差:9﹣8=1个⼩时,9+1=10, ∴当北京时间2015年6⽉16⽇9时,⾸尔时间是2015年6⽉16⽇10时,故本选项错误; 故选C. 【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,⼆者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想. 13.与﹣3的差为0的数是( )A.3B.﹣3C.D. 【考点】有理数的减法. 【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解. 【解答】解:﹣3+0=﹣3. 故选B. 【点评】本题考查了有理数的减法运算,正确列出式⼦是关键. ⼆、填空题(共5⼩题) 14.计算:0﹣7= ﹣7 . 【考点】有理数的减法. 【分析】根据有理数的减法法则进⾏计算即可,减去⼀个数等于加上这个数的相反数. 【解答】解:0﹣7=﹣7; 故答案为:﹣7. 【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是⼀道基础题,较简单. 15.计算:3﹣(﹣1)= 4 . 【考点】有理数的减法. 【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果. 【解答】解:3﹣(﹣1)=3+1=4, 故答案为4. 【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键. 16.计算:3﹣4= ﹣1 . 【考点】有理数的减法. 【分析】本题是对有理数减法的考查,减去⼀个数等于加上这个数的相反数. 【解答】解:3﹣4=3+(﹣4)=﹣1. 故答案为:﹣1. 【点评】有理数的减法法则:减去⼀个数等于加上这个数的相反数. 17.计算:2000﹣2015= ﹣15 . 【考点】有理数的减法. 【专题】计算题. 【分析】根据有理数的减法运算进⾏计算即可得解. 【解答】解:2000﹣2015=﹣15. 故答案为:﹣15. 【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键. 18. |﹣7﹣3|= 10 . 【考点】有理数的减法;绝对值. 【专题】计算题. 【分析】根据有理数的减法运算法则和绝对值的性质进⾏计算即可得解. 【解答】解:|﹣7﹣3|=|﹣10|=10. 故答案为:10. 【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键.。
人教版七年级上册数学第二章有理数的运算--计算题训练(含解析)
(3)解:原式 .
4.(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) .
【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.
利用有理数的加减运算的法则进行运算即可;
先算除法,乘法,再算加减即可;
先算乘方,绝对值,再算乘法,最后算加减即可;
先算乘方,再算括号里的运算,除法转为乘法,接着算乘法,最后算加减即可;
(1)根据乘法交换律、结合律和有理数的乘法运算法则进行计算即可得解;
(2)把小数化为分数,然后根据有理数的乘法运算法则进行计算即可得解;
(3)逆运用乘法分配律进行计算即可得解;
(4)利用乘法分配律进行计算即可得解.
【详解】(1)解:原式
;
(2)解:原式
;
(3)解:原式
;
(4)解:原式
.
3.(1)
(2)
先算乘方,乘法的分配律,再算加减即可;
先算乘方,除法转为乘法,再算乘法,最后算加减即可.
【详解】(1)解:
;
(2)解:
;
(3)解:
;
(4)解:
;
(5)解:
;
(6)解:
.
5.(1)
(2)1
【分析】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.
(1)利用有理数的加减运算的法则进行运算即可;
熟练掌握运算法则及性质是解题的关键.
【详解】(1)解:
;
(2)解:
;
(3)解:
;
(4)解:
.
9.(1)
(2)18
(3)
(4)
【分析】本题考查了有理数的加、减、乘法运算,熟练掌握运算法则是解题的关键.
初一数学第一单元计算题
初一数学第一单元计算题# 一、有理数的加减法(一)有理数加法1. 题目:计算( - 3)+( - 9)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
| - 3|=3,| - 9| = 9,所以( - 3)+( - 9)=-(3 + 9)=-12。
2. 题目:计算( - 4.7)+3.9- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
| - 4.7| = 4.7,|3.9| = 3.9,因为4.7>3.9,所以结果为负,( - 4.7)+3.9=-(4.7 - 3.9)=-0.8。
(二)有理数减法1. 题目:计算5-( - 2)- 解析:减去一个数等于加上这个数的相反数。
所以5-( - 2)=5 + 2 = 7。
2. 题目:计算( - 3)-6- 解析:( - 3)-6=( - 3)+( - 6)=-(3 + 6)=-9。
# 二、有理数的乘除法(一)有理数乘法1. 题目:计算( - 2)×( - 3)- 解析:两数相乘,同号得正,异号得负,并把绝对值相乘。
( - 2)×( - 3)=2×3 = 6。
2. 题目:计算( - 4)×5- 解析:( - 4)×5=-(4×5)=-20。
3. 题目:计算(-2)×(-3)×(-4)- 解析:按照从左到右的顺序计算。
(-2)×(-3)=6,6×(-4)=-24。
(二)有理数除法1. 题目:计算( - 12)÷( - 3)- 解析:两数相除,同号得正,异号得负,并把绝对值相除。
( - 12)÷( -3)=12÷3 = 4。
2. 题目:计算12÷(-(1)/(3))- 解析:除以一个数等于乘以这个数的倒数。
12÷(-(1)/(3))=12×(-3)=-36。
# 三、有理数的混合运算1. 题目:计算18 - 6÷( - 2)×(-(1)/(3))- 解析:- 先算乘除,后算加减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、用数轴上的点表示下列各有理数。
-0.5 ,-1 ,5 ,3 ,-9
二、-43.5的绝对值是( ),-3.1的相反数是( )。
三、11的绝对值是( ),-5.3的相反数是( ),-1.5的倒数是( )。
四、|-46.5|=( ),(2)3=( )。
五、计算。
4 5
(-—)-(-—)+(-10) 7×[(-4)2-(-4)]
7 7
9 1 4
—+(-—)+(-—)30+(-17)-4+(-20)
8 2 5
1
(-0.8)×—÷(-30) (-1)2+52(-1)1862 5
1 1 1
(-—)×(-—+—)×0 3÷[(-2)3÷(-2]
4 5 5
1 1 1
(—+—)÷(-—) 28+(-30)-5-(-13)
7 7 8
1 9
(—+—)×(-10) (-5)3+33(-1)1272
7 8
(-19)×(-17) 11×(-12) 3+(-16)
1 1
(-—)-(-—) 12-[4+(-12+2)] (0)2+43
5 4
-40-15-(-24)+(-8) -8.9-(-3.5)+(-3.9)-4.3
2 1 1 4 9 9
(—+—)-(—-—) 6.1+(-—)-(-1.3)+—
9 4 2 7 5 5
一、用数轴上的点表示下列各有理数。
-5 ,-3 ,5 ,-4.5 ,-9
二、-47的绝对值是( ),-0.9的相反数是( )。
三、-24的绝对值是( ),-3.2的相反数是( ),-4的倒数是( )。
四、|38.5|=( ),(0)4=( )。
五、计算。
5 2
(-—)+(-—)-(-9) 11÷[(-4)3×(-1)]
7 7
6 1 8
—+(-—)-(-—)29-(-15)-6+(-10)
5 4 9
1
(-0.2)×—÷(-3) (-5)3-33(-1)1978 9
1 1 1
(-—)×(-—+—)×0 22×[(-3)3+(-1]
7 2 9
1 6 3
(—-—)+(-—) 7+(-30)+7+(-10)
8 5 2
1 6
(—-—)×(-40) (-4)3-32(-1)1835
6 7
(-6)÷(-10) 0÷(-6) 0+(-1)
1 1
(-—)+(-—) -14-[-5+(-15+6)] (-1)2+13
9 5
34-4+(-10)+(-14) -9.2+(-5)+(-3.5)+2.7
2 1 1 2 9 1 (—-—)-(—+—) 5.8-(-—)-(-1.7)+—
3 3 9 7 5 5
一、用数轴上的点表示下列各有理数。
-3 ,-3.75 ,2 ,-3.5 ,8
二、-27.5的绝对值是( ),-4.6的相反数是( )。
三、-37.5的绝对值是( ),9.4的相反数是( ),8.5的倒数是( )。
四、|-1|=( ),(-3)2=( )。
五、计算。
5 4
(-—)+(-—)+(-9) 6-[(-1)2-(-2)]
7 7
1 1 6
—-(-—)-(-—)12+(-12)+6-(-12)
6 8 7
1
(-0.1)÷—×(-600) (-1)2-42(-1)2910 5
1 1 1
(-—)÷(-—-—)×0 30-[(-3)2+(-5]
2 8 6
1 1 1
(—-—)×(-—) 26+(-23)-8-(-19)
4 8 8
1 6
(—+—)×(-100) (-1)4-23(-1)2286
5 5
(-8)÷(-18) 4×(-13) 7.5-(-2)
1 1
(-—)×(-—) 17-[-1-(-6-1)] (-4)3-33
8 3
17-16+(-19)-(-25) -2-(-9.8)+(-2.9)+1
2 1 1 2 4 8 (—+—)+(—-—) 4.8-(-—)-(-5.9)-—
9 6 3 7 5 5
一、用数轴上的点表示下列各有理数。
-1.5 ,-4.5 ,9 ,5 ,6
二、-35.5的绝对值是( ),-2的相反数是( )。
三、10的绝对值是( ),-3.2的相反数是( ),-7.5的倒数是( )。
四、|21|=( ),(-2)2=( )。
五、计算。
4 6
(-—)+(-—)-(-5) 9-[(-3)2×(-2)]
7 7
3 1 6
—+(-—)-(-—)18+(-30)-10-(-15)
2 8 7
1
(-0.4)×—÷(-10) (-5)2-22(-1)1038 9
1 1 1
(-—)÷(-—+—)×0 22×[(-2)3×(-5]
6 5 2
1 1 6
(—+—)+(-—) 16-(-19)-5×(-11)
4 6 7
1 4
(—+—)×(-90) (-4)3-42(-1)2713
3 5
(-3)×(-6) 17-(-2) -6.5+(-23)
1 1
(-—)-(-—) 17-[-2-(-17+8)] (-3)4-32
8 7
36-15+(-27)-(-18) -4.8+(-3.7)+(-0.8)+9.1
2 1 1 4 1 1 (—+—)-(—+—) 1.1+(-—)-(-3.7)+—
5 8 5 5 5 5
一、用数轴上的点表示下列各有理数。
-1.5 ,-1.25 ,6 ,-2.5 ,1
二、-10.5的绝对值是( ),0.9的相反数是( )。
三、-13的绝对值是( ),-1.4的相反数是( ),5的倒数是( )。
四、|-22|=( ),(-2)2=( )。
五、计算。
4 3
(-—)-(-—)-(-4) 19×[(-3)2+(-3)]
7 7
8 1 8
—-(-—)-(-—)14-(-20)+2×(-19)
7 2 9
1
(-0.6)×—×(-50) (-3)2-12(-1)2246 7
1 1 1
(-—)÷(-—+—)×0 6+[(-2)3+(-4]
4 3 8
1 7 3
(—-—)×(-—) 4+(-22)-4-(-13)
3 8 4
1 8
(—-—)×(-50) (-1)2+32(-1)2499
6 7
(-8)÷(-8) 19×(-19) 9.5+(-4)
1 1
(-—)+(-—) -19+[1+(-8+6)] (-1)4-53
4 3
-14+9-(-25)-(-11) 7.5-(-8.3)+(-4.8)-2.6
2 1 1 2 6 9 (—-—)+(—-—) 6.3+(-—)+(-4.2)-—
9 4 3 5 5 5。