专题11 一次函数(知识点串讲)(原卷版)

合集下载

一次函数经典讲义

一次函数经典讲义

一次函数复习讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。

2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。

一次函数的图象与k,b的关系如下图所示:3、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b 中含有两个待定系数k 、b ,根据待定系数法,只要列出方程组即可.4、一次函数的应用: (1)、一次函数与一元一次方程、二元一次方程组的关系。

一元一次方程的解就是一次函数与x 轴的交点坐标的横坐标的值。

二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。

(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。

二、一次函数的概念典型例题1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、函数中,当 时,它是一次函数,当它是正比例函数.4、下列函数中,是的一次函数的是( )、 、 、 、三、一次函数的图象与性质1.下列图形中的曲线不表示y 是x 的函数的是( )2、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( ) A .0 B .1 C .2 D .33、对于函数y =5x+6,y 的值随x 值的减小而___________。

4、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

高考数学重难点第11讲 指数函数、对数函数与幂函数10大题型(原卷版)(全国通用)(新高考)

高考数学重难点第11讲 指数函数、对数函数与幂函数10大题型(原卷版)(全国通用)(新高考)

重难点第11讲指数函数、对数函数与幂函数10大题型——每天30分钟7天掌握指数函数、对数函数与幂函数10大题型【命题趋势】指数函数、对数函数与幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位,从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推论,能运用它们的性质解决具体的问题。

考生在复习过程中要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。

第1天认真研究满分技巧及思考热点题型【满分技巧】一、指数幂运算的一般原则1、指数幂的运算首先将根式统一为分数指数幂,以便利用法则计算;2、先乘除后加减,负指数幂化成正指数幂的倒数;3、底数为负数,先确定符号;底数为小数,先化成分数;底数是带分数的,先化成假分数;4、运算结果不能同时包含根号和分数指数,也不能既有分母又含有负指数。

二、对数运算常用方法技巧1、对数混合运算的一般原则(1)将真数和底数化成指数幂形式,使真数和底数最简,用公式log log m n a a nM b m=化简合并;(2)利用换底公式将不同底的对数式转化为同底的对数式;(3)将同底对数的和、差、倍运算转化为同底对数真数的积、商、幂;(4)如果对数的真数可以写成几个因数或因式的相乘除的形式,一般改写成几个对数相加减的形式,然后进行化简合并;(5)对数真数中的小数一般要化成分数,分数一般写成对数相减的形式。

2、对数运算中的几个运算技巧(1)lg 2lg 51+=的应用技巧:在对数运算中如果出现lg 2和lg 5,则一般利用提公因式、平方差公式、完全平方公式等使之出现lg 2lg 5+,再应用公式lg 2lg 51+=进行化简;(2)log log 1a b b a ⋅=的应用技巧:对数运算过程中如果出现两个对数相乘且两个对数的底数与真数位置颠倒,则可用公式log log 1a b b a ⋅=化简;(3)指对互化的转化技巧:对于将指数恒等式x y z a b c ==作为已知条件,求函数(),,f x y z 的值的问题,通常设(0)x y z a b c k k ===>,则log a x k =,log b y k =,log c z k =,将,,x y z 值带入函数(),,f x y z 求解。

第十一章《一次函数》知识点串讲及考点透视

第十一章《一次函数》知识点串讲及考点透视

第十一章《一次函数》知识点串讲及考点透视同学们已经知道了一次函数是研究函数的入门知识,也是今后学习其它函数的基础.为了使大家能牢固地掌握一次函数的性质与简单应用,现从以下几个方面帮助同学们搞好一次函数重点知识的回顾.一、要点解读1,知识总揽一次函数是函数大家族中的主要成员之一,是研究两个变量和学习其它函数的基础,它的表达式简单,性质也不复杂,但在我们的日常生活中的应用却十分广泛,与其它函数的联系也十分密切,许多实际问题只要我们注意细心观察,认頁•分析,及时将问题转化为一次函数模型,再得用一次函数的性质即可求解.2,疑点、易错点(1)若两个变量x、y间的关系式可以表示成y=k.x+b伙HO),则称y是x的一次函数.特别地,当b=0时,称),是x的正比例函数,就是说,正比例函数是一次函数的特例,而一次函数包含正比例函数,是正比例函数一立是一次函数,但一次函数不一左是正比例函数.如y=-x是正比例函数,也是一次函数,而),=一加一3是一次函数,但并不是正比例函数.因此,同学们在复习时一泄要注意正确理解正比例函数和一次函数的概念,注意掌握它们之间的区别和联系.(2)一次函数的图象是一条直线,它所经过的象限是由R与b决定的,所以在复习巩固一次函数的性质时可以通过函数图象来巩固,从而可以避免因*与b的符号的干扰.女口,在如图中,表示一次函数尸皿卄与正比例函数y=mn.x(m.n是常数且图象是( )对于两不同函数图象共存同一坐标系问题,常假设某一图象正确而后根据字母系数所表示的实际意义来判龙另一图象是否正确来解决问题.例如,假设选项B中的直线正确则加<0, n>0, mn<0则正比例函数y=/nn.r则应过第二、四象限,而实际图象则过第一、三象限,所以选项B错误.同理可得A正确.故应选A.(3)虽然一次函数的表达式简单,性质也并不复杂,且一次函数y=k.x+b(k^O)的图象是一条直线,它的位置由代、b的符号确左.但是,涉及实际问题的一次函数图象与自变疑的取值范带1,画岀来的图象不一左是直线,可能是线段或其他图形,这一点既是学习一次函数的疑点,也是难点,更是解题量的易错点.如,拖拉机开始工作时,汕箱中有汕40L,如果每小时耗油5L,那么工作时,油箱中的余油虽:Q(L)与工作时间/(h)的函数关系用图象可表示为( )依题意可啖得到油箱中的余汕旣(L)与工作时间r(R)的函数关系为0=4O-5f,就这个一次函数的解析式而言,它的图象是一条直线,所以不少同学就会选择A,而事实上,自变量f 有一个取值范用,即0W/W8,所以正确的答案应该选择C.二、思想方法复习一次函数这一章的知识一立注意数学思想方法的巩固.具体地说,一次函数的知识 涉及常见的思想方法有:(1) 函数思想所谓的函数思想就是用一个表达式将两个变量表示出来其两个变量之间是一个对应的 关系.确左两个变量之间的关系和列一元一次方程解应用题基本相似,即弄淸题意和题目中 的数量关系,找到能够表示应用题全部含义的一个相等的关系,根据这个相等的数量关系式, 列出所需的代数式,从而列出两个变量之间的关系式.例1长方形的长是20,宽是x,周长是y.写岀x 和y 之间的关系式.简析 (1)由长方形的周长公式,得y=2(x+20)=2x+40:说明 在依据题意写岀两个变量之间的关系式时,会经常用到以前学到的各种公式,所 以对以前常用的公式我们要熟练掌握,分析每一个公式的结构特征,做到运用自如,方可避 免常见错误.(2) 数形结合思想数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示 其几何意义,使问题的数量关系巧妙、和谐地结合起来,通过数与形的相互转化来解决数学 问题的思想.例2某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物 会产生不利影响.但同时考虑到文物的修缮和保存等费用问题,还要保证一泄的门票收入•因 此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参 观人数与票价之间存在着如图2所示的一次函数关系.在这样的情况下,如果确保每周4 万元的门票收入,那么每周应限左参观人数是多少?门票价格应是多少元?f 人数(人)\解设每周参观人数与票价之间的一次函数关系式为y=/c*・ 所以)=一 5OO.V+12OOO.Q.丄 丄 • A 而根拯题意,得小=40000.即 x (-5OO.v+12 000)=40 000, A :2-24A +80=0>5 10 15 % 衆价所以方程变形为(X —⑵2=64,两边开平方求得Xi=20, A -2=4.图2把 xi=2O,也=4 分别代入 y=-5OO.v+12OOO 中得 ” = 2 000, y 2=10 000.因为控制参观人数,所以取x=20, y=2 000.即每周应限制参观人数是2 000人,门票价格应是20元. 说明本题中得到方程以一24x+80=0,虽然没有学过不会解,但通过适当变形还是可以求解的.(3)待定系数法7000 600050004000300020001000待泄系数法是确泄代数式中某项系数的数学方法.它是方程思想的具体运用.例3为了学生的身体健康,学校课桌、凳的高度都是按一泄的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档髙度,得到如下数拯:第一档第二档第三档第四档凳髙x(cm) 37. 0 40. 0 42. 0 45. 0桌高y(cm) 70. 0 74. 8 78. 0 82. 8(1)小明经过对数据探究,发现:桌高y是凳髙x的一次函数,请你求岀这个一次函数的关系式(不要求写出x的取值范囤):(2)小明回家后,测量了家里的写字台和凳子,写字台的髙度为77cm,凳子的高度为43. 5cm,请你判断它们是否配套,说明理由.所以这个一次函数的关系式y=l. 6.V+10. 8;(2)当小明家写字台的髙度y=77cm时,由(1)中的一次函数的关系式y= 1. 6.V+10. 8 得77=1. 6A-+10. 8,解得x=41. 375V凳子的髙度43. 5cm,所以小明家的写字台和凳子的高度是不配套的.说明对于(2)中的问题也可以利用凳子的高度x,求出写字台的髙度y,再与77cm 比较.由此,用待左系数法求一次函数的解析式的方法可归纳为:“一设二列三解四还原”.就是说,一设:设出一次函数解析式的一般形式y=^W^0);二列:根据已知两点或已知图象上的两个点坐标列岀关于代、b的二元一次方程组:三解:解这个方程组,求岀R、b的值:四还原:将已求得(4)方程思想方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.方程思想是最重要的一种数学思想,在数学解题中所占比重较大,综合知识强、题型广、应用技巧灵活.从例1、例2和例3中,我们都可以看出用到了方程思想求解.三、考点解密(所选例题均岀自2006年全国部分省市中考试卷)考点1确定自变量的取值范围确定函数解析式中的自变量的取值范II;],只需保证其函数有意义即可.例1 (盐城市)函数y =—中,自变量x的取值范围是A-1 ------------分析由于函数的表达式是分式型的,因此必需保证分母不等于0即可.解要使函数y=—有意义,只需分母即XH1.x-l说明确左一个函数的自变量的取值范用,对于函数是整式型的可以取任何数,若是分数型,只需使分母不为0,对于从实际问题中求岀的解析式必须保证使实际问题有意义.考点2函数图象把一个函数的自变量兀与对应因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的鹵形叫做函数函数图象.例2 (泉州市)小明所在学校离家距藹为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图1中,哪一个图彖能大致描述他回家过程中离家的距离s(千米)与所用时间/(分)之间的关系()解(1)设y=k.x+h(k^0),依题意得<37£+〃 =70,40k+b = 74・ &〃=10・ &分析 依据题意,并观察分析每一个图象的特点,即可作出判断.解 依题意小明所在学校离家距离为2千米,先行驶了 5分钟后,因故停留10分钟, 继续骑了 5分钟到家,即能大致描述他回家过程中离家的距离s (千米)与所用时间/(分)之 间的关系只有D 图符合,故应选£>•说明 求解时要充分发挥数形结合的作用,及时从图象中捕捉求解有用的信息,并依据 函数图象的概念对图象作出正确判断.考点3判断图象经过的象限对于一次函数尸阳b :①当k>0, b>0时,图象在第一、二、三象限内;②当Q0, bVO 时,图象在第一、三、四象限内:③当RVO, 〃>0时,图象在第一、二、四象限内: ④当k<0, h<0时,图象在第二、三、四象限内.特别地,b=0即正比例函数y=kA 有: ①当R>0时,图象在第一、三象限内;②当RVO 时,图象在第二、四象限内.例3 (十堰市)已知直线/经过第一、二、四象限,则其解析式可以为 ________ (写出一 个即可).分析由题意直线/经过第一、二、四象限,此时满足条件的解析式有无数个.解经过第一、二、四象限的直线有无数条,所以本题是一道开放型问题,答案不唯 一.如:y=—x+2, y= — 3A +1 .等等.说明处理这种开放型的问题,只要选择一个方便而又简单的答案即可.考点4求一次函数的表达式,确定函数值要确定一次函数的解析式,只需找到满足《、b 的两个条件即可.一般地,根据条件列 出关于匕b 的二元一次方程组,解岀k 与b 的值,从而就确泄了一次函数的解析式.另外, 对于实际问题可妨照列方程解应用题那样,但应注意自变疑的取值范伟|应受实际条件的制 约.例4 (衡阳市)为了鼓励市民节约用水,自来水公司特制左了新的用水收楡标准,每月 用水量,班吨)与应付水费(元)的函数关系如图2.(1) 求出当月用水量不超过5吨时,y 与x 之间的函数关系式;(2) 某居民某月用水呈:为8吨,求应付的水费是多少? 分析观察函数图象我们可以发现是一条分段图象,因此只要分0 解(1)由图象可知:当0时是一段正比例函数,设y =応, 得 5=5k, k —15, 一所以当 时,>=1. 5x —2. 5:当兀=8 时,y=l ・ 5x8 — 2. 5=9. 5(元). b = —2・5・说明 确左正比例函数的表达式需要一个独立的条件;确左一次函数的表达式需要两个 独立的条件.对于在某个变化过程中,有两个变量X 和y,如果给立一个x 值,相应地就确 立了一个y 值.在处理本题的问题时,只需利用待泄系数法,构造出相应的二元一次方程组即 k=\.所以 0WxW5 时,y=A. 10力(吨) (2) 当心5时可以看成是一条直线,设y=k lX + b 由图象可知图2 豐叢+b.解得了(元)求解.另外,在处理这类问题时,一定要从图形中获取信息,并把所得到的信息进行联系处 理.考点5比较大小利用一次函数的性质可以比较函数值的大小,具体地应由k 的符号决泄.例5 (青岛市)点Pi 3, yi ),点B (兀2,力)是一次函数y= ~4.v+3图象上的两个点, 且X1<X2,则yi 与J2的大小关系是() A. yi>y2 B. yi>y2 >0 C. yi <yi D. yi =>'2分析 要比较八与力的大小,只要知道一次函数中《的符号.解 因为在一次函数>■= — 4x+3中R=—4V0,所以当x\<xi 时,yi>yi.故应选A.说明 在一次函数y=^+方中,①当k>0, y 随x 的增大而增大;②当kVO, y 随x 的 增大而减小.考点6图象与坐标轴围成的面积问题对于一次函数y=kx+b 与坐标轴的两个交点坐标分别是(0, b )和(一匕,0),由此与k上有一点B (1, /:),它到原点的距离是屁,贝IJ 此 直线与两坐标轴国成的三角形的面积为1 1亠1 A. — B.―或―2 4 2 分析 若能利用直线y=//u-l±有一点B它到原点的距离是屁求岀小则 可以进一步求岀了加,从而可以求出直线与两坐标轴用成的三角形的而积.解 因为点B (h n )到原点的距离是皿 所以有2+於=10,即〃=±3,则点B 的坐标为(1, 3)或(1, 一3)・分别代入y=mx — 1,得m=4,或m = —2.所以直线的表达式为y=4x — 1或y= —2丫 一 1,即易求得直线与坐标轴囤成的三角形的而积为丄或丄.故应选C.4 8说明要求直线与两坐标轴围成的三角形的而积,只要能求出直线与坐标轴的交点坐标 即可,这里的分类讨论是正确求解的关键.考点7利用一次函数解决实际问题利用一次函数解决实际问题可妨照列方程解应用题那样,但应注意自变量的取值范囤应 受实际条件的制约.例7 (长沙市)我市某乡A 、B 两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现 将这些柑桔运到C 、D 两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨:从 A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为 每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,A, B 两村运往两仓库的柑桔 运输费用分别为〃元和血元.坐标轴围成的三角形的面积为*k 2 \k\例6(日照市)已知直线y=mx-\) 1 1 C.-或一 4 8 D.丄或丄 8 2(1)请填写下表,并求出弘、刃与x之间的函数关系式:B300 吨总计240吨260吨500吨(2)试讨论A, B两村中,哪个村的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.分析依题意可以知道从A村运往C仓库的柑桔重量、从A村运往D仓库的柑桔重量、从B村运往C仓库的柑桔重量和从B村运往D仓库的柑桔重疑,这样就可以求得弘、比与X之间的函数关系式,进而利用不等式和一次函数的性质求解.解(1)依题意,从A村运往C仓库的柑桔重量为x吨,则从A村运往D仓库的柑桔重量应为(200-X)吨,同样从B村运往C仓库的柑桔重疑为(240-x)吨,从B村运往D仓库的柑桔重量应为(300—240+力吨,即(60+x)吨.所以表中C栏中填上(240 —力吨,D栏中人上到下依次填(200-A)吨、(60+x)吨.从而可以分别求得”=-5x+5000(0WxW200), y B= 3x+4680(0£xW200).(2)当y A=y B时,-5A+5OOO=3A+4680,即x=40:当y A>y a时,一5x+5000>3x+4680, 即x<40;当y A<yn时,一5x+5000V3x+4680,即x>40;所以当x=40 时,y A=yB即两村运费相等:当O0W4O 时,%>比即B村运费较少:当40GW200时,*5 即A村费用较少.(3)由艸冬4830,得 3.1+4680W4830,所以xW50.设两村运费之和为y,所以),=〃+〃, 即>=一加+9680,又OWxW时,y随x增大而减小,即当x=50时,y有最小值为9580)乂元).所以当A村调往C仓库的柑桔重量为50吨,调往D仓库为150吨,B村调往C仓库为190 吨,调往ZT仓库110吨的时候,两村的运费之和最小,最小费用为9580元.说明一次函数的重点内容之一就是利用一次函数图象的特征来解决解决实际应用问题,所以同学们一立要在应用上下功夫.另外,一次函数的应用问题是近年来中考的热点,其试题的形式活泼,题型新颖,情景生动,富有时代气息,体现新课程的理念,同学们应注意巩固和运用.练习题1,(衡阳市)函数y=QT中自变量劣的取值范围是 ___________4 4 4亍x+4与),轴交于点A,与直线y= ~x+-交于点2,(攀枝花市)如图,直线y=-进贤门教育 让更多的孩子得到更好的教冇3, (海淀区)打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、 淸洗、排水、脱水四个连续过程,其中进水、淸洗、排水时洗衣机中的水量y (升)与时间 x (分钟)之间满足某种函数关系,其函数图象大致为( )4, (江西省)如图,已知直线“经过点A (-1, 0)与点B (2, 3),另一条直线b 经 过点B,且与x 轴交于点P S, 0 ).(1) 求直线的解析式;(2) 若"PB 的面积为3,求加的值.5, (南安市)近两年某地外向型经济发展迅速,一些著名跨国公司纷纷落户该地新区, 对各类人才需求不断增加,现一公司而向社会招聘人员,其信息如下:[信息一]招聘对象:机械制造类和规划设计类人员共150名.[信息二]工资待遇:机械类人员工资为600元/月,规划设计类人员为1000元/月. 设该公司招聘机械制造类和规划设计类人员分别为x 人、y 人.(1) 用含x 的代数式表示y :(2) 若公司每月付给所招聘人员的工资为“元.要使本次招聘规划设计人员不少于机 械制造人员的2倍,求p 的取值范围.参考答案:1, Ml : 2, 4 ; 3 f D ; 4, (1)设直线/]的解析式为 y=kx + b. k = 1得t ,所以,直线人的解析式为y=x+\. (2)当点P 在点A 的右侧时,AP=m- (-1) b = 1. =加+1, W S^APC = y X (/?/ +1)X3 = 3 .解得皿=1,此时,点P 的坐标为(1, 0);当点P 在点A 的左侧时,AP=-1 —加,有5^c =|x (-l-/n )x3 = 3.解得m =一3,此时,点、P 的坐标为(一3, 0).综上所述,加的值为1或一3; 5, (1)尸150—x. (2)根据题意,得:所以 150—解得:xW50,又 x^0» 150—x20,即 0£xW50,所以 p= 600A + 1000( 150-x ) = -400.V+150000:又因为〃随兀的增大而减小,并且0WxW50,所以-由题臥得;::二解进贤门教育让更多的孩子得到更好的教冇400x50+150000-400x0+150000.即130000^/^150000.。

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题11 函数与一次函数(含详解)

2022年浙江各地数学中考真题(杭州温州金华嘉兴等)按知识点汇编专题11  函数与一次函数(含详解)

专题11 函数与一次函数一、单选题1.(2022·台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -2.(2022·金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校3.(2022·台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A .B .C .D .4.(2022·温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s 米,所经过的时间为t 分钟,下列选项中的图像,能近似刻画s 与t 之间关系的是( )A .B .C .D .5.(2022·嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .16.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M7.(2022·绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >二、填空题 8.(2022·杭州)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组310x y kx y -=⎧⎨-=⎩的解是_________.9.(2022·丽水)三个能够重合的正六边形的位置如图.已知B 点的坐标是(,则A 点的坐标是___________.三、解答题10.(2022·湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.11.(2022·丽水·)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?12.(2022·嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口? 13.(2022·绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .专题11 函数与一次函数一、单选题1.(2022·台州)如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为( )A .(40,)a -B .(40,)a -C .(40,)a --D .(,40)a -【答案】B【解析】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∴飞机D 的坐标为(-40,a ),故选:B .2.(2022·金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,2)-,下列各地点中,离原点最近的是( )A .超市B .医院C .体育场D .学校【答案】A【解析】解:根据学校和体育场的坐标建立直角坐标系,==故选:A .3.(2022·台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min 到学校,设吴老师离公园的距离为y (单位:m ),所用时间为x (单位:min ),则下列表示y 与x 之间函数关系的图象中,正确的是( )A.B.C.D.【答案】C【解析】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.4.(2022·温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是()A.B.C.D.【答案】A【解析】解:对各段时间与路程的关系进行分析如下:从家到凉亭,用时10分种,路程600米,s从0增加到600米,t从0到10分,对应图像为在凉亭休息10分钟,t从10分到20分,s保持600米不变,对应图像为从凉亭到公园,用时间10分钟,路程600米,t从20分到30分,s从600米增加到1200米,对应图像为故选:A.5.(2022·嘉兴)已知点(,)A a b ,(4,)B c 在直线3y kx =+(k 为常数,0k ≠)上,若ab 的最大值为9,则c 的值为( )A .52B .2C .32D .1【答案】B【解析】把(,)A a b 代入3y kx =+得:3b ka =+ ∴2239(3)3()24ab a ka ka a k a k k=+=+=+- ∵ab 的最大值为9∴0k <,且当32a k =-时,ab 有最大值,此时994ab k=-= 解得14k =- ∴直线解析式为134=-+y x 把(4,)B c 代入134=-+y x 得14324c =-⨯+= 故选:B .6.(2022·杭州)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫ ⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫ ⎪⎝⎭四个点中,直线PB 经过的点是( ) A .1M B .2M C .3M D .4M【答案】B【解析】解:∵点A (4,2),点P (0,2),∴P A ⊥y 轴,P A =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,,设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x =∴点M 1(0)不在直线PB 上,当x =y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .7.(2022·绍兴)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A .若120x x >,则130y y >B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【答案】D【解析】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意;若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选:D.二、填空题8.(2022·杭州)已知一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),则方程组310 x ykx y-=⎧⎨-=⎩的解是_________.【答案】12 xy=⎧⎨=⎩【解析】解:∵一次函数y=3x-1与y=kx(k是常数,k≠0)的图象的交点坐标是(1,2),∴联立y=3x-1与y=kx的方程组31y xy kx=-⎧⎨=⎩的解为:12xy=⎧⎨=⎩,即31x ykx y-=⎧⎨-=⎩的解为:12xy=⎧⎨=⎩,故答案为:12xy=⎧⎨=⎩.9.(2022·丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(,则A点的坐标是___________.【答案】3,3A【解析】解:如图,延长正六边形的边BM与x轴交于点E,过A作AN x⊥轴于N,连接AO,BO,∴三个正六边形,O为原点,,120,BM MO OH AH BMO OHA,BMO OHA≌,OB OA11209030,18012030,2MOE BMO MOB 60,90,BOE BEO 同理:120303060,906030,AON OAN ,BOE AON ,,A O B ∴三点共线,,A B ∴关于O 对称,3,3.A 故答案为:3.A三、解答题10.(2022·湖州)某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?(2)如图,图中OB ,AB 分别表示大巴、轿车离开学校的路程s (千米)与大巴行驶的时间t (小时)的函数关系的图象.试求点B 的坐标和AB 所在直线的解析式;(3)假设大巴出发a 小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a 的值.【答案】(1)轿车出发后2小时追上大巴,此时,两车与学校相距120千米(2)点B 的坐标是()3,120,s =60t -60(3)34小时 【解析】(1)解:设轿车行驶的时间为x 小时,则大巴行驶的时间为()1x +小时.根据题意,得:()60401x x =+,解得x =2.则60602120x =⨯=千米,∴轿车出发后2小时追上大巴,此时,两车与学校相距120千米.(2)解:∵轿车追上大巴时,大巴行驶了3小时,∴点B 的坐标是()3,120.由题意,得点A 的坐标为()1,0.设AB 所在直线的解析式为s kt b =+,则:3120,0,k b k b +=⎧⎨+=⎩解得k =60,b =-60.∴AB 所在直线的解析式为s =60t -60.(3)解:由题意,得()40 1.560 1.5a +=⨯, 解得:34a =, 故a 的值为34小时. 11.(2022·丽水·)因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是330km ,货车行驶时的速度是60km/h .两车离甲地的路程(km)s 与时间(h)t 的函数图象如图.(1)求出a 的值;(2)求轿车离甲地的路程(km)s 与时间(h)t 的函数表达式;(3)问轿车比货车早多少时间到达乙地?【答案】(1)1.5;(2)s =100t -150;(3)1.2【解析】(1)由图中可知,货车a 小时走了90km ,∴a =9060 1.5÷=;(2)设轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =kt +b ,将(1.5,0)和(3,150)代入得,1.503150k b k b +=⎧⎨+=⎩, 解得,100150k b =⎧⎨=-⎩, ∴轿车离甲地的路程(km)s 与时间(h)t 的函数表达式为s =100t -150;(3)将s =330代入s =100t -150,解得t =4.8,两车相遇后,货车还需继续行驶:()330150603-÷=h ,到达乙地一共:3+3=6h ,6-4.8=1.2h ,∴轿车比货车早1.2h 时间到达乙地.12.(2022·嘉兴)6月13日,某港口的潮水高度y (cm )和时间x (h )的部分数据及函数图象如下:(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当4x =时,y 的值为多少?当y 的值最大时,x 的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm 时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?【答案】(1)①见解析;②200y =,21x =(2)①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80(3)510x <<和1823x <<【解析】(1)①②观察函数图象:当4x =时,200y =;当y 的值最大时,21x =;21x =.(2)答案不唯一.①当27x 时,y 随x 的增大而增大;②当14x =时,y 有最小值80.(3)根据图像可得:当潮水高度超过260cm 时510x <<和1823x <<,【点睛】本题考查函数图像的画法、从函数图像获取信息,准确的画出函数图像是解题的关键.13.(2022·绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x .【答案】(1)y =x +1(0≤x ≤5),图见解析;(2)4小时【解析】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).(2)当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.。

一次函数的性质与应用问题(真题5道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

一次函数的性质与应用问题(真题5道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题11一次函数的性质与应用问题(北京真题5道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率一次函数的性质与应用问题(大题)2016.2019.2020.2021.2022 5年4考1.一次函数综合题(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y 轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.x 【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=12的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m 的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;①若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.(k≠0)经过点A(2,−1),直线l:3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=kxy=−2x+b经过点B(2,−2).(1)求k,b的值;(k≠0)交于点C,与直线l交于点D.(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=kx①当n=2时,判断CD与CP的数量关系;①当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y=kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m 的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与的图象在第四象限的交点为(n,−1).反比例函数y=mx(1)求b,m的值;<y p<4,连接OP,结合函数图象,直(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足m xp接写出OP长的取值范围.x平移8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=12得到,且过点(0,−1).(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.x,11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平行于直线y=12且经过点A(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x交于点A(m,n).12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;①当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.(k≠0)的两个交点分别为16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kxA(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(k≠0)于点Q.当点Q位于点P的左侧时,(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=kx求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数x的图象向上平移3个单位长度得到.y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;①如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),√5,求k的取值范围;①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于45①如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k的取值范围.22.(2022·北京房山·一模)如图1,①I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交①I于P,Q两点(Q在P,H之间).我们把点P称为①I关于直线a的“远点”,把PQ·PH的值称为①I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的①O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则①O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),①O关于直线m的“特征数”为_____________;①若直线n的函数表达式为y=√3x+4,求①O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作①F.若①F与直线l相离,点N(–1,0)是①F关于直线l的“远点”,且①F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.,0),B为y轴上的一个动点,(1)已知点A(−12①若点A与点B的“非常距离”为4,直接写出点B的坐标:;①求点A与点B的“非常距离”的最小值;x+2上的一个动点,(2)已知C是直线y=12①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;①若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;①设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.(k>0)的图象交于A,B 25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=kx两点.(1)当点A的坐标为(2,1)时.①求m,k的值;①当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·一模)在平面直角坐标系xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;①若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线y=mx交于点Ax(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=k(xx>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;①若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。

(完整版)中考试题专题之11——正比例函数及一次函数

(完整版)中考试题专题之11——正比例函数及一次函数

中考试题专题之11——正比例函数及一次函数一、选择题1、下列说法不正确的是 ( ) A .一次函数不一定是正比例函数 B .不是一次函数就一定不是正比例函数C .正比例函数是特殊的一次函数D .不是正比例函数就一定不是一次函数2、无论m 、n 为何实数,直线与的交点不可能在 ( )13+-=x y n mx y += A .第一象限 B .第二象限 C .第三象限 D .第四象限3、在平面直角坐标系中,函数的图象经过 ( )234-=x y A .一、二、三象限 B .二、三、四象限C .一、三、四象限 D .一、二、四象限4、一次函数y=kx+(k-3)的函数图象不可能是 ( )5、某航空公司规定,旅客乘机所携带行李的质量(kg)与其运费(元)由如图所示的一次函数图x y 象确定,那么旅客可携带的免费行李的最大质量为 ( )A .20kgB .25kgC .28kgD .30kg 6、若正比例函数的图像经过点(-1,2),则这个图像必经过点 ( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2)7、函数y=ax 和函数,它们的图象在同一坐标系内没有交点,则a 与b 的关系是 (xby =)A .同号B .异号C .互为倒数D .互为相反数二、填空题1、函数的定义域是;函数的定义域为.x y 23-=43+=x y 2、函数的定义域是;函数的定义域是 .xy 321+=24+-=x xy 3、正比例函数经过点,那么这个函数的解析式为.)6,2(-A 4、将正比例函数的图象进行上下平移,使它经过点,那么所得图象的函数解析式x y 2=)3,0(-是.5、一次函数,y 随着x 的增大而减小,则k 的取值范围是 .k x k y 3)2(+-=6、一次函数的图象经过点A ,则=k.3+=kx y )0,3(7、一次函数的图象与直线平行,并且经过点,那么解析式是 y k x b =+12+-=x y )4,0(.8、如果直线不经过第二象限,那么实数的取值范围是.m x y +=2m 9、写出一个图象不经过第一象限的一次函数: .10、如果点A 的坐标是(-1,1),点B 在函数的图象上,A 、B 两点之间的距离是2,那么x y =点B 的坐标是 .三、简答题1、一次函数平行于直线,且与双曲线的一个交点是(2,m ),求此函b kx y +=x y 6-=xy 2-=数解析式.2、在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形.1)求函数y =x +3的坐标三角形的三条边长; 43-2)若函数y =x +b (b 为常数)的坐标三角形周长为16, 求此三角43-形面积.3、某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数关系式如图10所示.1)第20天的总用水量为多少米3?2)当时,求y 与x 之间的函数关系式. 20≥x 3)种植时间为多少天时,总用水量达到7000米3?图10(天)第21题图。

完整版)一次函数知识点梳理

完整版)一次函数知识点梳理

完整版)一次函数知识点梳理一次函数知识点梳理1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。

2、正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的直线,我们称它为直线y=kx。

当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小。

3、正比例函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是:1)设出含有待定系数的函数解析式y=kx(k≠0);2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程;3)解方程,求出待定系数k;4)将求得的待定系数的值代回解析式。

4、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数。

当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数。

5、一次函数的图象1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和另外一点的直线,因此一次函数y=kx+b的图象也称为直线y=kx+b。

2)一次函数y=kx+b的图象的画法。

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可。

一般情况下,先选取它与两坐标轴的交点:(0,b),再选取横坐标或纵坐标为1的点。

6、正比例函数与一次函数图象之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)。

7、直线y=kx+b的图象和性质与k、b的关系如下表所示:k | b | 图象经过的象限 | 图象走势 |0 |。

第11讲 一次函数的图象与性质(讲练)(解析版)

第11讲 一次函数的图象与性质(讲练)(解析版)

2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。

中考数学专题11方程、不等式和函数的应用综合(原卷板)

中考数学专题11方程、不等式和函数的应用综合(原卷板)

2014年中考数学试题分项版解析汇编(30套30专题)专题11:方程、不等式和函数的应用综合一、选择题目1.(遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是【】二、填空题目三、解答题1.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2.(毕节)(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.3.(黔东南)(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.4.(遵义)(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是▲ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?5.(河北)(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分.探究:设行驶时间为t分(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数.发现:如图,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?6.(河南)(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

八年级数学下册专题11一次函数几何压轴训练(原卷版)

八年级数学下册专题11一次函数几何压轴训练(原卷版)

专题11 一次函数几何压轴训练1.(2023秋•东阳市期末)如图,在平面直角坐标系中,直线分别交x轴,y轴于点B,A,直线OC⊥AB,垂足为点C,D为线段OA上一点(不与端点重合),过点D 作直线l∥x轴,交直线AB于点E,交直线OC点F.(1)求线段OC的长;(2)当DE=EF时,求点D的坐标;(3)若直线l过点C,点M为线段OC上一点,N为直线l上的点,已知OM=CN,连结AN,AM,求线段AN+AM的最小值.2.(2023秋•和平县期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C (2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE 交x轴于点F,若△DEF为直角三角形,求点D坐标.3.(2023秋•槐荫区期末)如图,直线和直线l2与x轴分别相交于A,B两点,且两直线相交于点C,直线l2与y轴相交于点D(0,﹣4),OA=2OB.(1)求出直线l2的函数表达式;(2)E是x轴上一点,若S△ABC=2S△BCE,求点E的坐标;(3)若F是直线l1上方且位于y轴上一点,∠ACF=2∠CAO,判断△BCF的形状并说明理由.4.(2023秋•巴中期末)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A、B,直线BC与x轴负半轴交于点C,且CO=2AO.(1)求线段AC的长;(2)动点P从点C出发沿射线CA以每秒1个单位的速度运动,连接BP,设点P的运动时间为t(秒),△BPO的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,在线段BC上是否存在点D,连接DP,使得△BDP是以BP为直角边的等腰直角三角形,若存在,请求出t的值,若不存在,请说明理由.5.(2023秋•金牛区期末)如图1,在平面直角坐标系中,直线y=2x+b与x轴、y轴分别交于点A、点B,S△AOB=4,点C(3,m)是直线AB上一点,在直线AB左侧过点C的直线交y轴于点D,交x轴于点E.(1)求m和b的值;(2)当∠ACD=45°时,求直线CD的解析式;(3)如图2,在(2)的条件下,过C作CM⊥x轴,在直线AC上一点P,直线CD上一点Q,直线CM上一点H,当四边形AHQP为菱形时,求P点的坐标.6.(2023秋•咸阳期末)如图,已知一次函数y=kx+b(k、b为常数,且k≠0)的图象与x 轴交于点A(﹣6,0),与y轴交于点B(0,8).(1)求该一次函数的表达式;(2)点C为点B上方y轴上的点,在该一次函数的图象上是否存在点P,使得以点P、B、C为顶点的三角形与△OAB全等?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.7.(2023秋•历城区期末)如图1,直线AB:y=﹣x+b分别与x,y轴交于A(3,0),B两点,点A沿x轴向右平移3个单位得到点D.(1)分别求直线AB和BD的函数表达式.(2)在线段BD上是否存在点E,使△ABE的面积为,若存在,求出点E坐标;若不存在,说明理由.(3)如图2,P为x轴上A点右侧的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K.当点P运动时,点K的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.8.(2023秋•江门期末)如图所示,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a,b满足+(a﹣4)2=0.(1)a=,b=;(2)如图1,若点C的坐标为(﹣1,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;(3)如图2,若点D为AB的中点,点M为y轴正半轴上一动点,连接MD,过点D作DN⊥DM交x轴于点N,当点M在y轴正半轴上运动的过程中,式子S△BDM﹣S△ADN的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求出该式子的值.9.(2023秋•简阳市期末)如图,在平面直角坐标系xOy中,一次函数y=﹣x+8分别与x 轴、y轴交于A、B两点,过点B作BC⊥AB交x轴于点C.(1)求点C的坐标;(2)点D为直线AB上一点,且∠DCA=∠DAC,求直线CD的解析式;(3)若点Q是x轴上一点,连接BQ,将△ABQ沿着BQ所在直线折叠,当点A落在y 轴上时,求点Q的坐标.10.(2023秋•天桥区期末)如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)请写出点A坐标,点B坐标,直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点Q的坐标;②点M在线段AC上,连接BM,如图2,若∠BMP=∠BAC,直接写出P的坐标.11.(2023秋•万州区期末)如图1,在平面直角坐标系中,一次函数y=2x+4的图象与x轴,y轴分别交于A、B两点,点C是OB的中点.(1)求直线AC的解析式;(2)如图2,若点M是直线AC上的一动点,当S△ABM=2S△AOC时,求点M的坐标;(3)将直线AB向右平移3个单位长度得到直线l,若点E为平移后直线l上的一点,在平面直角坐标系中是否存在点F,使以点A、C、E、F为顶点,AE为边的四边形为菱形,若存在,请直接写出所有满足条件的点F的坐标;若不存在,请说明理由.12.(2023秋•盐都区期末)如图,直线AB:y=x+b分别与x、y轴交于A,B两点,点A的坐标为(−4,0),过点B的直线交x轴正半轴于点C,且OB:OC=4:3.(1)求直线BC的函数表达式;(2)在x轴上方是否存在点D,使以点A,B,D为顶点的三角形与△ABC全等.若存在,画出△ABD,并求出点D的坐标,若不存在,请说明理由;(3)点P是y轴上的一点,连接CP,将△BCP沿直线CP翻折,当点B的对应点B′恰好落在x轴上时,请直接写出此时直线CP的函数表达式.13.(2023春•阳江期末)如图,在平面直角坐标系中,直线l1:y=﹣x+5与y轴交于点A,直线l2与x轴、y轴分别交于点B(﹣4,0)和点C,且与直线l1交于点D(2,m).(1)求直线l2的解析式;(2)若点E为线段BC上一个动点,过点E作EF⊥x轴,垂足为F,且与直线l1交于点G,当EG=6时,求点G的坐标;(3)若在平面上存在点H,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点H的坐标.14.(2023春•潮阳区期末)如图,直线y=x﹣3交x轴于A,交y轴于B,(1)求A,B的坐标和AB的长(直接写出答案);(2)点C是y轴上一点,若AC=BC,求点C的坐标;(3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.15.(2023春•武穴市期末)如图,在平面直角坐标系xOy中,直线l1:y=x+2与x轴交于点A,直线l2:y=3x﹣6与x轴交于点D,与l1相交于点C.(1)求点D的坐标;(2)在y轴上一点E,若S△ACE=S△ACD,求点E的坐标;(3)直线l1上一点P(1,3),平面内一点F,若以A、P、F为顶点的三角形与△APD 全等,求点F的坐标.16.(2023春•淅川县期末)如图,已知直线y=kx+b经过A(6,0)、B(0,3)两点.(1)求直线y=kx+b的解析式;(2)若C是线段OA上一点,将线段CB绕点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上.①求点C和点D的坐标;②若点P在y轴上,Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点Q坐标,否则说明理由.17.(2023春•拜泉县期末)综合与探究.如图,平面直角坐标系中,矩形OABC的两条邻边分别在x轴、y轴上,对角线,点B的坐标为B(2a,a).(1)A,C.(2)把矩形OABC沿直线DE对折使点C落在点A处,直线DE与OC、AC、AB的交点分别为D,F,E,求直线DE的解析式(问题(1)中的结论可直接使用).(3)若点M在y轴上,则在平面直角坐标系中的x轴及x轴的下方,是否存在这样的点N,使得以A、D、N、M为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.18.(2023春•唐县期末)(1)基本图形的认识:如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连结AE、DE,求证:△AED是等腰直角三角形.(2)基本图形的构造:如图2,在平面直角坐标系中,A(2,0),B(0,3),连结AB,过点A在第一象限内作AB的垂线,并在垂线截取AC=AB,求点C的坐标;(3)基本图形的应用:如图3,一次函数y=﹣2x+2的图象与y轴交于点A,与x轴交于点B,直线AC交x轴于点D,且∠CAB=45°,求点D的坐标.19.(2023春•新罗区期末)数形结合作为一种数学思想方法,数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.例如:在我们学习数轴的时候,数轴上任意两点,A表示的数为a,B表示的数为b,则A,B两点的距离可用式子|a﹣b|表示.研一研:如图,在平面直角坐标系中,直线AB分别与x轴正半轴、y轴正半轴交于点A(a,0)、点B(0,b),且a、b满足(a﹣6)2+|b﹣4|=0.(1)直接写出以下点的坐标:A(,0),B(0,).(2)若点P、点Q分别是y轴正半轴(不与B点重合)、x轴负半轴上的动点,过Q作QC∥AB,连接PQ.已知∠BAO=34°,请探索∠BPQ与∠PQC之间的数量关系,并说明理由.(3)已知点D(3,2)是线段AB的中点,若点H为y轴上一点,且,求S△AHD=S△AOB,求点H的坐标.20.(2023春•红安县期末)如图,在平面直角坐标系中,直线l1:y=kx+8分别交x轴,y 轴于点A,B,点A(8,0).直线l2:经过线段AB的中点Q,分别交x轴,y 轴于点C,D.(1)请直接写出k的值;(2)请求出直线l2的解析式;(3)点P(t,0)为x轴上一动点,过点P作PE∥y轴交l1,l2于点E,F;①当EF=2EP时,求t的值.②连接BC,当∠OBC=∠ABF时,求t的值.21.(2023春•樊城区期末)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与x轴,y轴交于A,B;与直线y2=kx交于P(2,1),且PO=P A.(1)求点A的坐标;(2)求函数y1,y2的解析式;(3)点D为直线y1=ax+b上一动点,其横坐标为t(t<2),DF⊥x轴于点F,交y2=kx于点E,且DF=2EF,求点D的坐标;(4)在(3)的条件下,如果点D在第一象限内,过点P的直线y=mx+n将四边形OBDE 分为两部分,两部分的面积分别设为S1,S2.若≤2,直接写出m的取值范围.22.(2023春•松北区期末)如图,直线y=x+10交x轴于点A,交y轴于点B,直线y=kx+b 过点A,交y轴于点C,且C为线段OB的中点.(i)求k、b的值;(2)点P为线段AC延长线上一点,连接PB,设点P的横坐标为t,△P AB的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点D在线段AO的延长线上,连接CD、PD,且,点E在AD上,且∠DPE=45°,过点C作CF∥PE,交x轴于点F,若AF=DE,求P点的坐标.23.(2023春•碑林区校级期末)如图,在平面直角坐标系中,直线y=﹣2x+b与x轴,y轴分别交于A、B两点.直线交线段AB于点C(1,m),且S△AOB=2S△BOC.(1)求b的值;(2)若点D是y轴上一点,点E为平面上一点,是否存在以点A,B,D,E为顶点的四边形是矩形?若存在,请求出点E的坐标,若不存在请说明理由.24.(2023春•台江区期末)已知直线与x轴交于点A,与y轴交于点B,P为直线AB上的一个动点,过点P分别作PF⊥x轴于点F,PE⊥y轴于点E,如图所示.(1)若点P为线段AB的中点,求OP的长;(2)若四边形PEOF为正方形时,求点P的坐标;(3)点P在AB上运动过程中,EF的长是否有最小值,若有,求出这个最小值;若没有,请说明理由.25.(2023春•舞阳县期末)如图,在平面直角坐标系中,直线y=﹣x+6与x轴、y轴分别交于点D、C,直线AB与y轴交于点B(0,﹣3),与直线CD交于点A(m,3).(1)求直线AB的解析式;(2)点E是射线CD上一动点,过点E作EF∥y轴,交直线AB于点F.若以O、C、E、F为顶点的四边形是平行四边形,请求出点E的坐标;(3)设P是射线CD上一点,在平面内是否存在点Q,使以B、C、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.26.(2023秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x ﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.27.(2023秋•金华期末)如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)直线l1的表达式为,点D的坐标为;(2)设P(2,m),当点P在点D的下方时,求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C 的坐标.28.(2023秋•新都区校级期末)如图,已知直线y=x﹣2分别与x轴,y轴交于A,B两点,直线OG:y=kx(k<0)交AB于点D.(1)求A,B两点的坐标;(2)如图1,点E是线段OB的中点,连接AE,点F是射线OG上一点,当OG⊥AE,且OF=AE时,在x轴上找一点P,当PE+PD的值最小时,求出△APE的面积;(3)如图2,若k=﹣2,过B点BC∥OG,交x轴于点C,此时在x轴上是否存在点M,使∠OBM+∠OBC=45°,若存在,求出点M的坐标;若不存在,请说明理由.29.(2023春•巴中期末)如图,在平面直角坐标系中,直线y=2x+10与x轴交于点A,与y轴交于点B,过点B的另一直线交x轴正半轴于点C,且△ABC面积为60.(1)求点C的坐标及直线BC的表达式;(2)若M为线段BC上一点,直线AM把△ABC的面积分成两部分,这两部分的面积之比为1:2,求M的坐标;(3)当△ABM的面积为20时,点E为直线AM上一动点,在x轴上是否存在点D,使以点D、E、B、C为顶点的四边形为平行四边形?若存在,直接写出点D的坐标;若不存在,请说明理由.30.(2023春•湘潭县期末)如图,长方形OABC,是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6,在AB上取一点M使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.(1)求B'点的坐标;(2)求折痕CM所在直线的表达式;(3)求折痕CM上是否存在一点P,使PO+PB'最小?若存在,请求出最小值,若不存在,请说出理由.。

一次函数教学讲义(知识点框架、典型例题、中考真题)

一次函数教学讲义(知识点框架、典型例题、中考真题)

一次函数讲义知识点1、一次函数的意义知识点:一次函数:若两个变量x 、y 间的关系式可以表示成b kx y +=(k 、b 为常数,0≠k )的形式,称y 是x 的一次函数。

正比例函数:形如kx y =(0≠k )的函数,称y 是x 的正比例函数,此时也可说y 与x 成正比例,正比例函数是一次函数,但一次函数并不一定是正比例函数 习题练习1、下列函数(1)y=3πx ;(2)y=8x-6;(3)1y x =;(4)1y 8x 2=-;(5)2y 541x x =-+中,是一次函数的有( )A 、4个B 、3个C 、2个D 、1个2、当k_____________时,()2323y k x x =-++-是一次函数;3、当m_____________时,()21345m y m x x +=-+-是一次函数;4、当m_____________时,()21445m y m x x +=-+-是一次函数;知识点2、求一次函数的解析式知识点:确定正比例函数kx y =的解析式:只须一个条件,求出待定系数k 即可. 确定一次函数b kx y +=的解析式:只须二个条件,求出待定系数k 、b 即可. A 、设——设出一次函数解析式,即b kx y +=;B 、代——把已知条件代入b kx y +=中,得到关于k 、b 的方程(组);C 、求——解方程(组),求k 、b ;D 、写——写出一次函数解析式.常见题型归类第一种情况:不已知函数类型(不可用待定系数法),通过寻找题目中隐含的自变量和函数变量之间的数量关系,建立函数解析式。

(见前面函数解析式的确定) 第二种情况:已知函数是一次函数(直接或间接),采用待定系数法。

(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是直接或间接已知了一次函数) 一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。

二. 平移型 两条直线1l:11y k x b =+;2l :22y k x b =+。

(完整版)初中数学专题讲义--一次函数

(完整版)初中数学专题讲义--一次函数

初中数学专题讲义--一次函数一、知识归纳1.变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量2.函数:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

9、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)(3)走向:k>0时,图像经过一、三象限;k<0时,图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴10、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b 即y=kx,所以说正比例函数是一种特殊的一次函数.(1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向:⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小11一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移). 12、直线y=k 1x+b 1与y=k 2x+b 2的位置关系 (1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2(3)两直线重合:k 1=k 2且b 1=b 213、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 14、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值. 15、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 16、一次函数与二元一次方程组(1)以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bc x b a +-的图象相同.(2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b cx b a +-的图象交点.函数1、判断下列变化过程存在函数关系的是( D )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x xy ,当a x =时,y = 1,则a 的值为( B ) A.1 B.-1 C.3 D.213、下列各曲线中不能表示y 是x 的函数是( C )。

第11讲 一次函数中考复习课件

第11讲 一次函数中考复习课件
的解为一次函数y1=k1x+b1与y2=k2x 函数y =k x+b 的图象
2
2
2
+b2的图象的交点坐标值
上方时自变量x的取值
范围
考点 5
建立函数模
型解决实际
问题的步骤
一次函数的应用
第一步:审题,明确变量;
第二步:根据两变量间的等量关系,确定函数解析式;
第三步:确定自变量的取值范围,利用函数性质解决问题;
待定系数法
(1)一设:设出一次函数的解析式y=kx+b(k≠0);
一般
步骤
(2)二列:找出函数图象上的两个点,代入y=kx+b中,得到关
于k,b的二元一次方程组;
(3)三解:解这个二元一次方程组,得到k,b的值;
(4)四还原:将所求k,b的值代入所设的函数解析式
【知识拓展】若已知一次函数图象上两点(x1,y1),(x2,y2),则
5. [2021省卷5题]将直线y=5x向下平移2个单位长度,所得直线的表达式为
( A )
A.y=5x-2
B.y=5x+2
C.y=5(x+2) D.y=5(x-2)
命题点 3
一次函数与一元一次不等式(组)(省卷2018.16)
6. [2018省卷16题]如图,一次函数y=-x-2与y=2x+m的图象相交于点P
函数图象从左向右呈下降
k<0⇔ 趋势“\”
y随x的增大而② 减小
b决定函数图 b>0⇔交
b<0⇔交 b=0⇔
b>0⇔交 b<0⇔交 b=0⇔
象与y轴交点 点在正半
点在负半 交点即
点在正半 点在负半 交点即原
轴上
轴上
位置
轴上
原点
轴上

大致图象

一次函数(专题精讲)讲义

一次函数(专题精讲)讲义

【知识点梳理】1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数. 【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数. (3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数.2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b . 由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质(1)k 的正负决定直线的倾斜方向;①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置;①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数. (4)由于k ,b 的符号不同,直线所经过的象限也不同;①当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);②当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.【例题解析】例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ; (4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32 m +(m-4)是一次函数?【小结】某函数是一次函数应满足的条件是:一次项(或自变量)的指数为1,系数不为0.而某函数若是正比例函数,则还需添加一个条件:常数项为0.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.跟踪练习:已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数关系式是 . 【注意】 y 与x+1成正比例,表示y=k(x+1),不要误认为y=kx+1.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.例8 已知y+a 与x+b (a ,b 为是常数)成正比例.(1)y 是x 的一次函数吗?请说明理由; (2)在什么条件下,y 是x 的正比例函数?例9 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x 分,两种通讯方式的费用分别为y 1元和y 2元.(1)写出y 1,y 2与x 之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例10 已知y+2与x 成正比例,且x=-2时,y=0.(1)求y 与x 之间的函数关系式; (2)画出函数的图象;(3)观察图象,当x 取何值时,y ≥0?(4)若点(m ,6)在该函数的图象上,求m 的值;(5)设点P 在y 轴负半轴上,(2)中的图象与x 轴、y 轴分别交于A ,B 两点,且S △ABP =4,求P 点的坐标.例11已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象与y轴的交点在x轴的上方?(4)k为何值时,它的图象平行于直线y=-x?(5)k为何值时,y随x的增大而减小?例12判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.[分析] 由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明在此直线上;若不成立,说明不在此直线上.【课后习题】1. 如图,你能找出下列四个一次函数对应的图象吗?请说出你的理由.(1)12+-=x y ; (2)13-=x y ; (3)x y = ; (4)x y 32-=.2.(1)判断下列各组直线的位置关系:①x y =与1-=x y ; ②213-=x y 与2131--=x y . (2)已知直线532+=x y 与一条经过原点的直线l 平行,则这条直线l 的函数关系______ ;若直线a 与直线l 垂直且过点(0,-2),则直线a 的函数关系式为 .3.(1)一次函数x y 3-=的图象经过_ 象限,y 随x 的增大而__________; (2)一次函数n mx y +=A .0,0<<nmB .0,0><n mC .0,0>>n mD .0,0<>n m4.在下列四个函数中,y 值随x 值的增大而减小的是( ).A .x y 2=B .63-=x yC .52+-=x yD .73+=x y5.如图,已知一次函数k kx y +=的图象大致是( ).A .B .C .D .6.直线32+=x y 与x 轴正方向所成的锐角为α,直线13--=x y 与x 轴正方向所成的锐角为β,则α与β的关系为( ).A .α>βB .α=βC .α<βD .无法确定7.已知一次函数k kx y -=,若y 随x 的增大而减小,则该函数的图象经过( ).A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.如图,某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按同样速度注水,水池注满后,停止注水,又立即按同样的速度放完水池的水.若水池的存水量为v (3m ),放水或注水的时间为t (min ),则v 与t 的关系的大致图象只能是( ).A .B .C .D .9.函数3)2(1+-=-m xm y 的图象是一条直线,则=m .10.如果直线2+=kx y ,y 随x 的增大而增大,则直线2--=kx y 不经过第 象限. 11.如果直线x m y )2(-=与直线23+=x y 平行,则=m 12.已知直线b kx y +=过点A (1-,5)且平行于直线x y -=. (1)求这条直线b kx y +=的解析式;(2)若点B (m ,5-)在这条直线b kx y +=上,O 为坐标原点,求m 及AOB ∆的面积.13.如图,直线AB 的解析式为434+-=x y ,直线AB OC ⊥于C . (1)求A 、B 两点的坐标; (2)求直线OC 的解析式;。

易错11 一元一次方程的应用(销售,方案,数字问题)(原卷版)-七年级数学上册期末易错满分(人教版)

易错11 一元一次方程的应用(销售,方案,数字问题)(原卷版)-七年级数学上册期末易错满分(人教版)

【突破易错·冲刺满分】2021-2022学年七年级数学上册期末突破易错挑战满分(人教版)易错11一元一次方程的应用(销售,方案,数字问题)【易错1例题】销售问题1.(2021·河北献县·七年级期末)目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下图所示:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时恰好获利30%,此时利润为多少元?【易错2例题】方案问题2.(2021·广东惠来·七年级期末)朱老师暑假带领该班学生去旅游,甲旅行社说:“如果老师买全票一张,其余学生享受半价优惠.”乙旅行社说:“老师在内全部按票价的6折优惠;”若全票是240元/张;(1)若学生人数为x人,请用含x的代数式分别表示在甲、乙两家旅行社所付的费用;(2)当学生人数是多少时,两家旅行社收费一样多?(3)如果有10名学生,应参加哪个旅行社,并说出理由.【易错3例题】数字问题3.(2021·浙江嵊州·七年级期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【专题训练】一、解答题1.(2021·山东·济宁市实验初中八年级月考)某商场销售的一款空调机每台的标价是1375元,在一次促销活动中,按标价的八折销可盈利10%.(1)求这款空调每台的进价;(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?2.(2021·黑龙江·哈尔滨市第四十七中学七年级月考)某超市要购进一批保温饭盒出售.现有甲、乙两个批发商处可进货,且每件均要价60元.为了招揽顾客,甲批发商说:“凡来我处进货一律九折”;乙批发商说:“如果超出50件,则超出的部分打八折”.(1)购进多少件时去两个批发商处进货价钱一样多?(2)若超市第一次购80件,第二次比第一次的2倍少10件,且每次只能在一个批发商处进货,如果你是超市经理应该如何进货更划算?共花费多少元?(3)在(2)的条件下,第一次超市按实际购进价加价25%全部售出;假设第二次也能全部售出,则售价为多少元时,超市销售两批保温饭盒的总利润率为30%?3.(2021·黑龙江·哈尔滨风华中学期中)某果蔬商店新购进8箱西红柿,若以每箱净重36千克为标准,超过的千克数记为正数,不足的千克数记为负数,8箱西红柿称重的记录如下(单位:千克):2.5+、1-、3+、2-、 4.5+、3.5+、3+、 1.5-,(1)求这8箱西红柿的总净重量是多少千克?(2)若每箱西红柿的进价为80元,果蔬商店计划把这些西红柿全部以零售的形式出售,为保证超市能够获利50%,那么西红柿的定价应为每千克多少元?(3)若果蔬商店以(2)中的售价售出了80%的西红柿后,发现剩下的西红柿有10%的重量损耗,为了尽快清除库存,商店决定每千克西红柿降价0.5元销售.最终全部售出.请计算该商店实际销售西红柿的利润是多少?4.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)某农作物研究所研发Ⅰ号和Ⅰ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅰ号稻谷单位面积的产量比Ⅰ号稻谷单位面积的产量低20%.但Ⅰ号稻谷的米质好,比Ⅰ号稻谷价格高,已知预计Ⅰ号稻谷国家的收购价是3.2元/千克.(1)填空:在田间管理、土质和面积相同的两块田里,如果分别种植Ⅰ号Ⅰ号稻谷的收益相同那么Ⅰ号稻谷国家的收购价预计是 元/千克.(2)在(1)的条件下,老张在土质、面积相同的两块田里分别种植Ⅰ号、Ⅰ号稻谷,且进行了相同的田间管理.收获后,老张把两种稻谷全部卖给国家,卖给国家时,Ⅰ号稻谷的国家收购价比预计提高20%,Ⅰ号稻谷国家的收购价没变,这样老张卖Ⅰ号稻谷比Ⅰ号稻谷多收入12800元,那么老张卖给国家的稻谷共有多少吨?(3)在(2)的条件下,现需要将收购的稻谷运往粮库,现有两种运输方案:方案一:按重量直接包给运输公司进行运输,每千克的运输费用为0.3元/千克(过路费与装袋费等均不再另收);方案二:①由老张负责雇人进行装袋,每袋稻谷50千克,装一袋稻谷需要工人费用和袋子费用一共2元钱;②每辆车可以装10吨稻谷,且货车运一次稻谷需要1500元/辆;③运输过程中路过高速收费站时,每辆车需要交过路费320元.为了节省资金.运输这批收购的稻谷应选用哪种方案?5.(2021·黑龙江·绥棱县克音河乡学校七年级期中)公司推销某种产品,付给推销员每月的工资有以下两种方案:方案一:不论推销多少件,都有200元的底薪,每销售一件产品增加推销费5元;方案二:不付底薪,每销售一件产品给推销费10元.(1)推销50件产品时,应选择方案几所得工资合算?(2)推销多少件产品市,两种方案所得工资一样多?6.(2021·浙江温州·七年级期末)为了防治“新型冠状病毒”,某中学拟向厂家购买消毒剂和红外线测温枪,积极做好师生的测温和教室消毒工作.(1)若按原价购买一瓶消毒剂和一支红外线测温枪共需要400元,已知一支测温枪的价格比一瓶消毒剂的价格的6倍还贵15元,求每瓶消毒剂和每支测温枪的价格.(2)由于采购量大,厂家推出两种购买方案(如下表):若学校有18个班级,计划每班配置1支红外线测温枪和20瓶消毒剂,则学校选择哪种购买方案的总费用更低7.(2021·黑龙江·哈尔滨德强学校七年级月考)公园门票价格规定如下表:某校七年级(1)(2)两个班共104人去游园其中(1)班有40多人,不足50人,经估算,如果两个班都以班为单位各自购票,则一共应付1240元.(1)如果两班联合起来,作为一个团体购票,可省多少钱.(2)求两班各有多少学生.(3)如果七年级(1)班单独组织去游园,如果你作为组织者如何购票最省钱,通过计算说明理由.8.(2021·辽宁建昌·七年级期末)我市某著名景点门票价格规定如下表:小明妈妈的公司有一项短途旅行业务,就是去该景点一日游.学完一元一次方程以后,他妈妈让他给规划一个去该景点游玩的购票方案,给他的提示是:有甲、乙两个团队共32人,其中甲团队3人以上,不足10人.经估算,如果两个团队分别购票,则应付门票费2100元.(1)两个团队各有多少人?(2)如果两个团队联合起来,作为一个团体购票,可省钱元.(3)如果乙团队临时有事不能去了,只有甲团队单独去游玩,通过计算说明如何购票最省钱?9.(2021·黑龙江·哈尔滨市松雷中学校七年级月考)松雷中学计划加工一批校服,现有甲、乙两个加工厂都想加工这批校服,已知甲工厂每天能加工这种校服18套,乙工厂每天能加工这种校服27套,且单独加工这批校服甲厂比乙厂要多用10天.在加工过程中,学校需付甲厂每天费用75元、付乙厂每天费用115元.(1)求这批校服共有多少套;(2)为了尽快完成这批校服,先由甲、乙两厂按原生产速度合作一段时间后,甲工厂停工,而乙工厂每天的生产速度提高19,乙工厂单独完成剩余部分,且乙工厂的全部工作时间是甲工厂工作时间的2倍还少7天,求乙工厂共加工多少天;(3)经学校研究决定制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按(2)问方式完成;并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天15元的午餐补助费,请你通过计算帮学校选择一种最省钱的加工方案.10.(2021·全国·七年级课时练习)把99拆成4个数,使得第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到的结果都相等,应该怎样拆?11.(2021·全国·七年级课时练习)一个两位数个位上的数是1,十位上的数是x.把1与x对调,新两位数比原两位数小18,x应是哪个方程的解?你能想出x是几吗?12.(2021·全国·七年级课时练习)有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.13.(2021·湖北·黄州思源实验学校七年级期中)将连续的偶数2,4,6,8,…排成如下表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和等于.(2)若将十字框上下左右移动,可框住另外的五个数,设中间的数为x,用代数式表示十字框中的五个数的和是.(3)在移动十字框的过程中,若框住的五个数的和等于2020,这五个数从小到大依次,,,,.(4)框住的五个数的和能等于2019吗?14.(2021·江苏·景山中学七年级月考)如图是某年某月月历.(1)如图,用一正方形框在表中任意框4个数,记左上角的一个数为x,则被正方形框的4个数之和用含x的式子表示出来是;(2)在表中用正方形框的四个数之和最小记为a1,最大记为a2,则a1+a2=;(3)当(1)中被正方形框的4个数之和等于76时,求x的值?(4)在(1)中能否用正方形框这样的4个数,使它们的和等于92?若能,则求出x的值;若不能,则说明理由?。

一次函数知识点讲解

一次函数知识点讲解

一次函数知识点讲解一、知识网络二、中考要求1.经历函数、一次函数等概念的抽象概括过程,体会函数及变量思想,进一步发展抽象思维能力;经历一次函数的图象及其性质的探索过程,在合作与交流活动中发展合作意识和能力.2.经历利用一次函数及其图象解决实际问题的过程,发展数学应用能力;经历函数图象信息的识别与应用过程,发展形象思维能力.3.初步理解一次函数的概念;理解一次函数及其图象的有关性质;初步体会方程和函数的关系.4.能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题.三、中考热点一次函数知识是每年中考的重点知识,是每卷必考的主要内容.本知识点主要考查一次函数的图象、性质及应用,这些知识能考查考生综合能力、解决实际问题的能力.因此,一次函数的实际应用是中考的热点,和几何、方程所组成的综合题是中考的热点问题四、中考命题趋势及复习对策一次函数是数学中重要内容之一,题量约占全部试题的5%~10%,分值约占总分的5%~10%,题型既有低档的填空题和选择题,又有中档的解答题,更有大量的综合题,近几年中考试卷中还出现了设计新颖、贴近生活、反映时代特征的阅读理解题、开放探索题、函数应用题,这部分试题包括了初中代数的所有数学思想和方法,全面地考查计算能力,逻辑思维能力、空间想象能力和创造能力.针对中考命题趋势,在复习时应先理解一次函数概念.掌握其性质和图象,而且还要注重一次函数实际应用的练习.五、复习要点一次函数的图象和性质正比例函数的图象和性质六、考点讲析1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k ≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b的图象是经过点(0,b),(-,0 )的一条直线,正比例函数y=kx的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx+b(k、b为常数,k ≠0)当k >0时,y的值随x的值增大而增大;当k<0时,y的值随x值的增大而减小.⑷.直线y=kx+b(k、b为常数,k ≠0)时在坐标平面内的位置与k在的关系.①直线经过第一、二、三象限(直线不经过第四象限);②直线经过第一、三、四象限(直线不经过第二象限);③直线经过第一、二、四象限(直线不经过第三象限);④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。

初中八年级数学重点学习课件:一次函数(知识点串讲)(原卷版)

初中八年级数学重点学习课件:一次函数(知识点串讲)(原卷版)

专题12 一次函数知识网络重难突破一. 一次函数的认识一般地,形如y=kx+b(k、b为常数,且k≠0)的函数叫做一次函数.正比例函数也是一次函数,是一次函数的特殊形式.典例1.(2018春•青龙县期末)下列关系式中:y=﹣3x+1、y、y=x2+1、y x,y是x的一次函数的有()A.1个B.2个C.3个D.4个典例2.(2018春•颍东区期末)已知函数y=(m﹣1)x|m|+5m是一次函数,则m的值为()A.1 B.﹣1 C.0或﹣1 D.1或﹣1典例3.(2018秋•浦东新区期末)已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=____.典例4.(2017秋•沙坪坝区校级期末)若函数y=(k﹣2)x|k|﹣1是正比例函数,则k=____.二. 一次函数的图象与性质1.一次函数y=kx+b(k≠0)的图象是一条经过点(0,b)、()的直线,一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数y =kx +b 的性质(1)增减性⎩⎪⎨⎪⎧k >0,y 随x 的增大而增大k <0,y 随x 的增大而减小(2)图象所过象限⎩⎪⎨⎪⎧k >0,b >0:第一、二、三象限k >0,b <0:第一、三、四象限k <0,b >0:第一、二、四象限k <0,b <0:第二、三、四象限(3)倾斜度⎩⎪⎨⎪⎧|k|越大,直线越接近y 轴|k|越小,直线越远离y 轴典例1.(2017秋•太仓市期末)如图,三个正比例函数的图象分别对应函数关系式:①y =ax ,②y =bx ,③y =cx ,将a ,b ,c 从小到大排列并用“<”连接为( )A .a <b <cB .c <a <bC .c <b <aD .a <c <b典例2 .(2018秋•雅安期末)直线l 1:y =kx+b 与直线l 2:y =bx+k 在同一坐标系中的大致位置是( )A .B .C .D .典例3.(2018春•武昌区期末)已知一次函数y =(m ﹣4)x+2m+1的图象不经过第三象限,则m 的取值范围是()A.m<4 B.m<4 C.m≤4 D.m典例4.(2018春•德阳期末)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A.第四象限B.第三象限C.第二象限D.第一象限典例5.(2018春•大余县期末)下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn <0)图象的是()A.B.C.D.典例6.(2018春•镇原县期末)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.典例7.(2018春•确山县期末)小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:(1)函数y=|x﹣1|的自变量x的取值范围是______;(2)列表,找出y与x的几组对应值.其中,b=___;(3)在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:__________.三. 待定系数法求一次函数解析式用待定系数法时需要根据两个条件列二元一次方程组(以k和b为未知数),解方程组后就能具体写出一次函数的解析式.用待定系数法求一次函数解析式的步骤如下:①设一次函数解析y=kx+b(k≠0);②代入两个已知点的坐标,得到关于k、b的方程组;③解方程组得到k、b的值;④写出一次函数的解析式.若一次函数为正比例函数,则b=0,只需代入一个点的坐标,求出系数k即可.典例1.(2018秋•蚌埠期末)已知y与(x﹣2)成正比例,当x=1时,y=﹣2.则当x=3时,y的值为()A.2 B.﹣2 C.3 D.﹣3典例2.(2018春•泸县期末)如图,已知直线y=x+4与x轴、y轴交于A,B两点,直线l经过原点,与线段AB交于点C,并把△AOB的面积分为2:3两部分,求直线l的解析式.典例3.(2018春•茌平县期末)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.典例4.(2018春•郾城区期末)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.四. 一次函数的图象变换1.一次函数平移的方法:左加右减,上加下减.2.一次函数图象的常见对称变换:对于直线y=kx+b(k≠0,且k,b为常数),①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b(关于x轴对称,横坐标不变,纵坐标是原来的相反数);②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b(关于y轴对称,纵坐标不变,横坐标是原来的相反数);③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b(关于原点对称,横、纵坐标都变为原来的相反数).典例1.(2018春•永清县期末)若一次函数y=kx+b(x≠0)(k≠0)与一次函数y的图象关于x 轴对称,则一次函数y=kx+b的解析式为_____.典例2.(2018春•松滋市期末)在同一直角坐标系中,将一次函数y=x﹣3(x>1)的图象,在直线x=2(横坐标为2的所有点构成该直线)的左侧部分沿直线x=2翻折,图象的其余部分保持不变,得到一个新图象.若关于x的函数y=2x+b的图象与此图象有两个公共点,则b的取值范围是()A.8>b>5 B.﹣8<b<﹣5 C.﹣8≤b≤﹣5 D.﹣8<b≤﹣5巩固练习1.(2017秋•简阳市期末)下列函数关系中表示一次函数的有()①y=2x+1 ②③④s=60t⑤y=100﹣25x.A.1个B.2个C.3个D.4个2.(2018春•柳林县期末)已知一次函数y=kx+b,若k•b<0,则该函数的图象可能()A.B.C.D.3.(2018春•德阳期末)对于函数y下列说法正确的是()A.当x<3时,y随x的增大而增大B.当x>3时,y随x的增大而减小C.当x<0时,y随x的增大而减小D.当x=4时,y=﹣24.(2018春•遵义期末)函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.5.(2018春•诸城市期末)若一次函数y=(3﹣m)x+5的函数值y随x的增大而减小,则()A.m>0 B.m<0 C.m>3 D.m<36.(2017秋•蜀山区期末)已知n>m,在同一平面直角坐标系内画出一次函数y=nx+m与y=mx+n的图象,则有一组m,n的取值,使得下列4个图中的一个为正确的是()A.B.C.D.7.(2018春•繁昌县期末)八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是___.8.(2018春•营山县期末)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B 的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,线段BC 扫过的面积为()A.80 B.88 C.96 D.1009.(2018春•廉江市期末)已知:如图,正比例函数y=kx的图象经过点A,(1)请你求出该正比例函数的解析式;(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;(3)请你判断点P(,1)是否在这个函数的图象上,为什么?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11 一次函数考点总结【思维导图】【知识要点】知识点一变量与函数变量:在一个变化过程中数值发生变化的量。

常量:在一个变化过程中数值始终不变的量。

【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。

2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。

函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

【函数概念的解读】1、有两个变量。

2、一个变量的数值随另一个变量的数值变化而变化。

3、对于自变量每一个确定的值,函数有且只有一个值与之对应。

函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a 时的函数值。

函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。

2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。

函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

优:准确反映整个变化过程中自变量与函数的关系。

缺:求对应值是要经过比较复杂的计算,而且实际问题中有的函数值不一定能用解析式表示。

2、列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

优:自变量和与它对应的函数值数据一目了然,使用方便。

缺:所列对应数值个数有限,不容易看出自变量与函数值的对应关系,有局限性。

3、图像法:用图像表示函数关系的方法叫做图像法。

优:形象的把自变量和函数值的关系表示出来。

缺:图像中只能得到近似的数量关系。

【典型例题】1.(2013·河北中考真题)如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y =()A .2B .3C .6D .x+32.(2019·广西中考模拟)下列各曲线中哪个不能表示y 是x 的函数的是( )A .B .C .D .3.(2019·新疆中考模拟)下列曲线中不能表示y 是x 的函数的是( )A .B .C .D .4.(2019·浙江中考模拟)用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A .1000.6y n m ⎛⎫=+ ⎪⎝⎭B .1000.6y n m ⎛⎫=+ ⎪⎝⎭C .()1000.6y n m =+D .()1000.6y n m =+5.(2019·浙江中考模拟)已知y 关于x 的函数图象如图所示,则当y <0时,自变量x 的取值范围是( )A .x <0B .﹣1<x <1或x >2C .x >﹣1D .x <﹣1或1<x <2【考查题型汇总】考查题型一 确定自变量取值范围1.(2018·山东中考模拟)函数x 的取值范围是( ) A .x≠2 B .x <2 C .x≥2 D .x >22.(2007·江苏中考真题)在函数y =−1x+2中,自变量x 的取值范围是( )A .x≠2B .x≤-2C .x≠-2D .x≥-23.(2019·湖南中考模拟)函数y =√2−x +1x−3中自变量x 的取值范围是( )A .x =3B .x ≤2C .x <2且x ≠3D .x ≤2且x ≠34.(2019·湖南中考模拟)函数y 中,自变量x 的取值范围是( ) A .x≥1 B .x >1 C .x≥1且x≠2 D .x≠25.(2012·湖南中考真题)下列函数中,自变量x 的取值范围是x≥3的是( )A .1y=x 3- B .C .y=x 3- D .考查题型二 从函数图形中获取信息1.(2019·吉林中考模拟)“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米;(2)小明在书店停留了多少分钟;(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?2.(2005·江苏中考真题)某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示.根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中水量为多少升?(2)已知洗衣机的排水速度为每分钟19升.①求排水时洗衣机中的水量y(升)与时间x(分钟)与之间的关系式;②如果排水时间为2分钟,求排水结束时洗衣机中剩下的水量.3.(2019·甘肃中考模拟)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50分才乘上缆车,缆车的平均速度为180米/分,设小亮出发x分后行走的路程为y米.图中的折线表示小亮在整个行走过程中y随x的变化关系.(1)小亮行走的总路程是_________米,他途中休息了___________分;(2)分别求出小亮在休息前和休息后所走的路程段上的步行速度;(3)当小颖到达缆车终点时,小亮离缆车终点的路程是多少?考查题型三利用函数图形求解实际问题1.(2019·湖北中考真题)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.2.(2019·富顺县赵化中学校中考真题)均匀的向一个容器内注水,在注水过程中,水面高度h与时间t的函数关系如图所示,则该容器是下列中的()A.B.C.D.3.(2019·安徽中考模拟)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.4.(2018·陕西中考模拟)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t 的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.考查题型四函数模型1.(2012·浙江中考模拟)某中学九年级甲、乙两班同学商定举行一次远足活动,A、B两地相离10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地,两班同学各自到达目的地后都就地活动. 两班同时出发,相向而行. 设步行时间为x小时,甲、乙两班离A地的距离分别为y1千米、y2千米,y1、y2与x的函数关系图象如图所示,根据图象解答下列问题:1)分别求出y1、y2与x的函数关系式2)求甲、乙两班学生出发后,几小时相遇?2.(2019·天津中考模拟)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?考查题型五分段函数的应用1.(2019·山东中考模拟)某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.2.(2019·湖北中考真题)一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L,在随后的8min内既进水又出水,容器内存水12L,接着关闭进水管直到容器内的水放完.若每分钟进水和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.3.(2019·北京市通州区姚村中学中考模拟)如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A.B.CC.D.4.(2019·合肥寿春中学中考模拟)如图, 甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市,已知货车出发1小时后客车再出发,先到终点的车辆原地休息,在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论:①货车的速度是60千米/小时;②离开出发地后,两车第一次相遇时,距离出发地150千米;③货车从出发地到终点共用时7小时;④客车到达终点时,两车相距180千米.正确的有()A.1B.2C.3D.4知识点二一次函数的图形与性质正比例函数定义:一般地,形如y=kx(k为常数,k≠0)的函数,叫做正比例函数,k叫做比例系数。

一次函数定义:如果y=kx+b(k,b是常数,k ≠0 )的函数,叫做一次函数,k叫比例系数。

注意:当b=0时,一次函数y=kx+b 变为y=kx,正比例函数是一种特殊的一次函数。

待定系数法:先设出函数解析式,在根据条件确定解析式中未知的系数,从而得出解析式的方法叫做待定系数法。

待定系数法求函数解析式的一般步骤:1、设函数解析式2、将已知条件带入到解析式中2、解方程(组) 4、将求出的数值代入到解析式中正比例函数图像与一次函数图像特征总结如下:k>0时,y随x增大而增大,必过一、三象限。

相关文档
最新文档