2016年常州市中考数学试卷及答案
最新常州市中考数学试卷(word解析版)
2016年常州市中考数学试卷(word解析版)一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=______.10.若分式有意义,则x的取值范围是______.11.分解因式:x3﹣2x2+x=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.若代数式x﹣5与2x﹣1的值相等,则x的值是______.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是______km.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是______.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=______.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是______.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.解方程和不等式组:(1)+=1(2).21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了______名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.2016年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,点P表示的数是1.5,则﹣=0.75>﹣1,则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【考点】垂线段最短.【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y2>y1建立不等式,求解不等式即可.【解答】解:由表可知,(﹣1,0),(0,1)在直线一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1.【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x 的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是1.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab 的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【考点】多项式乘多项式.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.解方程和不等式组:(1)+=1(2).【考点】解分式方程;解一元一次不等式组.【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,=10.即a最小值答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【考点】一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE 剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【考点】四边形综合题.【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,=(DE+BC)×DM=(1+2)×=,∴S梯形EDBC由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m <1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴=(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.。
江苏常州市数学中考试题及答案
常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。
2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。
3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。
4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。
一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是,9的平方根是 。
2.在函数1-=x y 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。
3.若α∠的补角是120°,则α∠= °,=αcos 。
4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。
5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。
6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。
当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。
8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。
二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】A .123=-x xB .2x x x =∙C .2222x x x =+ D .()423a a-=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。
2016年江苏省常州市中考数学试卷-解析版
2016年江苏省常州市中考数学试卷解析版一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,1<p<2,则<<1,所以﹣1<﹣<﹣.则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC≤3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:当y 2>y 1时,自变量x 的取值范围是( )A .x <﹣1B .x >4C .﹣1<x <4D .x <﹣1或x >4【分析】方法一:先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y 2>y 1建立不等式,求解不等式即可.方法二:直接由表得出两函数图象的交点坐标(﹣1,0),(4,5),再结合变化规律得出结论.【解答】解法一:由表可知,(﹣1,0),(0,1)在一次函数y 1=kx +m 的图象上, ∴,∴ ∴一次函数y 1=x +1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y 2=ax 2+bx +c (a ≠0)的图象上,∴,∴ ∴二次函数y 2=x 2﹣2x ﹣3当y 2>y 1时,∴x 2﹣2x ﹣3>x +1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D,解法二:如图,由表得出两函数图象的交点坐标(﹣1,0),(4,5),∴x>4或x<﹣1,故选D.【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x=x(x﹣1)2.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x 和y的关系,根据x的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2 x+2y=23,∴x+2y=3.∴x=3﹣2y,∵0≤x≤1,∴0≤3﹣2y≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是1.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.(6分)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.(8分)解方程和不等式组:(1)+=1(2).【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=2x﹣5,解得x=0,把x=0代入2x﹣5得,2x﹣5=﹣5≠0,故x=0是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.(8分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.(8分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,BE=CD在△BOE和△COD中∵∠BOE=∠COD,BE=CD,∠BEC=∠BDE=90°∴△BOE≌△COD,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.(8分)某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,即a最小值=10.答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.(8分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x 轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(10分)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,∴S梯形EDBC=(DE+BC)×DM=(1+2)×=,由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.(10分)如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx 的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q 作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△?若存在,求出点E的坐标;若不存在,请说明理由.AOM【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P (m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标,再根据对称性E关于点A的对称点E′也符合条件,求出E、E′坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=x,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴=(PP∴当m=时,取最大值,最大值为.(3)存在.如图2中,①点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).②设E关于点A的对称点E′,E′关于AM的对称点F′,根据对称性可知,△OAF′与△AOF的面积相等,此时E′(,),综上所述满足条件的点E坐标(,)或(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.(10分)如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF,得∠FAD=∠FCD,则∠BAP=∠BCF,所以得出∠MCP+∠BCF=90°,FC⊥CM;如图3,当点P在线段BC的延长线上时,FC与⊙M相切,同理可得∠MCD+∠FCD=90°,则FC⊥CM,FC与⊙M相切;②当点P在线段AB上时,如图4,设⊙M切BD于E,连接EM、MC,设∠Q=x,根据平角BFD列方程求出x的值,作AP的中垂线HN,得∠BHP=30°,在Rt△BHP 中求出BP的长,则得出PC=﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=+1.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABP=90°,∴tan∠BAP===,∵tan30°=,∴∠BAP=30°;(2)如图1,设PC=x,则BP=1﹣x,∵△FGC≌△QCP,∴GC=PC=x,DG=1﹣x,∵∠BDC=45°,∠FGD=90°,∴△FGD是等腰直角三角形,∴FG=DG=CQ=1﹣x,∵AB∥DQ,∴,∴,∴x=(1﹣x)2,解得:x1=>1(舍去),x2=,∴PC=;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,理由是:取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,∵∠PCQ=90°,PQ为直径,∴点C是圆M上,∵△PCQ为直角三角形,∴MC=PM,∴∠MCP=∠MPC,∵∠APB=∠MPC,∴∠MCP=∠APB,∵∠APB+∠BAP=90°,∴∠MCP+∠BAP=90°,∵AD=DC,∠ADB=∠CDB,FD=FD,∴△ADF≌△CDF,∴∠FAD=∠FCD,∵∠BAP+∠FAD=∠BCF+∠FCD,∴∠BAP=∠BCF,∴∠MCP+∠BCF=90°,∴FC⊥CM,∴FC与⊙M相切;如图3,当点P在线段BC的延长线上时,FC与⊙M也相切,理由是:取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,同理得∠AQD=∠MCQ,点C是圆M上,∵AD=DC,∠BDA=∠CDB=45°,DF=DF,∴△ADF≌△CDF,∴∠FAD=∠FCD,∵∠AQD+∠FAD=90°,∴∠MCD+∠FCD=90°,∴FC⊥MC,∴FC与⊙M相切;:②当点P在线段BC上时,如图4,设⊙M切BD于E,连接EM、MC,∴∠MEF=∠MCF=90°,∵ME=MC,MF=MF,∴△MEF≌△MCF,∴∠QFC=∠QFE,∵∠BAP=∠Q=∠BCF,设∠Q=x,则∠BAP=∠BCF=x,∠QFE=∠QFC=45°+x,∠DFC=45°+x,∵∠QFE+∠QFC+∠DFC=180°,∴3(45+x)=180,x=15,∴∠Q=15°,∴∠BAP=15°,作AP的中垂线HN,交AB于H,交AP于N,∴AH=AP,∴∠BHP=30°,设BP=x,则HP=2x,HB=x,∴2x+x=1,x=2﹣,∴PC=BC﹣BP=1﹣(2﹣)=﹣1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=+1;综上所述:PC=﹣1或+1.【点评】本题是圆的综合题,综合考查了正方形、圆及切线、全等三角形的性质及判定;同时利用特殊的三角函数值求角的度数,本题还是动点问题,难度较大,尤其是第(3)问,因为不确定点P是在线段BC上还是在延长线上,有此情况存在,所以都要分情况进行讨论,从而分别证出结论或求出PC的长.。
(完整word版)2016年常州市中考数学试卷及答案,推荐文档
2016年江苏省常州市中考数学试卷一、选择题(共 8小题,每小题2分,满分16分) 1.- 2的绝对值是( )A . - 2B . 2C .-丄D .寺2•计算3-( - 1)的结果是( )A . - 4B . - 2C . 2D . 4 3.如图所示是一个几何体的三视图,这个几何体的名称是()A .圆柱体B .三棱锥C .球体D .圆锥体 4.如图,数轴上点 P 对应的数为p ,则数轴上与数-二对应的点是()A 32,亠P -21 01 2〉A .点AB .点BC .点CD .点D5.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点A . x+1 > y +1B . 2x > 2y C. -■2 2D . x 2> y 2已知△ ABC 中,BC=6 ,已知一次函数 y 1=kx+mAC=3 , CP丄AB,垂足为P,则CP的长可能是(和二次函数y2=ax2+bx+c (a z 0)的自变量和对应函数值如表: y ix …—11 3 4 …y2 …—4 0 5当y2> y1时,自变量x的取值范围是()A . x v —1B . x>4C 1v x v 4D . x v—1 或x >4二、填空题(共10小题,每小题2分,满分20 分)9.化简:徒-屆____________ .10 .若分式」■〒有意义,则x的取值范围是.K+111. _________________________ 分解因式:x3—2x2+x= .12. 一个多边形的每个外角都是60°则这个多边形边数为_________13 .若代数式x —5与2x —1的值相等,贝U x的值是______ .14. 在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是________ k m.k15. 已知正比例函数y=ax (0)与反比例函数y」(k丰0)图象的一个交点坐标为(- 1,—z1),则另一个交点坐标是 ________ .16. _______________________________________________________________________ 如图,在O O 的内接四边形ABCD中,/ A=70 ° / OBC=60 °则/ ODC= __________________________17 .已知x、y满足2x?4y=8,当0W x < 1时,y的取值范围是__________18. 如图,△ APB中,AB=2,/ APB=90 °在AB的同侧作正△ ABD、正△ APE和正△ BPC,则三、解答题(共10小题,满分84分)19. 先化简,再求值(x - 1) ( x - 2)-( x+1) 2,其中x 弋-. 20. 解方程和不等式组:盘 _____ £(° 2工-5+5-疔1I. iT ; 1sir io<o工+$> — M21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了阅读” 锻炼” 看电视”和其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1) __________________ 本次共调查了 名市民;(2) 补全条形统计图;(3) 该市共有480万市民,估计该市市民晚饭后 1小时内锻炼的人数.22. 一只不透明的袋子中装有 1个红球、1个黄球和1个白球,这些球除颜色外都相同(1) 搅匀后从袋子中任意摸出 1个球,求摸到红球的概率; (2)搅匀后从袋子中任意摸出 1个球,记录颜色后放回、搅匀,再从中任意摸出 1个球,求两次 都摸到红球的概率.23. 如图,已知△ ABC 中,AB=AC , BD 、CE 是高,BD 与CE 相交于点 O (1) 求证:OB=OC ;『誇毛命跡阐誌其他蚩项■-10O0协H.4-.I II L J III Ilia,-ail h -A llld —iBlia A U IBa —bllI il lli-^lll ii^KM)1,B™ ,T",p,q"""""""200 ・・・■«・・“24. 某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38兀.(1) 求甲、乙两种糖果的价格; (2)若购买甲、乙两种糖果共20千克,且总价不超过 240元,问甲种糖果最少购买多少千克?25 .如图,在平面直角坐标系 xOy 中,一次函数y= x+1的图象与x 轴、y 轴分别交于点 A 、 B ,把Rt △ AOB 绕点A 顺时针旋转角 a (30°< av 180。
2016年江苏省各市中考数学试卷汇总(13套)
文件清单:2016年中考真题精品解析数学(江苏宿迁卷)精编word版(原卷版)2016年江苏省苏州市中考数学试卷(解析版)江苏省南京市2016年中考数学试题(解析版)江苏省南通市2016年中考数学试题(word版,含解析)江苏省常州市2016年中考数学试题(图片版,含答案)江苏省徐州市2016年中考数学试题(word版,含解析)江苏省扬州市2016年中考数学试题(word版,含答案)江苏省无锡市2016年中考数学试题(word版,含解析)江苏省泰州市2016年中考数学试题(word版,含解析)江苏省连云港市2016年中考数学试卷(word版含解析)江苏省镇江市2016年中考数学试题(扫描版,含答案)淮安中考数学2016(含答案)2016年中考真题精品解析数学(江苏宿迁卷)精编word版一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.22.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×1064.下列计算正确的是()A.B.C.D.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.67.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.18.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,二、填空题(共8小题)9.因式分解:= .10.计算:= .11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB 于点D,则BD的长为.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.三、解答题(共10小题)17.计算:.18.解不等式组:.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.一、选择题(共8小题)1.﹣2的绝对值是()A.﹣2B.C.D.2【答案】D.【解析】试题分析:∵﹣2<0,∴|﹣2|=﹣(﹣2)=2.故选D.考点:绝对值.2.下列四个几何体中,左视图为圆的几何体是()A.B.C.D.【答案】A.考点:简单几何体的三视图.3.地球与月球的平均距离为384000km,将384000这个数用科学记数法表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C.【解析】试题分析:384000=3.84×105.故选C.考点:科学记数法—表示较大的数.4.下列计算正确的是()A.B.C.D.【答案】D.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.5.如图,已知直线a、b被直线c所截.若a∥b,∠1=120°,则∠2的度数为()A.50°B.60°C.120°D.130°【答案】B.【解析】试题分析:如图,∠3=180°﹣∠1=180°﹣120°=60°,∵a∥b,∴∠2=∠3=60°.故选B.考点:平行线的性质.6.一组数据5,4,2,5,6的中位数是()A.5B.4C.2D.6【答案】A.【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2B.C.D.1【答案】B.考点:翻折变换(折叠问题).8.若二次函数的图象经过点(﹣1,0),则方程的解为()A.,B.,C.,D.,【答案】C.【解析】试题分析:∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.故选C.学科网考点:抛物线与x轴的交点.二、填空题(共8小题)9.因式分解:= .【答案】2(a+2)(a﹣2).【解析】试题分析:= =2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).考点:提公因式法与公式法的综合运用.10.计算:= .【答案】x.【解析】试题分析:===x.故答案为:x.考点:分式的加减法.11.若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是.【答案】1:2.考点:相似三角形的性质.12.若一元二次方程有两个不相等的实数根,则k的取值范围是.【答案】:k<1.【解析】试题分析:∵一元二次方程有两个不相等的实数根,∴△==4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为:k<1.考点:根的判别式.13.某种油菜籽在相同条件下发芽试验的结果如表:每批粒数n 100 300 400 600 1000 2000 3000发芽的频数m 96 284 380 571 948 1902 28480.960 0.947 0.950 0.952 0.948 0.951 0.949发芽的频率那么这种油菜籽发芽的概率是(结果精确到0.01).【答案】0.95.【解析】试题分析:观察表格得到这种油菜籽发芽的频率稳定在0.95附近,则这种油菜籽发芽的概率是0.95,故答案为:0.95.考点:利用频率估计概率.14.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C为圆心,CB为半径的圆交AB于点D,则BD的长为.【答案】.考点:垂径定理.15.如图,在平面直角坐标系中,一条直线与反比例函数(x>0)的图象交于两点A、B,与x轴交于点C,且点B是AC的中点,分别过两点A、B作x轴的平行线,与反比例函数(x>0)的图象交于两点D、E,连接DE,则四边形ABED的面积为.【答案】.考点:反比例函数系数k的几何意义.16.如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.【答案】4.【解析】试题分析:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为:4.考点:矩形的性质;等腰三角形的性质;勾股定理;分类讨论.三、解答题(共10小题)17.计算:.【答案】.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.18.解不等式组:.【答案】1<x<2.【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.试题解析:,由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x <2.考点:解一元一次不等式组;方程与不等式.19.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级29 13 13 5九年级24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为,b的值为;(2)在扇形统计图中,八年级所对应的扇形圆心角为度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.【答案】(1)28,15;(2)108;(3)200.【解析】试题分析:(1)根据学校从三个年级随机抽取200名学生的体育成绩进行统计分析和扇形统计图可以求得七年级抽取的学生数,从而可以求得a的值,也可以求得九年级抽取的学生数,进而得到b的值;(2)根据扇形统计图可以求得八年级所对应的扇形圆心角的度数;绩不合格的有200人.考点:扇形统计图;用样本估计总体;统计与概率.20.在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m的值为;(2)若将袋子中的球搅匀后随机摸出1个球(不放回),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.【答案】(1)2;(2).【解析】试题分析:(1)由必然事件的定义可知:透明的袋子中装的都是黑球,从袋子中随机摸出一个球是黑球的案为:2;(2)设红球分别为H1、H2,黑球分别为B1、B2,列表得:第二球H1H2B1B2第一球H1(H1,H2)(H1,B1)(H1,B2)H2(H2,H1)(H2,B1)(H2,B2)B1(B1,H1)(B1,H2)(B1,B2)B2(B2,H1)(B2,H2)(B2,B1)总共有12种结果,每种结果的可能性相同,两次都摸到球颜色相同结果有4种,所以两次摸到的球颜色相同的概率==.考点:列表法与树状图法;随机事件.21.如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:B E=CF.【答案】证明见解析.【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考点:平行四边形的判定与性质.22.如图,大海中某灯塔P周围10海里范围内有暗礁,一艘海轮在点A处观察灯塔P在北偏东60°方向,该海轮向正东方向航行8海里到达点B处,这时观察灯塔P恰好在北偏东45°方向.如果海轮继续向正东方向航行,会有触礁的危险吗?试说明理由.(参考数据:≈1.73)【答案】没有触礁的危险.【解析】试题分析:作PC⊥AB于C,如图,∠P AC=30°,∠PBC=45°,AB=8,设PC=x,先判断△PBC为等腰直角三角形得到BC=PC=x,再在Rt△P AC中利用正切的定义列方程,求出x的值,即得到AC的值,然后比较AC与10的大小即可判断海轮继续向正东方向航行,是否有触礁的危险.试题解析:没有触礁的危险.理由如下:考点:解直角三角形的应用-方向角问题;应用题.23.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:A C是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.【答案】(1)证明见解析;(2)22.5°.【解析】试题分析:(1)连接AO,延长AO交⊙O于点E,则AE为⊙O的直径,连接DE,由已知条件得出∠ABC=∠CAD,由圆周角定理得出∠ADE=90°,证出∠AED=∠ABC=∠CAD,求出EA⊥AC,即可得出结论;(2)由圆周角定理得出∠BAD=90°,由角的关系和已知条件得出∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴4∠ABC=90°,∴∠ABC=22.5°,由(1)知:∠ABC=∠CAD,∴∠CAD=22.5°.考点:切线的判定;圆周角定理;三角形的外接圆与外心.24.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m的取值范围.【答案】(1)y=;(2)30<m≤75.【解析】试题分析:(1)根据收费标准,分0<x≤30,30<x≤m,m<x≤100分别求出y与x的关系即可.考点:二次函数的应用;分段函数;最值问题;二次函数的最值.25.已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C 按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【答案】(1)证明见解析;(2)①135°;②.【解析】试题分析:(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.学科网∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==,∴当α从90°变化到180°时,点M运动的路径长为.考点:几何变换综合题.26.如图,在平面直角坐标系xOy中,将二次函数的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.【答案】(1);(2);(3)25.【解析】试题分析:(1)根据二次函数N的图象是由二次函数M翻折、平移得到所以a=﹣1,求出二次函数N的顶点坐标即可解决问题.(2)由=可知OP最大时,最大,求出OP的最大值即可解决问题.(3)画出函数图象即可解决问题.最大,∴OP的最大值=OC+PO=,∴最大值==.学科网(3)M与N所围成封闭图形如图所示:由图象可知,M与N所围成封闭图形内(包括边界)整点的个数为25个.考点:二次函数综合题;最值问题;压轴题;几何变换综合题.2016年江苏省苏州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣53.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.45.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,258.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3二、填空题(共8小题,每小题3分,满分24分)11.分解因式:x2﹣1= .12.当x= 时,分式的值为0.13.要从甲、乙两名运动员中选出一名参加“2016里约奥运会”100m比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(s2),乙的方差为0.008(s2),则这10次测试成绩比较稳定的是运动员.(填“甲”或“乙”)14.某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘制了如图所示的两幅不完整的统计图,则在扇形统计图中,艺术类读物所在扇形的圆心角是度.15.不等式组的最大整数解是.16.如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D ,CD=3,则图中阴影部分的面积为.17.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BD E沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.18.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为.三、解答题(共10小题,满分76分)19.计算:()2+|﹣3|﹣(π+)0.20.解不等式2x﹣1>,并把它的解集在数轴上表示出来.21.先化简,再求值:÷(1﹣),其中x=.22.某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆,现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?23.在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.25.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC =∠ABC,求反比例函数和一次函数的表达式.26.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得C D=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.27.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.28.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).2016年江苏省苏州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.的倒数是()A.B.C.D.【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×=1,∴的倒数是.故选A.2.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.3.下列运算结果正确的是()A.a+2b=3ab B.3a2﹣2a2=1C.a2•a4=a8D.(﹣a2b)3÷(a3b)2=﹣b【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、积的乘方运算法则分别计算得出答案.【解答】解:A、a+2b,无法计算,故此选项错误;B、3a2﹣2a2=a2,故此选项错误;C、a2•a4=a6,故此选项错误;D、(﹣a2b)3÷(a3b)2=﹣b,故此选项正确;故选:D.4.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是()A.0.1 B.0.2 C.0.3 D.0.4【考点】频数与频率.【分析】根据第1~4组的频数,求出第5组的频数,即可确定出其频率.【解答】解:根据题意得:40﹣(12+10+6+8)=40﹣36=4,则第5组的频率为4÷40=0.1,故选A.5.如图,直线a∥b,直线l与a、b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58° B.42° C.32° D.28°【考点】平行线的性质.【分析】根据平行线的性质得出∠ACB=∠2,根据三角形内角和定理求出即可.【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=ACB=180°﹣∠1﹣∠BAC=180°﹣90°﹣58°=32°,故选C.6.已知点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数的增减性分析得出答案.【解答】解:∵点A(2,y1)、B(4,y2)都在反比例函数y=(k<0)的图象上,∴每个象限内,y随x的增大而增大,∴y1<y2,故选:B.7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从2016年1月1日起对居民生活用水按新的“阶梯水价”标准收费,某中学研究学习小组的同学们在社会实践活动中调查了30户家庭某月的用水量,如表所示:用水量(吨)15 20 25 30 35户数 3 6 7 9 5则这30户家庭该用用水量的众数和中位数分别是()A.25,27 B.25,25 C.30,27 D.30,25【考点】众数;中位数.【分析】根据众数、中位数的定义即可解决问题.【解答】解:因为30出现了9次,所以30是这组数据的众数,将这30个数据从小到大排列,第15、16个数据的平均数就是中位数,所以中位数是25,故选D.8.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.2m B.2m C.(2﹣2)m D.(2﹣2)m【考点】解直角三角形的应用-坡度坡角问题.【分析】先在Rt△ABD中利用正弦的定义计算出AD,然后在Rt△ACD中利用正弦的定义计算AC 即可.【解答】解:在Rt△ABD中,∵sin∠ABD=,∴AD=4sin60°=2(m),在Rt△ACD中,∵sin∠ACD=,∴AC==2(m).故选B.9.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,) C.(3,) D.(3,2)【考点】矩形的性质;坐标与图形性质;轴对称-最短路线问题.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.C.D.3【考点】三角形的面积.【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△A DC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以A C为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2。
2016数学中考试题及答案
2016数学中考试题及答案2016年的数学中考试题目是许多学生所关注的焦点。
本文将为您提供2016年数学中考试题目的详细内容以及相应的答案。
以下是数学试题的题目和答案:1. 选择题1.1 问题:已知直角三角形 ABC 中,∠B = 90°,BC = 4 cm,AC = 3 cm,则∠A 的值是多少?选项:A. 30°B. 45°C. 60°D. 90°1.2 问题:已知 a + b = 7,a - b = 3,则 a 和 b 的值分别是多少?选项:A. a = 5,b = 2B. a = 2,b = 5C. a = 7,b = 0D. a = 0,b = 7答案:1.1 答案:C1.2 答案:A2. 填空题2.1 问题:将两个相邻的自然数的平方相加,结果为 365,这两个自然数分别是多少?答案:13 和 142.2 问题:已知 x = -2 是方程 3x - 4 = 5x + 2 的解,求另一个解。
答案:-33. 计算题3.1 问题:已知函数 f(x) = x^2 + 3x + 2,求 f(-1) 的值。
答案:23.2 问题:某商品原价为 80 元,现在打折 30%,请计算折扣后的价格。
答案:56 元4. 解答题4.1 问题:请解答如下等式,求出变量 x 的值:2(x + 3) = 4x + 6答案:x = 34.2 问题:请解答如下问题,计算三个连续自然数的和,其中最小的自然数是 x:x + (x + 1) + (x + 2) = 60答案:x = 19以上便是2016年数学中考试题目的详细内容以及相应的答案。
希望对您复习和准备考试有所帮助。
祝您取得好成绩!。
2016年江苏省常州市中考数学试卷及答案解析
2016年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.(2分)﹣2的绝对值是()A.﹣2B.2C.−12D.12解:|﹣2|=2.故选:B.2.(2分)计算3﹣(﹣1)的结果是()A.﹣4B.﹣2C.2D.4解:3﹣(﹣1)=4,故选:D.3.(2分)如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱体.故选:A.4.(2分)如图,数轴上点P对应的数为p,则数轴上与数−p2对应的点是()A.点A B.点B C.点C D.点D解:如图所示,1<p<2,则12<p2<1,所以﹣1<−p2<−12.则数轴上与数−p2对应的点是C.故选:C.5.(2分)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM =8cm ,ON =6cm ,则该圆玻璃镜的半径是( )A .√10cmB .5cmC .6cmD .10cm解:如图,连接MN , ∵∠O =90°, ∴MN 是直径,又OM =8cm ,ON =6cm ,∴MN =√OM 2+ON 2=√62+82=10(cm ). ∴该圆玻璃镜的半径是:12MN =5cm .故选:B .6.(2分)若x >y ,则下列不等式中不一定成立的是( ) A .x +1>y +1B .2x >2yC .x2>y2D .x 2>y 2解:(A )在不等式x >y 两边都加上1,不等号的方向不变,故(A )正确; (B )在不等式x >y 两边都乘上2,不等号的方向不变,故(B )正确; (C )在不等式x >y 两边都除以2,不等号的方向不变,故(C )正确; (D )当x =1,y =﹣2时,x >y ,但x 2<y 2,故(D )错误. 故选:D .7.(2分)已知△ABC 中,BC =6,AC =3,CP ⊥AB ,垂足为P ,则CP 的长可能是( ) A .2B .4C .5D .7解:如图,根据垂线段最短可知:PC ≤3, ∴CP 的长可能是2, 故选:A .8.(2分)已知一次函数y 1=kx +m (k ≠0)和二次函数y 2=ax 2+bx +c (a ≠0)的自变量和对应函数值如表: x … ﹣1 0 2 4 … y 1 …135…x … ﹣1 1 3 4 … y 2…﹣45…当y 2>y 1时,自变量x 的取值范围是( ) A .x <﹣1B .x >4C .﹣1<x <4D .x <﹣1或x >4解法一:由表可知,(﹣1,0),(0,1)在一次函数y 1=kx +m 的图象上, ∴{−k +m =0m =1, ∴{k =1m =1∴一次函数y 1=x +1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y 2=ax 2+bx +c (a ≠0)的图象上, ∴{a −b +c =0a +b +c =−49a +3b +c =0, ∴{a =1b =−2c =−3∴二次函数y 2=x 2﹣2x ﹣3 当y 2>y 1时, ∴x 2﹣2x ﹣3>x +1, ∴(x ﹣4)(x +1)>0, ∴x >4或x <﹣1, 故选D ,解法二:如图,由表得出两函数图象的交点坐标(﹣1,0),(4,5),∴x>4或x<﹣1,故选:D.二、填空题(共10小题,每小题2分,满分20分)9.(2分)化简:√8−√2=√2.解:原式=2√2−√2=√2.故答案为:√2.10.(2分)要使分式1x+1有意义,则x的取值范围是x≠﹣1.解:∵分式1x+1有意义,∴x+1≠0,即x≠﹣1故答案为:x≠﹣1.11.(2分)分解因式:x3﹣2x2+x=x(x﹣1)2.解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.12.(2分)一个多边形的每个外角都是60°,则这个多边形边数为6.解:360÷60=6.故这个多边形边数为6.故答案为:6.13.(2分)若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣414.(2分)在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是2.8km.解:设这条道路的实际长度为x,则:1 40000=7x,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.815.(2分)已知正比例函数y=ax(a≠0)与反比例函数y=kx(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).16.(2分)如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC =50°.解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.17.(2分)已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤32.解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴x=3﹣2y,∵0≤x≤1,∴0≤3﹣2y≤1,∴1≤y≤3 2.故答案是:1≤y≤3 2.18.(2分)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE 和正△BPC,则四边形PCDE面积的最大值是1.解:如图所示,过P作PG⊥AB于G,过P作PH⊥AE,交AE于H,∵∠APE=∠BPC=60°,∠APB=90°,∴∠EPC=150°,∵△APE是正三角形,PH⊥AE,∴∠APH=∠EPH=30°,∴∠CPH=180°,即点C、P、H在一条直线上,∵正△ABD、正△APE和正△BPC,∴AE=AP,AD=AB,BP=CP,∠EAP=∠DAB=60°=∠CPB,∴∠DAE=∠BAP,∴△AED≌△APB(SAS),∴ED=BP,∴ED=CP,同理可得EP=DC,∴四边形PCDE是平行四边形,∵∠EPH=30°,∴EH=12EP=12AP,∴S 平行四边形CDEP =EH ×CP =12AP ×BP =S △ABP , ∵AB =2,∠APB =90°,∴以AB 为直径作圆,当PG 最大时,S △ABP 的面积最大, 此时GP 为半径, ∴S △ABP =12×2×1=1,∴四边形PCDE 面积的最大值是1. 故答案为:1.三、解答题(共10小题,满分84分)19.(6分)先化简,再求值(x ﹣1)(x ﹣2)﹣(x +1)2,其中x =12. 解:(x ﹣1)(x ﹣2)﹣(x +1)2, =x 2﹣2x ﹣x +2﹣x 2﹣2x ﹣1 =﹣5x +1 当x =12时, 原式=﹣5×12+1 =−32.20.(8分)解方程和不等式组: (1)x 2x−5+55−2x=1(2){5x −10≤0x +3>−2x.解:(1)原方程可化为x ﹣5=2x ﹣5,解得x =0, 把x =0代入2x ﹣5得,2x ﹣5=﹣5≠0, 故x =0是原分式方程的解;(2){5x−10≤0①x+3>−2x②,由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.21.(8分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.22.(8分)一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.解:(1)摸到红球的概率=1 3;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=1 9.23.(8分)如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O (1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠BEC=∠BDC=90°∴△BEC≌△CDB∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∵∠DOE+∠A=180°∴∠BOC=∠DOE=180°﹣80°=100°.24.(8分)某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元. (1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?解:(1)设超市甲种糖果每千克需x 元,乙种糖果每千克需y 元, 依题意得:{3x +y =44x +2y =38,解得{x =10y =14.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a 千克,则购买乙种糖果(20﹣a )千克, 依题意得:10a +14(20﹣a )≤240, 解得a ≥10, 即a 最小值=10.答:该顾客混合的糖果中甲种糖果最少10千克. 25.(8分)如图,在平面直角坐标系xOy 中,一次函数y =−√33x +1的图象与x 轴、y 轴分别交于点A 、B ,把Rt △AOB 绕点A 顺时针旋转角α(30°<α<180°),得到△AO ′B ′. (1)当α=60°时,判断点B 是否在直线O ′B ′上,并说明理由;(2)连接OO ′,设OO ′与AB 交于点D ,当α为何值时,四边形ADO ′B ′是平行四边形?请说明理由.解;(1)如图1中,∵一次函数y =−√33x +1的图象与x 轴、y 轴分别交于点A 、B ,∴A (√3,0),B (0,1),∴tan ∠BAO =√33,∴∠BAO =30°,AB =2OB =2,∵旋转角为60°,∴B ′(√3,2),O ′(√32,32), 设直线O ′B ′解析式为y =kx +b ,∴{√3k +b =2√32k +b =32,解得{k =√33b =1, ∴直线O ′B ′的解析式为y =√33x +1,∵x =0时,y =1,∴点B (0,1)在直线O ′B ′上.(2)如图2中,当α=120°时,四边形ADO ′B ′是平行四边形.理由:∵AO =AO ′,∠OAO ′=120°,∠BAO =30°,∴∠DAO ′=∠AO ′B ′=90°,∠AO ′O =∠O ′AB ′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.26.(10分)(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为√5,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为√3;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为√5,故答案为:√5;(2)①如图2,∵边长为2的正三角形纸板ABC ,沿中位线DE 剪掉△ADE ,∴DE =12BC =1,BD =CE =1过点D 作DM ⊥BC ,∵∠DBM =60°∴DM =√32,∴S 梯形EDBC =12(DE +BC )×DM =12(1+2)×√32=3√34,由剪拼可知,梯形EDBC 的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a ,∴√34a 2=3√34, ∴a =√3或a =−√3(舍),∴新等边三角形的边长为√3,故答案为:√3;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60√2cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30√2cm;∴轻质钢丝的总长度为AC+EF=60√2+30√2=90√2cm.27.(10分)如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2√2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=x,∴∠QPE=45°,∴PE=√22PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴S梯形PQQ1P1=12(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2(m−12)2+52,∴当m=12时,S梯形PQQ1P1取最大值,最大值为52.(3)存在.如图2中,①点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∴△AEG∽△MFG,∴EG FG =AG GM ,∵EG =GF ,∴AG =GM ,∵M (1,﹣1),A (3,3),∴点G (2,1),∵直线AM 解析式为y =2x ﹣3,∴线段AM 的中垂线EF 的解析式为y =−12x +2,由{y =x y =−12x +2解得{x =43y =43, ∴点E 坐标为(43,43). (也可以设E (m ,m ),根据EM =EA ,构建方程求出m )②设E 关于点A 的对称点E ′,E ′关于AM 的对称点F ′,根据对称性可知,△OAF ′与△AOF 的面积相等,此时E ′(143,143),综上所述满足条件的点E 坐标(43,43)或(143,143).28.(10分)如图,正方形ABCD 的边长为1,点P 在射线BC 上(异于点B 、C ),直线AP与对角线BD 及射线DC 分别交于点F 、Q(1)若BP =√33,求∠BAP 的度数;(2)若点P 在线段BC 上,过点F 作FG ⊥CD ,垂足为G ,当△FGC ≌△QCP 时,求PC 的长;(3)以PQ 为直径作⊙M .①判断FC 和⊙M 的位置关系,并说明理由;②当直线BD 与⊙M 相切时,直接写出PC 的长.解:(1)∵四边形ABCD 是正方形,∴∠ABP =90°,∴tan ∠BAP =BP AB =√331=√33, ∵tan30°=√33,∴∠BAP =30°;(2)如图1,设PC =x ,则BP =1﹣x ,∵△FGC ≌△QCP ,∴GC =PC =x ,DG =1﹣x ,∵∠BDC =45°,∠FGD =90°,∴△FGD 是等腰直角三角形,∴FG =DG =CQ =1﹣x ,∵AB ∥DQ ,∴AB CQ =BP PC , ∴11−x =1−x x, ∴x =(1﹣x )2,解得:x 1=3+√52>1(舍去),x 2=3−√52, ∴PC =3−√52; (3)①如图2,当点P 在线段BC 上时,FC 与⊙M 相切,理由是:取PQ 的中点M ,以M 为圆心,以PQ 为直径画圆,连接CM ,∵∠PCQ =90°,PQ 为直径,∴点C 是圆M 上,∵△PCQ 为直角三角形,∴MC =PM ,∴∠MCP =∠MPC ,∵∠APB =∠MPC ,∴∠MCP =∠APB ,∵∠APB +∠BAP =90°,∴∠MCP +∠BAP =90°,∵AD=DC,∠ADB=∠CDB,FD=FD,∴△ADF≌△CDF,∴∠F AD=∠FCD,∵∠BAP+∠F AD=∠BCF+∠FCD,∴∠BAP=∠BCF,∴∠MCP+∠BCF=90°,∴FC⊥CM,∴FC与⊙M相切;如图3,当点P在线段BC的延长线上时,FC与⊙M也相切,理由是:取PQ的中点M,以M为圆心,以PQ为直径画圆,连接CM,同理得∠AQD=∠MCQ,点C是圆M上,∵AD=DC,∠BDA=∠CDB=45°,DF=DF,∴△ADF≌△CDF,∴∠F AD=∠FCD,∵∠AQD+∠F AD=90°,∴∠MCD+∠FCD=90°,∴FC⊥MC,∴FC与⊙M相切;:②当点P在线段BC上时,如图4,设⊙M切BD于E,连接EM、MC,∴∠MEF=∠MCF=90°,∵ME=MC,MF=MF,∴△MEF≌△MCF,∴∠QFC=∠QFE,∵∠BAP=∠Q=∠BCF,设∠Q=x,则∠BAP=∠BCF=x,∠QFE=∠QFC=45°+x,∠DFC=45°+x,∵∠QFE+∠QFC+∠DFC=180°,∴3(45+x)=180,x=15,∴∠Q=15°,∴∠BAP=15°,作AP的中垂线HN,交AB于H,交AP于N,∴AH=HP,∴∠BHP=30°,设BP=x,则HP=2x,HB=√3x,∴2x+√3x=1,x=2−√3,∴PC=BC﹣BP=1﹣(2−√3)=√3−1;当点P在点C的右侧时(即在线段BC的延长线上),如图5,同理可得:PC=√3+1;综上所述:PC=√3−1或√3+1.。
2016年江苏省常州市中考数学试卷-答案
22p故选B.【提示】如图,连接MN ,根据圆周角定理可以判定MN 是直径,所以根据勾股定理求得直径,然后再来求半径即可.【考点】圆周角定理,勾股定理 6.【答案】D【解析】在不等式x y >两边都加上1,不等号的方向不变,故选项A 正确;在不等式x y >两边都乘上2,不等号的方向不变,故选项B 正确;在不等式x y >两边都除以2,不等号的方向不变,故选项C 正确;当1x =,2y =-时,x y >,但22x y <,故选项D 错误.故选D.【提示】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变. 【考点】不等式的性质 7.【答案】A【解析】如图,根据垂线段最短可知:3PC <,∴CP 的长可能是2,故选A.【提示】根据垂线段最短得出结论.垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C 到直线AB 连接的所有线段中,CP 是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择 【考点】垂线段最短 8.【答案】D【解析】由表可知,(1,0)-,(0,1)在直线一次函数1y kx m =+的图象上,∴01k m m -+=⎧⎨=⎩,∴11k m =⎧⎨=⎩∴一次函数11y x =+,由表可知,(1,0)-,(1,4)-,(3,0)在二次函数22(0)y ax bx c a =++≠的图象上,∴04930a b c a b c a b c -+=⎧⎪++=-⎨⎪++=⎩,∴123a b c =⎧⎪=-⎨⎪=-⎩48x y =,∴2322x y =,即32y ≤≤.21.【答案】(1)2000 (2)(2)画树状图如下:1∴四边形ADO′B′是平行四边形.26.【答案】(1)5②(3)故答案为:5;②剪拼示意图如图3所示,∴轻质钢丝的总长度为602302902AC EF cm+=+=.2)PE m=-2取最大值,最大值为22综上所述:31+.PC=-或31。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏省常州市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.43.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y27.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.78.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=______.10.若分式有意义,则x的取值范围是______.11.分解因式:x3﹣2x2+x=______.12.一个多边形的每个外角都是60°,则这个多边形边数为______.13.若代数式x﹣5与2x﹣1的值相等,则x的值是______.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是______km.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是______.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=______.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是______.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.20.解方程和不等式组:(1)+=1(2).21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了______名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为______,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为______;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.2016年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.计算3﹣(﹣1)的结果是()A.﹣4 B.﹣2 C.2 D.4【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,所以3﹣(﹣1)=3+1=4.【解答】解:3﹣(﹣1)=4,故答案为:D.【点评】本题考查了有理数的减法,属于基础题,比较简单;熟练掌握减法法则是做好本题的关键.3.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体 D.圆锥体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.4.如图,数轴上点P对应的数为p,则数轴上与数﹣对应的点是()A.点A B.点B C.点C D.点D【考点】数轴.【分析】根据图示得到点P所表示的数,然后求得﹣的值即可.【解答】解:如图所示,点P表示的数是1.5,则﹣=0.75>﹣1,则数轴上与数﹣对应的点是C.故选:C.【点评】本题考查了数轴,根据图示得到点P所表示的数是解题的关键.5.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A.cm B.5cm C.6cm D.10cm【考点】圆周角定理;勾股定理.【分析】如图,连接MN,根据圆周角定理可以判定MN是直径,所以根据勾股定理求得直径,然后再来求半径即可.【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.【点评】本题考查了圆周角定理和勾股定理,半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.若x>y,则下列不等式中不一定成立的是()A.x+1>y+1 B.2x>2y C.>D.x2>y2【考点】不等式的性质.【分析】根据不等式的基本性质进行判断,不等式的两边加上同一个数,不等号的方向不变;不等式的两边乘以(或除以)同一个正数,不等号的方向不变.【解答】解:(A)在不等式x>y两边都加上1,不等号的方向不变,故(A)正确;(B)在不等式x>y两边都乘上2,不等号的方向不变,故(B)正确;(C)在不等式x>y两边都除以2,不等号的方向不变,故(C)正确;(D)当x=1,y=﹣2时,x>y,但x2<y2,故(D)错误.故选(D)【点评】本题主要考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向.7.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【考点】垂线段最短.【分析】根据垂线段最短得出结论.【解答】解:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.8.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)的自变量和对应函数值如表:x …﹣1 0 2 4 …y1…0 1 3 5 …x …﹣1 1 3 4 …y2…0 ﹣4 0 5 …当y2>y1时,自变量x的取值范围是()A.x<﹣1 B.x>4 C.﹣1<x<4 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】先在表格中找出点,用待定系数法求出直线和抛物线的解析式,用y2>y1建立不等式,求解不等式即可.【解答】解:由表可知,(﹣1,0),(0,1)在直线一次函数y1=kx+m的图象上,∴,∴∴一次函数y1=x+1,由表可知,(﹣1,0),(1,﹣4),(3,0)在二次函数y2=ax2+bx+c(a≠0)的图象上,∴,∴∴二次函数y2=x2﹣2x﹣3当y2>y1时,∴x2﹣2x﹣3>x+1,∴(x﹣4)(x+1)>0,∴x>4或x<﹣1,故选D【点评】此题是二次函数和不等式题目,主要考查了待定系数法,解不等式,解本题的关键是求出直线和抛物线的解析式.二、填空题(共10小题,每小题2分,满分20分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.若分式有意义,则x的取值范围是x≠﹣1.【考点】分式有意义的条件.【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵分式有意义,∴x+1≠0,即x≠﹣﹣1故答案为:x≠﹣1.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.11.分解因式:x3﹣2x2+x=x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.12.一个多边形的每个外角都是60°,则这个多边形边数为6.【考点】多边形内角与外角.【分析】利用外角和除以外角的度数即可得到边数.【解答】解:360÷60=6.故这个多边形边数为6.故答案为:6.【点评】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都360°.13.若代数式x﹣5与2x﹣1的值相等,则x的值是﹣4.【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣5=2x﹣1,解得:x=﹣4,故答案为:﹣4【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是 2.8km.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【解答】解:设这条道路的实际长度为x,则:,解得x=280000cm=2.8km.∴这条道路的实际长度为2.8km.故答案为:2.8【点评】此题考查比例线段问题,能够根据比例尺正确进行计算,注意单位的转换.15.已知正比例函数y=ax(a≠0)与反比例函数y=(k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是(1,1).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(﹣1,﹣1)关于原点对称,∴该点的坐标为(1,1).故答案为:(1,1).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.如图,在⊙O的内接四边形ABCD中,∠A=70°,∠OBC=60°,则∠ODC=50°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的对角互补求得∠C的度数,利用圆周角定理求出∠BOD的度数,再根据四边形内角和为360度即可求出∠ODC的度数.【解答】解:∵∠A=70°∴∠C=180°﹣∠A=110°,∴∠BOD=2∠A=140°,∵∠OBC=60°,∴∠ODC=360°﹣110°﹣140°﹣60°=50°,故答案为:50°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补以及圆周角定理是解答此题的关键.17.已知x、y满足2x•4y=8,当0≤x≤1时,y的取值范围是1≤y≤.【考点】解一元一次不等式组;同底数幂的乘法;幂的乘方与积的乘方.【分析】首先把已知得到式子的两边化成以2为底数的幂的形式,然后得到x和y的关系,根据x 的范围求得y的范围.【解答】解:∵2x•4y=8,∴2x•22y=23,即2x+2y=23,∴x+2y=3.∴y=,∵0≤x≤1,∴1≤y≤.故答案是:1≤y≤.【点评】本题考查了幂的乘方和同底数的幂的乘法法则,理解幂的运算法则得到x和y的关系是关键.18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是1.【考点】平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=4,判断ab的最大值即可.【解答】解:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×b=ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【点评】本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.三、解答题(共10小题,满分84分)19.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.【考点】多项式乘多项式.【分析】根据多项式乘以多项式先化简,再代入求值,即可解答.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.【点评】本题考查了多项式乘以多项式,解决本题的关键是熟记多项式乘以多项式.20.解方程和不等式组:(1)+=1(2).【考点】解分式方程;解一元一次不等式组.【分析】(1)先把分式方程化为整式方程求出x的值,再代入最简公分母进行检验即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)原方程可化为x﹣5=5﹣2x,解得x=,把x=代入2x﹣5得,2x﹣5=﹣5=≠0,故x=是原分式方程的解;(2),由①得,x≤2,由②得,x>﹣1,故不等式组的解为:﹣1<x≤2.【点评】本题考查的是解分式方程,在解答此类题目时要注意验根.21.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题:(1)本次共调查了2000名市民;(2)补全条形统计图;(3)该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据“总人数=看电视人数÷看电视人数所占比例”即可算出本次共调查了多少名市民;(2)根据“其它人数=总人数×其它人数所占比例”即可算出晚饭后选择其它的市民数,再用“锻炼人数=总人数﹣看电视人数﹣阅读人数﹣其它人数”即可算出晚饭后选择锻炼的人数,依此补充完整条形统计图即可;(3)根据“本市选择锻炼人数=本市总人数×锻炼人数所占比例”即可得出结论.【解答】解:(1)本次共调查的人数为:800÷40%=2000,故答案为:2000.(2)晚饭后选择其它的人数为:2000×28%=560,晚饭后选择锻炼的人数为:2000﹣800﹣240﹣560=400.将条形统计图补充完整,如图所示.(3)晚饭后选择锻炼的人数所占的比例为:400÷2000=20%,该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).答:该市共有480万市民,估计该市市民晚饭后1小时内锻炼的人数为96万.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)根据数量关系算出样本容量;(2)求出选择其它和锻炼的人数;(3)根据比例关系估算出本市晚饭后1小时内锻炼的人数.本题属于中档题,难度不大,解决该题型题目时,熟练掌握各统计图的有关知识是关键.22.一只不透明的袋子中装有1个红球、1个黄球和1个白球,这些球除颜色外都相同(1)搅匀后从袋子中任意摸出1个球,求摸到红球的概率;(2)搅匀后从袋子中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求两次都摸到红球的概率.【考点】列表法与树状图法;概率公式.【专题】计算题.【分析】(1)直接利用概率公式求解;(2)先利用画树状图展示所有9种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:(1)摸到红球的概率=;(2)画树状图为:共有9种等可能的结果数,其中两次都摸到红球的结果数为1,所以两次都摸到红球的概率=.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.【考点】等腰三角形的性质.【分析】(1)首先根据等腰三角形的性质得到∠ABC=∠ACB,然后利用高线的定义得到∠ECB=∠DBC,从而得证;(2)首先求出∠A的度数,进而求出∠BOC的度数.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE是△ABC的两条高线,∴∠DBC=∠ECB,∴OB=OC;(2)∵∠ABC=50°,AB=AC,∴∠A=180°﹣2×50°=80°,∴∠BOC=180°﹣80°=100°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;关键是掌握等腰三角形等角对等边.24.某超市销售甲、乙两种糖果,购买3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元.(1)求甲、乙两种糖果的价格;(2)若购买甲、乙两种糖果共20千克,且总价不超过240元,问甲种糖果最少购买多少千克?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元.根据“3千克甲种糖果和1千克乙种糖果共需44元,购买1千克甲种糖果和2千克乙种糖果共需38元”列出方程组并解答;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,结合“总价不超过240元”列出不等式,并解答.【解答】解:(1)设超市甲种糖果每千克需x元,乙种糖果每千克需y元,依题意得:,解得.答:超市甲种糖果每千克需10元,乙种糖果每千克需14元;(2)设购买甲种糖果a千克,则购买乙种糖果(20﹣a)千克,依题意得:10a+14(20﹣a)≤240,解得a≥10,=10.即a最小值答:该顾客混合的糖果中甲种糖果最少10千克.【点评】本题考查了一元一次不等式和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.如图,在平面直角坐标系xOy中,一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,把Rt△AOB绕点A顺时针旋转角α(30°<α<180°),得到△AO′B′.(1)当α=60°时,判断点B是否在直线O′B′上,并说明理由;(2)连接OO′,设OO′与AB交于点D,当α为何值时,四边形ADO′B′是平行四边形?请说明理由.【考点】一次函数图象上点的坐标特征;平行四边形的判定;坐标与图形变化-旋转.【分析】(1)首先证明∠BAO=30°,再求出直线O′B′的解析式即可解决问题.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.只要证明∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,即可解决问题.【解答】解;(1)如图1中,∵一次函数y=﹣x+1的图象与x轴、y轴分别交于点A、B,∴A(,0),B(0,1),∴tan∠BAO=,∴∠BAO=30°,AB=2OB=2,∵旋转角为60°,∴B′(,2),O′(,),设直线O′B′解析式为y=kx+b,∴,,解得,∴直线O′B′的解析式为y=x+1,∵x=0时,y=1,∴点B(0,1)在直线O′B′上.(2)如图2中,当α=120°时,四边形ADO′B′是平行四边形.理由:∵AO=AO′,∠OAO′=120°,∠BAO=30°,∴∠DAO′=∠AO′B′=90°,∠O′AO=∠O′AB′=30°,∴AD∥O′B′,DO′∥AB′,∴四边形ADO′B′是平行四边形.【点评】本题考查一次函数图象上的点的特征、平行四边形的性质和判定、旋转变换等知识,解题的关键是利用性质不变性解决问题,属于中考常考题型.26.(1)阅读材料:教材中的问题,如图1,把5个边长为1的小正方形组成的十字形纸板剪开,使剪成的若干块能够拼成一个大正方形,小明的思考:因为剪拼前后的图形面积相等,且5个小正方形的总面积为5,所以拼成的大正方形边长为,故沿虚线AB剪开可拼成大正方形的一边,请在图1中用虚线补全剪拼示意图.(2)类比解决:如图2,已知边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,请把纸板剩下的部分DBCE剪开,使剪成的若干块能够拼成一个新的正三角形.①拼成的正三角形边长为;②在图2中用虚线画出一种剪拼示意图.(3)灵活运用:如图3,把一边长为60cm的正方形彩纸剪开,用剪成的若干块拼成一个轴对称的风筝,其中∠BCD=90°,延长DC、BC分别与AB、AD交于点E、F,点E、F分别为AB、AD的中点,在线段AC和EF处用轻质钢丝做成十字形风筝龙骨,在图3的正方形中画出一种剪拼示意图,并求出相应轻质钢丝的总长度.(说明:题中的拼接都是不重叠无缝隙无剩余)【考点】四边形综合题.【分析】(1)依题意补全图形如图1,利用剪拼前后的图形面积相等,得出大正方形的面积即可;(2)①先求出梯形EDBC的面积,利用剪拼前后的图形面积相等,结合等边三角形的面积公式即可;②依题意补全图形如图3所示;(3)依题意补全图形如图4,根据剪拼的特点,得出AC是正方形的对角线,点E,F是正方形两邻边的中点,构成等腰直角三角形,即可.【解答】解:(1)补全图形如图1所示,由剪拼可知,5个小正方形的面积之和等于拼成的一个大正方形的面积,∵5个小正方形的总面积为5∴大正方形的面积为5,∴大正方形的边长为,故答案为:;(2)①如图2,∵边长为2的正三角形纸板ABC,沿中位线DE剪掉△ADE,∴DE=BC=1,BD=CE=1过点D作DM⊥BC,∵∠DBM=60°∴DM=,=(DE+BC)×DM=(1+2)×=,∴S梯形EDBC由剪拼可知,梯形EDBC的面积等于新拼成的等边三角形的面积,设新等边三角形的边长为a,∴a2=,∴a=或a=﹣(舍),∴新等边三角形的边长为,故答案为:;②剪拼示意图如图3所示,(3)剪拼示意图如图4所示,∵正方形的边长为60cm,由剪拼可知,AC是正方形的对角线,∴AC=60cm,由剪拼可知,点E,F分别是正方形的两邻边的中点,∴CE=CF=30cm,∵∠ECF=90°,根据勾股定理得,EF=30cm;∴轻质钢丝的总长度为AC+EF=60+30=90cm.【点评】此题是四边形综合题,主要考查了正方形的性质,等边三角形的性质,勾股定理,剪拼的特点,解本题的关键是根据题意补全图形,难点是剪拼新正三角形和筝形.27.如图,在平面直角坐标系xOy中,一次函数y=x与二次函数y=x2+bx的图象相交于O、A两点,点A(3,3),点M为抛物线的顶点.(1)求二次函数的表达式;(2)长度为2的线段PQ在线段OA(不包括端点)上滑动,分别过点P、Q作x轴的垂线交抛物线于点P1、Q1,求四边形PQQ1P1面积的最大值;(3)直线OA上是否存在点E,使得点E关于直线MA的对称点F满足S△AOF=S△AOM?若存在,求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A(3,3)代入y=x2+bx中,即可解决问题.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.设点P(m,m)(0<m <1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),构建二次函数,利用二次函数性质即可解决问题.(3)存在,首先证明EF是线段AM的中垂线,利用方程组求交点E坐标即可.【解答】解:(1)把点A(3,3)代入y=x2+bx中,得:3=9+3b,解得:b=﹣2,∴二次函数的表达式为y=x2﹣2x.(2)设点P在点Q的左下方,过点P作PE⊥QQ1于点E,如图1所示.∵PE⊥QQ1,QQ1⊥x轴,∴PE∥x轴,∵直线OA的解析式为y=kx,∴∠QPE=45°,∴PE=PQ=2.设点P(m,m)(0<m<1),则Q(m+2,m+2),P1(m,m2﹣2m),Q1(m+2,m2+2m),∴PP1=3m﹣m2,QQ1=2﹣m2﹣m,∴=(PP1+QQ1)•PE=﹣2m2+2m+2=﹣2+,∴当m=时,取最大值,最大值为.(3)存在.如图2中,点E的对称点为F,EF与AM交于点G,连接OM、MF、AF、OF.∵S△AOF=S△AOM,∴MF∥OA,∵EG=GF,=,∴AG=GM,∵M(1,﹣1),A(3,3),∴点G(2,1),∵直线AM解析式为y=2x﹣3,∴线段AM的中垂线EF的解析式为y=﹣x+2,由解得,∴点E坐标为(,).【点评】本题考查二次函数综合题、待定系数法、平行线的性质、一次函数、面积问题等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会构建二次函数,利用二次函数性质解决最值问题,学会利用方程组求两个函数的交点,属于中考压轴题.28.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD 及射线DC分别交于点F、Q(1)若BP=,求∠BAP的度数;(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.【考点】圆的综合题.【分析】(1)在直角△ABP中,利用特殊角的三角函数值求∠BAP的度数;(2)设PC=x,根据全等和正方形性质得:QC=1﹣x,BP=1﹣x,由AB∥DQ得,代入列方程求出x的值,因为点P在线段BC上,所以x<1,写出符合条件的PC的长;(3)①如图2,当点P在线段BC上时,FC与⊙M相切,只要证明FC⊥CM即可,先根据直角三角形斜边上的中线得CM=PM,则∠MCP=∠MPC,从而可以得出∠MCP+∠BAP=90°,再证明△ADF≌△CDF,。