一类导数高考压轴题的通解
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用
高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。
方法:f'(x)为在x=x处的切线的斜率。
题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。
方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。
例题:已知函数f(x)=x-3x。
1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。
提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。
将问题转化为关于x,m的方程有三个不同实数根问题。
答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。
1)求过点(1,-3)与曲线y=x-3x相切的直线方程。
(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。
题型3:求两个曲线y=f(x)、y=g(x)的公切线。
方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例题:求曲线y=x与曲线y=2elnx的公切线方程。
(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。
(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。
(完整word版)导数结合洛必达法则巧解高考压轴题
6 0001lim()limlim11xxxxxeegxx, 即当0x时,()1gx 所以()1gx,即有1a. 综上所述,当1a,0x时,()0fx成立. (全国大纲理)设函数()1xfxe. (Ⅰ)证明:当1x时,()1xfxx; (Ⅱ)设当0x时,()1xfxax,求a的取值范围. 解:(Ⅰ)略 (Ⅱ)应用洛必达法则和导数 由题设0x,此时()0fx. ①当0a时,若1xa,则01xax,()1xfxax不成立; ②当0a时,当0x时,()1xfxax,即11xxeax; 若0x,则aR; 若0x,则11xxeax等价于111xexax,即1xxxxeeaxex. 记1()xxxxeegxxex,则2222221'()=(2)()()xxxxxxxxexeeegxexexexxex. 记2()2xxhxexe,则'()2xxhxexe,''()+20xxhxee. 因此,'()2xxhxexe在(0),上单调递增,且'(0)0h,所以'()0hx, 即()hx在(0),上单调递增,且(0)0h,所以()0hx. 因此2'()=()0()xxegxhxxex,所以()gx在(0),上单调递增. 由洛必达法则有 000011lim()limlimlim122xxxxxxxxxxxxxxxeexeexegxxexexeexe,即当0x时, 1()2gx,即有1()2gx,所以12a.综上所述,a的取值范围是1(,]2. (全国2理)设函数sin()2cosxfxx. (Ⅰ)求()fx的单调区间; (Ⅱ)如果对任何0x≥,都有()fxax≤,求a的取值范围. 解:(Ⅰ)22(2cos)cossin(sin)2cos1()(2cos)(2cos)xxxxxfxxx. 当2π2π2π2π33kxk(kZ)时,1cos2x,即()0fx;
用洛必达法则巧解导数问题
应用洛必达法则巧解导数问题. 近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则,充分发挥数学作为基础学科的作用,既重视考查中学数学基础知识的掌握程度,又注重考查进入高校继续学习的潜能。
为此,高考数学试题常与大学数学知识有机接轨,以高等数学为背景的命题形式成为了热点.许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数法,一部分题用这种方法很奏效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的原因是出现了00”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.洛必达法则:设函数()f x 、()g x 满足:(1)lim ()lim ()0x a x af xg x →→==; (2)在()U a o内,()f x '和()g x '都存在,且()0g x '≠; (3)()lim ()x a f x A g x →'=' (A 可为实数,也可以是±∞). 则()()lim lim ()()x a x a f x f x A g x g x →→'=='.(可连环使用) 注意 使用洛必达法则时,是对分子、分母分别求导,而不是对它们的商求导,求导之后再求极限得最值。
已知函数ln ()1a x b f x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值; (Ⅱ)如果当0x >,且1x ≠时,ln ()1x k f x x x >+-,求k 的取值范围. (Ⅰ)略解得1a =,1b =.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知ln 1()1x f x x x =++,所以所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--. 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++= (i)当0k ≤时,由222(1)(1)'()k x x h x x +--=知,当1x ≠时,'()0h x <.因为(1)0h =,所以当(0,1)x ∈时,()0h x >,可得21()01h x x ⋅>-;当(1,)x ∈+∞时,()0h x <,可得 21()01h x x ⋅>-,从而当0x >且1x ≠时,ln ()()01x k f x x x -+>-,即ln ()1x k f x x x>+-; (ii )当01k <<时,由于当1(1,)1x k∈-时,2(1)(1)20k x x -++>,故'()0h x >,而(1)0h =,故当1(1,)1x k ∈-时,()0h x >,可得21()01h x x ⋅<-,与题设矛盾. (iii )当1k ≥时, '()0h x >,而(1)0h =,故当(1,)x ∈+∞时,()0h x >,可得21()01h x x⋅<-,与题设矛盾.综上可得,k 的取值范围为(0]-∞,. 常规解法注:分三种情况讨论:①0k ≤;②01k <<;③1k ≥不易想到.尤其是②01k <<时,许多考生都停留在此层面,举反例1(1,)1x k∈-更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.运用洛必达和导数解2011年新课标理当0x >,且1x ≠时,ln ()1x k f x x x >+-,即ln 1ln 11x x k x x x x+>++-, 也即2ln 1ln 2ln 1111x x x x x x k x x x x <+-=++--,记22ln ()11x x g x x =+-,0x >,且1x ≠ 则2222222222(1)ln 2(1)2(1)1'()=(ln )(1)(1)1x x x x x g x x x x x ++-+-=+--+, 记221()ln 1x h x x x -=++,则22222214(1)'()+=0(1+)(1+)x x h x x x x x --=>, 从而()h x 在(0,)+∞上单调递增,且(1)0h =,因此当(0,1)x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >;当(0,1)x ∈时,'()0g x <,当(1,)x ∈+∞时,'()0g x >,所以()g x 在(0,1)上单调递减,在(1,)+∞上单调递增.注:本题由已知很容易想到用分离变量的方法把参数k 分离出来.然后对分离出来的函数22ln ()11x x g x x=+-求导,研究其单调性、极值. 此时遇到了“当=1x 时,函数()g x 值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.当然这一法则出手的时机:(1)所构造的分式型函数在定义域上单调(2)是00型。
高考导数压轴题终极解答_2022年学习资料
13.设函数fx=nx-ux-1--1.-X-I当a=1时,过原点的直线与函数fx的图象相切于点P,求点P 坐标;-IⅡ当0<u<二时,求函数fx的单调区间:-D当u=号时,设函数g=-2x-,若对于飞∈0,e], 飞e[0,1-12-使fx≥8x2成立,求实数b的取值范围.e是自然对数的底,e<√3+1-14.两边分求 最小值与最大值已知函数f=xlnx,8=-x+x-3.求f在-[,t+2t>0上的最小值:若存在-e是常数 e=2.71828„使不等式-In x>-2f≥8成立,求实数0的取值范围:证明对一切x∈0,+0,都有e #43;bex∈R.(1若a=2,b=-2,求函数∫x的极值;-2若x=1是函数fx的一个 值点,试求出关于b的关系式(用M表示b,并确定-∫x的单调区间;-3在2的条件下,设u>0,函数8x=a2 14e+4.若存在21,22∈[0,4]使得-If2-f22K1成立,u的取值范围.-12.两边分求,最小 与最大值-已知函数f=lnr-ax+--1aeR.当a≤时,讨论f的单调性;设-8=x2-2bx+4.当a 时,若对任意x∈0,2,存在3∈[1,2,使fC≥g,-求实数b取值范围.
21.单调性已知fx=n+2-x+bx+c若函数fx在点1,y处的切线与直线-3x+7y+2=0垂直,且=0,求函数fx在区间[0,3]上的最小值;若fx在区间[0,m上-单调,求b的取值范围,-22.单调性, 到二阶导数的技巧-已知函数fx=lnx-0若F=f0+“-a∈R,求Fx的极大值:-X-2若Gx=[fx] kx在定义域内单调递减,求满足此条件的实数k的取值范围
洛必达法则巧解高考压轴题(好东西)
3.洛必达法则
虽然这些压轴题可以用分类讨论和假设反证的方 法求解,但这种方法往往讨论多样、过于繁杂, 学生掌握起来非常困难.研究发现利用分离参数
①当
x
0
时,
a
R
;②当
x
0
时,
ex
1
x
ax2
等价于
a
ex
1 x2
x
.
记
g(x)
ex
1 x2
x
x
(0,+)
,则
g
'( x)
(x
2)ex x3
x
2
.
记 h(x) (x 2)ex x 2 x (0,+) ,则 h '(x) (x 1)ex 1,当 x (0,+) 时, h ''(x) xex 0 ,
理
当 x 0 ,且 x 1时, f (x) ln x k ,即 ln x 1 ln x k , x 1 x x 1 x x 1 x
也即 k
x ln x x 1
1 x
x ln x x 1
2x ln x 1 x2
1,记
g(x)
2x ln x 1 x2
1,
x
0 ,且
x
1
则
g
'( x)
2( x 2
1 x
(Ⅰ)设 a 0 ,讨论 y f x 的单调性;
函数与导数压轴题题型与解题方法(高考必备)
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
高考导数题型分析及解题方法
高考导数题型分析及解题方法本知识单元考查题型与方法:※※与切线相关问题(一设切点,二求导数=斜率=2121y y x x --,三代切点入切线、曲线联立方程求解);※※其它问题(一求导数,二解)('x f =0的根—若含字母分类讨论,三列3行n 列的表判单调区间和极值。
结合以上所得解题。
)特别强调:恒成立问题转化为求新函数的最值。
导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。
关注几点:恒成立:(1)定义域任意x 有()f x >k,则min ()f x >常数k ;(2)定义域任意x 有()f x <k,则max ()f x <常数k恰成立:(1)对定义域内任意x 有()()f x g x >恒成立,则min ()-()0,f x g x >【】 (2)若对定义域内任意x 有()()f x g x <:恒成立,则max ()-()0f x g x <【】能成立:(1)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x <,则max max ()()f x g x <(2)分别定义在[a,b]和[c,d]上的函数()()f x g x 和,对任意的1[,],x a b ∈存在2[,],x c d ∈使得12()()f x g x >,则min min ()()f x g x >一、考纲解读考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等二、热点题型分析题型一:利用导数研究函数的极值、最值。
1.32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为0211=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或 题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为: ).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。
(整理)导数应用的题型与解题方法.
导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
导数压轴题十种构造方法大全以及解题方法导引
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
导数中的参数问题
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .522.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )导数中的参数问题A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦ C .(20,2e ⎤⎦D .(30,2e ⎤⎦3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭D .ln 2e 0,4⎛⎫⎪⎝⎭【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4)B .(4,5)C .(5,6)D .(6.7) 3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是( )A .B .C .D .二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210f x mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()x g x x=,若关于x 的方程()()f x g x =在区间1[,]e e 内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)eD .1(,)e+∞2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈ ⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( )A . ()32ln22ln2--B . 1-C . ()22ln22ln2k -- D . ()31k k e k -- 2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122xf x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,eB .[]1,eC .[]1,+∞D .(],e -∞ 【强化训练】1.(2020·重庆南开中学高三)已知函数1()ln f x x a x=++,()f x '是()f x 的导函数,若关于x 的方程(1)()()x f x f x '+=有两个不等的根,则实数a 的取值范围是( )A .1,ln 22⎛⎫-∞- ⎪⎝⎭ B .10,ln 22⎛⎫- ⎪⎝⎭C .1,ln 24⎛⎫-∞- ⎪⎝⎭D .10,ln 24⎛⎫- ⎪⎝⎭2.(2019·重庆万州外国语学校天子湖校区高三开学考试(理))对于任意的正实数x ,y 都有(2x y e -)ln y x xme ≤成立,则实数m 的取值范围为 A .1(,1]e B .21(,1]e C .21(,]e eD .(10,]e3.当0x ≥时,()ln 11xxe a x x ≥++恒成立,则a 的取值范围为( ) A . (],1-∞ B . (],e -∞ C . 1,e⎛⎤-∞ ⎥⎝⎦D . (],0-∞4.(2020四川省成都外国语学校)已知函数 恰好有两个极值点,则的取值范围是( )A .B .C .D .5.(2020·天津耀华中学高三月考)若函数()(sin cos )x f x e x a x =+在(,)42ππ上单调递增,则实数a 的取值范围是( ) A .(,1]-∞B .(,1)-∞C .[1,)+∞D .(1,)+∞6.(2020高三第一次全国大联考)若函数恰有三个零点,则的取值范围为( )A .B .()C .D .()7.(2020·重庆巴蜀中学高三期末)已知关于x 的不等式2(2)1x x m x x e e -+在(-∞,0]上恒成立,则实数m 的取值范围是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .1,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞8.(2020·南昌县莲塘第一中学高三期末(理))已知函数()()()2ln 20f x x ax a x a =+++<,()2x xg x e=-,对任意的(]00,2x ∈,关于x 的方程()()0f x g x =在(]0,e 上有实数根,则实数a 的取值范围为( )(其中 2.71828e =为自然对数的底数).A .1,0e ⎡⎫-⎪⎢⎣⎭B .1,e⎛⎤-∞- ⎥⎝⎦C .[),0e -D .(],e -∞-9.(2020广州模拟)已知函数,对任意,,都有,则实数a 的取值范围是A .B .C .D .10.(2020·重庆一中高三期末)定义在R 上且周期为4的函数()f x 满足:当[)1,3x ∈-时,()1,102ln 2,03xx f x x x ⎧⎛⎫-≤≤⎪ ⎪=⎨⎝⎭⎪+<<⎩,若在区间[]0,4上函数()()1g x f x ax =--恰有三个不同的零点,则实数a 的取值范围是( ) A .1ln 310,,143+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭B .1ln 310,,133+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭C .1ln 310,,243+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭D .1ln 310,,233+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭11.(2020重庆市南开模拟)已知函数,若不等式对任意上恒成立,则实数的取值范围为( )A .B .C .D .12.(2020·广东高三(理))已知函数()21,1ln ,1ax ax x f x x a x x ⎧-+≤=⎨->⎩()a R ∈,若函数()f x 有四个零点,则a 的取值范围是( )A .(),0-∞B .(),e +∞C .()4,+∞D .()24,e13.若对任意的1x ,[)22,0x ∈-,12x x <,122112x x x e x e a x x -<-恒成立,则a 的最小值为( ) A .23e -B .22e -C .21e -D .1e-【来源】安徽省芜湖市芜湖县一中2020届高三下学期仿真模拟理科数学试题 14.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为 A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭15.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是 A .(,)e +∞ B .2(,2)e e C .2(2,)e +∞D .22(,2)(2,)e e e +∞【来源】黑龙江省大庆实验中学2020届高三综合训练(五)数学(文)试题16.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是A .(,2)-∞B .(1,2]-C .[2,)+∞D .(2,)+∞17.设0k >,若存在正实数x ,使得不等式14log 20kx x k --⋅≥成立,则k 的最大值为 ( )A .1ln 2e B .ln 2eC .ln 2e D .ln 22【来源】四川省雅安市2021届高三三摸数学(理)试题18.在关于的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中 2.71828e =为自然对数的底数)的解集中,有且仅有一个大于2的整数,则实数的取值范围为( ) A .4161,5e 2e ⎛⎤⎥⎝⎦ B .241,32e e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤⎥⎝⎦ D .3294,43e e ⎡⎫⎪⎢⎣⎭ 【来源】四川省攀枝花市2021届高三一模考试数学(理)试题19.若曲线()()2ln 11()f x a x a x a R =+++∈在点()()1,1f 处的切线与直线720x y +-=平行,且对任意的()1212,0,,x x x x ∈+∞≠,不等式()()1212f x f x m x x ->-恒成立,则实数m 的最大值为( ) AB.C.D.【来源】安徽省安庆市2021届高三下学期二模文科数学试题 20.已知函数()()32012xa f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ).A .1B .2C .3D .421.已知函数21,1()ln 25,1xx f x x x x x ⎧->⎪=⎨⎪--+≤⎩,若函数2()()(12)()1F x f x a f x =+-+恰有5个零点,则实数a 的取值范围是( ) A .743,412⎡⎫⎪⎢⎣⎭B .37,24⎛⎤⎥⎝⎦C .343,212⎛⎫⎪⎝⎭D .1,2⎛⎫-∞-⎪⎝⎭【来源】湖南省常德市2021届高三下学期一模数学试题22.已知函数()()222ln 1f x a x x a a =+->,()2ln xg x e x =--,若()f x 的图象与()g x 的图象在[1,)+∞上恰有两对关于x 轴对称的点,则实数a 的取值范围是( )A .,2e ⎛⎫+∞⎪⎝⎭B .[,)e +∞C .,2e e ⎛⎤⎥⎝⎦D .1,2e ⎛⎫⎪⎝⎭【来源】山西省太原市2021届高三二模数学(理)试题 23.已知函数ln ()xf x x=,若2()()10f x mf x m --->仅有3个整数解,则实数m 的取值范围是( ) A .ln5ln 2(1,1)52-- B .ln5ln 2(1,1]52-- C .ln5ln 2[1,1]52-- D .ln5ln 2[1,1)52-- 24.已知2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,则t 的取值范围是( )A .1(]46e ⎧⎫-∞⋃⎨⎬⎩⎭,B .10,4⎡⎤⎢⎥⎣⎦C .1[0]46e ⎧⎫⋃⎨⎬⎩⎭, D .1(,]4-∞二、填空题25.(2020河北省沧州市模拟)直线与曲线有两个公共点,则实数的取值范围是_____.26.(2020·四川高三期末(理))已知当x ∈R 时,均有不等式()()20xxae aex -+≥成立,则实数a 的取值范围为______.27.(2020·广东金山中学高三期末(理))已知函数()23,11,1x x x f x x x ⎧-+>=⎨-≤⎩,若函数()()1y f x a x =--恰有三个零点,则实数a 的取值范围是____________.28.(2020·江苏高三模拟)已知关于x 的不等式2(1)0x x k e e --+<有且仅有三个整数解,则实数k 的取值范围是______.29.(2020·四川绵阳中学高三(理))若函数21()(ln )2f x x m x x x =+--有且仅有1个零点,则实数m 的取值范围为________.30.(2020·吉林高三(理))已知函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,且不等式()()1212f x f x x x t +<++恒成立,则t 的取值范围是__________.参考答案一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A . 【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0gx g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x -+-+-+'=== 令()0h x '=,解得12x e -= 当120x e -<<时,()0h x '>,()h x 单调递增;当12x e->时,()0h x '<,()h x 单调递减;故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +==因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >.实数a的取值范围是20,3⎛⎤⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( )A.(3,4) B.(4,5) C.(5,6) D.(6.7)【答案】C【解析】由xlnx+(3﹣a)x+a=0,得,令f(x)(x>1),则f′(x).令g(x)=x﹣lnx﹣4,则g′(x)=10,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则, 当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210f x mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331xxx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e -=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根, 且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e 内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)eD .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x --+=-==', 令()0h x '=得2x k =,2x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()0()0212h e h eh k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______. 【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程,可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论.即可解决.【例4】(2020•泉州模拟)已知函数f(x)=ae x﹣x﹣ae,若存在a∈(﹣1,1),使得关于x的不等式f(x)﹣k≥0恒成立,则k的取值范围为()A.(﹣∞,﹣1]B.(﹣∞,﹣1)C.(﹣∞,0]D.(﹣∞,0)【答案】A【解析】不等式f(x)﹣k≥0恒成立,即k≤f(x)恒成立;则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈ ⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( )A . ()32ln22ln2--B . 1-C . ()22ln22ln2k -- D . ()31k k e k -- 【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122xf x e ax x =--在区间[]0,1上存在一个“转折点”,则a的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x x l y g x e ax x x e ax x =-----,令()()()h x f x g x =-,则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0x h x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0x h x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去, (3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
高三导数压轴题题型归纳
导数压轴题题型1. 高考命题回顾例1已知函数fx =e x-lnx +m .2013全国新课标Ⅱ卷1设x =0是fx 的极值点,求m,并讨论fx 的单调性; 2当m≤2时,证明fx>0.1解 fx =e x -ln x +mf ′x =e x -错误!f ′0=e 0-错误!=0m =1,定义域为{x |x >-1},f ′x =e x -错误!=错误!,显然fx 在-1,0上单调递减,在0,+∞上单调递增. 2证明 gx =e x -ln x +2,则g ′x =e x -错误!x >-2. hx =g ′x =e x -错误!x >-2h ′x =e x +错误!>0, 所以hx 是增函数,hx =0至多只有一个实数根,又g ′-错误!=错误!-错误!<0,g ′0=1-错误!>0, 所以hx =g ′x =0的唯一实根在区间错误!内,设g ′x =0的根为t ,则有g ′t =e t -错误!=0错误!, 所以,e t =错误!t +2=e -t ,当x ∈-2,t 时,g ′x <g ′t =0,gx 单调递减; 当x ∈t ,+∞时,g ′x >g ′t =0,gx 单调递增; 所以gx min =gt =e t -ln t +2=错误!+t =错误!>0, 当m ≤2时,有ln x +m ≤ln x +2,所以fx =e x -ln x +m ≥e x -ln x +2=gx ≥gx min >0.例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-2012全国新课标1求)(x f 的解析式及单调区间;2若b ax x x f ++≥221)(,求b a )1(+的最大值; 11211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞221()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-当x =,max ()2e F x =当1,a b ==,(1)a b +的最大值为2e 例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=;2011全国新课标Ⅰ求a 、b 的值;Ⅱ如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围; 解Ⅰ221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =;Ⅱ由Ⅰ知ln 1f ()1x x x x =++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--; 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=;i 设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,hx 递减;而(1)0h = 故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈1,+∞时,hx<0,可得211x - hx>0从而当x>0,且x ≠1时,fx-1ln -x x +x k >0,即fx>1ln -x x +xkii 设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈1,k -11时,k-1x 2 +1+2x>0,故'hx>0,而h1=0,故当x ∈1,k -11时,hx>0,可得211x -hx<0,与题设矛盾; iii 设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h x>0,而h1=0,故当x ∈1,+∞时,hx>0,可得211x - hx<0,与题设矛盾;综合得,k 的取值范围为-∞,0例4已知函数fx =x 3+3x 2+ax+be -x. 2009宁夏、海南1若a =b =-3,求fx 的单调区间;2若fx 在-∞,α,2,β单调增加,在α,2,β,+∞单调减少,证明β-α>6. 解: 1当a =b =-3时,fx =x 3+3x 2-3x -3e -x ,故f′x=-x 3+3x 2-3x -3e -x +3x 2+6x -3e-x=-e -x x 3-9x =-xx -3x+3e -x.当x <-3或0<x <3时,f′x>0;当-3<x <0或x >3时,f′x<0. 从而fx 在-∞,-3,0,3单调增加,在-3,0,3,+∞单调减少. 2f′x=-x 3+3x 2+ax+be -x +3x 2+6x+ae -x =-e -x x 3+a -6x+b -a. 由条件得f′2=0,即23+2a -6+b -a =0,故b =4-a.从而f′x=-e -x x 3+a -6x+4-2a.因为f′α=f′β=0,所以x 3+a -6x+4-2a =x -2x -αx-β=x -2x 2-α+βx+αβ. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2. 故a 4124)(2-=-+=-αβαβαβ.又β-2α-2<0,即αβ-2α+β+4<0.由此可得a <-6. 于是β-α>6. 2. 在解题中常用的有关结论※①构造函数,最值定位分类讨论,区间划分极值比较零点存在性定理应用二阶导转换 例1切线设函数a x x f -=2)(.1当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;2当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:ax x >>21.例2最值问题,两边分求已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②例3切线交点已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4综合应用已知函数.23)32ln()(2x x x f -+=⑴求fx 在0,1上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在0,1上恰有两个不同的实根,求实数b 的取值范围. ③例5 变形构造法已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例6 高次处理证明不等式、取对数技巧已知函数)0)(ln()(2>=a ax x x f .1若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;2当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例7绝对值处理已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.I 求实数a 的取值范围;II 若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;III 对于II 中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8等价变形已知函数x ax x f ln 1)(--=()a ∈R .Ⅰ讨论函数)(x f 在定义域内的极值点的个数;Ⅱ若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;Ⅲ当20e y x <<<且e x ≠时,试比较xyxy ln 1ln 1--与的大小. 例9前后问联系法证明不等式已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1;I 求直线l 的方程及m 的值;II 若()(1)'()()h x f x g x =+-其中g'(x)是g(x)的导函数,求函数()h x 的最大值; III 当0b a <<时,求证:()(2).2b af a b f a a -+-<例10 整体把握,贯穿全题已知函数ln ()1x f x x=-. 1试判断函数()f x 的单调性;2设0m >,求()f x 在[,2]m m 上的最大值;3试证明:对任意*n ∈N ,不等式11ln()e n n nn++<都成立其中e 是自然对数的底数.Ⅲ证明:2121111n n a a a n ++⋅⋅⋅+>+.例11数学归纳法已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值.1求实数m 的值;2已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;3已知正数12,,,n λλλ,满足121n λλλ+++=,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,n x x x ,都有1122()n n f x x x λλλ+++>1122()()()n n f x f x f x λλλ+++. ④例12分离变量已知函数x a x x f ln )(2+=a 为实常数. 1若2-=a ,求证:函数)(x f 在1,+∞上是增函数;2求函数)(x f 在1,e 上的最小值及相应的x 值;3若存在],1[e x ∈,使得x a x f )2()(+≤成立,求实数a 的取值范围. 例13先猜后证技巧已知函数xx n x f )1(11)(++=Ⅰ求函数f x 的定义域Ⅱ确定函数f x 在定义域上的单调性,并证明你的结论. Ⅲ若x >0时1)(+>x kx f 恒成立,求正整数k 的最大值. 例14创新题型设函数fx=e x +sinx,gx=ax,Fx=fx -gx.Ⅰ若x=0是Fx 的极值点,求a 的值; Ⅱ当 a=1时,设Px 1,fx 1, Qx 2, gx2x 1>0,x 2>0, 且PQ )1,0(12)(2<≠++-=b a b ax ax x g []3,2()()g x f x x =b a ,02)2(≥⋅-xx k f ]1,1[-∈x k0)3|12|2(|)12(|=--+-x x k f k 2()()()xf x x a x b e =-+a b R ∈、x a =()f x 0a =b a123x x x ,,()f x b 4x R ∈1234x x x x ,,,1234,,,i i i i x x x x {}1234i i i i ,,,{}1234,,,b 4x ()ln f x x=21()2g x ax bx =+(0)a ≠1若2a =-, 函数()()()h x f x g x =- 在其定义域是增函数,求b 的取值范围;2在1的结论下,设函数ϕϕ2x x (x)=e +be ,x ∈[0,ln2],求函数(x)的最小值;3设函数)(x f 的图象C 1与函数)(x g 的图象C 2交于点P 、Q,过线段PQ 的中点R 作x 轴的垂线分别交C 1、C 2于点M 、N ,问是否存在点R,使C 1在M 处的切线与C 2在N 处的切线平行若存在,求出R 的横坐标;若不存在,请说明理由. 例18全综合应用已知函数()1ln(02)2xf x x x=+<<-. 1是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上若存在,求出点M 的坐标;若不存在,请说明理由;2定义2111221()()()()n n i i n S f f f f nn n n -=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ;3在2的条件下,令12n n S a +=,若不等式2()1n a m n a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.⑦导数与三角函数综合例19换元替代,消除三角设函数2()()f x x x a =--x ∈R ,其中a ∈R . Ⅰ当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;Ⅱ当0a ≠时,求函数()f x 的极大值和极小值;Ⅲ当3a >, []10k ∈-,时,若不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立,求k 的值;⑧创新问题积累 例20已知函数2()ln44x xf x x -=+-. I 、求()f x 的极值.II 、求证()f x 的图象是中心对称图形.III 、设()f x 的定义域为D ,是否存在[],a b D ⊆.当[],x a b ∈时,()f x 的取值范围是,44a b ⎡⎤⎢⎥⎣⎦若存在,求实数a 、b 的值;若不存在,说明理由导数压轴题题型归纳 参考答案例1解:11=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '2证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <.又∵1122x ax ≠,∴ax a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.例2⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-.当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减;当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a -+∞递减.⑵当14a =时,()f x 在0,1上是减函数,在1,2上是增函数,所以对任意1(0,2)x ∈,有11()(1)2f x f =-≥, 又已知存在[]21,2x ∈,使12()()f xg x ≥,所以21()2g x -≥,[]21,2x ∈,※又22()()4,[1,2]g x x b b x =-+-∈当1b <时,min ()(1)520g x g b ==->与※矛盾;当[]1,2b ∈时,2min ()(1)40g x g b ==-≥也与※矛盾;当2b >时,min 117()(2)84,28g x g b b ==-≤-≥.综上,实数b 的取值范围是17[,)8+∞. 例3解:⑴()2323f x ax bx '=+-.根据题意,得()()12,10,f f =-⎧⎪⎨'=⎪⎩即32,3230,a b a b +-=-⎧⎨+-=⎩解得10a b =⎧⎨=⎩ 所以()33f x x x =-.⑵令()0f x '=,即2330x -=.得1x =±.12f -=12f =-2,2x ∈-max 2f x =min 2f x =-则对于区间[]2,2-上任意两个自变量的值12,x x ,都有()()()()12max min 4f x f x f x f x -≤-=,所以4c ≥.所以c 的最小值为4.⑶因为点()()2,2M m m ≠不在曲线()y f x =上,所以可设切点为()00,x y .则30003y x x =-.因为()20033f x x '=-,所以切线的斜率为2033x -. 则2033x -=300032x x m x ---,即3202660x x m -++=. 因为过点()()2,2M m m ≠可作曲线()y f x =的三条切线,所以方程32002660x x m -++=有三个不同的实数解. 所以函数()32266g x x x m =-++有三个不同的零点.则()2612g x x x '=-.令0g x '=,则0x =或2x =. ()()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<例4解:⑴23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得舍去)(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时递减.]1,0[)(613ln )31(在为函数x f f -=∴上的极大值.⑵由0]3)(ln[|ln |>+'+-x x f x a 得x x a x x a 323ln ln 323lnln ++<+->或设332ln 323ln ln )(2x x x x x h +=+-=,x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g ,03262)62(31323)(22>++=+⋅+='xx xx x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或⑶由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减,而)1()37(),0()37(ϕϕϕϕ>>,]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于例5解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212ln x x x x -与212x x +的大小, 又∵12x x >,∴ 即比较12ln x x 与1)1(2)(212122112+-=+-x x x xx x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>⑶∵ 1)()(1212-<--xx x g x g ,∴ []0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立. 设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立 设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .例6解:1x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增, 所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20e a ≤<. 2当1=a 时,x x x x f x g ln )()(==, e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数.因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<.所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x ,所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.例7I ,23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=III 对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间-2,2有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .例8解:Ⅰxax xa x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞ 单调递减,∴)(x f 在),0(+∞上没有极值点;当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.Ⅱ∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b xx xbx x f ≥-+⇔-≥ln 112)(,令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,∴22min 11)()(e e g x g -==,即211b e ≤-. Ⅲ证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x ey x yx , 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增,又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x ,显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ∴011)(>->ex h ,即0)(>'x g ,∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx ,∴当1->>e y x 时,有)1ln()1ln(++>-y x e y x .例9 解:I 1'(),'(1)1;Qf x f x=∴=l ∴直线的斜率为1,且与函数()f x 的图像的切点坐标为1,0,l ∴直线的方程为 1.y x =-又l 直线与函数()y g x =的图象相切,211722y x y x mx =-⎧⎪∴⎨=++⎪⎩方程组有一解;由上述方程消去y,并整理得22(1)90x m x +-+=①依题意,方程②有两个相等的实数根,2[2(1)]490m ∴∆=--⨯=解之, 得m=4或m=-2,0, 2.Qm m <∴=- II 由I 可知217()2,22g x x x =-+ '()2,()ln(1)2(1)g x x h x x x x ∴=-∴=+-+>-,1'()1.11xh x x x -∴=-=++ ∴∈当x (-1,0)时,h'(x)>0,h(x)单调,当(0,)x ∈+∞时,'()0,()h x h x <单减; ∴当x=0时,()h x 取最大值,其最大值为2;III()(2)ln()ln 2ln ln(1).22a b b af a b f a a b a a a +-+-=+-==+ 证明,当(1,0)x ∈-时,ln(1),ln(1).22b a b ax x a a--+<∴+< 例10解:1函数()f x 的定义域是(0,)+∞.由已知21ln ()xf x x -'=.令()0f x '=,得x e =.因为当0x e <<时,()0f x '>;当x e >时,()0f x '<.所以函数()f x 在(0,]e 上单调递增,在[,)e +∞上单调递减. 2由1可知当2m e≤,即2e m ≤时,()f x 在[,2]m m 上单调递增,所以max ln 2()(2)12mf x f m m==-. 当m e ≥时,()f x 在[,2]m m 上单调递减,所以max ln ()1mf x m=-.当2m e m <<,即2e m e <<时,max 1()()1f x f e e==-.综上所述,max ln 21,0221()1,2ln 1,me m m ef x m eemm e m⎧-<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩3由1知当(0,)x ∈+∞时max 1()()1f x f e e ==-.所以在(0,)x ∈+∞时恒有ln 1()11x f x x e=-≤-,即ln 1x x e ≤,当且仅当x e =时等号成立.因此对任意(0,)x ∈+∞恒有1ln x e ≤.因为10n n +>,1n e n+≠,所以111lnn nn e n ++<⋅,即11ln()e n n n n ++<.因此对任意*n ∈N ,不等式11ln()e n n n n++<.例11解:1当(1,0)x ∈-时,()0f x '>,函数()f x 在区间(1,0)-上单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 在区间(0,)+∞上单调递减.∴函数()f x 在0x =处取得极大值,故1m =-. 2令121112()()()()()()()()f x f x h x f x g x f x x x f x x x -=-=----,则1212()()()()f x f x h x f x x x -''=--.函数()f x 在12(,)x x x ∈上可导,∴存在012(,)x x x ∈,使得12012()()()f x f x f x x x -'=-.1()11f x x '=-+,000011()()()11(1)(1)x x h x f x f x x x x x -'''∴=-=-=++++ 当10(,)x x x ∈时,()0h x '>,()h x 单调递增,1()()0h x h x ∴>=;当02(,)x x x ∈时,()0h x '<,()h x 单调递减,2()()0h x h x ∴>=; 故对任意12(,)x x x ∈,都有()()f x g x >. 3用数学归纳法证明.①当2n =时,121λλ+=,且10λ>,20λ>, 112212(,)x x x x λλ∴+∈,∴由Ⅱ得()()f x g x >,即121122112211112212()()()()()()()f x f x f x x x x x f x f x f x x x λλλλλλ-+>+-+=+-,∴当2n =时,结论成立.②假设当(2)n k k =≥时结论成立,即当121k λλλ+++=时,11221122()()()()k k k k f x x x f x f x f x λλλλλλ+++>+++. 当1n k =+时,设正数121,,,k λλλ+满足1211k λλλ++++=,令12km λλλ=+++,1212,,,k k m m mλλλμμμ===, 则11k n m λ++=,且121k μμμ+++=.∴当1n k =+时,结论也成立.综上由①②,对任意2n ≥,n N ∈,结论恒成立.例12 解:⑴当2-=a 时,x x x f ln 2)(2-=,当),1(+∞∈x ,0)1(2)(2>-='xx x f , 故函数)(x f 在),1(+∞上是增函数.⑵)0(2)(2>+='x xax x f ,当],1[e x ∈,]2,2[222e a a a x ++∈+. 若2-≥a ,)(x f '在],1[e 上非负仅当2-=a ,x=1时,0)(='x f ,故函数)(x f 在],1[e 上是增函数,此时=min )]([x f 1)1(=f . 若222-<<-a e ,当2a x -=时,0)(='x f ;当21ax -<≤时,0)(<'x f ,此时)(x f 是减函数;当e x a≤<-2时,0)(>'x f ,此时)(x f 是增函数. 故=min )]([x f )2(af -2)2ln(2a a a --=. 若22e a -≤,)(x f '在],1[e 上非正仅当2e 2-=a ,x=e 时,0)(='x f ,故函数)(x f 在],1[e 上是减函数,此时==)()]([min e f x f 2e a +.⑶不等式x a x f )2()(+≤,可化为x x x x a 2)ln (2-≥-.∵],1[e x ∈, ∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而xx x x a ln 22--≥],1[e x ∈令xx x x x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=',当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g 仅当x=1时取等号,所以)(x g 在],1[e 上为增函数,故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 例13 解:1定义域),0()0,1(+∞⋃-2,0)]1ln(11[1)(2时当>+++-='x x x x x f 0)(<'x f 单调递减; 当)0,1(-∈x ,令)1(11)1(1)()1ln(11)(22<+=+++-='+++=x xx x x g x x x g ,0)1(11)1(1)()1ln(11)(22<+=+++-='+++=x x x x x g x x x g 故)(x g 在-1,0上是减函数,即01)0()(>=>g x g ,故此时)]1ln(11[1)(2+++-='x x x x f 在-1,0和0,+∞上都是减函数 3当x >0时,1)(+>x kx f 恒成立,令]2ln 1[21+<=k x 有又k 为正整数,∴k 的最大值不大于3下面证明当k=3时,)0( 1)(>+>x x kx f 恒成立 当x >0时 021)1ln()1(>-+++x x x 恒成立令x x x x g 21)1ln()1()(-+++=,则时当1 ,1)1ln()(->-+='e x x x g时当1 ,1)1ln()(->-+='e x x x g ,0)(>'x g ,当0)( ,10<'-<<x g e x 时 ∴当)( ,1x g e x 时-=取得最小值03)1(>-=-e e g当x >0时, 021)1ln()1(>-+++x x x 恒成立,因此正整数k 的最大值为3 例14解:ⅠFx = e x +sinx -ax,'()cos x F x e x a =+-. 因为x =0是Fx 的极值点,所以'(0)110,2F a a =+-==.又当a =2时,若x <0, '()cos 0x F x e x a =+-<;若 x >0, '()cos 0x F x e x a =+->. ∴x =0是Fx 的极小值点, ∴a=2符合题意.Ⅱ ∵a =1, 且PQ 121sin x x e x =+12111sin x x x e x x -=+-令()sin ,'()cos 10x x h x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈0,+∞)时,hx 的最小值为h 0=1.∴|PQ|mi n =1. Ⅲ令()()()2sin 2.x x x F x F x e e x ax ϕ-=--=-+-则'()2cos 2.x x x e e x a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--. 因为'()2cos 0x x S x e e x -=+-≥当x ≥0时恒成立, 所以函数Sx 在[0,)+∞上单调递增, ∴Sx ≥S 0=0当x ∈0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时Fx ≥F-x 恒成立.例15 解:Ⅰ12()(1)1g x a x b a =-++- 当0>a 时,[]()2,3g x 在上为增函数故(3)296251(2)544220g a a b a g a a b b =-++==⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩当[]0()2,3a g x <时,在上为减函数故(3)296221(2)244253g a a b a g a a b b =-++==-⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩011==∴<b a b 即2()21g x x x =-+. ()12f x x x=+-.Ⅱ方程(2)20x x f k -⋅≥化为12222xxxk +-≥⋅ 2111()222x x k +-≥,令t x =21,221k t t ≤-+ ∵]1,1[-∈x ∴]2,21[∈t 记12)(2+-=t t t ϕ∴min ()0t ϕ= ∴0k ≤Ⅲ方程0)3|12|2(|)12(|=--+-xxk f 化为0)32(|12|21|12|=+--++-k k x x 0)21(|12|)32(|12|2=++-+--k k x x ,0|12|x ≠-令t x =-|12|, 则方程化为0)21()32(2=+++-k t k t 0t ≠∵方程0)32(|12|21|12|=+--++-k k xx有三个不同的实数解, ∴由|12|-=x t 的图像知,0)21()32(2=+++-k t k t 有两个根1t 、2t , 且21t 1t 0<<< 或 101<<t ,1t 2= 记)21()32()(2k t k t t +++-=ϕ则⎩⎨⎧<-=>+=0k )1(0k 21)0(ϕϕ 或 ⎪⎪⎩⎪⎪⎨⎧<+<=-=>+=12k3200k )1(0k 21)0(ϕϕ∴0k >例16 解: Ⅰ0a =时,()()2xf x x x b e =+,()()()()()22232x x x f x x x b e x x b e e x x b x b '''⎡⎤⎡⎤∴=+++=+++⎣⎦⎣⎦, 令()()232g x x b x b =+++,()()2238180b b b ∆=+-=-+>,∴设12x x <是()0g x =的两个根,1当10x =或20x =时,则0x =不是极值点,不合题意;2当10x ≠且20x ≠时,由于0x =是()f x 的极大值点,故120x x .<< ()00g ∴<,即20b <,0b .∴<Ⅱ解:()()xf x e x a '=-2(3)2x a b x b ab a ⎡⎤+-++--⎣⎦,令2()(3)2g x x a b x b ab a =+-++--,22=(3)4(2)(1)80a b b ab a a b ∆-+---=+-+>则,于是,假设12x x ,是()0g x =的两个实根,且12x x .<由Ⅰ可知,必有12x a x <<,且12x a x 、、是()f x 的三个极值点, 则1x =2x =假设存在b 及4x 满足题意,1当12x a x ,,等差时,即21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a .=--此时4223x x a a b=-=--+a a -=+ 或4123x x a ab =-=--a a =-2当21x a a x -≠-时,则212()x a a x -=-或12()2()a x x a -=- ①若()122x a a x -=-,则224x a x +=, 于是()()2813323221+-+---=+=b a b a x x a ,即()().33812++-=+-+b a b a 两边平方得()()2191170a b a b +-++-+=,30a b ++<,于是1a b +-=,此时2b a =--此时224x a x +==()().231343332++=--=++---+a b b a b a a②若12()2()a x x a -=-,则214x a x +=,于是2132a x x =+=,()33a b .=++两边平方得()()2191170a b a b +-++-+=,30a b ++>,于是1a b +-=,此时b a =--此时142(3)3(3)324a x a a b a b x b a ++---++===--=+综上所述,存在b 满足题意, 当b=-a-3时,4x a =±b a =-,4x a=+, b a =--时,4x a =+. 例17解:1依题意:.ln )(2bx x x x h -+=()h x 在0,+∞上是增函数,1()20h x x b x'∴=+-≥对x∈0,+∞恒成立,2设].2,1[,,2∈+==t bt t y e t x 则函数化为 当t=1时,y m i n =b+1; 当t=2时,y mi n =4+2b当)(,4x b ϕ时-≤的最小值为.24b +3设点P 、Q 的坐标是.0),,(),,(212211x x y x y x <<且则点M 、N 的横坐标为.221x x x +=C 1在点M 处的切线斜率为.2|1212121x x x k x x x +==+= C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+= 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则.21k k =2221121121x 2(1)x 2(x x )x ln .x x x x 1x --∴==++ 设,1,1)1(2ln ,112>+-=>=u u u u x x u 则 ① 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行 例18 1假设存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上,则函数()y f x =图像的对称中心为(,)M a b .由()(2)2f x f a x b +-=,得21ln1ln 2222x a x b x a x-+++=--+, 即22222ln 0244x axb x ax a -+-+=-++-对(0,2)x ∀∈恒成立,所以220,440,b a -=⎧⎨-=⎩解得1,1.a b =⎧⎨=⎩ 所以存在点(1,1)M ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上. 2由1得()(2)2(02)f x f x x +-=<<.令i x n=,则()(2)2i i f f nn+-=(1,2,,21)i n =⋅⋅⋅-.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①,所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得22(21)n S n =-,所以*21()n S n n =-∈N .所以20132201314025S =⨯-=.3由2得*21()n S n n =-∈N ,所以*1()2n n S a n n +==∈N . 因为当*n ∈N 且2n ≥时,2()121ln ln 2n a m n m n n ma n n ⋅>⇔⋅>⇔>-. 所以当*n ∈N 且2n ≥时,不等式ln ln 2n m n >-恒成立minln ln 2n m n ⎛⎫⇔>- ⎪⎝⎭. 设()(0)ln xg x x x=>,则2ln 1()(ln )x g x x -'=. 当0x e <<时,()0g x '<,()g x 在(0,)e 上单调递减; 当x e >时,()0g x '>,()g x 在(,)e +∞上单调递增.因为23ln 9ln8(2)(3)0ln 2ln 3ln 2ln 3g g --=-=>⋅,所以(2)(3)g g >,所以当*n ∈N 且2n ≥时,[]min 3()(3)ln 3g n g ==. 由[]min ()ln 2m g n >-,得3ln 3ln 2m >-,解得3ln 2ln 3m >-. 所以实数m 的取值范围是3ln 2(,)ln 3-+∞.例19 解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的 切线方程是25(2)y x +=--,整理得580x y +-=.Ⅱ解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.1若0a >,当x ()f x '因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. 2若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.Ⅲ证明:由3a >,得13a>,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由Ⅱ知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤,即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. 例20 I /(6)()4(2)(4)x x f x x x -=-- ./(2)注意到204x x ->-,得(,2)(4,)x ∈-∞⋃+∞,解(6)0x x -=得6x =或0x =.当x 变化时,/(),()f x f x 的变化情况如下表:所以(0)ln 2f =是()f x 的一个极大值,(6)ln 22f =+ 是()f x 的一个极大值../(4) II 点()0,(0),(6,(6))f f 的中点是3(3,)4,所以()f x 的图象的对称中心只可能是3(3,)4./(6) 设(,())P x f x 为()f x 的图象上一点,P 关于3(3,)4的对称点是3(6,())2Q x f x --.463(6)ln ()242x x f x f x x ---=+=--.Q ∴也在()f x 的图象上, 因而()f x 的图象是中心对称图形. /(8)III 假设存在实数a 、b .[],a b D ⊆,2b ∴<或4a >.若02b ≤<, 当[],x a b ∈时, 1()(0)ln 02f x f ≤=<,而04b ≥()4b f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(10) 若46a <≤,当[],x a b ∈时, 33()(6)ln 222f x f ≥=+>,而342a ≤()4a f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦./(12) 若06a b a b <<<<或,由()g x 的单调递增区间是()(),0,6,-∞+∞,知,a b 是()4x f x =的两个解.而2()ln 044x x f x x --==-无解. 故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(14) 综上所述,假设错误,满足条件的实数a 、b 不存在.。
导数压轴题双变量问题题型归纳总结
导数应用之双变量问题(一)构造齐次式,换元【例】已知函数()2ln f x x ax b x =++,曲线()y f x =在点()()1,1f 处的切线方程为2y x =.(1)求实数,a b 的值;(2)设()()()()21212,,0F x f x x mx m R x x x x =-+∈<<分别是函数()F x的两个零点,求证:0F '<.【解析】(1)1,1a b ==-;(2)()2ln f x x x x =+-,()()1ln F x m x x =+-,()11F x m x'=+-, 因为12,x x 分别是函数()F x 的两个零点,所以()()11221ln 1ln m x x m x x +=⎧⎪⎨+=⎪⎩, 两式相减,得1212ln ln 1x x m x x -+=-,|1212ln ln 1x x F m x x -'=+=-0F '<,只需证1212ln ln x x x x -<-.思路一:因为120x x <<,只需证1122ln ln ln 0x x x x ->⇔>.令()0,1t =,即证12ln 0t t t -+>. 令()()12ln 01h t t t t t =-+<<,则()()22212110t h t t t t -'=--=-<, 所以函数()h t 在()0,1上单调递减,()()10h t h >=,即证12ln 0t t t-+>.由上述分析可知0F '<.【规律总结】这是极值点偏移问题,此类问题往往利用换元把12,x x 转化为t 的函数,常把12,x x 的关系变形为齐次式,设12111222,ln ,,x x x xt t t x x t e x x -===-=等,构造函数来解决,可称之为构造比较函数法. 思路二:因为120x x <<,只需证12ln ln 0x x -, 设())22ln ln 0Q x x x x x =-<<,则()2110Q x xx '===<, …所以函数()Q x 在()20,x 上单调递减,()()20Q x Q x >=,即证2ln ln xx -.由上述分析可知0F '<.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于1x (或2x )的一元函数来处理.应用导数研究其单调性,并借助于单调性,达到待证不等式的证明.此乃主元法.【变式训练】 已知函数()()21f x x axlnx ax 2a R 2=-++∈有两个不同的极值点x 1,x 2,且x 1<x 2. (1)求实数a 的取值范围;(2)求证:x 1x 2<a 2.【分析】(1)先求导数,再根据导函数有两个不同的零点,确定实数a 所需满足的条件,解得结果,(2)先根据极值点解得a ,再代入化简不等式x 1x 2<a 2,设21x x t =,构造一元函数,利用导数研究函数单调性,最后构造单调性证明不等式.【解析】(1)略(2)f′(x )=x-a lnx ,g (x )=x-a lnx ,由x 1,x 2是g (x )=x-a lnx=0的两个根,¥则2211lnx x lnx x a a =⎧⎨=⎩,两式相减,得a (lnx 2-lnx 1)=x 2-x 1),即a =2121x x lnx lnx --,即证x 1x 2<221221(x x )x (ln )x -,即证22221121x (x x )(ln )x x x -<=2112x x 2x x -+, 由x 1<x 2,得21x x =t >1,只需证ln 2t-t-120t +<,设g (t )=ln 2t-t-12t+,则g′(t )=221lnt 1t t -+=112lnt t t t ⎛⎫-+ ⎪⎝⎭, 令h (t )=2lnt-t+t1,∴h′(t )=2211t t --=-(11t -)2<0,∴h(t )在(1,+∞)上单调递减,∴h(t )<h (1)=0,∴g′(t )<0,即g (t )在(1,+∞)上是减函数,∴g(t )<g (1)=0,即ln 2t <t-2+t1在(1,+∞)上恒成立,∴x 1x 2<a 2. "【变式训练】 已知函数()12ln f x x a x x=-+⋅. (1)讨论()f x 的单调性;(2)设()2ln g x x bx cx =--,若函数()f x 的两个极值点()1212,x x x x <恰为函数()g x 的两个零点,且()12122x x y x x g +⎛⎫'=-⋅ ⎪⎝⎭的范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()22212211a x ax f x x x x--+'=-+=-. (i )若1a ≤,则()0f x '≤,当且仅当1a =,1x =时,()0f x '=(ii )若1a >,令()0f x '=得12x a x a ==当(()20,x a a a ∈++∞时,()0f x '<;当(x a a ∈时,()0f x '>,!所以,当1a ≤时,()f x 单调递减区间为()0,∞+,无单调递增区间; 当1a >时,()f x单调递减区间为(()0,,a a +∞;单调递增区间为(a a .(2)由(1)知:1a >且12122,1x x a x x +==.又()12g x b cx x'=--, ∴()12121222x x g b c x x x x +⎛⎫'=--+⎪+⎝⎭, 由()()120g x g x ==得()()22112122lnx b x x c x x x =-+-, ()()()()1222121212121222-+⎛⎫'=-=---- ⎪+⎝⎭x x x x y x x g b x x c x x x x .()121112212122212ln ln 1⎛⎫- ⎪-⎝⎭=-=-++x x x x x x x x x x x x ,令12(0,1)x t x =∈,∴2(1)ln 1t y t t -=-+, ∴22(1)0(1)t y t t --'=<+,所以y 在()0,1上单调递减. ~由y 的取值范围是2ln 2,3⎡⎫-+∞⎪⎢⎣⎭,得t 的取值范围是10,2⎛⎤⎥⎝⎦,∵122x x a +=, ∴()222222211221212112212212(2)242x x x x x xa x x x x x x a x x x x ++=+=++===++,∴2122119422,2x x a t x x t ⎡⎫=++=++∈+∞⎪⎢⎣⎭,又∵1a >,故a的取值范围是4⎡⎫+∞⎪⎢⎪⎣⎭.(二)各自构造一元函数【例】 已知函数f (x )=lnx ﹣ax +1(a ∈R ). (1)求f (x )的单调区间; (2)设g (x )=lnx 344x x-+,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围. 【分析】(1)函数求导得()11'axf x a x x-=-=,然后分a ≤0和a >0两种情况分类求解. (2)~(3)根据对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,然后分别求最大值求解即可.【详解】(1) 略(2)()()()222213113143'4444x x x x g x x x x x-+--+-=--⨯==, 在区间(1,3)上,g ′(x )>0,g (x )单调递增,在区间(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 312-, 因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立, 等价于f (x )max <g (x )max ,由(1)知当a ≤0时,f (x )无最值,~当a >0时,f (x )max =f (1a )=﹣lna ,所以﹣lna <ln 312-,所以3lna >ln ,解得a 3.【变式训练】【广东省2020届高三期末】设函数2()()e ()xf x x ax a a -=+-⋅∈R .(1)当0a =时,求曲线()y f x =在点(1,(1))f --处的切线方程;(2)设2()1g x x x =--,若对任意的[0,2]t ∈,存在[0,2]s ∈使得()()f s g t ≥成立,求a 的取值范围.【解析】 (1)当0a =时,因为()2xf x x e -=⋅,所以()()()2'2,'13xf x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上,()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2xx f x x a ex ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时,()'0f x ≥在[]0,2上恒成立,()f x 在[]0,2上为单调递增函数,()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; >②当02a <-<,即20a -<<时,当()0,x a ∈-时,()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e+⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时,()'0f x ≤在[]0,2上恒成立,()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-, 综上所述,实数a 的取值范围是1a ≤-或24a e ≥-. (三)消元构造一元函数【例】已知函数f (f )={e −f +1,f ≤0,2√f , f >0.函数f =f (f (f )+1)−f (f ∈f )恰有两个零点f 1和f 2. (1)求函数f (f )的值域和实数f 的最小值;(2)若f1<f2,且ff1+f2≥1恒成立,求实数f的取值范围.【解析】(1)当f≤0时,f(f)=e−f+1≥2.`当f>0时,f(f)=2√f>0.∴f(f)的值域为(0,+∞).令f(f(f)+1)=f,∵f(f)+1>1,∴f(f(f)+1)>2,∴f>2.又f(f)的单调减区间为(−∞,0],增区间为(0,+∞).设f(f)+1=f1,f(f)+1=f2,且f1<0,f2>1.∴f(f)=f1−1无解.从而f(f)=f2−1要有两个不同的根,应满足f2−1≥2,∴f2≥3.∴f(f2)=f(f(f)+1)≥2√3.即f≥2√3.∴f的最小值为2√3.(2) f=f(f(f)+1)−f有两个零点f1、f2且f1<f2,设f(f)=f,f∈[2,+∞),∴e−f1+1=f,∴f1=−ln(f−1).2√f2=f,∴f2=f24.#∴−f ln(f−1)+f24≥1对f∈[2,+∞)恒成立设f(f)=−f ln(f−1)+f24−1,f′(f)=−ff−1+f2=f2−f−2f2(f−1).∵f∈[2,+∞),∴f2−f∈[2,+∞)恒成立.∴当2f≤2,即f≤1时,f′(f)≥0,∴f(f)在[2,+∞)上单调递增.∴f(f)≥f(2)=−f ln1+1−1=0成立.当f>1时,设f(f)=f2−f−2f.由f(2)=4−2−2f=2−2f<0.∴∃f0∈(2,+∞),使得f(f0)=0.且当f∈(2,f0)时,f(f)<0,f∈(f0,+∞)时,f(f)>0.∴当f∈(2,f0)时,f(f)单调递减,此时f(f)<f(2)=0不符合题意.综上,f≤1.【变式训练】f(f)=f2+ff−f ln f.(1)若函数f(f)在[2,5]上单调递增,求实数f的取值范围;(2)当f=2时,若方程f(f)=f2+2f有两个不等实数根f1,f2,求实数f的取值范围,并证明f1f2<1.【解析】(1)f′(f)=2f+f−ff,∵函数f(f)在[2,5]上单调递增,∴f′(f)≥0在f∈[2,5]恒成立,即2f+f−ff≥0对f∈[2,5]恒成立,∴f≥−2f2f−1对f∈[2,5]恒成立,即f≥(−2f2f−1)max,f∈[2,5],令f(f)=−2f2f−1(f∈[2,5]),则f′(f)=−2f2+4f(f−1)2≤0(f∈[2,5]),∴f(f)在[2,5]上单调递减,∴f(f)在[2,5]上的最大值为f(2)=−8.\∴f的取值范围是[−8,+∞).(2)∵当f=2时,方程f(f)=f2+2f⇔f−ln f−f=0,令f(f)=f−ln f−f(f>0),则f′(f)=1−1f,当f∈(0,1)时,f′(f)<0,故f(f)单调递减,当f∈(1,+∞)时,f′(f)>0,故f(f)单调递增,∴f(f)min=f(1)=1−f.若方程f(f)=f2+2f有两个不等实根,则有f(f)min<0,即f>1,当f>1时,0<f−f<1<f f,f(f−f)=f−f>0,f(f f)=f f−2f,令f(f)=f f−2f(f>1),则f′(f)=f f−2>0,f(f)单调递增,f(f)>f(1)=f−2>0,∴f(f f)>0,∴原方程有两个不等实根,∴实数f的取值范围是(1,+∞).不妨设f 1<f 2,则0<f 1<1<f 2,0<1f 2<1,∴f 1f 2<1⇔f 1<1f 2⇔f (f 1)>f (1f 2),∵f (f 1)=f (f 2)=0,∴f (f 1)−f (1f 2)=f (f 2)−f (1f 2)=(f 2−ln f 2−f )−(1f 2−ln 1f 2−f ),=f 2−1f 2−2ln f 2.令f (f )=f −1f−2ln f (f >1),则f′(f )=1+1f 2−2f=(1f −1)2>0,∴f (f )在(1,+∞)上单调递增,∴当f >1时,f (f )>f (1)=0,即f 2−1f 2−2ln f 2>0,∴f (f 1)>f (1f 2),∴f 1f 2<1.(四)独立双变量,化为两边同函数形式【例】 已知函数()()1ln f x kx x =-,其中k 为非零实数. (1)求()f x 的极值; ,(2)当4k =时,在函数()()22g x f x x x =++的图象上任取两个不同的点()11,M x y 、()22,N x y .若当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,求正实数t 的取值范围: 【详解】(1) 略;(2)当4k =时,()4ln f x x =-',()224ln g x x x x =+-,当120x x t <<<时,总有不等式()()()12124g x g x x x -≥-成立,即()()112244g x x g x x -≥-,构造函数()()2424ln F x g x x x x x =-=--,由于120x x t <<<,()()12F x F x ≥,则函数()y F x =在区间()0,t 上为减函数或常函数,()()()221422x x F x x x x='-+=--,0x,解不等式()0F x '≤,解得02x <≤.`由题意可知()(]0,0,2t ⊆,02t ∴<≤,因此,正实数t 的取值范围是(]0,2;【变式训练】设函数. (1)若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任何恒成立,求的取值范围. 【解析】(2)条件等价于对任意恒成立,设. 则在上单调递减, 则在上恒成立,得恒成立, —∴(对仅在时成立),故的取值范围是【变式训练】已知函数f (f )=f +f ln f .(Ⅰ)求函数f (f )的图象在点(1,1)处的切线方程;(Ⅱ)若f ∈f ,且f (f −1)<f (f )对任意f >1恒成立,求f 的最大值; (Ⅲ)当f >f ≥4时,证明:(ff f )f >(ff f )f .()ln ,k R kf x x x=+∈()y f x =()(),e f e 20x -=()f x e ()()1212120,x x f x f x x x >>-<-k ()()1211220,x x f x x f x x >>-<-()()()ln 0kh x f x x x x x x=-=+->()h x ()0,+∞()2110k h x x x '=--≤()0,+∞()2211024k x x x x ⎛⎫≥-+=--+> ⎪⎝⎭14k ≥()1,04k h x '==12x =k 1,4⎡⎫+∞⎪⎢⎣⎭【解析】(Ⅰ)∵f ′(f )=ln f +2,∴f ′(1)=2,函数f (f )的图象在点(1,1)处的切线方程f =2f −1;(Ⅱ)由(Ⅰ)知,f (f )=f +f ln f ,∴f (f −1)<f (f ),对任意f >1恒成立,)即f <f +f ln ff −1对任意f >1恒成立. 令f (f )=f +f ln ff −1,则f′(f )=f −ln f −2(f −1)2,令f (f )=f −ln f −2(f >1),则f ′(f )=1−1f =f −1f>0,所以函数f (f )在(1,+∞)上单调递增.∵f (3)=1−ln 3〈0,f (4)=2−2ln 2〉0,∴方程f (f )=0在(1,+∞)上存在唯一实根f 0,且满足f 0∈(3,4).当1<f <f 0时,f (f )<0,即f′(f )<0,当f >f 0时,f (f )>0,即f′(f )>0, 所以函数f (f )=f +f ln ff −1在(1,f 0)上单调递减,在(f 0,+∞)上单调递增. ∴[f (f )]min =f (f 0)=f 0(1+ln f 0)f 0−1=f 0(1+f 0−2)f 0−1=f 0∈(3,4),∴f <[f (f )]min =f 0∈(3,4),故整数f 的最大值是3.)(Ⅲ)由(Ⅱ)知,f (f )=f +f ln ff −1是[4,+∞)上的增函数,∴当f >f ≥4时,f +f ln f f −1>f +f ln ff −1. 即f (f −1)(1+ln f )>f (f −1)(1+ln f ).整理,得ff ln f +f ln f >ff ln f +f ln f +(f −f ). ∵f >f ,∴ff ln f +f ln f >ff ln f +f ln f .即ln f ff +ln f f >ln f ff +ln f f .即ln (f ff f f )>ln (f ff f f ).∴(ff f )f >(ff f )f . (五)把其中一个看作自变量,另一个看作参数【例】 已知a R ∈,函数()()2ln 12f x x x ax =+-++(Ⅰ)若函数()f x 在[)2,+∞上为减函数,求实数a 的取值范围;(Ⅱ)设正实数121m m +=,求证:对)1()(f x f ≥上的任意两个实数1x ,2x ,总有()()()11221122f m x m x m f x m f x +≥+成立]【分析】(Ⅰ)将问题转化为()0f x '≤在[)+∞∈,2x 上恒成立,可得112+-≤x x a ,令()121h x x x =-+,可判断出()h x 在[)2,+∞上单调递增,即()()min 2h x h =,从而可得a 的范围;(Ⅱ)构造函数()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-,且121x x -<≤;利用导数可判断出()F x 在(]21,x x ∈-上是减函数,得到()()2F x F x ≥,经验算可知()20F x =,从而可得()()()122122f m x m x m f x m f x +≥+,从而可证得结论.【解析】(Ⅰ)由题意知:()121f x x a x '=-++ 函数()f x 在[)2,+∞上为减函数,即()0f x '≤在[)+∞∈,2x 上恒成立即112+-≤x x a 在[)+∞∈,2x 上恒成立,设()121h x x x =-+ 当2≥x 时,11=+y x 单调递减,2=y x 单调递增()h x ∴在[)2,+∞上单调递增 ()()min 1112433h x h ∴==-=,113a ∴≤,即a 的取值范围为11,3⎛⎤-∞ ⎥⎝⎦(Ⅱ)设121x x -<≤,令:()()()122122()F x f m x m x m f x m f x =+--,(]21,x x ∈-则()()()()21221220F x f m m x m m f x =+-+=⎡⎤⎣⎦*()()()()()112211122F x m f m x m x m f x m f m x m x f x '''''∴=+-=+-⎡⎤⎣⎦()()1221222222210m x m x x x m m x m x m x m x x +-=-+=-+=-≥,122m x m x x ∴+≥()121f x x a x '=-++,令()()g x f x =',则()()21201g x x '=--<+ ()f x ∴'在()1,x ∈-+∞上为减函数,()()122f m x m x f x ''∴+≤()()11220m f m x m x f x ''∴+-≤⎡⎤⎣⎦,即()0F x '≤()F x ∴在(]21,x x ∈-上是减函数,()2()0F x F x ∴≥=,即()0F x ≥ ()()()1221220f m x m x m f x m f x ∴+--≥(]21,x x ∴∈-时,()()()122122f m x m x m f x m f x +≥+(121x x -<≤ ,()()()11221122f m x m x m f x m f x ∴+≥+【变式训练】 已知函数f (f )=f f −f ,f (f )=(f +f )ln (f +f )−f .(1)若f =1,f ′(f )=f ′(f ),求实数f 的值.(2)若f ,f ∈f +,f (f )+f (f )≥f (0)+f (0)+ff ,求正实数f 的取值范围. 【解析】(1)由题意,得f ′(f )=f f −1,f ′(f )=ln (f +f ),由f =1,f ′(f )=f ′(f )…①,得f f −ln (f +1)−1=0, 令f (f )=f f −ln (f +1)−1,则f ′(f )=f f −1f +1,…因为f″(f)=f f+1(f+1)2>0,所以f′(f)在(−1,+∞)单调递增,又f′(0)=0,所以当−1<f<0时,f′(f)>0,f(f)单调递增;当f>0时,f′(f)<0,f(f)单调递减;所以f(f)≤f(0)=0,当且仅当f=0时等号成立.故方程①有且仅有唯一解f=0,实数f的值为0.(2)解法一:令f(f)=f(f)−ff+f(f)−f(0)−f(0)(f>0),则f′(f)=f f−(f+1),所以当f>ln(f+1)时,f′(f)>0,f(f)单调递增;当0<f<ln(f+1)时,f′(f)<0,f(f)单调递减;;故f(f)≥f(ln(f+1))=f(ln(f+1))+f(f)−f(0)−f(0)−f ln(f+1)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f.令f(f)=(f+f)ln(f+f)−(f+1)ln(f+1)−f ln f(f>0),则f′(f)=ln(f+f)−ln(f+1).(i)若f>1时,f′(f)>0,f(f)在(0,+∞)单调递增,所以f(f)>f(0)=0,满足题意.(ii)若f=1时,f(f)=0,满足题意.(iii)若0<f<1时,f′(f)<0,f(f)在(0,+∞)单调递减,所以f(f)<f(0)=0.不满足题意.综上述:f≥1.(六)利用根与系数的关系,把两变量用另一变量表示>【例】(2020山西高三期末)设函数1()ln() f x x a x a Rx=--∈(1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x 和2x ,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2k a =-若存在,求出a 的值,若不存在,请说明理由. 【解析】(1)()f x 定义域为()0,∞+,()22211'1a x ax f x x x x-+=+-=, 令()221,4g x x ax a =-+∆=-,①当22a -≤≤时,0∆≤,()'0f x ≥,故()f x 在()0,∞+上单调递增, ·②当2a <-时,>0∆,()0g x =的两根都小于零,在()0,∞+上,()'0f x >,故()f x 在()0,∞+上单调递增,③当2a >时,>0∆,()0g x =的两根为12x x ==,当10x x <<时,()'0f x >;当12x x x <<时,()'0f x <;当2x x >时,()'0f x >; 故()f x 分别在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)由(1)知,2a >,因为()()()()1212121212ln ln x x f x f x x x a x x x x --=-+--. 所以()()1212121212ln ln 11f x f x x x k a x x x x x x --==+⋅--,又由(1)知,121=x x ,于是1212ln ln 2x x k a x x -=--,若存在a ,使得2k a =-,则1212ln ln 1x x x x -=-,即1212ln ln x x x x -=-,亦即222212ln 0(1)x x x x --=>|再由(1)知,函数()12ln h t t t t=--在()0,∞+上单调递增,而21>x ,所以22212ln 112ln10x x x -->--=,这与上式矛盾,故不存在a ,使得2k a =-. 【变式训练】 已知函数21()2ln 2f x x x a x =-+,其中0a >. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,2x ,证明:123()()2f x f x -<+<-.【解析】(1)解:由题得22'()2a x x af x x x x-+=-+=,其中0x >,考察2()2g x x x a =-+,0x >,其中对称轴为1x =,44a ∆=-. 若1a ≥,则,此时()0g x ≥,则'()0f x ≥,所以()f x 在(0,)+∞上单调递增;|若,则∆>0,此时220x x a -+=在R 上有两个根111x a =--,211x a =+-,且1201x x <<<,所以当时,()0g x >,则'()0f x >,()f x 单调递增;当12(,)x x x ∈时,()0g x <,则'()0f x <,()f x 单调递减;当2(,)x x ∈+∞时,()0g x >,则'()0f x >,()f x 单调递增,综上,当1a ≥时,()f x 在(0,)+∞上单调递增;当时,()f x 在(0,11)a --上单调递增,在(11,11)a a --+-上单调递减,在(11,)a +-+∞上单调递增.(2)证明:由(1)知,当时,()f x 有两个极值点1x ,2x ,且122x x +=,12x x a =,所以()()2212111222112ln 2ln 22fx f x x x a x x x a x +=-++-+ ()()()2212121212ln ln 2x x x x a x x =+-+++()()()212121212122ln 2x x x x x x a x x ⎡⎤=+--++⎣⎦()21224ln ln 22a a a a a a =--+=--. 令()ln 2h x x x x =--,01x <<,则只需证明3()2h x -<<-, 由于'()ln 0h x x =<,故()h x 在(0,1)上单调递减,所以()(1)3h x h >=-.又当01x <<时,ln 11x -<-,(ln 1)0x x -<,故()ln 2(ln 1)22h x x x x x x =--=--<-, 所以,对任意的01x <<,3()2h x -<<-. 综上,可得()()1232fx f x -<+<-.【变式训练】已知函数21ln 02f x ax x a x=-+≥()(). (1)讨论函数f (x )的极值点的个数;/(2)若f (x )有两个极值点1x ,2x ,证明:1234ln 2f x f x +>-()(). 【解析】(1)由题意,函数221ln ln 22f x ax x x ax x x=-+=--+(), 得2121'21ax x f x ax x x -+-=--+=(),0x ∈+∞(,), (i )若0a =时;1x f x x-'=(),当01x ∈(,)时,()0f x '<,函数()f x 单调递减;当),(∞+∈1x 时,()0f x '>, 函数()f x 单调递增,所以当1x =,函数()f x 取得极小值,1x =是()f x 的一个极小值点;(ii )若0a >时,则180a ∆=-≤,即18a ≥时,此时0f x '≤(),()f x 在(0,)+∞是减函数,()f x '无极值点,当108a <<时,则180a ∆=->,令0=')(x f ,解得1x =,2x =,当10x x ∈(,)和2x x ∈+(,)∞时,0f x '<(),当12x x x ∈(,)时,0>')(x f , `∴()f x 在1x 取得极小值,在2x 取得极大值,所以()f x 有两个极值点, 综上可知:(i )0a =时,()f x 仅有一个极值点;(ii).当18a ≥时,()f x 无极值点; (iii)当108a <<,()f x 有两个极值点. (2)由(1)知,当且仅当108a ∈(,)时,()f x 有极小值点1x 和极大值点2x ,且1x ,2x 是方程2210ax x 的两根,∴1212x x a +=,1212x x a=, 则222121121211ln ln 22f x f x ax x ax x x x +=-++-+()() 22121212ln 2ln 2x x a x x x x =-+-+++()()()22111ln[]42a a a a a=---+ 11ln 1242a a a =++-1ln 1ln 24a a=+--,【设1ln ln 24g a a a =++-()1,1(0,)8a ∈,则221141044a g a a a a-'=-=<(),∴10,8a ∈()时,()a g 是减函数,1()()8g a g >,∴1ln 3ln 234ln 28g a >+-=-(), ∴1234ln 2f x f x +>-()(). 三、跟踪训练 1.已知函数1()ln ()f x x a x a R x=-+∈. (1)讨论函数()y f x =的单调性; (2)若10<<b ,1()()g x f x bx x=+-,且存在不相等的实数1x ,2x ,使得()()12g x g x =,求证:0a <且2211a x x b ⎛⎫> ⎪-⎝⎭. 【解析】(1)由题意,函数1()ln ()f x x a x a R x =-+∈,可得22211'()1(0)a x ax f x x x x x++=++=>, @当0a ≥时,因为0x >,所以210x ax ++>,所以'()0f x >,故函数()f x 在(0,)+∞上单调递增;当20a -≤<时,240a ∆=-≤,210x ax ++≥,所以'()0f x >, 故函数()f x 在(0,)+∞单调递增;当2a <-时,'()0f x >,解得0x <<或x >,'()0f x <x <<,所以函数()f x 在区间⎛⎫⎪ ⎪⎝⎭上单调递减,在区间⎛⎫⎪ ⎪⎝⎭和区间⎫+∞⎪⎪⎝⎭上单调递增. 综上所述,当2a ≥-时,函数()f x 在(0,)+∞上单调递增,当2a <-时,函数()f x在区间⎛⎫⎪ ⎪⎝⎭上单调递减, !在区间0,2a ⎛⎫-- ⎪ ⎪⎝⎭和区间2a ⎛⎫-++∞⎪ ⎪⎝⎭上单调递增. (2)由题知()(1)ln g x b x a x =-+,则'()1ag x b x=-+. 当0a ≥时,0)('>x g ,所以()g x 在(0,)+∞上单调递增,与存在不相等的实数1x ,2x ,使得12()()g x g x =矛盾,所以0a <.由12()()g x g x =,得1122(1)ln (1)ln b x a x b x a x -+=-+, 所以()()2121ln ln (1)a x x b x x --=--,不妨设120x x <<,因为10<<b ,所以212101ln ln x x a b x x -=>--,欲证2121a x x b ⎛⎫< ⎪-⎝⎭,只需证2211221ln ln x x x x x x ⎛⎫-> ⎪-⎝⎭,只需证2121ln ln x x x x ->-21x t x =,1t >,等价于证明1ln t t->ln 0t -<, |令()ln 1)h t t t =->,2'()0h t =<,所以)(t h 在区间(1,)+∞上单调递减,所以()(1)0h t h <=,从而ln 0t <得证,于是2211a x x b ⎛⎫> ⎪-⎝⎭.2.【2020河北省衡水市高三期末】已知函数f (f )=f ln f −f 2.(1)令f (f )=f (f )+ff ,若f =f (f )在区间(0,3)上不单调,求f 的取值范围;(2)当f =2时,函数f (f )=f (f )−ff 的图象与f 轴交于两点f (f 1,0),f (f 2,0),且0<f 1<f 2,又f ′(f )是f (f )的导函数.若正常数f ,f 满足条件f +f =1,f ≥f .试比较f ′(ff 1+ff 2)与0的关系,并给出理由【解析】(1)因为f (f )=f ln f −f 2+ff ,所以f ′(f )=ff −2f +f , 因为f (f )在区间(0,3)上不单调,所以f ′(f )=0在(0,3)上有实数解,且无重根, 由f ′(f )=0,有f =2f 2f +1=2(f +1+1f +1)−4,f ∈(0,3),令t=x+1>4则y=2(t+1f )−4在t>4单调递增,故f ∈(0,92)、(2)∵f ′(f )=2f −2f −f ,又f (f )−ff =0有两个实根f 1,f 2,∴{2fff 1−f 12−ff 1=02fff 2−f 22−ff 2=0,两式相减,得2(ln f 1−ln f 2)−(f 12−f 22)=f (f 1−f 2), ∴f =2(ln f 1−ln f 2)f 1−f 2−(f 1+f 2),于是f ′(ff 1+ff 2)=2ff 1+ff 2−2(ff 1+ff 2)−2(ln f 1−ln f 2)f 1−f 2+(f 1+f 2)=2ff 1+ff 2−2(ln f 1−ln f 2)f 1−f 2+(2f −1)(f 2−f 1).∵f ≥f ,∴2f ≤1,∴(2f −1)(f 2−f 1)≤0. 要证:f ′(ff 1+ff 2)<0,只需证:2ff1+ff 2−2(ln f 1−ln f 2)f 1−f 2<0,只需证:f 1−f 2ff 1+ff 2−ln f1f 2>0.(*)令f 1f 2=f ∈(0,1),∴(*)化为1−fff +f +ln f <0,只需证f (f )=ln f +1−fff +f <0;f ′(f )=1f −1(ff +f )2>0∵f (f )在(0,1)上单调递增,f (f )<f (1)=0,∴ln f +1−f ff +f<0,即f 1−f 2ff +f+ln f 1f 2<0.∴f ′(ff 1+ff 2)<0.2.(2020·江苏金陵中学高三开学考试)已知函数f (x )=12ax 2+lnx ,g (x )=-bx ,其中a ,b∈R,设h (x )=f (x )-g (x ),(1)若f (x )在x=√22处取得极值,且f′(1)=g (-1)-2.求函数h (x )的单调区间;(2)若a=0时,函数h (x )有两个不同的零点x 1,x 2 ①求b 的取值范围;②求证:x 1x 2e 2>1.【答案】(1)在区间(0,1)上单调增;在区间(1,+)上单调减.(2)①(−1f ,0)②详见解析—【解析】试题分析:(1)先确定参数:由f ′(1)=f (−1)−2可得a=b-3. 由函数极值定义知f ′(√22)=√22f +√2=0所以a=" -2,b=1" .再根据导函数求单调区间(2)①当f =0时,f (f )=ln f +ff ,原题转化为函数f (f )=−ln ff与直线f =f 有两个交点,先研究函数f (f )=−ln ff图像,再确定b 的取值范围是(−1f ,0). ②f 1f 2f 2>1⇔f 1f 2>f 2⇔ln f 1f 2>2,由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2ln f 2−ln f 1=f 1+f 2f 2−f 1,因此须证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,构造函数f (f )=ln f −2(f −1)f +1,即可证明 试题解析:(1)因为f ′(f )=ff +1f ,所以f ′(1)=f +1,由f ′(1)=f (−1)−2可得a=b-3.又因为f (f )在f =√22处取得极值,所以f ′(√22)=√22f +√2=0,所以a=" -2,b=1" .所以f (f )=−f 2+ln f +f ,其定义域为(0,+)f′(f )=−2f +1f +1=−2f 2+f +1f =−(2f +1)(f −1)f{令f′(f )=0得f 1=−12,f 2=1,当f ∈(0,1)时,f′(f )>0,当f ∈(1,+)f′(f )<0,所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当f =0时,f (f )=ln f +ff ,其定义域为(0,+).①由f (f )=0得f =-ln ff,记f (f )=−ln ff,则f′(f )=ln f −1f 2,所以f (f )=−ln ff在(0,f )单调减,在(f ,+∞)单调增,所以当f =f 时f (f )=−ln ff取得最小值−1f .又f (1)=0,所以f ∈(0,1)时f (f )>0,而f ∈(1,+∞)时f (f )<0,所以b 的取值范围是(−1f ,0). ②由题意得ln f 1+ff 1=0,ln f 2+ff 2=0,所以ln f 1f 2+f (f 1+f 2)=0,ln f 2−ln f 1+f (f 2−f 1)=0,{所以ln f 1f 2ln f2−ln f 1=f 1+f 2f 2−f 1,不妨设x1<x2,要证f 1f 2>f 2, 只需要证ln f 1f 2=f 1+f2f 2−f 1(ln f 2−ln f 1)>2.即证ln f 2−ln f 1>2(f 2−f 1)f 2+f 1,设f =f2f 1(f >1),则f (f )=ln f −2(f −1)f +1=ln f +4f +1−2,所以f′(f )=1f −4(f +1)2=(f −1)2f (f +1)2>0,所以函数f (f )在(1,+)上单调增,而f (1)=0,所以f (f )>0即ln f >2(f −1)f +1,所以f 1f 2>f 2.考点:函数极值,构造函数利用导数证明不等式3.【福建省2020高三期中】已知函数f (f )=f f (f f −ff +f )有两个极值点f 1,f 2.(1)求f 的取值范围;,(2)求证:2f 1f 2<f 1+f 2.【解析】(1)因为f (f )=f f (f f −ff +f ),所以f ′(f )=f f (f f −ff +f )+f f (f f −f )=f f (2f f −ff ),令f ′(f )=0,则2f f =ff ,当f =0时,不成立;当f ≠0时,2f =ff f ,令f (f )=f ef,所以f ′(f )=1−ff f ,当f <1时,f ′(f )>0,当f >1时,f ′(f )<0,所以f (f )在(−∞,1)上单调递增,在(1,+∞)上单调递减,又因为f (1)=1f ,当f →−∞时,f (f )→−∞,当f →+∞时,f (f )→0,'因此,当0<2f <1f 时,f (f )有2个极值点,即f 的取值范围为(2f ,+∞).(2)由(1)不妨设0<f 1<1<f 2,且{2f f 1=ff 12f f 2=ff 2,所以{ff2+f 1=fff +fff 1ff2+f 2=fff +fff 2,所以f 2−f 1=ln f 2−ln f 1,要证明2f 1f 2<f 1+f 2,只要证明2f 1f 2(ln f 2−ln f 1)<f 22−f 12,即证明2ln (f 2f 1)<f 2f 1−f 1f 2,设f 2f 1=f (f >1),即要证明2ln f −f +1f <0在f ∈(1,+∞)上恒成立,记f (f )=2ln f −f +1f (f >1),f ′(f )=2f −1−1f 2=−f 2+2f −1f 2=−(f −1)2f 2<0,所以f (f )在区间(1,+∞)上单调递减,所以f (f )<f (1)=0,即2ln f −f +1f <0,即2f 1f 2<f 1+f2.4.【安徽省示范高中皖北协作区2020届高三模拟】已知函数f(f)=−12f2+2f−2f ln f.$(1)讨论函数f(f)的单调性;(2)设f(f)=f′(f),方程f(f)=f(其中f为常数)的两根分别为f,f(f<f),证明:f′(f+f2)<0.注:f′(f),f′(f)分别为f(f),f(f)的导函数.【解析】(1)函数f(f)的定义域为(0,+∞),f′(f)=−f+2−2ff =−f2+2f−2ff,令f(f)=−f22f−2f,f=4−8f,①当f≤0时,即f≥12时,恒有f(f)≤0,即f′(f)≤0,∴函数f(f)在(0,+∞)上单调减区间.②当f>0时,即f<12时,由f(f)=0,解得f1=1−√1−2f,f2=1+√1−2f,(i)当0<f<12时,当f∈(0,f1),(f2,+∞)时,f(f)<0,即f′(f)<0,|当f∈(f1,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(0,f1),(f2,+∞)单调递减,在(f1,f2)上单调递增.(ii)当f≤0时,f(0)=−2f≥0,当f∈(f2,+∞)时,f(f)<0,即f′(f)<0,当f∈(0,f2)时,f(f)>0,即f′(f)>0,∴函数f(f)在(f2,+∞)单调递减,在(0,f2)上单调递增.证明(2)由条件可得f (f )=−f +2-2ff,f >0,∴f ′(f )=−1+2ff 2,!∵方程f (f )=f (其中f 为常数)的两根分别为f ,f (f <f ),∴{f (f )=f f (f )=f可得ff =2f ,∴f ′(f +f2)=−1+8f (f +f )2=−1+4ff (f +f )2=−1+4ff +f f+2,∵0<f <f , ∴0<ff <1, ∴ff +f f >2,∴f ′(f +f2)=−1+4f f +f f+2<−1+1=0.5.(2020江苏徐州一中高三期中)设函数()ln 1nf x x m x =+-,其中n ∈N *,n ≥2,且m ∈R .{(1)当2n =,1m =-时,求函数()f x 的单调区间;(2)当2n =时,令()()22g x f x x =-+,若函数()g x 有两个极值点1x ,2x ,且12x x <,求()2g x 的取值范围;【答案】(1)见解析;(2)12ln 2,04-⎛⎫⎪⎝⎭;(3)见解析 【解析】 【分析】(1)将2n =,1m =-代入解析式,求出函数的导数,从而即可得到函数()f x 的单调区间;(2)由题意知()221ln g x x x m x =-++,求导,从而可得2220x x m -+=,由方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <)可得102m <<,由方程得22x =,且2112x <<,由此分析整理即可得到答案;(3)求出函数的导数,得到()f x 的单调性,求出()f x 的最小值,通过构造函数结合零点存在性定理判断函数的零点即可.、【详解】(1)依题意得,()2ln 1f x x x =--,()0,x ∈+∞,∴ ()21212x f x x x x='-=-.令()0f x '>,得2x >;令()0f x '<,得02x <<. 则函数()f x在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)由题意知:()221ln g x x x m x =-++.则()22222m x x mg x x x x='-+=-+,令()0g x '=,得2220x x m -+=,故方程2220x x m -+=有两个不相等的正数根1x ,2x (12x x <),则()412002m m⎧∆=->⎪⎨>⎪⎩,, 解得102m <<.由方程得22x =,且2112x <<. ¥由222220x x m -+=,得22222m x x =-+.()()222222222122ln g x x x x x x =-++-+,2112x <<. ()22214ln 02g x x x ⎛'⎫=--> ⎪⎝⎭,即函数()2g x 是1,12⎛⎫ ⎪⎝⎭上的增函数, 所以()212ln204g x -<<,故()2g x 的取值范围是12ln2,04-⎛⎫⎪⎝⎭. 6.(2019·江苏徐州一中高三月考)已知函数()alnxf x x=,g (x )=b (x ﹣1),其中a ≠0,b ≠0 (1)若a =b ,讨论F (x )=f (x )﹣g (x )的单调区间;(2)已知函数f (x )的曲线与函数g (x )的曲线有两个交点,设两个交点的横坐标分别为x 1,x 2,证明:()12122x x g x x a++>. 【答案】(1)见解析(2)见解析,【解析】 【分析】(1)求导得()()222111lnx a F x a x lnx x x-⎛⎫'=-=--⎪⎝⎭,按照a >0、 a <0讨论()F x '的正负即可得解; (2)设x 1>x 2,转化条件得()1212112122x x x x x g x x ln a x x x +++=⋅-,令121x t x =>,()121t p t lnt t -=-⋅+,只需证明()0p t >即可得证. 【详解】(1)由已知得()()()1lnx F x f x g x a x x ⎛⎫=-=-+⎪⎝⎭,∴()()222111lnx a F x a x lnx x x-⎛⎫'=-=-- ⎪⎝⎭,当0<x <1时,∵1﹣x 2>0,﹣lnx >0,∴1﹣x 2﹣lnx >0,; 当x >1时,∵1﹣x 2<0,﹣lnx <0,∴1﹣x 2﹣lnx <0.<故若a >0,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 故若a <0,F (x )在(0,1)上单调递减,在(1,+∞)上单调递增.(2)不妨设x 1>x 2,依题意()1111lnx ab x x =-, ∴()2111alnx b x x =-①,同理得()2222alnx b x x =-②由①﹣②得,∴()()()2211122121221x alnb x x x x b x x x x x =--+=-+-, ∴()()1212121x lnx b x x a x x +-=-,∴()()()121211212121221x x x x x bg x x x x x x ln a a x x x +++=+⋅⋅+-=⋅-, 故只需证1211222x x x ln x x x +⋅->,取∴121x t x =>,即只需证明121t lnt t +⋅>-,1t ∀>成立, 即只需证()1201t p t lnt t -=-⋅>+,1t ∀>成立, .∵()()()()222114011t p t t t t t -'=-=++>,∴p (t )在区间[1,+∞)上单调递增,∴p (t )>p (1)=0,∀t>1成立,故原命题得证.【点睛】本题考查了导数的综合运用,考查了转化化归思想与计算能力,属于难题. 7.(2020·广西南宁二中高三(文))已知函数()()2ln 1,f x x ax x =++-()()21ln ln 12g x a x x ax x x=--+-+(Ⅰ)若0a >,讨论函数()f x 的单调性;(Ⅱ)设()()()h x f x g x =+,且()h x 有两个极值点12,x x ,其中11(0,]x e∈,求()()12h x h x -的最小值.(注:其中e 为自然对数的底数)【答案】(Ⅰ)见解析;(Ⅱ)最小值为4e. 【解析】 【分析】&(Ⅰ)对函数()f x 求导,对a 分情况讨论即可确定()f x 的单调区间;(Ⅱ)先对()h x 求导,令导数式等于0由韦达定理求出两个极值点12,x x 的关系1212,1x x a x x +=-= ,所以211111,x a x x x ==--,整理()()12h x h x -,构造关于1x 的函数()x ϕ ,求导根据单调性确定最值即可。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)
妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
高考数学导数压轴大题7大题型梳理归纳
导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
(完整版)高中数学导数经典题型解题技巧(运用方法)
高中数学导数经典题型解题技巧(运用方法)高中数学导数及其应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中·期末还是会考·高考,都是高中数学的必考内容之一。
因此,针对这两各部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们有更多·更好·更快的方法解决高中数学问题。
好了,下面就来讲解常用逻辑用语的经典解题技巧。
第一·认识导数概念和几何意义1.导数概念及其几何意义(1)了解导数概念的实际背景。
(2)理解导数的几何意义。
2.导数的运算(1)能根据导数定义求函数的导数。
(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如的复合函数)的导数。
3.导数在研究函数中的应用(1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间了函数的最大值、最小值(其中多项式函数一般不超过三次)。
4.生活中的优化问题会利用导数解决某些实际问题5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(2)了解微积分基本定理的含义。
总结:先搞清楚导数概念以及几何意义,才能更好地运用其解题技巧!231(),,,,,y C C y x y x y x y y x======为常数()f ax b +第二·导数运用和解题方法一、利用导数研究曲线的切线考情聚焦:1.利用导数研究曲线的切线是导数的重要应用,为近几年各省市高考命题的热点。
2.常与函数的图象、性质及解析几何知识交汇命题,多以选择、填空题或以解答题中关键一步的形式出现,属容易题。
解题技巧:1.导数的几何意义函数在处的导数的几何意义是:曲线在点处的切线的斜率(瞬时速度就是位移函数对时间的导数)。
导数压轴题题型梳理归纳
导数题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。
高中数学导数难题怎么解题
高中数学导数难题怎么解题1高中数学导数难题解题技巧1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。
2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。
利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。
3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。
在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。
2高中数学解题中导数的妙用导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。
这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。
如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
导数知识在方程求根解题中的妙用导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。
一个函数问题的多种解法研究
的充要 条 件.
式恒 成 立 的充 要 条 件— — 解 题 思 路 清 晰 , 解 法 简
明, 既培养了学生 的解题 能力又传授 了新 的知识 ,
真可 谓事 半 功倍.
参 考 文 献
用 以上方法还 可以解决很多类似 的高考把关
有. 厂 ( )≤ 僦 成 立 , 求 口的 取 值 范 围 ( 答案:
+
( 2 ) ( 充 分条 件 ) 由
一
) ≤ 。 得
l n ( x+1 ) ≤ ,
当 = 0时, 不等式 2 边相等. 由性质 1 知, 只需1 一
( 2 0 0 8年 全 国数 学高考 理科 试题 ) 在 中学数 学解 题教 学 中 , 教 师若 能引 导学 生从 解 题 新途 径 , 这不 但 能 教 给学 生 知 识 , 而 且在 这 种
题, 例如:
1 . 若 ) =
e 一 >1 在( o , 1 ) 上恒 成立 ,
求 a的取值范围( 答案 : ( 一∞, 2 ] ) .
( 2 o o 6年 全 国数 学 高考 理科 试题 )
[ 1 ] ・张国治. 一类导数 高考压轴题的通解[ J ] . 数 学教学, 2 0 1 2 ( 1 1 ) : 4 2 4 4 .
1
L
0
j
f
0
一
图 1
图 2
Y= 似 + b x必与 双 曲线 Y= 一 1 相 切 于一 点 , 根 据 切
( 1 ) 当 a=0时 , 如图 1 , 直 线 Y=b x与双 曲线
点处的函数值 以及 导数值 分别相等 , 求 出切点坐
专题24 参变分离法解决导数问题(解析版)-2022年高考数学一轮考点+重点+难点专项复习
专题24 参变分离法解决导数问题【知识总结】近几年高考压轴题常以x 与e x ,ln x 组合的函数为基础来命制,将基本初等函数的概念、图象与性质糅合在一起,发挥导数的工具作用,应用导数研究函数性质、证明相关不等式(或比较大小)、求参数的取值范围(或最值)。
预计今后高考试题除了延续往年的命题形式,还会更着眼于知识点的巧妙组合,注重对函数与方程、转化与化归、分类整合和数形结合等思想的灵活运用,突出对数学思维能力和数学核心素养的考查。
【例题讲解】方法一:分离参数、设而不求【例1】已知函数f (x )=ln x ,h (x )=ax (a ∈R )。
(1)若函数f (x )的图象与h (x )的图象无公共点,求实数a 的取值范围;(2)是否存在实数m ,使得对任意的x ∈⎝⎛⎭⎫12,+∞,都有y =f (x )+m x 的图象在g (x )=exx 的图象下方?若存在,请求出整数m 的最大值;若不存在,请说明理由。
【思路点拨】 (1)函数f (x )的图象与h (x )的图象无公共点,等价于方程ln xx =a 在(0,+∞)上无解;(2)将不等式恒成立问题转化为函数的最值问题,通过求导判断函数的单调性,进而得到参数的值。
【解】 (1)函数f (x )的图象与h (x )的图象无公共点,等价于方程ln xx =a 在(0,+∞)上无解,令t (x )=ln xx ,则t ′(x )=1-ln x x 2,令t ′(x )=0,得x =e 。
随着x 的变化,t ′(x ),t (x )的变化如下表所示。
因为x =e 是函数t (x )唯一的极值点,所以t (x )max =t (e)=1e ,故要使方程ln xx =a 在(0,+∞)上无解,需满足a >1e,故实数a 的取值范围为⎝⎛⎭⎫1e ,+∞。
(2)假设存在实数m 满足题意,则不等式ln x +m x <e xx 对任意的x ∈⎝⎛⎭⎫12,+∞恒成立, 即m <e x -x ln x 对任意的x ∈⎝⎛⎭⎫12,+∞恒成立。