MAX13202E中文资料
MAX3230E_08资料
General DescriptionThe MAX3230E/AE and MAX3231E/AE are +2.5V to +5.5V powered EIA/TIA-232 and V.28/V.24 communica-tions interfaces with low power requirements, high data-rate capabilities, and enhanced electrostatic discharge (ESD) protection, in a chip-scale package (UCSP™)and WLP package. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using I EC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model.The MAX3230E/AE and MAX3231E/AE achieve a 1µA supply current with Maxim’s AutoShutdown™ feature.They save power without changing the existing BIOS or operating systems by entering low-power shutdown mode when the RS-232 cable is disconnected, or when the transmitters of the connected peripherals are off.The transceivers have a proprietary low-dropout trans-mitter output stage, delivering RS-232-compliant perfor-mance from a +3.1V to +5.5V supply, and RS-232-compatible performance with a supply voltage as low as +2.5V. The dual charge pump requires only four,small 0.1µF capacitors for operation from a +3.0V sup-ply. Each device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.The MAX3230E/AE and MAX3231E/AE offer a separate power-supply input for the logic interface, allowing con-figurable logic levels on the receiver outputs and trans-mitter inputs. Operating over a +1.65V to V CC range, V L provides the MAX3230E/AE and MAX3231E/AE com-patibility with multiple logic families.The MAX3231E/AE contains one receiver and one trans-mitter. The MAX3230E/AE contains two receivers and two transmitters. The MAX3230E/AE and MAX3231E/AE are available in tiny chip-scale and WLP packaging and are specified across the extended industrial (-40°C to +85°C)temperature range.ApplicationsPersonal Digital Assistants Cell-Phone Data Lump Cables Set-Top Boxes Handheld Devices Cell PhonesFeatures♦6 x 5 Chip-Scale Package (UCSP) and WLP Package♦ESD Protection for RS-232 I/O Pins±15kV—IEC 1000-4-2 Air-Gap Discharge ±8kV—IEC 1000-4-2 Contact Discharge ±15kV—Human Body Model ♦1µA Low-Power AutoShutdown ♦250kbps Guaranteed Data Rate♦Meet EIA/TIA-232 Specifications Down to +3.1V ♦RS-232 Compatible to +2.5V Allows Operation from Single Li+ Cell ♦Small 0.1µF Capacitors ♦Configurable Logic LevelsMAX3230E/MAX3230AE/MAX3231E/MAX3231AE±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP________________________________________________________________Maxim Integrated Products 1Typical Operating Circuits19-3250; Rev 1; 10/08For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Ordering InformationUCSP is a trademark of Maxim Integrated Products, Inc.AutoShutdown is a trademark of Maxim Integrated Products, Inc.Typical Operating Circuits continued at end of data sheet.Pin Configurations appear at end of data sheet.+Denotes a lead-free/RoHS-compliant package.T = Tape-and-reel.M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND...........................................................-0.3V to +6.0V V+ to GND.............................................................-0.3V to +7.0V V- to GND..............................................................+0.3V to -7.0V V+ to |V-| (Note 1)................................................................+13V V L to GND..............................................................-0.3V to +6.0V Input VoltagesT_IN_, FORCEON, FORCEOFF to GND.....-0.3V to (V L + 0.3V)R_IN_ to GND ...................................................................±25V Output VoltagesT _OUT to GND...............................................................±13.2V R _OUT INVALID to GND............................-0.3V to (V L + 0.3V)INVALID to GND.........................................-0.3V to (V CC + 0.3V)Short-Circuit Duration T _OUT to GND........................Continuous Continuous Power Dissipation (T A = +70°C)6 ✕5 UCSP (derate 10.1mW/°C above +70°C)...........805mW 6 ✕5 WLP (derate 20mW/°C above +70°C).....................1.6W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Bump Temperature (soldering)Infrared (15s)...............................................................+200°C Vapor Phase (20s).......................................................+215°CELECTRICAL CHARACTERISTICSNote 1:V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.MAX3230E/MAX3230AE/MAX3231E/MAX3231AEELECTRICAL CHARACTERISTICS (continued)(V CC = +2.5V to +5.5V, V L = +1.65V to +5.5V, C1–C4 = 0.1µF, tested at +3.3V ±10%, T A = T MIN to T MAX . Typical values are at T A =+25°C, unless otherwise noted.) (Note 2)±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLPM A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 4_______________________________________________________________________________________TIMING CHARACTERISTICSTypical Operating Characteristics(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)-6-2-4204615002000500100025003000TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )10520152530025003000SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /μs )1000500150020000642810121416182010005001500200025003000OPERATING SUPPLY CURRENT vs. LOAD CAPACITANCE (MAX3231E)LOAD CAPACITANCE (pF)O P E R A T I N G S U P P L Y C U R R E N T (m A )MAX3230E/MAX3230AE/MAX3231E/MAX3231AE±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP_______________________________________________________________________________________5Typical Operating Characteristics (continued)(V CC = +3.3V, 250kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ωand C L , T A = +25°C, unless otherwise noted.)064281012141618202.53.53.04.04.55.05.5OPERATING SUPPLY CURRENT vs. SUPPLY VOLTAGE (MAX3231E)M A X 3230E /30A E /31E /31A E t o c 04SUPPLY VOLTAGE (V)O P E R A T I N G S U P P L Y C U R R E N T (m A )-8-4-620-2864102.53.53.04.04.55.05.5TRANSMITTER OUTPUT VOLTAGE vs. SUPPLY VOLTAGE (V CC RISING)SUPPLY VOLTAGE (V)T R A N S M I T T E R O U T P U T V O L T A G E (V )-8-4-620-2864102.53.53.04.0 4.55.0 5.5TRANSMITTER OUTPUT VOLTAGE vs. SUPPLY VOLTAGE (V CC FALLING)SUPPLY VOLTAGE (V)T R A N S M I T T E R O U T P U T V O L T A G E (V )M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 6_______________________________________________________________________________________Detailed DescriptionDual Mode™ Regulated Charge-PumpVoltage ConverterThe MAX3230E/AE and MAX3231E/AE internal power supply consists of a dual-mode regulated charge pump. For supply voltages above +3.7V, the charge pump generates +5.5V at V+ and -5.5V at V-. The charge pumps operate in a discontinuous mode. If the output voltages are less than ±5.5V, the charge pumps are enabled. I f the output voltages exceed ±5.5V, the charge pumps are disabled.For supply voltages below +2.85V, the charge pump generates +4.0V at V+ and -4.0V at V-. The charge pumps operate in a discontinuous mode. I f the output voltages are less than ±4.0V, the charge pumps are enabled. I f the output voltages exceed ±4.0V, the charge pumps are disabled.Each charge pump requires a flying capacitor (C1, C2)and a reservoir capacitor (C3, C4) to generate the V+and V- supply voltages.Voltage Generation in theSwitchover RegionThe MAX3230E/AE and MAX3231E/AE include a switchover circuit between these two modes that have approximately 400mV of hysteresis around the switchover point. The hysteresis is shown in Figure 1.This large hysteresis eliminates mode changes due to power-supply bounce.For example, a three-cell NiMh battery system starts at V CC = +3.6V, and the charge pump generates an out-put voltage of ±5.5V. As the battery discharges, the MAX3230E/AE and MAX3231E/AE maintain the outputsThe output regulation points then change to ±4.0V.When V CC is rising, the charge pump generates an out-put voltage of ±4.0V, while V CC is between +2.5V and +3.5V. When V CC rises above the switchover voltage of +3.5V, the charge pump switches modes to generate an output of ±5.5V.Table 1 shows different supply schemes and their oper-ating voltage ranges.RS-232 TransmittersThe transmitters are inverting level translators that convert CMOS logic levels to RS-232 levels. The MAX3230E/AE and MAX3231E/AE automatically reduce the RS-232-compliant levels (±5.5V) to RS-232-compat-ible levels (±4.0V) when V CC falls below approximately +3.1V. The reduced levels also reduce supply-current requirements, extending battery life. Built-in hysteresis of approximately 400mV for V CC ensures that the RS-Figure 1. V+ Switchover for Changing V CC6V4V20ms/divV CCV+Dual Mode is a trademark of Maxim Integrated Products, Inc.MAX3230E/MAX3230AE/MAX3231E/MAX3231AE232 output levels do not change if V CC is noisy or has a sudden current draw causing the supply voltage to drop slightly. The outputs return to RS-232-compliant levels (±5.5V) when V CC rises above approximately +3.5V.The MAX3230E/AE and MAX3231E/AE transmitters guarantee a 250kbps data rate with worst-case loads of 3k Ωin parallel with 1000pF.When FORCEOFF is driven to ground, the transmitters and receivers are disabled and the outputs become high impedance. When the AutoShutdown circuitry senses that all receiver and transmitter inputs are inac-tive for more than 30µs, the transmitters are disabled and the outputs go to a high-impedance state. When the power is off, the MAX3230E/AE and MAX3231E/AE permit the transmitter outputs to be driven up to ±12V.The transmitter inputs do not have pullup resistors.Connect unused inputs to GND or V L .RS-232 ReceiversThe MAX3230E/AE and MAX3231E/AE receivers con-vert RS-232 signals to logic-output levels. All receivers have inverting tri-state outputs and can be active or inactive. I n shutdown (FORCEOFF = low) or in AutoShutdown, the MAX3230E/AE and MAX3231E/AE receivers are in a high-impedance state (Table 2).The MAX3230E/AE and MAX3231E/AE feature an INVALID output that is enabled low when no valid RS-232signal levels have been detected on any receiver inputs.INVALID is functional in any mode (Figures 2 and 3).AutoShutdownThe MAX3230E/AE and MAX3231E/AE achieve a 1µA supply current with Maxim’s AutoShutdown feature,which operates when FORCEON is low and FORCEOFF is high. When these devices sense no valid signal lev-els on all receiver inputs for 30µs, the on-board charge pump and drivers are shut off, reducing V CC supply current to 1µA. This occurs if the RS-232 cable is dis-connected or the connected peripheral transmitters are turned off. The device turns on again when a valid level is applied to any RS-232 receiver input. As a result, the system saves power without changes to the existing BIOS or operating system.Table 2 and Figure 2c summarize the MAX3230E/AE and MAX3231E/AE operating modes. FORCEON and FORCEOFF override AutoShutdown. When neither con-trol is asserted, the I C selects between these states automatically, based on receiver input levels. Figures 2a, 2b, and 3a depict valid and invalid RS-232-receiver levels. Figures 3a and 3b show the input levels and tim-ing diagram for AutoShutdown operation.A system with AutoShutdown can require time to wake up. Figure 4 shows a circuit that forces the transmitters on for 100ms, allowing enough time for the other system to realize that the MAX3230E/AE and±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP_______________________________________________________________________________________7MAX3231E/AE are active. If the other system transmits valid RS-232 signals within that time, the RS-232 ports on both systems remain enabled.When shut down, the device’s charge pumps are off,V+ is pulled to V CC , V- is pulled to ground, and the transmitter outputs are high impedance. The time required to exit shutdown is typically 100µs (Figure 3b).V L Logic Supply InputUnlike other RS-232 interface devices, where the receiv-er outputs swing between 0 and V CC , the MAX3230E/AE and MAX3231E/AE feature a separate logic supply input (V L ) that sets V OH for the receiver outputs. The transmit-ter inputs (T_IN), FORCEON, and FORCEOFF , are also referred to V L . This feature allows maximum flexibility in interfacing to different systems and logic levels.Connect V L to the system’s logic supply voltage (+1.65V to +5.5V), and bypass it with a 0.1µF capacitor to GND.I f the logic supply is the same as V CC , connect V L to V CC . Always enable V CC before enabling the V L supply.V CC must be greater than or equal to the V L supply.Software-Controlled ShutdownIf direct software control is desired, connect FORCEOFF and FORCEON together to disable AutoShutdown. Themicrocontroller (µC) then drives FORCEOFF and FORCEON like a SHDN input. INVALID can be used to alert the µC to indicate serial data activity.±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electro-static discharges encountered during handling and assembly. The driver outputs and receiver inputs of the MAX3230E/AE and MAX3231E/AE have extra protec-tion against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and power-down. After an ESD event, Maxim’s E-versions keep working without latchup, whereas competing RS-232 products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the trans-mitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1) ±15kV using the Human Body Model2) ±8kV using the Contact Discharge method specified in IEC 1000-4-23) ±15kV using the IEC 1000-4-2 Air-Gap methodESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test setup, test methodology, and test results.Human Body ModelFigure 5a shows the Human Body Model. Figure 5b shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest,M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 8_______________________________________________________________________________________Figure 2a. MAX323_E Entering 1µA Supply Mode with AutoShutdownFigure 2b. MAX323_E with Transmitters Enabled UsingAutoShutdownFigure 2c. MAX323_E AutoShutdown LogicMAX3230E/MAX3230AE/MAX3231E/MAX3231AEwhich is then discharged into the test device through a 1.5k Ωresistor.IEC 1000-4-2The IEC 1000-4-2 standard covers ESD testing and per-formance of finished equipment. It does not specifically refer to ICs. The MAX3230E/AE and MAX3231E/AE aid in designing equipment that meets Level 4 (the highest level) of I EC 1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC 1000-4-2 is a higher peak current in I EC 1000-4-2, because series resistance is lower in the IEC 1000-4-2 model. Hence, the ESD with-stands voltage measured to IEC 1000-4-2 and is gener-ally lower than that measured using the Human Body Model. Figure 6a shows the I EC 1000-4-2 model, and Figure 6b shows the current waveform for the ±8kV IEC 1000-4-2 Level 4 ESD Contact Discharge test.The Air-Gap test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. I ts objective is to emulate the stress caused by contact that occurs with handling and assembly during manufactur-ing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs.Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.Applications InformationCapacitor SelectionThe capacitor type used for C1–C4 is not critical for proper operation; either polarized or nonpolarized capacitors can be used. However, ceramic chip capaci-tors with an X7R or X5R dielectric work best. The charge pump requires 0.1µF capacitors for 3.3V operation. For other supply voltages, see Table 3 for required capaci-tor values. Do not use values smaller than those listed in Table 3. Increasing the capacitor values (e.g., by a fac-tor of 2) reduces ripple on the transmitter outputs and slightly reduces power consumption. C2, C3, and C4can be increased without changing the vaue of C1.Caution: Do not increase C1 without also increasing the values of C2, C3, and C4 to maintain the proper ratios (C1 to the other capacitors).When using the minimum required capacitor values,make sure the capacitor value does not degrade exces-sively with temperature. If in doubt, use capacitors with±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP_______________________________________________________________________________________9Figure 3. AutoShutdown Trip LevelsFigure 4. AutoShutdown with Initial Turn-On to Wake Up aMouse or Another SystemM A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A Ea larger nominal value. The capacitor’s equivalent series resistance (ESR) usually rises at low temperatures and influences the amount of ripple on V+ and V-.Power-Supply DecouplingIn most circumstances, a 0.1µF V CC bypass capacitor is adequate. In applications that are sensitive to power-supply noise, use a capacitor of the same value as the charge-pump capacitor C1. Connect bypass capaci-tors as close to the IC as possible.Transmitter Outputs whenExiting ShutdownFigure 7 shows a transmitter output when exiting shut-down mode. The transmitter is loaded with 3k Ωin par-allel with 1000pF. The transmitter output displays no ringing or undesirable transients as it comes out of shutdown, and is enabled only when the magnitude of V- exceeds approximately -3V.High Data RatesThe MAX3230E/AE and MAX3231E/AE maintain the RS-232 ±5.0V minimum transmitter output voltage even at high data rates. Figure 8 shows a transmitter loop-back test circuit. Figure 9 shows a loopback test result at 120kbps, and Figure 10 shows the same test at 250kbps. For Figure 9, the transmitter was driven at 120kbps into an RS-232 load in parallel with 1000pF.For Figure 10, a single transmitter was driven at 250kbps and loaded with an RS-232 receiver in paral-lel with 1000pF.Figure 6a. IEC 1000-4-2 ESD Test ModelFigure 6b. IEC 1000-4-2 ESD Generator Current Waveform±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 10______________________________________________________________________________________Figure 5a. Human Body ESD Test ModelsFigure 5b. Human Body Model Current WaveformMAX3230E/MAX3230AE/MAX3231E/MAX3231AEUCSP Applications InformationFor the latest application details on UCSP construction,dimensions, tape carrier information, PC board tech-niques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to the Application Note UCSP—A Wafer-Level Chip-Scale Package available on Maxim’s website at /ucsp .Chip InformationTRANSISTOR COUNT:698PROCESS: CMOSFigure 8. Transmitter Loopback Test CircuitR_OUTT_OUTT_IN-5V5V 05V5V 04μs/divFigure 10. Loopback Test Result at 250kbps-5V 5V05V5V0R_OUTT_OUTT_IN4μs/divFigure 7. Transmitter Outputs Exiting Shutdown or Powering Up FORCEON =FORCEOFFT_OUT4μs/div2V/div5V/div±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP______________________________________________________________________________________11M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 12______________________________________________________________________________________MAX3230E/MAX3230AE/MAX3231E/MAX3231AEPin Configurations±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP______________________________________________________________________________________13M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP 14______________________________________________________________________________________Pin Configurations (continued)MAX3230E/MAX3230AE/MAX3231E/MAX3231AE±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP______________________________________________________________________________________15Package InformationFor the latest package outline information and land patterns, go to /packages .M A X 3230E /M A X 3230A E /M A X 3231E /M A X 3231A E±15kV ESD-Protected +2.5V to +5.5V RS-232 Transceivers in UCSP and WLP Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2008 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。
IC资料-MAX1403中文资料 (18 位、过采样的ADC)
高性能∑-Δ ADC的原理及应用作者:南京航空航天大学纪宗南来源:《国外电子元器件》摘要:MAX1403是美国MAXIM公司生产的一种高性能ADC芯片,可用于数字化的前端处理以及温度测量和变换,并可与单片机方便地连接。
该芯片同时具有高精度、多功能、低功耗等特点。
文中介绍了MAX1403的特点、结构和应用电路。
最后指出了MAX1403在装接及电路板设计方面应注意的问题。
关键词:模数转换器高精度低功耗接口 MAX14031 概述MAX1403是一种18位、过采样的ADC芯片,它利用∑-∆调制器和数字滤流器可实现真正的16位转换精度。
在应用中,为了得到高输出的数据速度,可选择数字滤波因子,并可降低转换分辨率。
而调制器的采样频率可作为最小功耗和最高输出数据速率选择的首选条件。
MAX1403能够提供具有独立编程(增益从1V/V~+128V/V)的三路真差动输入通道,并能补偿输入参数电压的直流失调。
而这三路真差动输入通道还能组成五路伪差动输入通道。
另外,该芯片还具有两个附加的差动校正通道,它能对增益和失调误差进行校正。
MAX1403能够对所有输入信号进行处理,并通过串行数字接口向外提供转换结果。
当主机时钟频率为2.4576MHz或1.024MHz时,片内数字滤波器能够对线路频率和有关谐波频率进行处理,并使这些频率的幅值为零。
以使在无需外接滤波器的条件下也能获得较好的滤波效果,同时,这也有助于提高输出端数字信号的质量。
MAX1403的主要特点如下:●分辨率为18位;●具有8个寄存器;●功耗低●具有两个匹配的传感器激励电流源;●3个真差动输入或5个伪差动输入通道;●2个附加输入校正通道;●带有一个双向串行通讯接口;●模拟电源和数字电源采用独立供电方式;●可用软件控制增益和失调。
2 引脚功能MAX1403芯片采用28引脚SSOP封装,它的引脚排列如图1所示。
各引脚功能如下:CLKIN:时钟输入引脚;CLKOUT:时钟输出引脚。
MAX213CAI-T中文资料
General DescriptionThe MAX200–MAX211/MAX213 transceivers are designed for RS-232 and V.28 communication inter-faces where ±12V supplies are not available. On-board charge pumps convert the +5V input to the ±10V need-ed for RS-232 output levels. The MAX201 and MAX209operate from +5V and +12V, and contain a +12V to -12V charge-pump voltage converter.The MAX200–MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V.28 specifications at a data rate of 20kbps. The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The 5µW shutdown mode of the MAX200, MAX205,MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shut-down and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing ring indica-tor (RI) to be monitored easily using only 75µW power.The MAX211 and MAX213 are available in a 28-pin wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now avail-able in a 24-pin SO package and a 24-pin SSOP. The MAX203 and MAX205 use no external components,and are recommended for applications with limited circuit board space.ApplicationsComputersLaptops, Palmtops, Notebooks Battery-Powered Equipment Hand-Held Equipment Next-Generation Device Features ♦For Low-Cost Applications:MAX221E: ±15kV ESD-Protected, +5V, 1µA, Single RS-232 Transceiver with AutoShutdown™♦For Low-Voltage and Space-Constrained Applications:MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA,+3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in UCSP™Package)♦For Space-Constrained Applications:MAX3228E/MAX3229E: ±15kV ESD-Protected,+2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable Applications:MAX3380E/MAX3381E: +2.35V TO +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins ♦For Low-Power Applications:MAX3224E–MAX3227E/MAX3244E/MAX3245E:±15kV ESD-Protected, 1µA, 1Mbps, +3.0V to+5.5V, RS-232 Transceivers with AutoShutdown Plus™MAX200–MAX211/MAX213+5V , RS-232 Transceivers with 0.1µF External Capacitors ________________________________________________________________Maxim Integrated Products 119-0065; Rev 6; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information appears at end of data sheetAutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.MAX200–MAX211/MAX213+5V , RS-232 Transceiverswith 0.1µF External Capacitors______________________________________________________________________________________19Ordering Information*Contact factory for dice specifications.M A X 200–M A X 211/M A X 213+5V , RS-232 Transceiverswith 0.1µF External Capacitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
美信芯片中文数据资料
iButton 1024位EEPROM
DS1982
iButton 1K位只添加
DS1990A
iButton序列号
DS1990R, DS1990R-F3, DS1990R-F5
序列号iButton
DS1991
iButton多密钥
DS2129
LVD SCSI 27线调节器
DS2401
硅序列号
具有以太网和CAN接口的网络微控制器
DS8102
双通道Σ-Δ调制器与编码器
DS8113
智能卡接口
DS8113-KIT
DS8113 EMV评估板
DS8313, DS8314
智能卡接口
DS89C430, DS89C440, DS89C450
超高速闪存微控制器
DS89C450-KIT
DS89C450评估套件
12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口
MAX1224, MAX1225
1.5Msps、单电源、低功耗、真差分、12位ADC
MAX1258EVC16, MAX1258EVKIT
MAX1057、MAX1058、MAX1257和MAX1258评估板/评估系统
MAX1274, MAX1275
MAX1034, MAX1035
8/4通道、±VREF多量程输入、串行14位ADC
MAX1072, MAX1075
1.8Msps、单电源、低功耗、真差分、10位ADC
MAX1076, MAX1078
1.8Msps、单电源、低功耗、真差分、10位ADC,内置电压基准
MAX11014, MAX11015
DS9490B, DS9490R
MAX3232ECPE中文资料
MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
Next-Generation Device Features
♦ For Space-Constrained Applications MAX3228E/MAX3229E: ±15kV ESD-Protected, +2.5V to +5.5V, RS-232 Transceivers in UCSP
*Dice are tested at TA = +25°C, DC parameters only. **EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Pin Configurations, Selector Guide, and Typical Operating Circuits appear at end of data sheet.
MAX3222EETP
20 Thin QFN-40°C to +85°C EP** (5mm x
5mm)
T2055-5
MAX3222EEUP -40°C to +85°C 20 TSSOP
—
MAX3222EEAP -40°C to +85°C 20 SSOP
—
MAX3222EEWN -40°C to +85°C 18 Wide SO —
MAX1239MEEE中文资料
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
MAX1236–MAX1239
♦ ♦
Applications
Hand-Held Portable Applications Medical Instruments Battery-Powered Test Equipment Solar-Powered Remote Systems Received-Signal-Strength Indicators System Supervision
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX3280EAUK+中文资料
(VCC = 3V to 5.5V, VL = VCC, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = 5V and TA = +25°C.) (Notes 2, 3)
Receiver Output High Voltage
Receiver Output Low Voltage
Three-State Output Current at Receiver Receiver Input Resistance Receiver Output Short-Circuit Current ESD PROTECTION
PINPACKAGE
5 SOT23-5 6 SOT23-6 6 SOT23-6 6 SOT23-6
TOP MARK
ADVM ABAT ABAU ABAV
Selector Guide
PART
VL
MAX3280E
—
MAX3281E
—
MAX3283E
—
MAX3284E
✔
Note 1: MAX3284E data rate is dependent on VL.
Supply Voltage (VCC) ...............................................-0.3V to +6V Control Input Voltage (EN, EN).................................-0.3V to +6V
Features
o ESD Protection: ±15kV–Human Body Model ±6kV–IEC 1000-4-2, Contact Discharge ±12kV–IEC 1000-4-2, Air-Gap Discharge
MAX1324中文介绍
详细描述模拟输入(Analog Inputs)T/H采样保持为了保证各通道输入信号的相位信息,每个输入通道都有一个专用的采样/保持放大器。
使用一个低值源电阻来降低增益误差谐波失真。
对一个输入信号,采样/保持所需要的时间取决与输入源电阻。
如果输入信号的源电阻是个高值电阻,则采样时间以及转换的时间间隔都会增加。
采样获取时间(t1)是芯片获取信号所需的最大的时间。
可以根据以下的公式计算这个获取时间:这里RIN=2.2K欧姆,RS是输入信号的源电阻值,并且t1不能小于180纳秒。
一个阻值小于100欧姆的源电阻对ADC的性能不会有很明显的影响。
为了提高交流输入信号的带宽,可以将输入信号送人一个宽带的能驱动ADC输入并快速稳定的缓冲器。
典型的采样/保持间隔延迟时间是13纳秒。
这个间隔延迟时间使得多达八个信号间的,采样/保持时间在50皮秒的,相关的相位信息得到保护。
图片2展示了一个简化的等价的输入电路,阐述了ADC的采样构架。
输入带宽输入的跟踪电路有一个12MHz的小信号带宽,使得电路可以将高速的暂态干扰数字化,并且在宽带的周期信号测量中在稀疏采样技术下加速ADC 的采样速度。
为了避免高频信号的干扰,建议加入一个低通滤波器。
输入电压幅值范围及保护这系列的芯片提供了正负10V,正负5V,以及0到+5V的模拟电压输入范围。
图片2展示了等价的输入电路。
模拟输入的过电压保护电路为双极性输入器件提供了正负16.5V的故障保护,为单极性输入器件提供了正负6V的故障保护。
这个故障保护电路把器件的输入或者输出电流限制在50毫安一下,在模拟输入的暂时过电压或者过电压的情况下提供一种附加的保护措施。
省电模式(Power-Saving Modes)关机模式(Shutdown Mode)在关机模式下,器件中的模拟和数字电路电源关闭并且器件从AVDD和DVDD流过100微安以下的电流。
可以从SHND输入引脚中选择关机模式。
将SHDN置高可进入关机模式。
MAX320-MAX322中文资料
ELECTRICAL CHARACTERISTICS
(V+ = +5V ±10%, V- = -5V ±10%, VINH = 3.5V, VINL = 2.5V, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER ANALOG SWITCH Analog Signal Range
For equivalent devices specified for single-supply operation, see the MAX323/MAX324/MAX325 data sheet. For quad versions of these switches, see the MAX391/MAX392/MAX393 data sheet.
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW Narrow SO (derate 5.88mW/°C above +70°C) .............471mW
µMAX (derate 4.10mW/°C above +70°C) .....................330mW CERDIP (derate 8.00mW/°C above +70°C) ..................640mW Operating Temperature Ranges MAX32_C_ _ ........................................................0°C to +70°C MAX32_E_ _......................................................-40°C to +85°C MAX32_MJA ...................................................-55°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C
MAX3202EETT+中文资料
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,or visit Maxim's website at .General DescriptionThe MAX3202E/MAX3203E/MAX3204E/MAX3206E are low-capacitance ±15kV ESD-protection diode arrays designed to protect sensitive electronics attached to communication lines. Each channel consists of a pair of diodes that steer ESD current pulses to V CC or G ND.The MAX3202E/MAX3203E/MAX3204E/MAX3206E pro-tect against ESD pulses up to ±15kV Human Body Model, ±8kV Contact Discharge, and ±15kV Air-G ap Discharge, as specified in IEC 61000-4-2. These devices have a 5pF capacitance per channel, making them ideal for use on high-speed data I/O interfaces.The MAX3202E is a two-channel device intended for USB and USB 2.0 applications. The MAX3203E is a triple-ESD structure intended for USB On-the-G o (OTG ) and video applications. The MAX3204E is a quad-ESD structure designed for Ethernet and FireWire ®applications, and the MAX3206E is a six-channel device designed for cell phone connectors and SVGA video connections.All devices are available in tiny 4-bump (1.05mm x 1.05mm) UCSP™, 6-bump (1.05mm x 1.57mm) UCSP,9-bump (1.52mm x 1.52mm) UCSP, 6-pin (3mm x 3mm)TDFN, and 12-pin (4mm x 4mm) TQFN packages and are specified for -40°C to +85°C operation.ApplicationsUSB Video USB 2.0Cell PhonesEthernet SVGA Video ConnectionsFireWireFeatures♦High-Speed Data Line ESD Protection±15kV—Human Body Model±8kV—IEC 61000-4-2, Contact Discharge ±15kV—IEC 61000-4-2, Air-Gap Discharge ♦Tiny UCSP Package Available ♦Low 5pF Input Capacitance ♦Low 1nA (max) Leakage Current ♦Low 1nA Supply Current♦+0.9V to +5.5V Supply Voltage Range ♦2-, 3-, 4-, or 6-Channel Devices AvailableMAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces________________________________________________________________Maxim Integrated Products 1Ordering Information19-2739; Rev 3; 12/07methods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section for more information.**EP = Exposed pad.Note:All devices operate over -40°C to +85°C temperature range.+Denotes a lead-free package.Selector GuideFireWire is a registered trademark of Apple Computer, Inc.UCSP is a trademark of Maxim Integrated Products, Inc.Typical Operating CircuitM A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +5V ±5%, T A = T MIN to T MAX , unless otherwise noted. Typical values are at V CC = +5V and T A = +25°C.) (Note 2)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 2:Limits over temperature are guaranteed by design, not production tested.Note 3:Idealized clamp voltages (L1 = L2 = L3 = 0) (Figure 1 ); see the Applications Information section for more information.Note 4:Guaranteed by design. Not production tested.V CC to GND...........................................................-0.3V to +7.0V I/O_ to GND................................................-0.3V to (V CC + 0.3V)Continuous Power Dissipation (T A = +70°C)2 ×2 UCSP (derate 3.0mW/°C above +70°C)..............239mW3 ×2 UCSP (derate 3.4mW/°C above +70°C)..............273mW 3 ×2 UCSP (derate 3.9mW/°C above +70°C)..............308mW 3 ×3 UCSP (derate 4.7mW/°C above +70°C)..............379mW 6-Pin TDFN (derate 24.4mW/°C above +70°C)..........1951mW 12-Pin TQFN (derate 16.9mW/°C above +70°C)........1349mWOperating Temperature Range ...........................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Junction Temperature .....................................................+150°C Bump Temperature (soldering) (Note 1)Infrared (15s)................................................................+220°C Vapor Phase (60s)........................................................+215°C Lead Temperature (soldering, 10s).................................+300°CNote 1:The UCSP devices are constructed using a unique set of packaging techniques that impose a limit on the thermal profile thedevice can be exposed to during board-level solder attach and rework. This limit permits the use of only the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection Reflow. Preheating is required. Hand or wave soldering is not allowed.MAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces_______________________________________________________________________________________3Typical Operating Characteristics(V CC = +5V, T A = +25°C, unless otherwise noted.)0.300.700.501.100.901.301.50CLAMP VOLTAGE vs. DC CURRENTM A X 3202E t o c 01DC CURRENT (mA)C L A M P V O L T A G E (V )30709050110130150110100100025354555657585LEAKAGE CURRENT vs. TEMPERATURETEMPERATURE (°C)L EA K A G E C U R R E N T (p A )2486101221345INPUT CAPACITANCE vs. INPUT VOLTAGEINPUT VOLTAGE (V)I N P U T C A P A C I T A N C E (p F )Detailed DescriptionThe MAX3202E/MAX3203E/MAX3204E/MAX3206E are diode arrays designed to protect sensitive electronics against damage resulting from ESD conditions or tran-sient voltages. The low input capacitance makes these devices ideal for high-speed data lines. The MAX3202E, MAX3203E, MAX3204E, and MAX3206E protect two, three, four, and six channels, respectively.The MAX3202E/MAX3203E/MAX3204E/MAX3206E are designed to work in conjunction with a device’s intrinsic ESD protection. The MAX3202E/MAX3203E/MAX3204E/MAX3206E limit the excursion of the ESD event to below ±25V peak voltage when subjected to the Human Body Model waveform. When subjected to the IEC 61000-4-2 waveform, the peak voltage is limited to ±60V when subjected to Contact Discharge and ±100V when subjected to Air-Gap Discharge. The device that is being protected by the MAX3202E/MAX3203E/MAX3204E/MAX3206E must be able to withstand these peak voltages plus any additional voltage generated by the parasitic board.Applications InformationDesign ConsiderationsMaximum protection against ESD damage results from proper board layout (see the Layout Recommendations section and Figure 2). A good layout reduces the para-sitic series inductance on the ground line, supply line,and protected signal lines.The MAX3202E/MAX3203E/MAX3204E/MAX3206E ESD diodes clamp the voltage on the protected lines during an ESD event and shunt the current to GND or V CC . In an ideal circuit, the clamping voltage, V C , is defined as the forward voltage drop, V F , of the protection diode plus any supply voltage present on the cathode.For positive ESD pulses:V C = V CC + V FFor negative ESD pulses:V C = -V FIn reality, the effect of the parasitic series inductance on the lines must also be considered (Figure 1).For positive ESD pulses:For negative ESD pulses:where I ESDis the ESD current pulse.M A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 4_______________________________________________________________________________________Figure 1. Parasitic Series InductanceFigure 2. Layout ConsiderationsMAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces_______________________________________________________________________________________5During an ESD event, the current pulse rises from zero to peak value in nanoseconds (Figure 3). For example,in a 15kV IEC-61000 Air-G ap Discharge ESD event,the pulse current rises to approximately 45A in 1ns (di/dt = 45 x 109). An inductance of only 10nH adds an additional 450V to the clamp voltage. An inductance of 10nH represents approximately 0.5in of board trace.Regardless of the device’s specified diode clamp volt-age, a poor layout with parasitic inductance significantly increases the effective clamp voltage at the protected signal line.A low-ESR 0.1µF capacitor must be used between V CC and G ND. This bypass capacitor absorbs the charge transferred by an +8kV IEC-61000 Contact Discharge ESD event.Ideally, the supply rail (V CC ) would absorb the charge caused by a positive ESD strike without changing its regulated value. In reality, all power supplies have an effective output impedance on their positive rails. If a power supply’s effective output impedance is 1Ω, then by using V = I ×R, the clamping voltage of V C increas-es by the equation V C = I ESD x R OUT . An +8kV IEC 61000-4-2 ESD event generates a current spike of 24A,so the clamping voltage increases by V C = 24A ×1Ω,or V C = 24V. Again, a poor layout without proper bypassing increases the clamping voltage. A ceramic chip capacitor mounted as close to the MAX3202E/MAX3203E/MAX3204E/MAX3206E V CC pin is the best choice for this application. A bypass capacitor should also be placed as close to the protected device as possible.±15kV ESD ProtectionESD protection can be tested in various ways; the MAX3202E/MAX3203E/MAX3204E/MAX3206E are characterized for protection to the following limits:•±15kV using the Human Body Model•±8kV using the Contact Discharge method speci-fied in IEC 61000-4-2•±15kV using the IEC 61000-4-2 Air-Gap Discharge methodESD Test ConditionsESD performance depends on a number of conditions.Contact Maxim for a reliability report that documents test setup, methodology, and results.Human Body ModelFigure 4 shows the Human Body Model, and Figure 5shows the current waveform it generates when dis-charged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of inter-est, which is then discharged into the device through a 1.5k Ωresistor.Figure 4. Human Body ESD Test ModelFigure 3. IEC 61000-4-2 ESD Generator Current WaveformM A X 3202E /M A X 3203E /M A X 3204E /M A X 3206EIEC 61000-4-2The IEC 61000-4-2 standard covers ESD testing and performance of finished equipment. The MAX3202E/MAX3203E/MAX3204E/MAX3206E help users design equipment that meets Level 4 of IEC 61000-4-2.The main difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2. Because series resistance is lower in the IEC 61000-4-2 ESD test model (Figure 6)the ESD-withstand voltage measured to this standard is generally lower than that measured using the Human Body Model. Figure 3 shows the current waveform for the ±8kV IEC 61000-4-2 Level 4 ESD Contact Discharge test.The Air-G ap Discharge test involves approaching the device with a charged probe. The Contact Discharge method connects the probe to the device before the probe is energized.Layout RecommendationsProper circuit-board layout is critical to suppress ESD-induced line transients. The MAX3202E/MAX3203E/MAX3204E/MAX3206E clamp to 100V; however, with improper layout, the voltage spike at the device is much higher. A lead inductance of 10nH with a 45A current spike at a dv/dt of 1ns results in an ADDITION-AL 450V spike on the protected line. It is essential that the layout of the PC board follows these guidelines:1)Minimize trace length between the connector or input terminal, I/O_, and the protected signal line.2)Use separate planes for power and ground to reduce parasitic inductance and to reduce the impedance to the power rails for shunted ESD current.3)Ensure short ESD transient return paths to G ND and V CC .4)Minimize conductive power and ground loops.5)Do not place critical signals near the edge of the PC board.6)Bypass V CC to GND with a low-ESR ceramic capac-itor as close to V CC as possible.7)Bypass the supply of the protected device to G ND with a low-ESR ceramic capacitor as close to the supply pin as possible.UCSP ConsiderationsFor general UCSP package information and PC layout considerations, refer to Maxim Application Note 263,Wafer-Level Chip-Scale Package .___________________UCSP ReliabilityThe UCSP represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly meth-ods, circuit-board material, and usage environment.The user should closely review these areas when con-sidering use of a UCSP. Performance through operat-ing life test and moisture resistance remains uncompromised as it is primarily determined by the wafer-fabrication process. Mechanical stress perfor-mance is a greater consideration for a UCSP. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a pack-aged product lead frame. Solder-joint contact integrity must be considered. Table 1 shows the testing done to characterize the UCSP reliability performance. In con-clusion, the UCSP is capable of performing reliably through environmental stresses as indicated by the results in the table. Additional usage data and recom-mendations are detailed in the UCSP application note,which can be found on Maxim’s website at .Chip InformationPROCESS: BiCMOSLow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 6_______________________________________________________________________________________Figure 6. IEC 61000-4-2 ESD Test ModelMAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces_______________________________________________________________________________________7Functional DiagramsM A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 8_______________________________________________________________________________________Pin ConfigurationsMAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces_______________________________________________________________________________________9Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 10______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces______________________________________________________________________________________11Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 12______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data InterfacesPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)M A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces 14______________________________________________________________________________________Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)MAX3202E/MAX3203E/MAX3204E/MAX3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces______________________________________________________________________________________15Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages.)M A X 3202E /M A X 3203E /M A X 3204E /M A X 3206ELow-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16_____________________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2007 Maxim Integrated Productsis a registered trademark of Maxim Integrated Products, Inc.。
Maxim美信产品命名规则--赛矽电子何小姐
Maxim产品命名规则第二货源型号命名我们提供的第二货源产品采用特定型号最流行的编号,而不是我们自己的命名规则。
其中包括原有的产品等级、温度范围、封装类型和引脚数编号。
对于第二货源,Maxim经常提供其他厂商不能提供的封装类型和温度范围,这些器件的型号通常采用原来的编码。
自主产品的命名规则绝大多数Maxim产品采用公司专有的命名系统,包括基础型号和后续的3个或4个字母尾缀,有时还带有其它标识符号。
例如:(A)是基础型号基本型号(也称为基础型号)用于区分不同的产品类型,与封装、温度及其它参量无关。
精度等级等参量通常用型号尾缀表示,有些情况下会为不同参量的器件分配一个新的基本型号。
(B)是3字母或4字母尾缀器件具有4个尾缀字母时,第一个尾标代表产品的等级(精度、电压规格、速率等)。
例如:MAX631ACPA中,第一个尾标"A"表示5%的输出精度。
产品数据资料中给出了型号对应的等级。
其余三个字符是3字母尾缀,分别表示温度范围、封装类型和引脚数。
具体含义如下表所示:例如:MAX696CWEC = 工作温度范围为C级(0°C至+70°C)W = 封装类型:W (SOIC 0.300")E = 引脚数,标号为E (这种封装类型为16引脚)请注意:不同的产品类型尾缀代码可能不一致,详细信息或规格说明请参考数据资料。
温度范围商业级 C 0°C至+70°C汽车AEC-Q100 2级 G -40°C 至+105°C汽车AEC-Q100 0级 T -40°C 至+150°C扩展商业级 U 0°C 至+85°C汽车AEC-Q100 1级 A -40°C 至+125°C工业级 I -20°C 至+85°C扩展工业级 E -40°C 至+85°C军品级 M -55°C 至+125°C封装类型A SSOP (缩小外形封装) 209 mil (14, 16, 20, 24, 28引脚);300 mil (36引脚)B UCSP (超小型晶片级封装)C 塑料TO-92;TO-220C LQFP 1.4mm (7mm x 7mm 过孔20mm x 20mm)C TQFP 1.0mm (7mm x 7mm 过孔20mm x 20mm)D 陶瓷Sidebraze 300 mil (8, 14, 16, 18, 20引脚);600 mil (24, 28, 40, 48引脚)E QSOP (四分之一小外型封装)F 陶瓷扁平封装G 金属外壳(金)G QFN (塑料、薄型、四边扁平封装,无引脚冲压) 0.9mmH SBGA (超级球栅阵列θ)H TQFP 1.0mm 5mm x 5mm (32引脚)H TSSOP (薄型缩小外形封装) 4.4mm (8引脚)J CERDIP (陶瓷双列直插) (N) 300 mil (8, 14, 16, 18, 20引脚);(W) 600 mil (24, 28, 40引脚)K SOT 1.23mm (8引脚)L LCC (陶瓷无引线芯片载体) (18, 20, 28引脚)L FCLGA (倒装芯片、基板球栅阵列);薄型LGA (薄型基板球栅阵列) 0.8mm L µDFN (微型双列扁平封装,无引线) (6, 8, 10引脚)M MQFP (公制四边扁平封装)高于1.4mm ;ED-QUAD (28mm x 28mm 160引脚) N PDIP (窄型塑料双列直插封装) 300 mil (24, 28引脚)P PDIP (塑料双列直插封装) 300 mil (8, 14, 16, 18, 20引脚);600 mil (24, 28, 40引脚)Q PLCC (塑料陶瓷无引线芯片载体)R CERDIP (窄型陶瓷双列直插封装) 300 mil (24, 28引脚)S SOIC (窄型塑料小外形封装) 150 milT 金属外壳(镍)T TDFN (塑料、超薄、双列扁平封装,无引线冲压) 0.9mm (6, 8, 10 & 14引脚)T 薄形QFN (塑料、超薄、四列扁平封装,无引线冲压) 0.8mmTQ 薄形QFN (塑料、超薄、四列扁平封装,无引线冲压) 0.8mm (8引脚)U SOT 1.23mm (3, 4, 5, 6引脚)U TSSOP (薄型缩小外形封装) 4.4mm (14, 16, 20, 24, 28, 38, 56引脚);6.1mm (48引脚)U µMAX (薄型缩小外形封装) 3mm x 3mm (8, 10引脚)V U. TQFN (超薄QFN - 塑装、超薄四边扁平,无引线冲压) 0.55mm W SOIC (宽型、塑料小外形封装) 300 milW WLP (晶片级封装)X CSBGA 1.4mmX CVBGA 1.0mmX SC70Y SIDEBRAZE (窄型) 300 mil (24, 28引脚),超薄LGA 0.5mmZ 薄型SOT 1mm (5, 6, 8引脚)引脚数A 8, 25, 46, 182B 10, 64C 12, 192D 14, 128E 16, 144F 22, 256G 24, 81H 44, 126I 28, 57J 32, 49K 5, 68, 265L 9, 40M 7, 48, 267N 18, 56O 42, 73P 20, 96Q 2, 100R 3, 84S 4, 80T 6, 160U 38, 60V 8 (.200"引脚圆周,隔离外壳), 30, 196W 10 (.230"引脚圆周,隔离外壳), 169X 36, 45Y 8 (.200"引脚圆周,外壳接引脚4), 52Z 10 (.230"引脚圆周,外壳接引脚5), 26, 72(C)其它尾缀字符在3字母或4字母尾缀的后面可能还会出现其它字符,这些字符可能单独出现,也可能与型号组合在一起。
MAX312LESE中文资料
MAX312L/MAX313L/MAX314L
10Ω, Quad, SPST, +3V Logic-Compatible Analog Switches
ABSOLUTE MAXIMUM RATINGS
(Voltages Referenced to GND) V+ ...........................................................................-0.3V to +44V V- ............................................................................+0.3V to -44V V+ to V-...................................................................-0.3V to +44V VIN_ to V- ................................................................-0.3V to +44V All Other Pins (Note 1) ..........................(V- - 0.3V) to (V+ + 0.3V) Continuous Current (COM_, NO_, NC_) ........................±100mA Peak Current (COM_, NO_, NC_)
Turn-On Time
Turn-Off Time
Break-Before-Make Time Delay (MAX314L only, Note 7)
MAX3232EEAE中文资料
MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
General Description
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24 communications interface devices feature low power consumption, high data-rate capabilities, and enhanced electrostatic-discharge (ESD) protection. The enhanced ESD structure protects all transmitter outputs and receiver inputs to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge (±9kV for MAX3246E), and ±15kV using the Human Body Model. The logic and receiver I/O pins of the MAX3237E are protected to the above standards, while the transmitter output pins are protected to ±15kV using the Human Body Model.
MAX232ECWE中文资料
________________________________________________________________Maxim Integrated Products 1General DescriptionThe MAX202E–MAX213E, MAX232E/MAX241E line drivers/receivers are designed for RS-232 and V.28communications in harsh environments. Each transmitter output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup.The various combinations of features are outlined in the Selector Guide.The drivers and receivers for all ten devices meet all EIA/TIA-232E and CCITT V.28specifications at data rates up to 120kbps, when loaded in accordance with the EIA/TIA-232E specification.The MAX211E/MAX213E/MAX241E are available in 28-pin SO packages, as well as a 28-pin SSOP that uses 60% less board space. The MAX202E/MAX232E come in 16-pin TSSOP, narrow SO, wide SO, and DIP packages. The MAX203E comes in a 20-pin DIP/SO package, and needs no external charge-pump capacitors. The MAX205E comes in a 24-pin wide DIP package, and also eliminates external charge-pump capacitors. The MAX206E/MAX207E/MAX208E come in 24-pin SO, SSOP, and narrow DIP packages. The MAX232E/MAX241E operate with four 1µF capacitors,while the MAX202E/MAX206E/MAX207E/MAX208E/MAX211E/MAX213E operate with four 0.1µF capacitors,further reducing cost and board space.________________________ApplicationsNotebook, Subnotebook, and Palmtop Computers Battery-Powered Equipment Hand-Held EquipmentNext-Generation Device Featureso For Low-Voltage ApplicationsMAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected Down to10nA, +3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in a UCSP™Package)o For Low-Power ApplicationsMAX3221/MAX3223/MAX3243: 1µA SupplyCurrent, True +3V to +5.5V RS-232 Transceivers with Auto-Shutdown™o For Space-Constrained ApplicationsMAX3233E/MAX3235E: ±15kV ESD-Protected,1µA, 250kbps, +3.0V/+5.5V, Dual RS-232Transceivers with Internal Capacitorso For Low-Voltage or Data Cable ApplicationsMAX3380E/MAX3381E: +2.35V to +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic PinsMAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversSelector Guide19-0175; Rev 6; 3/05Pin Configurations and Typical Operating Circuits appear at end of data sheet.YesPARTNO. OF RS-232DRIVERSNO. OF RS-232RECEIVERSRECEIVERS ACTIVE IN SHUTDOWNNO. OF EXTERNAL CAPACITORS(µF)LOW-POWER SHUTDOWNTTL TRI-STATE MAX202E 220 4 (0.1)No No MAX203E 220None No No MAX205E 550None Yes Yes MAX206E 430 4 (0.1)Yes Yes MAX207E 530 4 (0.1)No No MAX208E 440 4 (0.1)No No MAX211E 450 4 (0.1)Yes Yes MAX213E 452 4 (0.1)Yes Yes MAX232E 220 4 (1)No No MAX241E454 (1)YesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .AutoShutdown and UCSP are trademarks of Maxim Integrated Products, Inc.Ordering InformationOrdering Information continued at end of data sheet.2_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EABSOLUTE MAXIMUM RATINGSV CC ..........................................................................-0.3V to +6V V+................................................................(V CC - 0.3V) to +14V V-............................................................................-14V to +0.3V Input VoltagesT_IN............................................................-0.3V to (V+ + 0.3V)R_IN...................................................................................±30V Output VoltagesT_OUT.................................................(V- - 0.3V) to (V+ + 0.3V)R_OUT......................................................-0.3V to (V CC + 0.3V)Short-Circuit Duration, T_OUT....................................Continuous Continuous Power Dissipation (T A = +70°C)16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C).....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C)...........755mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)...889mW 20-Pin SO (derate 10.00mW/°C above +70°C).............800mW 24-Pin Narrow Plastic DIP(derate 13.33mW/°C above +70°C) ...............................1.07W 24-Pin Wide Plastic DIP(derate 14.29mW/°C above +70°C)................................1.14W 24-Pin SO (derate 11.76mW/°C above +70°C).............941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C)..........640mW 28-Pin SO (derate 12.50mW/°C above +70°C)....................1W 28-Pin SSOP (derate 9.52mW/°C above +70°C)..........762mW Operating Temperature RangesMAX2_ _EC_ _.....................................................0°C to +70°C MAX2_ _EE_ _...................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +165°C Lead Temperature (soldering, 10s).................................+300°CELECTRICAL CHARACTERISTICS(V CC = +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC = +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF for MAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A = T MIN to T MAX ; unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ELECTRICAL CHARACTERISTICS (continued)MAX202E–MAX213E, MAX232E/MAX241E (V CC= +5V ±10% for MAX202E/206E/208E/211E/213E/232E/241E; V CC= +5V ±5% for MAX203E/205E/207E; C1–C4 = 0.1µF forMAX202E/206E/207E/208E/211E/213E; C1–C4 = 1µF for MAX232E/241E; T A= T MIN to T MAX; unless otherwise noted. Typical valuesare at T A= +25°C.)Note 1:MAX211EE_ _ tested with V CC= +5V ±5%._______________________________________________________________________________________34______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E__________________________________________Typical Operating Characteristics(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)5.00MAX211E/MAX213ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)V O H , -V O L (V )5.56.06.57.07.58.0100020003000400050000MAX211E/MAX213E/MAX241E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )5101520253010002000300040005000_______________________________________________________________________________________5MAX202E–MAX213E, MAX232E/MAX241E____________________________Typical Operating Characteristics (continued)(Typical Operating Circuits, V CC = +5V, T A = +25°C, unless otherwise noted.)2MAX202E/MAX203E/MAX232E TRANSMITTER SLEW RATE vs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E ( V /µs )468101214100020003000400050005.07.5-7.53000MAX205E–MAX208ETRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCE-5.02.5LOAD CAPACITANCE (pF)O U T P U T V O L T A G E (V )10002000400050000-2.54550203000MAX205E–MAX208E SUPPLY CURRENT vs. LOAD CAPACITANCE2540LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )100020004000500035302.55.0-10.0180MAX205E –MAX208EOUTPUT VOLTAGE vs. DATA RATE-7.50DATA RATE (kbps)O U T P U T V O L T A G E (V )601202401503090210-2.5-5.010.07.56_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX203EMAX205E_____________________________________________________________Pin DescriptionsMAX202E/MAX232E_______________________________________________________________________________________7MAX202E–MAX213E, MAX232E/MAX241EMAX208E________________________________________________Pin Descriptions (continued)MAX206EMAX207E8_______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241EMAX211E/MAX213E/MAX241E)(MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)________________________________________________Pin Descriptions (continued)MAX211E/MAX213E/MAX241EFigure 3. Transition Slew-Rate Circuit_______________Detailed Description The MAX202E–MAX213E, MAX232E/MAX241E consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. These E versions provide extra protection against ESD. They survive ±15kV discharges to the RS-232 inputs and outputs, tested using the Human Body Model. When tested according to IEC1000-4-2, they survive ±8kV contact-discharges and ±15kV air-gap discharges. The rugged E versions are intended for use in harsh environments or applications where the RS-232 connection is frequently changed (such as notebook computers). The standard (non-“E”) MAX202, MAX203, MAX205–MAX208, MAX211, MAX213, MAX232, and MAX241 are recommended for applications where cost is critical.+5V to ±10V Dual Charge-PumpVoltage Converter The +5V to ±10V conversion is performed by dual charge-pump voltage converters (Figure 4). The first charge-pump converter uses capacitor C1 to double the +5V into +10V, storing the +10V on the output filter capacitor, C3. The second uses C2 to invert the +10V into -10V, storing the -10V on the V- output filter capacitor, C4.In shutdown mode, V+ is internally connected to V CC by a 1kΩpull-down resistor, and V- is internally connected to ground by a 1kΩpull up resistor.RS-232 Drivers With V CC= 5V, the typical driver output voltage swing is ±8V when loaded with a nominal 5kΩRS-232 receiver. The output swing is guaranteed to meet EIA/TIA-232E and V.28 specifications that call for ±5V minimum output levels under worst-case conditions. These include a 3kΩload, minimum V CC, and maximum operating temperature. The open-circuit output voltage swings from (V+ - 0.6V) to V-.Input thresholds are CMOS/TTL compatible. The unused drivers’ inputs on the MAX205E–MAX208E, MAX211E, MAX213E, and MAX241E can be left unconnected because 400kΩpull up resistors to V CC are included on-chip. Since all drivers invert, the pull up resistors force the unused drivers’ outputs low. The MAX202E, MAX203E, and MAX232E do not have pull up resistors on the transmitter inputs._______________________________________________________________________________________9MAX202E–MAX213E, MAX232E/MAX241E10______________________________________________________________________________________M A X 202E –M A X 213E , M A X 232E /M A X 241E±15kV ESD-Protected, +5V RS-232 Transceivers When in low-power shutdown mode, the MAX205E/MAX206E/MAX211E/MAX213E/MAX241E driver outputs are turned off and draw only leakage currents—even if they are back-driven with voltages between 0V and 12V. Below -0.5V in shutdown, the transmitter output is diode-clamped to ground with a 1k Ωseries impedance.RS-232 ReceiversThe receivers convert the RS-232 signals to CMOS-logic output levels. The guaranteed 0.8V and 2.4V receiver input thresholds are significantly tighter than the ±3V thresholds required by the EIA/TIA-232E specification.This allows the receiver inputs to respond to TTL/CMOS-logic levels, as well as RS-232 levels.The guaranteed 0.8V input low threshold ensures that receivers shorted to ground have a logic 1 output. The 5k Ωinput resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. Receiver inputs have approximately 0.5V hysteresis.This provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing.In shutdown, the MAX213E’s R4 and R5 receivers have no hysteresis.Shutdown and Enable Control (MAX205E/MAX206E/MAX211E/MAX213E/MAX241E)In shutdown mode, the charge pumps are turned off,V+ is pulled down to V CC , V- is pulled to ground, and the transmitter outputs are disabled. This reduces supply current typically to 1µA (15µA for the MAX213E).The time required to exit shutdown is under 1ms, as shown in Figure 5.ReceiversAll MAX213E receivers, except R4 and R5, are put into a high-impedance state in shutdown mode (see Tables 1a and 1b). The MAX213E’s R4 and R5 receivers still function in shutdown mode. These two awake-in-shutdown receivers can monitor external activity while maintaining minimal power consumption.The enable control is used to put the receiver outputs into a high-impedance state, to allow wire-OR connection of two EIA/TIA-232E ports (or ports of different types) at the UART. It has no effect on the RS-232 drivers or the charge pumps.N ote: The enabl e control pin is active l ow for the MAX211E/MAX241E (EN ), but is active high for the MAX213E (EN). The shutdown control pin is active high for the MAX205E/MAX206E/MAX211E/MAX241E (SHDN), but is active low for the MAX213E (SHDN ).Figure 4. Charge-Pump DiagramMAX202E–MAX213E, MAX232E/MAX241EV+V-200µs/div3V 0V 10V 5V 0V -5V -10VSHDNMAX211EFigure 5. MAX211E V+ and V- when Exiting Shutdown (0.1µF capacitors)X = Don't care.*Active = active with reduced performanceSHDN E N OPERATION STATUS Tx Rx 00Normal Operation All Active All Active 01Normal Operation All Active All High-Z 1XShutdownAll High-ZAll High-ZTable 1a. MAX205E/MAX206E/MAX211E/MAX241E Control Pin ConfigurationsTable 1b. MAX213E Control Pin ConfigurationsThe MAX213E’s receiver propagation delay is typically 0.5µs in normal operation. In shutdown mode,propagation delay increases to 4µs for both rising and falling transitions. The MAX213E’s receiver inputs have approximately 0.5V hysteresis, except in shutdown,when receivers R4 and R5 have no hysteresis.When entering shutdown with receivers active, R4 and R5 are not valid until 80µs after SHDN is driven low.When coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1µF capacitors).±15kV ESD ProtectionAs with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim’s engineers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim’s E versions keep working without latchup, whereas competing RS-232products can latch and must be powered down to remove latchup.ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits:1)±15kV using the Human Body Model2)±8kV using the contact-discharge method specifiedin IEC1000-4-23)±15kV using IEC1000-4-2’s air-gap method.ESD Test ConditionsESD performance depends on a variety of conditions.Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.Human Body ModelFigure 6a shows the Human Body Model, and Figure 6b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5k Ωresistor.S H D N ENOPERATION STATUS Tx 1–400Shutdown All High-Z 01Shutdown All High-Z 10Normal Operation 11Normal OperationAll ActiveAll Active Active1–34, 5High-Z ActiveHigh-Z High-Z High-Z Active*High-Z RxM A X 202E –M A X 213E , M A X 232E /M A X 241EIEC1000-4-2The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits. The MAX202E/MAX203E–MAX213E, MAX232E/MAX241E help you design equipment that meets level 4 (the highest level) of IEC1000-4-2, without the need for additional ESD-protection components.The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7b shows the current waveform for the 8kV IEC1000-4-2 level-four ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine ModelThe Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing, not just RS-232 inputs and outputs. Therefore,after PC board assembly,theMachine Model is less relevant to I/O ports.Figure 7a. IEC1000-4-2 ESD Test ModelFigure 7b. IEC1000-4-2 ESD Generator Current WaveformFigure 6a. Human Body ESD Test ModelFigure 6b. Human Body Model Current Waveform__________Applications InformationCapacitor Selection The capacitor type used for C1–C4 is not critical for proper operation. The MAX202E, MAX206–MAX208E, MAX211E, and MAX213E require 0.1µF capacitors, and the MAX232E and MAX241E require 1µF capacitors, although in all cases capacitors up to 10µF can be used without harm. Ceramic, aluminum-electrolytic, or tantalum capacitors are suggested for the 1µF capacitors, and ceramic dielectrics are suggested for the 0.1µF capacitors. When using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. If in doubt, use capacitors with a larger (e.g., 2x) nominal value. The capacitors’ effective series resistance (ESR), which usually rises at low temperatures, influences the amount of ripple on V+ and V-.Use larger capacitors (up to 10µF) to reduce the output impedance at V+ and V-. This can be useful when “stealing” power from V+ or from V-. The MAX203E and MAX205E have internal charge-pump capacitors. Bypass V CC to ground with at least 0.1µF. In applications sensitive to power-supply noise generated by the charge pumps, decouple V CC to ground with a capacitor the same size as (or larger than) the charge-pump capacitors (C1–C4).V+ and V- as Power Supplies A small amount of power can be drawn from V+ and V-, although this will reduce both driver output swing and noise margins. Increasing the value of the charge-pump capacitors (up to 10µF) helps maintain performance when power is drawn from V+ or V-.Driving Multiple Receivers Each transmitter is designed to drive a single receiver. Transmitters can be paralleled to drive multiple receivers.Driver Outputs when Exiting Shutdown The driver outputs display no ringing or undesirable transients as they come out of shutdown.High Data Rates These transceivers maintain the RS-232 ±5.0V minimum driver output voltages at data rates of over 120kbps. For data rates above 120kbps, refer to the Transmitter Output Voltage vs. Load Capacitance graphs in the Typical Operating Characteristics. Communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best.Table 2. Summary of EIA/TIA-232E, V.28 SpecificationsMAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)Table 3. DB9 Cable ConnectionsCommonly Used for EIA/TIAE-232E and V.24 Asynchronous Interfaces____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241EM A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)MAX202E–MAX213E, MAX232E/MAX241E____________Pin Configurations and Typical Operating Circuits (continued)M A X 202E –M A X 213E , M A X 232E /M A X 241E____________Pin Configurations and Typical Operating Circuits (continued)______________________________________________________________________________________21MAX202E–MAX213E, MAX232E/MAX241E Ordering Information (continued)*Dice are specified at T A= +25°C.M A X 202E –M A X 213E , M A X 232E /M A X 241E22________________________________________________________________________________________________________________________________________________Chip Topographies___________________Chip InformationC1-V+C1+V CC R2INT2OUT R2OUT0.117"(2.972mm)0.080"(2.032mm)V-C2+ C2-T2IN T1OUT R1INR1OUT T1INGNDR5INV-C2-C2+C1-V+C1+V CC T4OUTR3IN T3OUTT1OUT 0.174"(4.420mm)0.188"(4.775mm)T4IN R5OUT R4OUT T3IN R4IN EN (EN) SHDN (SHDN)R3OUT T2OUT GNDR1IN R1OUT T2IN R2OUTR2IN T1IN ( ) ARE FOR MAX213E ONLYTRANSISTOR COUNT: 123SUBSTRATE CONNECTED TO GNDTRANSISTOR COUNT: 542SUBSTRATE CONNECTED TO GNDMAX202E/MAX232EMAX211E/MAX213E/MAX241EMAX205E/MAX206E/MAX207E/MAX208E TRANSISTOR COUNT: 328SUBSTRATE CONNECTED TO GNDMAX202E–MAX213E, MAX232E/MAX241E Package InformationM A X 202E –M A X 213E , M A X 232E /M A X 241EPackage Information (continued)MAX202E–MAX213E, MAX232E/MAX241E±15kV ESD-Protected, +5V RS-232 TransceiversMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________25©2005 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products, Inc.Package Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)。
MAX系列芯片速查
MAXIM/DALLAS 中文数据资料DS12CR887, DS12R885, DS12R887 RTC,带有恒压涓流充电器DS1870 LDMOS RF功放偏置控制器DS1921L-F5X Thermochron iButtonDS1923 温度/湿度记录仪iButton,具有8kB数据记录存储器DS1982, DS1982-F3, DS1982-F5 1k位只添加iButton?DS1990A 序列号iButtonDS1990R, DS1990R-F3, DS1990R-F5 序列号iButtonDS1991 多密钥iButtonDS2129 LVD SCSI 27线调节器DS2401 硅序列号DS2406 双通道、可编址开关与1k位存储器DS2408 1-Wire、8通道、可编址开关DS2411 硅序列号,带有VCC输入DS2413 1-Wire双通道、可编址开关DS2430A 256位1-Wire EEPROMDS2431 1024位、1-Wire EEPROMDS2480B 串行、1-Wire线驱动器,带有负荷检测DS2482-100 单通道1-Wire主控制器DS2482-100 勘误表PDF: 2482-100A2DS2482-800, DS2482S-800 八通道1-Wire主控制器DS2482-800 勘误表PDF: 2482-800A2DS2502 1k位只添加存储器DS2505 16k位只添加存储器DS28E04-100 4096位、可寻址、1-Wire EEPROM,带有PIO DS3170DK DS3/E3单芯片收发器开发板DS3231, DS3231S 高精度、I2C集成RTC/TCXO/晶振DS33Z44 四路以太网映射器DS3902 双路、非易失、可变电阻器,带有用户EEPROMDS3906 三路、非易失、小步长调节可变电阻与存储器DS3984 4路冷阴极荧光灯控制器DS4302 2线、5位DAC,提供三路数字输出DS80C400-KIT DS80C400评估套件DS80C410, DS80C411 具有以太网和CAN接口的网络微控制器DS80C410 勘误表PDF: 80C410A1DS89C430, DS89C440, DS89C450 超高速闪存微控制器DS89C430 勘误表PDF: 89C430A2DS89C440 勘误表PDF: 89C440A2DS89C450 勘误表PDF: 89C450A2DS89C430 勘误表PDF: 89C430A3DS89C440 勘误表PDF: 89C440A3DS89C450 勘误表PDF: 89C450A3DS89C430 勘误表PDF: 89C430A5DS89C440 勘误表PDF: 89C440A5DS89C450 勘误表PDF: 89C450A5DS9090K 1-Wire器件评估板, B版DS9097U-009, DS9097U-E25, DS9097U-S09 通用1-Wire COM端口适配器DS9490, DS9490B, DS9490R USB至1-Wire/iButton适配器MAX1034, MAX1035 8/4通道、±VREF多量程输入、串行14位ADCMAX1072, MAX1075 1.8Msps、单电源、低功耗、真差分、10位ADCMAX1076, MAX1078 1.8Msps、单电源供电、低功耗、真差分、10位ADC,内置电压基准MAX1146, MAX1147, MAX1148, MAX1149 多通道、真差分、串行、14位ADC MAX1149EVKIT MAX1149评估板/评估系统MAX1220, MAX1257, MAX1258 12位、多通道ADC/DAC,带有FIFO、温度传感器和GPIO端口MAX1224, MAX1225 1.5Msps、单电源、低功耗、真差分、12位ADCMAX1258EVKIT MAX1057, MAX1058, MAX1257, MAX1258评估板/评估系统MAX1274, MAX1275 1.8Msps、单电源、低功耗、真差分、12位ADCMAX13000E, MAX13001E, MAX13002E, MAX13003E, MAX13004E, MAX13005E 超低电压电平转换器MAX1302, MAX1303 8/4通道、±VREF多量程输入、串行16位ADCMAX1304, MAX1305, MAX1306, MAX1308, MAX1309, MAX1310, MAX1312, MAX1313, MAX1314 8/4/2通道、12位、同时采样ADC,提供±10V、±5V或0至+5V 模拟输入范围MAX13050, MAX13052, MAX13053, MAX13054 工业标准高速CAN收发器,具有±80V故障保护MAX13080E, MAX13081E, MAX13082E, MAX13083E, MAX13084E, MAX13085E, MAX13086E, MAX13087E, MAX13088E, MAX13089E +5.0V、±15kV ESD保护、失效保护、热插拔、RS-485/RS-422收发器MAX13101E, MAX13102E, MAX13103E, MAX13108E 16通道、带有缓冲的CMOS 逻辑电平转换器MAX1334, MAX1335 4.5Msps/4Msps、5V/3V、双通道、真差分10位ADCMAX1336, MAX1337 6.5Msps/5.5Msps、5V/3V、双通道、真差分8位ADCMAX13481E, MAX13482E, MAX13483E ±15kV ESD保护USB收发器, 外部/内部上拉电阻MAX1350, MAX1351, MAX1352, MAX1353, MAX1354, MAX1355, MAX1356, MAX1357 双路、高端、电流检测放大器和驱动放大器MAX1450 低成本、1%精确度信号调理器,用于压阻式传感器MAX1452 低成本、精密的传感器信号调理器MAX1487, MAX481, MAX483, MAX485, MAX487, MAX488, MAX489, MAX490, MAX491 低功耗、限摆率、RS-485/RS-422收发器MAX1492, MAX1494 3位半和4位半、单片ADC,带有LCD驱动器MAX1494EVKIT MAX1493, MAX1494, MAX1495评估板/评估系统MAX1497, MAX1499 3位半和4位半、单片ADC,带有LED驱动器和μC接口MAX1499EVKIT MAX1499评估板/评估系统MAX15000, MAX15001 电流模式PWM控制器, 可调节开关频率MAX1515 低电压、内置开关、降压/DDR调节器MAX1518B TFT-LCD DC-DC转换器, 带有运算放大器MAX1533, MAX1537 高效率、5路输出、主电源控制器,用于笔记本电脑MAX1533EVKIT MAX1533评估板MAX1540A, MAX1541 双路降压型控制器,带有电感饱和保护、动态输出和线性稳压器MAX1540EVKIT MAX1540评估板MAX1551, MAX1555 SOT23、双输入、USB/AC适配器、单节Li+电池充电器MAX1553, MAX1554 高效率、40V、升压变换器,用于2至10个白光LED驱动MAX1556, MAX1557 16μA IQ、1.2A PWM降压型DC-DC转换器MAX1556EVKIT MAX1556EVKIT评估板MAX1558, MAX1558H 双路、3mm x 3mm、1.2A/可编程电流USB开关,带有自动复位功能MAX1586A, MAX1586B, MAX1586C, MAX1587A, MAX1587C 高效率、低IQ、带有动态内核的PMIC,用于PDA和智能电话MAX16801A/B, MAX16802A/B 离线式、DC-DC PWM控制器, 用于高亮度LED驱动器MAX1858A, MAX1875A, MAX1876A 双路180°异相工作的降压控制器,具有排序/预偏置启动和PORMAX1870A 升/降压Li+电池充电器MAX1870AEVKIT MAX1870A评估板MAX1874 双路输入、USB/AC适配器、1节Li+充电器,带OVP与温度调节MAX1954A 低成本、电流模式PWM降压控制器,带有折返式限流MAX1954AEVKIT MAX1954A评估板MAX19700 7.5Msps、超低功耗模拟前端MAX19700EVKIT MAX19700评估板/评估系统MAX19705 10位、7.5Msps、超低功耗模拟前端MAX19706 10位、22Msps、超低功耗模拟前端MAX19707 10位、45Msps、超低功耗模拟前端MAX19708 10位、11Msps、超低功耗模拟前端MAX2041 高线性度、1700MHz至3000MHz上变频/下变频混频器,带有LO缓冲器/开关MAX2043 1700MHz至3000MHz高线性度、低LO泄漏、基站Rx/Tx混频器MAX220, MAX222, MAX223, MAX225, MAX230, MAX231, MAX232, MAX232A, MAX233, MAX233A, MAX234, MAX235, MAX236, MAX237, MAX238, MAX239, MAX240, MAX241, MAX242, MAX243, MAX244, MAX245, MAX246, MAX247, MAX248, MAX249 +5V供电、多通道RS-232驱动器/接收器MAX2335 450MHz CDMA/OFDM LNA/混频器MAX2370 完备的、450MHz正交发送器MAX2370EVKIT MAX2370评估板MAX2980 电力线通信模拟前端收发器MAX2986 集成电力线数字收发器MAX3013 +1.2V至+3.6V、0.1μA、100Mbps、8路电平转换器MAX3205E, MAX3207E, MAX3208E 双路、四路、六路高速差分ESD保护ICMAX3301E, MAX3302E USB On-the-Go收发器与电荷泵MAX3344E, MAX3345E ±15kV ESD保护、USB收发器,UCSP封装,带有USB检测MAX3394E, MAX3395E, MAX3396E ±15kV ESD保护、大电流驱动、双/四/八通道电平转换器, 带有加速电路MAX3535E, MXL1535E +3V至+5V、提供2500VRMS隔离的RS-485/RS-422收发器,带有±15kV ESD保护MAX3570, MAX3571, MAX3573 HI-IF单芯片宽带调谐器MAX3643EVKIT MAX3643评估板MAX3645 +2.97V至+5.5V、125Mbps至200Mbps限幅放大器,带有信号丢失检测器MAX3654 47MHz至870MHz模拟CATV互阻放大器MAX3654EVKIT MAX3654评估板MAX3657 155Mbps低噪声互阻放大器MAX3658 622Mbps、低噪声、高增益互阻前置放大器MAX3735, MAX3735A 2.7Gbps、低功耗、SFP激光驱动器MAX3737 多速率激光驱动器,带有消光比控制MAX3737EVKIT MAX3737评估板MAX3738 155Mbps至2.7Gbps SFF/SFP激光驱动器,带有消光比控制MAX3744, MAX3745 2.7Gbps SFP互阻放大器,带有RSSIMAX3744EVKIT, MAX3745EVKIT MAX3744, MAX3745评估板MAX3748, MAX3748A, MAX3748B 紧凑的、155Mbps至4.25Gbps限幅放大器MAX3785 6.25Gbps、1.8V PC板均衡器MAX3787EVKIT MAX3787评估板MAX3793 1Gbps至4.25Gbps多速率互阻放大器,具有光电流监视器MAX3793EVKIT MAX3793评估板MAX3805 10.7Gbps自适应接收均衡器MAX3805EVKIT MAX3805评估板MAX3840 +3.3V、2.7Gbps双路2 x 2交叉点开关MAX3841 12.5Gbps CML 2 x 2交叉点开关MAX3967 270Mbps SFP LED驱动器MAX3969 200Mbps SFP限幅放大器MAX3969EVKIT MAX3969评估板MAX3982 SFP铜缆预加重驱动器MAX3983 四路铜缆信号调理器MAX3983EVKIT MAX3983评估板MAX3983SMAEVKIT MAX3983 SMA连接器评估板MAX4079 完备的音频/视频后端方案MAX4210, MAX4211 高端功率、电流监视器MAX4210EEVKIT MAX4210E、MAX4210A/B/C/D/F评估板MAX4211EEVKIT MAX4211A/B/C/D/E/F评估板MAX4397 用于双SCART连接器的音频/视频开关MAX4397EVKIT MAX4397评估系统/评估板MAX4411EVKIT MAX4411评估板MAX4729, MAX4730 低电压、3.5、SPDT、CMOS模拟开关MAX4754, MAX4755, MAX4756 0.5、四路SPDT开关,UCSP/QFN封装MAX4758, MAX4759 四路DPDT音频/数据开关,UCSP/QFN封装MAX4760, MAX4761 宽带、四路DPDT开关MAX4766 0.075A至1.5A、可编程限流开关MAX4772, MAX4773 200mA/500mA可选的限流开关MAX4795, MAX4796, MAX4797, MAX4798 450mA/500mA限流开关MAX4826, MAX4827, MAX4828, MAX4829, MAX4830, MAX4831 50mA/100mA 限流开关, 带有空载标记, μDFN封装MAX4832, MAX4833 100mA LDO,带有限流开关MAX4834, MAX4835 250mA LDO,带有限流开关MAX4836, MAX4837 500mA LDO,带有限流开关MAX4838A, MAX4840A, MAX4842A 过压保护控制器,带有状态指示FLAGMAX4850, MAX4850H, MAX4852, MAX4852H 双路SPDT模拟开关,可处理超摆幅信号MAX4851, MAX4851H, MAX4853, MAX4853H 3.5/7四路SPST模拟开关,可处理超摆幅信号MAX4854 7四路SPST模拟开关,可处理超摆幅信号MAX4854H, MAX4854HL 四路SPST、宽带、信号线保护开关MAX4855 0.75、双路SPDT音频开关,具有集成比较器MAX4864L, MAX4865L, MAX4866L, MAX4867, MAX4865, MAX4866 过压保护控制器,具有反向保护功能MAX4880 过压保护控制器, 内置断路开关MAX4881, MAX4882, MAX4883, MAX4884 过压保护控制器, 内部限流, TDFN封装MAX4901, MAX4902, MAX4903, MAX4904, MAX4905 低RON、双路SPST/单路SPDT、无杂音切换开关, 可处理负电压MAX4906, MAX4906F, MAX4907, MAX4907F 高速/全速USB 2.0开关MAX5033 500mA、76V、高效率、MAXPower降压型DC-DC变换器MAX5042, MAX5043 双路开关电源IC,集成了功率MOSFET和热插拔控制器MAX5058, MAX5059 可并联的副边同步整流驱动器和反馈发生器控制ICMAX5058EVKIT MAX5051, MAX5058评估板MAX5062, MAX5062A, MAX5063, MAX5063A, MAX5064, MAX5064A, MAX5064B 125V/2A、高速、半桥MOSFET驱动器MAX5065, MAX5067 双相、+0.6V至+3.3V输出可并联、平均电流模式控制器MAX5070, MAX5071 高性能、单端、电流模式PWM控制器MAX5072 2.2MHz、双输出、降压或升压型转换器,带有POR和电源失效输出MAX5072EVKIT MAX5072评估板MAX5074 内置MOSFET的电源IC,用于隔离型IEEE 802.3af PD和电信电源MAX5078 4A、20ns、MOSFET驱动器MAX5084, MAX5085 65V、200mA、低静态电流线性稳压器, TDFN封装MAX5088, MAX5089 2.2MHz、2A降压型转换器, 内置高边开关MAX5094A, MAX5094B, MAX5094C, MAX5094D, MAX5095A, MAX5095B, MAX5095C 高性能、单端、电流模式PWM控制器MAX5128 128抽头、非易失、线性变化数字电位器, 采用2mm x 2mm μDFN封装MAX5417, MAX5417L, MAX5417M, MAX5417N, MAX5417P, MAX5418, MAX5419 256抽头、非易失、I2C接口、数字电位器MAX5417LEVKIT MAX5417_, MAX5418_, MAX5419_评估板/评估系统MAX5477, MAX5478, MAX5479 双路、256抽头、非易失、I2C接口、数字电位器MAX5478EVKIT MAX5477/MAX5478/MAX5479评估板/评估系统MAX5490 100k精密匹配的电阻分压器,SOT23封装MAX5527, MAX5528, MAX5529 64抽头、一次性编程、线性调节数字电位器MAX5820 双路、8位、低功耗、2线、串行电压输出DACMAX5865 超低功耗、高动态性能、40Msps模拟前端MAX5920 -48V热插拔控制器,外置RsenseMAX5921, MAX5939 -48V热插拔控制器,外置Rsense、提供较高的栅极下拉电流MAX5932 正电源、高压、热插拔控制器MAX5932EVKIT MAX5932评估板MAX5936, MAX5937 -48V热插拔控制器,可避免VIN阶跃故障,无需RSENSE MAX5940A, MAX5940B IEEE 802.3af PD接口控制器,用于以太网供电MAX5940BEVKIT MAX5940B, MAX5940D评估板MAX5941A, MAX5941B 符合IEEE 802.3af标准的以太网供电接口/PWM控制器,适用于用电设备MAX5945 四路网络电源控制器,用于网络供电MAX5945EVKIT, MAX5945EVSYS MAX5945评估板/评估系统MAX5953A, MAX5953B, MAX5953C, MAX5953D IEEE 802.3af PD接口和PWM控制器,集成功率MOSFETMAX6640 2通道温度监视器,提供双路、自动PWM风扇速度控制器MAX6640EVKIT MAX6640评估系统/评估板MAX6641 兼容于SMBus的温度监视器,带有自动PWM风扇速度控制器MAX6643, MAX6644, MAX6645 自动PWM风扇速度控制器,带有过温报警输出MAX6678 2通道温度监视器,提供双路、自动PWM风扇速度控制器和5个GPIOMAX6695, MAX6696 双路远端/本地温度传感器,带有SMBus串行接口MAX6877EVKIT MAX6877评估板MAX6950, MAX6951 串行接口、+2.7V至+5.5V、5位或8位LED显示驱动器MAX6966, MAX6967 10端口、恒流LED驱动器和输入/输出扩展器,带有PWM亮度控制MAX6968 8端口、5.5V恒流LED驱动器MAX6969 16端口、5.5V恒流LED驱动器MAX6970 8端口、36V恒流LED驱动器MAX6977 8端口、5.5V恒流LED驱动器,带有LED故障检测MAX6978 8端口、5.5V恒流LED驱动器,带有LED故障检测和看门狗MAX6980 8端口、36V恒流LED驱动器, 带有LED故障检测和看门狗MAX6981 8端口、36V恒流LED驱动器, 带有LED故障检测MAX7030 低成本、315MHz、345MHz和433.92MHz ASK收发器, 带有N分频PLL MAX7032 低成本、基于晶振的可编程ASK/FSK收发器, 带有N分频PLLMAX7317 10端口、SPI接口输入/输出扩展器,带有过压和热插入保护MAX7319 I2C端口扩展器,具有8路输入,可屏蔽瞬态检测MAX7320 I2C端口扩展器, 带有八个推挽式输出MAX7321 I2C端口扩展器,具有8个漏极开路I/O口MAX7328, MAX7329 I2C端口扩展器, 带有八个I/O口MAX7347, MAX7348, MAX7349 2线接口、低EMI键盘开关和发声控制器MAX7349EVKIT MAX7349评估板/仿真: MAX7347/MAX7348MAX7375 3引脚硅振荡器MAX7381 3引脚硅振荡器MAX7389, MAX7390 微控制器时钟发生器, 带有看门狗MAX7391 快速切换时钟发生器, 带有电源失效检测MAX7445 4通道视频重建滤波器MAX7450, MAX7451, MAX7452 视频信号调理器,带有AGC和后肩钳位MAX7452EVKIT MAX7452评估板MAX7462, MAX7463 单通道视频重建滤波器和缓冲器MAX8505 3A、1MHz、1%精确度、内置开关的降压型调节器,带有电源就绪指示MAX8524, MAX8525 2至8相VRM 10/9.1 PWM控制器,提供精密的电流分配和快速电压定位MAX8525EVKIT MAX8523, MAX8525评估板MAX8533 更小、更可靠的12V、Infiniband兼容热插拔控制器MAX8545, MAX8546, MAX8548 低成本、宽输入范围、降压控制器,带有折返式限流MAX8550, MAX8551 集成DDR电源方案,适用于台式机、笔记本电脑及图形卡MAX8550EVKIT MAX8550, MAX8550A, MAX8551评估板MAX8552 高速、宽输入范围、单相MOSFET驱动器MAX8553, MAX8554 4.5V至28V输入、同步PWM降压控制器,适合DDR端接和负载点应用MAX8563, MAX8564 ±1%、超低输出电压、双路或三路线性n-FET控制器MAX8564EVKIT MAX8563, MAX8564评估板MAX8566 高效、10A、PWM降压调节器, 内置开关MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575 高效LCD升压电路,可True ShutdownMAX8571EVKIT MAX8570, MAX8571, MAX8572, MAX8573, MAX8574, MAX8575评估板MAX8576, MAX8577, MAX8578, MAX8579 3V至28V输入、低成本、迟滞同步降压控制器MAX8594, MAX8594A 5路输出PMIC,提供DC-DC核电源,用于低成本PDAMAX8594EVKIT MAX8594评估板MAX8632 集成DDR电源方案,适用于台式机、笔记本电脑和图形卡MAX8632EVKIT MAX8632评估板MAX8702, MAX8703 双相MOSFET驱动器,带有温度传感器MAX8707 多相、固定频率控制器,用于AMD Hammer CPU核电源MAX8716, MAX8717, MAX8757 交叉工作、高效、双电源控制器,用于笔记本电脑MAX8716EVKIT MAX8716评估板MAX8717EVKIT MAX8717评估板MAX8718, MAX8719 高压、低功耗线性稳压器,用于笔记本电脑MAX8725EVKIT MAX8725评估板MAX8727 TFT-LCD升压型、DC-DC变换器MAX8729 固定频率、半桥CCFL逆变控制器MAX8729EVKIT MAX8729评估板MAX8732A, MAX8733A, MAX8734A 高效率、四路输出、主电源控制器,用于笔记本电脑MAX8737 双路、低电压线性稳压器, 外置MOSFETMAX8737EVKIT MAX8737评估板MAX8738 EEPROM可编程TFT VCOM校准器, 带有I2C接口MAX8740 TFT-LCD升压型、DC-DC变换器MAX8743 双路、高效率、降压型控制器,关断状态下提供高阻MAX8751 固定频率、全桥、CCFL逆变控制器MAX8751EVKIT MAX8751评估板MAX8752 TFT-LCD升压型、DC-DC变换器MAX8758 具有开关控制和运算放大器的升压调节器, 用于TFT LCDMAX8758EVKIT MAX8758评估板MAX8759 低成本SMBus CCFL背光控制器MAX8760 双相、Quick-PWM控制器,用于AMD Mobile Turion 64 CPU核电源MAX8764 高速、降压型控制器,带有精确的限流控制,用于笔记本电脑MAX9223, MAX9224 22位、低功耗、5MHz至10MHz串行器与解串器芯片组MAX9225, MAX9226 10位、低功耗、10MHz至20MHz串行器与解串器芯片组MAX9483, MAX9484 双输出、多模CD-RW/DVD激光二极管驱动器MAX9485 可编程音频时钟发生器MAX9485EVKIT MAX9485评估板MAX9486 8kHz参考时钟合成器,提供35.328MHz倍频输出MAX9486EVKIT MAX9486评估板MAX9489 多路输出网络时钟发生器MAX9500, MAX9501 三通道HDTV滤波器MAX9500EVKIT MAX9500评估板MAX9502 2.5V视频放大器, 带有重建滤波器MAX9504A, MAX9504B 3V/5V、6dB视频放大器, 可提供大电流输出MAX9701 1.3W、无需滤波、立体声D类音频功率放大器MAX9701EVKIT MAX9701评估板MAX9702 1.8W、无需滤波、立体声D类音频功率放大器和DirectDrive立体声耳机放大器MAX9702EVSYS/EVKIT MAX9702/MAX9702B评估系统/评估板MAX9703, MAX9704 10W立体声/15W单声道、无需滤波的扩展频谱D类放大器MAX9705 2.3W、超低EMI、无需滤波、D类音频放大器MAX9705BEVKIT MAX9705B评估板MAX9710EVKIT MAX9710评估板MAX9712 500mW、低EMI、无需滤波、D类音频放大器MAX9713, MAX9714 6W、无需滤波、扩频单声道/立体声D类放大器MAX9714EVKIT MAX9704, MAX9714评估板MAX9715 2.8W、低EMI、立体声、无需滤波、D类音频放大器MAX9715EVKIT MAX9715评估板MAX9716, MAX9717 低成本、单声道、1.4W BTL音频功率放大器MAX9716EVKIT MAX9716评估板MAX9718, MAX9719 低成本、单声道/立体声、1.4W差分音频功率放大器MAX9718AEVKIT MAX9718A评估板MAX9719AEVKIT MAX9719A/B/C/D评估板MAX9721 1V、固定增益、DirectDrive、立体声耳机放大器,带有关断MAX9721EVKIT MAX9721评估板MAX9722A, MAX9722B 5V、差分输入、DirectDrive、130mW立体声耳机放大器,带有关断MAX9722AEVKIT MAX9722A, MAX9722B评估板MAX9723 立体声DirectDrive耳机放大器, 具有BassMax、音量控制和I2C接口MAX9725 1V、低功率、DirectDrive、立体声耳机放大器,带有关断MAX9728AEVKIT MAX9728A/MAX9728B评估板MAX9750, MAX9751, MAX9755 2.6W立体声音频功放和DirectDrive耳机放大器MAX9759 3.2W、高效、低EMI、无需滤波、D类音频放大器MAX9759EVKIT MAX9759评估板MAX9770, MAX9772 1.2W、低EMI、无需虑波、单声道D类放大器,带有立体声DirectDrive耳机放大器MAX9787 2.2W立体声音频功率放大器, 提供模拟音量控制MAX9850 立体声音频DAC,带有DirectDrive耳机放大器MAX9890 音频咔嗒声-怦然声抑制器MAX9951, MAX9952 双路引脚参数测量单元MAX9960 双闪存引脚电子测量/高压开关矩阵MAX9961, MAX9962 双通道、低功耗、500Mbps ATE驱动器/比较器,带有2mA负载MAX9967 双通道、低功耗、500Mbps ATE驱动器/比较器,带有35mA负载MAX9986A SiGe高线性度、815MHz至1000MHz下变频混频器, 带有LO缓冲器/开关MAXQ2000 低功耗LCD微控制器MAXQ2000 勘误表PDF: MAXQ2000A2MAXQ2000-KIT MAXQ2000评估板MAXQ3120-KIT MAXQ3120评估板MXL1543B +5V、多协议、3Tx/3Rx、软件可选的时钟/数据收发器。
MAX202CSE中文资料
General DescriptionThe MAX200–MAX211/MAX213 transceivers are designed for RS-232 and V.28 communication inter-faces where ±12V supplies are not available. On-board charge pumps convert the +5V input to the ±10V need-ed for RS-232 output levels. The MAX201 and MAX209operate from +5V and +12V, and contain a +12V to -12V charge-pump voltage converter.The MAX200–MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V.28 specifications at a data rate of 20kbps. The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The 5µW shutdown mode of the MAX200, MAX205,MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shut-down and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing ring indica-tor (RI) to be monitored easily using only 75µW power.The MAX211 and MAX213 are available in a 28-pin wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now avail-able in a 24-pin SO package and a 24-pin SSOP. The MAX203 and MAX205 use no external components,and are recommended for applications with limited circuit board space.ApplicationsComputersLaptops, Palmtops, Notebooks Battery-Powered Equipment Hand-Held Equipment Next-Generation Device Features ♦For Low-Cost Applications:MAX221E: ±15kV ESD-Protected, +5V, 1µA, Single RS-232 Transceiver with AutoShutdown™♦For Low-Voltage and Space-Constrained Applications:MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA,+3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in UCSP™Package)♦For Space-Constrained Applications:MAX3228E/MAX3229E: ±15kV ESD-Protected,+2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable Applications:MAX3380E/MAX3381E: +2.35V TO +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins ♦For Low-Power Applications:MAX3224E–MAX3227E/MAX3244E/MAX3245E:±15kV ESD-Protected, 1µA, 1Mbps, +3.0V to+5.5V, RS-232 Transceivers with AutoShutdown Plus™MAX200–MAX211/MAX213+5V , RS-232 Transceivers with 0.1µF External Capacitors ________________________________________________________________Maxim Integrated Products 119-0065; Rev 6; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information appears at end of data sheetAutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.MAX200–MAX211/MAX213+5V , RS-232 Transceiverswith 0.1µF External Capacitors______________________________________________________________________________________19Ordering Information*Contact factory for dice specifications.M A X 200–M A X 211/M A X 213+5V , RS-232 Transceiverswith 0.1µF External Capacitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
MAX490EESA+资料
Supply Control
Voltage (VCC) Input Voltage
.(.–R—..E.–..,..D..E..)........................................-.0....5..V...t.o...(.V..C...C...+...0...152VV)
♦ For Low-Voltage Applications: MAX3483E/MAX3485E/MAX3486E/MAX3488E/ MAX3490E/MAX3491E: +3.3V Powered, ±15kV ESD-Protected, 12Mbps, Slew-Rate-Limited, True RS-485/RS-422 Transceivers
General Description
The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electro-static discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slew-rate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.
MAXIM和TI芯片命名规则
MAXIM和TI芯片命名规则MAXIM命名规则AXIM前缀是“MAX”。
DALLAS则是以“DS”开头。
MAX×××或MAX××××说明:1后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。
2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。
3 CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。
举例MAX202CPE、CPE普通ECPE普通带抗静电保护MAX202EEPE 工业级抗静电保护(-45℃-85℃)说明 E指抗静电保护MAXIM数字排列分类1字头模拟器 2字头滤波器 3字头多路开关4字头放大器 5字头数模转换器 6字头电压基准7字头电压转换 8字头复位器 9字头比较器三字母后缀:例如:MAX358CPDC = 温度范围P = 封装类型D = 管脚数温度范围:C = 0℃至70℃(商业级)I = -20℃至+85℃(工业级)E = -40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M = -55℃至+125℃(军品级)封装类型:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP) J CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列L LCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插Q PLCC (塑料式引线芯片承载封装)R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92,MQUAD/D 裸片/PR 增强型塑封/W 晶圆MAXIM 专有产品型号命名MAX XXX (X) X X X1 2 3 4 5 61.前缀:MAXIM公司产品代号2.产品系列编号:100-199 模数转换器600-699 电源产品200-299 接口驱动器/接受器700-799 微处理器外围显示驱动器300-399 模拟开关模拟多路调制器800-899 微处理器监视器400-499 运放900-999 比较器500-599 数模转换器3.指标等级或附带功能:A表示5%的输出精度,E表示防静电4 .温度范围:C= 0℃至70℃(商业级)I =-20℃至+85℃(工业级)E =-40℃至+85℃(扩展工业级)A = -40℃至+85℃(航空级)M =-55℃至+125℃(军品级)5.封装形式:A SSOP(缩小外型封装)B CERQUADC TO-220, TQFP(薄型四方扁平封装)D 陶瓷铜顶封装E 四分之一大的小外型封装F 陶瓷扁平封装 H 模块封装, SBGAJ CERDIP (陶瓷双列直插)K TO-3 塑料接脚栅格阵列LLCC (无引线芯片承载封装)M MQFP (公制四方扁平封装)N 窄体塑封双列直插P 塑封双列直插 Q PLCC (塑料式引线芯片承载封装) R 窄体陶瓷双列直插封装(300mil)S 小外型封装T TO5,TO-99,TO-100U TSSOP,μMAX,SOTW 宽体小外型封装(300mil)X SC-70(3脚,5脚,6脚)Y 窄体铜顶封装Z TO-92MQUAD /D裸片/PR 增强型塑封/W 晶圆6.管脚数量:A:8B:10,64C:12,192D:14E:16F:22,256G:24H:44I:28 J:32 K:5,68 L:40M:7,48N:18O:42P:20Q:2,100R:3,84 S:4,80 T:6,160U:60V:8(圆形)W:10(圆形)X:36Y:8(圆形)Z:10(圆形)DALLAS命名规则例如DS1210N.S. DS1225Y-100INDN=工业级S=表贴宽体 MCG=DIP封Z=表贴宽体 MNG=DIP工业级IND=工业级 QCG=PLCC封 Q=QFPAD的命名规则AD常用产品型号命名规则DSP信号处理器放大器工业用器件通信电源管理移动通信视频/图像处理器等模拟A/D D/A 转换器传感器模拟器件AD产品以“AD”、“ADV”居多,也有“OP”或者“REF”、“AMP”、“SMP”、“SSM”、“TMP”、“TMS”等开头的。
3线总线收发器XE1201
3线总线收发器XE1201
谢建辉
【期刊名称】《国外电子元器件》
【年(卷),期】2002(000)004
【摘要】XE1201是 XEMICS公司生产的 RF IC, 它集无线电发射与接收功能于一身,并具有外用元件少,功率损耗低等特点,可使用 3线总线接口来选择发射、接收与待机三种传输状态 . 文中介绍了 XE1201的引脚功能、工作原理、外部元件的选择及其相关的匹配网络电路,最后给出了它的典型应用电路 .
【总页数】5页(P34-38)
【作者】谢建辉
【作者单位】西安敬业电子工程有限责任公司
【正文语种】中文
【中图分类】TN92
【相关文献】
1.收发器MAX13412E在多点总线传输线隔离系统中的应用 [J], 刘波;卢兴顺
2.8线总线收发器SN74LVCC3245的原理及应用 [J], 王蕊;于超
3.XE1201单片集成无线收发器 [J], 衡彤;徐晓秋;李眉眉;胡莉
4.Maxim MAX22088家庭总线收发器解决方案 [J],
5.具有热插入和总线保持功能的八路总线收发器 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Note 1: Limits over temperature are guaranteed by design, not production tested. Note 2: Idealized clamp voltages (L1 = L2 = L3 = 0) (Figure 1); see the Applications Information section for more information. Note 3: Guaranteed by design. Not production tested.
Applications
USB USB 2.0 PDAs FireWire Ethernet Video Cell Phones
Pin Configurations
GND N.C. I/O2
Note: All devices are specified over the -40°C to +125°C automotive operating temperature range. +Denotes lead-free package
Байду номын сангаас
MAX13202E/MAX13204E/MAX13206E/MAX13208E
Ordering Information
PART MAX13202EALT+ MAX13204EALT+ MAX13206EALA+ MAX13208EALB+ PINPKG 6 µDFN 6 µDFN 8 µDFN 10 µDFN PROTECTED I/O PORTS 2 4 6 8 TOP MARK BV AAO AAL AAD PKG CODE L611-1 L622-1 L822-1 L1022-1
Features
♦ High-Speed Data-Line ESD Protection ±15kV—Human Body Model ±30kV—IEC 61000-4-2, Air-Gap Discharge ♦ Tiny µDFN Package MAX13202E (1mm x 1.5mm) MAX13204E (2mm x 2mm) MAX13206E (2mm x 2mm) MAX13208E (2mm x 2mm) ♦ Low 6pF Input Capacitance ♦ Low 1nA (max) Leakage Current ♦ +0.9V to +16V Supply Voltage Range
ELECTRICAL CHARACTERISTICS
(VCC = +5V ±5%, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VCC = +5V and TA = +25°C.) (Note 1)
PARAMETER Supply Voltage Supply Current Diode Forward Voltage SYMBOL VCC ICC VF IF = 10mA TA = +25°C, ±15kV, Human Body Model, IF = 10A Channel Clamp Voltage (Note 2) VC TA = +25°C, ±14kV, Contact Discharge (IEC 61000-4-2), IF = 42A TA = +25°C, ±30kV, Air-Gap Discharge (IEC 61000-4-2), IF = 90A Channel Leakage Current (Note 3) Channel Input Capacitance ESD PROTECTION Human Body Model IEC 61000-4-2 Contact Discharge IEC 61000-4-2 Air-Gap Discharge MAX13204E/MAX13206E/MAX13208E MAX13202E ±15 ±14 ±12 ±30 kV kV kV TA = -40°C to +50°C TA = -40°C to +125°C VCC = 5V, bias of VCC/2, f = 1MHz (Note 3) Positive transients Negative transients Positive transients Negative transients Positive transients Negative transients -1 -1 6 0.65 CONDITIONS MIN 0.9 1 TYP MAX 16.0 100 0.95 VCC + 25 -25 VCC + 80 V -80 VCC + 120 -120 +1 +1 7 nA µA pF UNITS V nA V
元器件交易网
19-3855; Rev 1; 4/06
2-/4-/6-/8-Channel, ±30kV ESD Protectors in µDFN
General Description
The MAX13202E/MAX13204E/MAX13206E/MAX13208E low-capacitance ±30kV ESD-protection diode arrays are designed to protect sensitive electronics attached to communication lines. Each channel consists of a pair of diodes that steer ESD current pulses to VCC or GND. The MAX13202E/MAX13204E/MAX13206E/MAX13208E protect against ESD pulses up to ±15kV Human Body Model (HBM) and ±30kV Air-Gap Discharge, as specified in IEC 61000-4-2. These devices have a 6pF oncapacitance per channel, making them ideal for use on high-speed data I/O interfaces. The MAX13204E is a quad-ESD structure designed for Ethernet and FireWire® applications. The MAX13202E/ MAX13206E/MAX13208E are 2-channel, 6-channel, and 8-channel devices. They are designed for cellphone connectors and SVGA video connections. These devices are available in 6-, 8-, and 10-pin µDFN packages and are specified over the -40°C to +125°C automotive operating temperature range.
2-/4-/6-/8-Channel, ±30kV ESD Protectors in µDFN MAX13202E/MAX13204E/MAX13206E/MAX13208E
ABSOLUTE MAXIMUM RATINGS
VCC to GND ............................................................-0.3V to +18V I/O_ to GND ................................................-0.3V to (VCC + 0.3V) Continuous Power Dissipation (TA = +70°C) 6-Pin, 1mm x 1.5mm µDFN (derate 2.1mW/°C above +70°C)................................................................168mW 6-Pin, 2mm x 2mm µDFN (derate 4.5mW/°C above +70°C)................................................................358mW 8-Pin, 2mm x 2mm µDFN (derate 4.8mW/°C above +70°C)................................................................381mW 10-Pin, 2mm x 2mm µDFN (derate 5.0mW/°C above +70°C)................................................................403mW Operating Temperature Range .........................-40°C to +125°C Storage Temperature Range .............................-65°C to +150°C Junction Temperature .....................................................+150°C Lead Temperature (soldering, 10s) .................................+300°C