考点15 平面向量的数量积、线段的定比分点与平移
高考数学全国统一考试大纲
高考数学全国统一考试大纲高考数学全国统一考试大纲Ⅰ。
考试性质全国统一考试是选拔性考试,由合格的高中毕业生和具有同等学力的考生参加,高等学校依照考生的成绩,按照招生计划进行综合评估,以德、智、体、全面衡量,择优录取。
因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ。
考试能力要求1.平面向量考试内容包括向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离和平移。
考生需要:1) 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2) 掌握向量的加法和减法。
3) 掌握实数与向量的积,了解两个向量共线的充要条件。
4) 了解平面向量的差不多定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积能够处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6) 掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,同时能够熟练运用平移公式。
2.集合、简易逻辑考试内容包括集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件。
考生需要:1) 理解集合、子集、补集、交集、并集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关的术语和符号,并能正确表示一些简单的集合。
2) 理解逻辑联结词“或”、“且”、“非”的含义。
理解四种命题及其相互关系。
掌握充分条件、必要条件及充要条件的意义。
3.函数考试内容包括映射、函数、函数的单调性、奇偶性、反函数、互为反函数的函数图像间的关系、指数概念的扩充、有理指数幂的运算性质、指数函数、对数、对数的运算性质、对数函数和函数的应用。
考生需要:1) 了解映射的概念,理解函数的概念。
2) 了解函数单调性、奇偶性的概念,掌握判定一些简单函数的单调性、奇偶性的方法。
3) 了解反函数的概念及互为反函数的函数图像间的关系,能够求一些简单函数的反函数。
向量知识点与公式总结
向量知识点与公式总结向量知识点与公式总结篇1考点一:向量的概念、向量的基本定理了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。
考点二:向量的运算向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会推断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积推断两个平面向量的垂直关系。
命题形式重要以选择、填空题型显现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。
考点三:定比分点掌握线段的定比分点和中点坐标公式,并能娴熟应用,求点分有向线段所成比时,可借助图形来帮忙理解。
重点考查定义和公式,重要以选择题或填空题型显现,难度一般。
由于向量应用的广泛性,常常也会与三角函数,解析几何一并考查,若显现在解答题中,难度以中档题为主,偶然也以难度略高的题目。
考点四:向量与三角函数的综合问题向量与三角函数的综合问题是高考常常显现的问题,考查了向量的知识,三角函数的知识,实现了高考中试题的掩盖面的要求。
命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。
考点五:平面向量与函数问题的.交汇平面向量与函数交汇的问题,重要是向量与二次函数结合的问题为主,要注意自变量的取值范围。
命题多以解答题为主,属中档题。
考点六:平面向量在平面几何中的应用向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,很多平面几何问题中较难解决的问题,都可以转化为大家熟识的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,给予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.命题多以解答题为主,属中等偏难的试题。
平面向量的所有公式归纳总结
平面向量的所有公式归纳总结平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
1、向量的加法满足平行四边形法则和三角形法则.ab+bc=ac.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).如果a、b就是互为恰好相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0ab-ac=cb.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').1、定义:已知两个非零向量a,b.作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量内积(内积、点内积)就是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣.2、向量的数量积的坐标表示:ab=xx'+yy'.3、向量的数量内积的运算律ab=ba(交换律);(λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律);4、向量的数量内积的性质aa=|a|的平方.a⊥b〈=〉ab=0.|ab|≤|a||b|.5、向量的数量内积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2.(2)向量的数量积不满足用户解出律,即为:由ab=ac(a≠0),推不出b=c.(3)|ab|≠|a||b|(4)由|a|=|b|,推不出a=b或a=-b.1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任一.当a=0时,对于任意实数λ,都有λa=0.备注:按定义言,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,则表示向量a的存有向线段在原方向(λ>0)或反方向(λ<0)上弯曲为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足用户下面的运算律结合律:(λa)b=λ(ab)=(aλb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘坐向量的解出律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b 和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量内积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量内积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.备注:向量没乘法,“向量ab/向量cd”就是没意义的.1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b逆向时,左边挑等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b逆向时,右边挑等号.定比分点公式(向量p1p=λ向量pp2)设p1、p2就是直线上的两点,p就是l上不同于p1、p2的任一一点.则存有一个实数λ,并使向量p1p=λ向量pp2,λ叫作点p棕斑向线段p1p2阿芒塔的比.若p1(x1,y1),p2(x2,y2),p(x,y),则有op=(op1+λop2)(1+λ);(的定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(的定比分点座标公式)我们把上面的式子叫做有向线段p1p2的定比分点公式1、三点共线定理若oc=λoa+μob,且λ+μ=1,则a、b、c三点共线2、三角形战略重点推论式在△abc中,若ga+gb+gc=o,则g为△abc的重心3、向量共线的关键条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的关键条件就是xy'-x'y=0.4、零向量0平行于任何向量.5、向量横向的充要条件a⊥b的充要条件是ab=0.a⊥b的充要条件就是xx'+yy'=0.6、零向量0垂直于任何向量.。
高三数学平面向量考点解析
高三数学平面向量考点解析1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。
向量和数量是数学中讨论的两种量的形式,数量是实数。
2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。
3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。
模也叫作绝对值、大小、长度,这几个说法是一个意思。
(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。
(3)相反向量:方向相反、大小相等的向量叫做相反向量。
一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。
(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。
因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。
两个非零向量平行时,必定方向相同或相反。
规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。
(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。
规定零向量和任意向量都垂直,但不能说夹角90度。
(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。
规定零向量和任意向量都平行且垂直。
(7)单位向量:长度为1的向量叫做单位向量。
一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。
(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。
(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。
平面向量的数量积和点积
平面向量的数量积和点积在数学中,向量是用来表示有大小和方向的量的。
而平面向量是指在一个平面内的向量,它由两个实数(或复数)组成。
平面向量的数量积和点积是两个重要的概念,它们在向量运算中起着关键的作用。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,表示了两个向量之间的夹角关系。
设有两个平面向量$\vec{a}=(x_1,y_1)$和$\vec{b}=(x_2,y_2)$,它们的数量积可以用如下公式表示:$$\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2$$其中,$\cdot$表示数量积的运算符。
从公式中可以看出,数量积的结果是一个标量,即一个实数。
根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}$,表示数量积满足交换律,与向量的顺序无关。
2. 分配律:$(\vec{a}+\vec{b})\cdot\vec{c}=\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c} $,表示数量积满足分配律,可以按照矩阵乘法的性质进行运算。
二、点积与夹角的关系数量积不仅可以表示两个向量之间的夹角关系,还可以通过夹角的余弦值来计算数量积。
根据余弦定理,两个向量$\vec{a}$和$\vec{b}$之间的夹角$\theta$可以用下面的公式表示:$$\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$其中,$|\vec{a}|$和$|\vec{b}|$分别表示向量$\vec{a}$和$\vec{b}$的模。
这个公式非常重要,因为它可以帮助我们计算向量的夹角,而不需要直接通过几何图形进行推导。
三、数量积的几何意义数量积还有一个重要的几何意义,它可以帮助我们计算向量之间的投影。
设有向量$\vec{a}$和$\vec{b}$,以及它们之间的夹角$\theta$,那么$\vec{b}$在$\vec{a}$上的投影可以表示为:$$\text{proj}_\vec{a}\vec{b}=|\vec{b}|\cos\theta$$通过数量积的计算,我们可以轻松得到投影的结果。
【巧解妙解】高考数学向量与其他问题结合的经典题型
平面向量综合应用与解题技巧【命题趋向】由2019年高考题分析可知:1.这部分内容高考中所占分数一般在10分左右.2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】“平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为:1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式.5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等.6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题. 【例题解析】1. 向量的概念,向量的基本运算(1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算. (5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式.例1(北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD = C.3AO OD = D.2AO OD = 命题意图:本题考查能够结合图形进行向量计算的能力.解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0, 故选A . 例2.(安徽卷)在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =______.(用a b 、表示)命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以,3111()()4244MN a b a b a b =+-+=-+. 例3.(广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量=( ) (A )BA BC 21+- (B ) 21--(C ) 21- (D )21+命题意图: 本题主要考查向量的加法和减法运算能力. 解:21+-=+=,故选A.例4. (重庆卷)与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹解相等,且模为1的向量是 ( ) (A) ⎪⎭⎫- ⎝⎛53,54 (B) ⎪⎭⎫- ⎝⎛53,54或⎪⎭⎫ ⎝⎛-53,54 (C )⎪⎭⎫- ⎝⎛31,322 (D )⎪⎭⎫- ⎝⎛31,322或⎪⎭⎫ ⎝⎛-31,322 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题.解:设所求平面向量为,c 由433,,, 1.555c c ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭4或-时5另一方面,当7413431,,cos ,.5527a c c a c a c ⎛⎫⨯+⨯- ⎪⋅⎛⎫=-=== ⎪⋅⎝⎭⎛⎫时 当7413431,,cos ,.5527a c c a c a c ⎛⎫⎛⎫⨯-+⨯ ⎪ ⎪⋅⎛⎫=-==- ⎪⋅⎝⎭⎛⎫时 故平面向量c 与向量a =71,,22b ⎛⎫= ⎪⎝⎭⎪⎭⎫ ⎝⎛27,21的夹角相等.故选B. 例5.(天津卷)设向量a 与b 的夹角为θ,且)3,3(=a,)1,1(2-=-a b ,则=θcos __. 命题意图: 本题主要考查平面向量的坐标运算和平面向量的数量积,以及用平面向量的数量积处理有关角度的问题.解: ()()()()(),,22,3,323,231,1.b x y b a x y x y =-=-=--=-设由 ()2311,1,2.231 2.x xb y y -=-=⎧⎧⇒∴=⎨⎨-==⎩⎩得 2cos ,33a b a b a b⋅===⋅+例6.(2006年湖北卷)已知向量()3,1a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b = ()(A ) ⎪⎪⎭⎫⎝⎛21,23 (B ) ⎪⎪⎭⎫ ⎝⎛23,21 (C )⎪⎪⎭⎫ ⎝⎛433,41 (D ) ()0,1 命题意图: 本题主要考查应用平面向量的坐标运算和平面向量的数量积,以及方程的思想解题的能力.解:设(),()b x y x y =≠,则依题意有1,y +=1,2x y ⎧=⎪⎪⎨⎪⎪⎩ 故选B.例7.设平面向量1a 、2a 、3a 的和1230a a a ++=.如果向量1b 、2b 、3b ,满足2i i b a =,且i a 顺时针旋转30o 后与i b 同向,其中1,2,3i =,则( )(A )1230b b b -++= (B )1230b b b -+= (C )1230b b b +-= (D )1230b b b ++=命题意图: 本题主要考查向量加法的几何意义及向量的模的夹角等基本概念.常规解法:∵1230a a a ++=,∴ 1232220.a a a ++=故把2i a (i=1,2,3),分别按顺时针旋转30 后与i b 重合,故1230b b b ++=,应选D.巧妙解法:令1a =0,则2a =3a -,由题意知2b =3b -,从而排除B ,C ,同理排除A ,故选(D). 点评:巧妙解法巧在取1a =0,使问题简单化.本题也可通过画图,利用数形结合的方法来解决.2. 平面向量与三角函数,解析几何等问题结合(1) 平面向量与三角函数、三角变换、数列、不等式及其他代数问题,由于结合性强,因而综合能力较强,所以复习时,通过解题过程,力争达到既回顾知识要点,又感悟思维方法的双重效果,解题要点是运用向量知识,将所给问题转化为代数问题求解.(2)解答题考查圆锥曲线中典型问题,如垂直、平行、共线等,此类题综合性比较强,难度大. 例8.(2007年陕西卷理17.)设函数f (x )=a-b ,其中向量a =(m,cos2x ),b =(1+sin2x ,1),x ∈R ,且函数y=f (x )的图象经过点⎪⎭⎫⎝⎛2,4π,(Ⅰ)求实数m 的值;(Ⅱ)求函数f (x )的最小值及此时x 的值的集合. 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1,由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z , 例2.(2007年陕西卷文17)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且.(Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1例9.(湖北卷理16)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+⎪⎝⎭π的最大 解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 例10.(广东卷理)已知ABC 的三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0) (1)若c=5,求sin ∠A 的值;(2)若∠A 为钝角,求c 的取值范围; 解:(1)(3,4)AB =--,(3,4)AC c =--,若c=5, 则(2,4)AC =-,∴cos cos ,A AC AB ∠=<>=sin ∠A ; (2)∠A 为钝角,则39160,0,c c -++<⎧⎨≠⎩解得253c >,∴c 的取值范围是25(,)3+∞例11.(山东卷文17)在ABC △中,角A B C ,,的对边分别为tan a b c C =,,,(1)求cos C ;(2)若52CB CA =,且9a b +=,求c .解:(1)sin tan cos CC C=∴=又22sin cos 1C C +=解得1cos 8C =±. tan 0C >,C ∴是锐角. 1cos 8C ∴=. (2)52CB CA =, 5cos 2ab C ∴=,20ab ∴=. 又9a b += 22281a ab b ∴++=. 2241a b ∴+=.2222cos 36c a b ab C ∴=+-=.6c ∴=.例12. (湖北卷)设函数()()f x a b c =⋅+,其中向量()()sin ,cos ,sin ,3cos a x x b x x =-=-, ()cos ,sin ,c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d . 命题意图:本小题主要考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.解:(Ⅰ)由题意得,f(x)=a ·(b c +)=(sinx,-cosx)·(sinx-cosx,sinx -3cosx)=sin 2x -2sinxcosx+3cos 2x =2+cos2x -sin2x =2+2sin(2x+43π).所以,f(x)的最大值为2+2,最小正周期是22π=π.(Ⅱ)由sin(2x+43π)=0得2x+43π=k.π,即x =832ππ-k ,k ∈Z ,于是d =(832ππ-k ,-2),(k d π=-k ∈Z.因为k 为整数,要使d 最小,则只有k =1,此时d =(―8π,―2)即为所求.例13.(2006年全国卷II )已知向量a =(sin θ,1),b =(1,cos θ),-π2<θ<π2.(Ⅰ)若a ⊥b ,求θ;(Ⅱ)求|a +b |的最大值. 命题意图:本小题主要考查平面向量数量积和平面向量的模的计算方法、以及三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)若a ⊥b ,则sin θ+cos θ=0,由此得 tan θ=-1(-π2<θ<π2),所以 θ=-π4;(Ⅱ)由a =(sin θ,1),b =(1,cos θ)得|a +b |=(sin θ+1)2+(1+cos θ)2=3+2(sin θ+cos θ)=3+22sin(θ+π4),当sin(θ+π4)=1时,|a +b |取得最大值,即当θ=π4时,|a +b |最大值为2+1.例14.(2006年陕西卷)如图,三定点(2,1),(0,1),(2,1);A B C --,,AD t AB BE tBC == ,[0,1].DM tDE t =∈(I )求动直线DE 斜率的变化范围; (II )求动点M 的轨迹方程。
平面向量复习
回目录
本页结束
6、平移—典例分析-例13
知 识 回 忆 典 例11 例 例12 分 析 例13
例13 把y=2x 图象 c按a=(-1,2)平移 得c′则c′解析式___ x′=x-1 x=x′+1 ∴ y′=y+2 y=y′-2 y′-2=2x′+1 ∴y=2x+1+2
点击出 现答案
回目录
本页结束
八、线段的定比分点
点P(x,y)分有向线段P ( ),P ( 1P 2所成定比为 ,其中P 1 x1,y1 2 x2,y 2) PP2 即P 1P 中点坐标 定比分点P的坐标
x1 x2 x 1 y y1 y 2 1
x1 x2 x 2 当 1时, y y1 y2 2
学习目录
1、向量的概念 2、实数与向量的积 3、平面向量的坐标运算
知识结构
4、线段的定比分点 5、平面向量的数量积 6、平移 7、正余弦定理
一、向量的概念 向量、零向量、单位向量、共线向量(平行向量)、 相等向量、相反向量等. 二、向量的表示 1、字母表示:AB或a 2、坐标表示: A
y
B
a xi y j (x,y)
例题
例2 设a,b是两个不共线向量。AB=2a+kb BC=a+b CD=a-2b,A、B、D共线,求k的值.
例3 e1、e2不共线, a=e1+e2 b=3e1-3e2 a与b是否共线。
例题
例4 梯形ABCD,且|AB|=2|DC|,M、N分 别为DC、AB中点。AB=a AD=b M D 用a,b来标DC、BC、MN。
练习一
1、根据图示,在下列横 线上填上适当的向量 ( 1 )AB — — — DB DC ( 2 )AB — — — DC DA
(完整版)《平面向量的数量积》教学设计及反思
《平面向量的数量积》教学设计及反思交口第一中学赵云鹏平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,它是沟通代数、几何与三角函数的一种重要工具,在每年高考中也是重点考查的内容。
向量作为一种运算工具,其知识体系是从实际的物理问题中抽象出来的,它在解决几何问题中的三点共线、垂直、求夹角和线段长度、确定定比分点坐标以及平移等问题中显示出了它的易理解和易操作的特点。
一、总体设想:本节课的设计有两条暗线:一是围绕物理中物体做功,引入数量积的概念和几何意义;二是围绕数量积的概念通过变形和限定衍生出新知识――垂直的判断、求夹角和线段长度的公式。
教学方案可从三方面加以设计:一是数量积的概念;二是几何意义和运算律;三是两个向量的模与夹角的计算。
二、教学目标:1.了解向量的数量积的抽象根源。
2.了解平面的数量积的概念、向量的夹角3.数量积与向量投影的关系及数量积的几何意义4.理解掌握向量的数量积的性质和运算律,并能进行相关的判断和计算三、重、难点:【重点】1.平面向量数量积的概念和性质2.平面向量数量积的运算律的探究和应用【难点】平面向量数量积的应用四、课时安排:2课时五、教学方案及其设计意图:1.平面向量数量积的物理背景平面向量的数量积,其源自对受力物体在其运动方向上做功等物理问题的抽象。
首先说明放置在水平面上的物体受力F的作用在水平方向上的位移是s,此问题中出现了两个矢量,即数学中所谓的向量,这时物体力F 的所做的功为Wθ⋅F,这里的θ是矢量F和s的夹角,也即是两个=scos⋅向量夹角的定义基础,在定义两个向量的夹角时,要使学生明确“把向量的起点放在同一点上”这一重要条件,并理解向量夹角的范围。
这给我们一个启示:功是否是两个向量某种运算的结果呢?以此为基础引出了两非零向量a, b的数量积的概念。
2.平面向量数量积(内积)的定义已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.零向量的方向是任意的,它与任意向量的夹角是不确定的,按数量积的定义a⋅b = |a||b|cosθ无法得到,因此另外进行了规定。
数学平面向量的数量积与模长
数学平面向量的数量积与模长数学是一门系统性、抽象性很强的学科,其中,平面向量是数学中的重要内容之一。
在数学的学习过程中,学生需要掌握平面向量的基本性质和运算规则,以及数量积与模长的相关知识。
本教案将介绍平面向量的数量积与模长的相关概念和运算规则,帮助学生掌握相关知识,进一步提高他们的数学解题能力和逻辑思维能力。
一、平面向量的概念与性质1.1 平面向量的定义平面向量是由大小和方向共同确定的有向线段,通常用字母加箭头表示,如AB→。
1.2 平面向量的表示法平面向量可用坐标表示法、点表示法、分解表示法等形式进行表示。
1.3 平面向量的基本性质平面向量具有平移、方向相反、共线、比例等基本性质。
二、平面向量的数量积2.1 数量积的定义数量积,也称点积或内积,是两个向量的乘积的量的一种。
若两向量A→和B→的夹角为θ,则数量积的定义为A·B = |A| |B| cosθ。
2.2 数量积的性质数量积具有乘法交换律、数量积的线性性质、平行向量的数量积等性质。
三、平面向量的模长3.1 模长的定义平面向量的模长是该向量的长度,通常用竖线括起来表示,如|AB→|。
3.2 模长的计算公式若平面向量A→的坐标表示为A→(x, y),则模长的计算公式为|A→| = √(x² + y²)。
3.3 模长的性质模长具有大于等于零、平行向量的模长相等等性质。
四、平面向量数量积与模长的关系4.1 平面向量数量积与模长的关系若平面向量A→和B→之间的夹角为θ,则数量积的计算公式可以表示为 A·B = |A→| |B→| cosθ。
4.2 平面向量数量积与模长的运算法则根据数量积的定义和模长的计算公式,可以得出平面向量数量积与模长的运算法则。
五、例题分析与解答5.1 例题分析通过分析具体的实例,帮助学生理解数量积与模长的运算规则和应用方法。
5.2 例题解答提供一些练习题,帮助学生巩固所学知识,培养解题能力。
专题平面向量常见题型与解题指导
平面向量常见题型与解题指导一、考点回顾1、本章框图2、高考要求1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2、掌握向量的加法和减法的运算法则及运算律。
3、掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件。
4、了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6、掌握线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式。
7、掌握正、余弦定理,并能初步运用它们解斜三角形。
8、通过解三角形的应用的教学,继续提高运用所学知识解决实际问题的能力。
3、热点分析对本章内容的考查主要分以下三类:1.以选择、填空题型考查本章的基本概念和性质.此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题.2.以解答题考查圆锥曲线中的典型问题.此类题综合性比较强,难度大,以解析几何中的常规题为主.3.向量在空间中的应用(在B类教材中).在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质.在复习过程中,抓住源于课本,高于课本的指导方针.本章考题大多数是课本的变式题,即源于课本.因此,掌握双基、精通课本是本章关键.分析近几年来的高考试题,有关平面向量部分突出考查了向量的基本运算。
对于和解析几何相关的线段的定比分点和平移等交叉内容,作为学习解析几何的基本工具,在相关内容中会进行考查。
本章的另一部分是解斜三角形,它是考查的重点。
总而言之,平面向量这一章的学习应立足基础,强化运算,重视应用。
考查的重点是基础知识和基本技能。
4、复习建议由于本章知识分向量与解斜三角形两部分,所以应用本章知识解决的问题也分为两类:一类是根据向量的概念、定理、法则、公式对向量进行运算,并能运用向量知识解决平面几何中的一些计算和证明问题;另一类是运用正、余弦定理正确地解斜三角形,并能应用解斜三角形知识解决测量不可到达的两点间的距离问题。
(完整版)平面向量复习基本知识点及结论总结
r r
9、向量垂直的充要条件 :a b
10、线段的定比分点:
(1)定比分点的概念:设点P是直线P1P2上异于P1、P2的任意一点,若存在一个实数
ujuu
则叫做点P分有向线段PP2所成的比,P点叫做有向线段
(2)的符号与分点P的位置之间的关系
,
r r
a//b
r r
a b 0
r r a b
(3)b在a上的投影 为|b|cos或^,它是一个实数,但不一定大于0。
|a|
■ ■
(4) a?b的几何意义:数量积a?b等于a的模|a|与b在a上的投影的积。
ffrrrr十
当 为锐角时,a ?b>0,且ab不同向,a b0是 为锐角的必要非充分条件 ;当 为钝角时,a?bv0,且a、b不反向,a b0是 为钝角的必要非充分条件;
(1)两个向量的夹角:对于非零向量a,b,作OA a,OB b,AOB 0称为向量a,
b的夹角。当=0时,a,b同向,当=时,a,b反向,当
(2)平面向量的数量积:如果两个非零向量a,b,它们的夹角为
--.-. r r
b的数量积(或内积或点积),记作:a?b,即a?b=a b cos
是0,注意数量积是一个实数,不再是一个向量。
③非零向量a,b夹角 的计算公式:cos
只适用于不共线的向量,
如此之外,
向量加法还可利用“三角形法则”:设AB
a,BC
b,那么向量
叫做a与b的和,即
r r a b
uuu AB
BC Ac;②向量的减法:用“三角形法则”
:设
uuu r uuurr
r r
uuu
uuruuu
平面向量知识点归纳
平面向量知识点归纳平面向量是高中数学中的一个基本概念,同时也是高中数学中比较难理解和掌握的知识点之一。
下面我们将结合实例,对平面向量的定义、加减和数量积等知识点进行简明归纳。
一、平面向量的定义平面向量又称二维向量,是具有大小和方向的有向线段,通常用字母加箭头表示(如:$\vec{a}$)。
在直角坐标系中,平面向量可以表示成一个有序实数对$(a,b)$。
例如:已知点$A(1,2)$和点$B(3,4)$,连接这两个点所得的有向线段$\vec{AB}$就是一个平面向量,它的坐标表示为$\vec{AB}=(3-1,4-2)=(2,2)$。
二、平面向量的加减平面向量的加减法是指将两个向量相加(或相减)所得的向量,即$\vec{a}+\vec{b}$(或$\vec{a}-\vec{b}$),其坐标分别相加(或相减)。
例如:已知向量$\vec{a}=(1,2)$和向量$\vec{b}=(3,4)$,则$\vec{a}+\vec{b}=(1+3,2+4)=(4,6)$;$\vec{a}-\vec{b}=(1-3,2-4)=(-2,-2)$。
另外,平面向量加减法还满足以下性质:(1)交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$;$\vec{a}-\vec{b}=-\vec{b}+\vec{a}$(2)结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$(3)零向量:对于任意向量$\vec{a}$,有$\vec{a}+\vec{0}=\vec{a}$,$\vec{a}-\vec{a}=\vec{0}$。
其中,$\vec{0}=(0,0)$。
三、平面向量的数量积平面向量的数量积又称为点积或内积,表示为$\vec{a} \cdot \vec{b}$,它的值为两个向量的模长乘积与它们夹角的余弦值,并可以用各个分量表示出来。
$\vec{a} \cdot \vec{b}=|\vec{a}| \cdot |\vec{b}| \cdot cos\theta=a_xb_x+a_yb_y$其中,$|\vec{a}|=\sqrt{a_x^2+a_y^2}$,$|\vec{b}|=\sqrt{b_x^2+b_y^2}$,$\theta$表示$\vec{a}$与$\vec{b}$之间的夹角。
高三数学平面向量复习讲义
高三数学平面向量复习讲义上高二中:喻国标一.高考要求:1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法.3.掌握实数与向量的积,理解两个向量共线的充要条件.4.了解平面向量的基本定理,理解平面向量的坐标概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度,角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式.7.掌握正弦,余弦定理,并能初步运用它们解斜三角形.二:高考热点:本章的重点是向量的概念:向量的两种表示:共线向量,零向量的概念:向量的运算及坐标表示:线段的定比分点,平移:正弦定理,余弦定理在解斜三角形中的应用等.其中,向量的共线,数量积,向量的平行与垂直,夹角公式与模,正弦定理和余弦定理的应用则是高考考查的热点内容.三:高考预测:综观近几年高考试题,预测在今后高考中平面向量的试题主要有两类:一是考查平面向量的概念和运算,突出考查共线:垂直,向量的模,数量积以及应用向量的几何关系判定点,线位置关系:二是突出平面向量的工具作用,主要是与函数,三角函数,解析几何,立体几何,解斜三角形的综合题.四.向量问题解题入口有三:1.几何法 2.坐标法 3.概念性质法5.1 向量的概念与性质(1课时)一.内容精讲.1.向量的两个要素:(1)大小---------模; (2)方向2.向量的表示方法:(1)几何表示法:用有向线段表示,但不能说有向线段就是向量.(2)字母表示法:①大写字母AB;:②小写字母a:(3)坐标表示法: a=(x,y) AB的坐标=终点B的坐标减去起点A的坐标.3.特殊向量(1)零向量:长度为零的向量叫做零向量,记作0: 规定其方向是任意的.(2)单位向量:长度等于一个单位长度的向量叫做单位向量.记做为: (x,y)且221x y +=或(cos θ sin θ) (0<θ<2π)4. 相关关系向量:(1) 共线向量(平行向量):方向相同或相反的非零向量,记做a ∥b .规定: 0与任意一向量平行.(2) 相等向量:长度相等且方向相同,记做a =b注意: ①零向量与零向量相等; ②任意两个相等的非零向量都可以用一条有向线段表示,并且与有向线段的起点无关.(3) 相反向量: 长度相等方向相反,AB BA =-二. 练习1.已知向量2,56,72AB a b BC a b CD a b =+=-+=-,则一定共线的三点是( )A. A B DB. A B CC. B, C, DD. A, C , D2.已知向量(,12),(4,5),(,10),,,OA k OB OC k A B C ===-且三点共线则k=______3与直线3x+4y+5=0的方向向量共线的一个单位向量是( )A (3,4)B (4 , -3)C (34,)55D (43,)55- 4.设向量(3,3),(5,1),OM ON =-=--则12MN =( ) A (-2,-4) B (-1,-2) C ( 4 ,-1) D (-4 ,1),:(1):(2)0,(3)()()0,0,0ABC AB AC BC AB BC CA AB BC AB BC ABC AC AB ABC AC AB ABC ∆-=++=+•-=∆•>∆•>∆5.在中有命题若则为等要三角形;(4)若则为等要三角形;(5)若若则为锐角三角形.上述命题正确的是( )A. ① ② B ① ④ C ② ③ D ② ③ ④6.设P={ a ∣ a =(-1, 1) +m ( 1, 2), m ∈R }, Q={ β ∣ β=(1 , -2) +n( 2, 3), n ∈R }是两个向量集合,则P ∩Q=__________________7.下列命题中正确的个数是( )(1) 若,:a a a a 与b 为非零向量,且 b 时则+b 必与或b 的方向相同(2) 若,,e a e a =为单位向量且则∣a ∣e ;(3) a a a ⋅⋅=∣a ∣3 (4) 若,a b b c a c 与共线又与共线,则与必共线(5) 若平面内四点A,B,C,D,则必有AC BD BC AD +=+.8.下列条件中,能确定三点A,B,P 不共线的是( )A 22sin 20cos 20MP MA MB =+B 22sec 20tan 20MP MA MB =-C 22csc 31cot 31MP MA MB =-D 22sin 20cos 70MP MA MB =+9.已知向量(3,4),(6,3),(5,(3))OA OB OC m m =-=-=--+(1) 若点A,B,C能构成三角形,求实数m 应满足的条件:(2) 若△ABC为直角三角形,且∠A为直角,求实数m 的值5.2 向量的加法和减法运算(二课时)一:内容精讲:(一) 几何表示的向量加法和减法1.向量的加法运算(1) 法则a b + b b a b +a a三角形法则 平行四边形法则(2)运算法则交换律:a b b a +=+ 结合律:()()a b c a b c ++=++▲ 两向量平行时,平行四边形法则不适用,用三角形法则.2.向量的减法运算(1)运算原理:是加法的逆运算,()a b a b -=+-(2) 运算法则a ab -ba b -是连接a 与b 终点并指向被减数的向量▲ ①围成一周顺次始终相接的向量(向量链)的和为0②∣∣a ∣-∣b ∣∣≦∣a ±b ∣≦∣a ∣+∣b ∣要探讨等号成立的条件(二) 坐标表示的向量加法和减法已知:a =(x 1, y 1) , b =(x 2, y 2) 则a b +=(x 1+x 2 y 1 + y 2 );a b -=(x 1-x 2 y 1 - y 2 )几何意义:已知11222121(,),(,)(,)OA x y OB x y AB OB OA x x y y ===-=--则 故2(AB x =二.练习1.在直角坐标系XOY中,已知点A(0,1)和点B(-3,4),若点C在∠AOC的平分线上且∣OC ∣=2,则OC =______ 2.设向量a =(-1,2),b =(2,-1),则(a ·b )(a b +)等于( )A (1,1) B (-4,-4) C -4 D (-2,-2)3.已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C)则AP 等于( )A.(),(0,1)AB AD λλ+∈ B.(),(0,1)AB AD λλ+∈ C.(),(0,1)AB AD λλ-∈ D,(),(0,2AB BC λλ-∈ 4.已知△ABC的三个顶点A,B,C及所在平面内一点P满足,PA PB PC AB ++=则点P及△ABC的关系为( )A. P 在△ABC 内部B. P 在△ABC 外部C. P 在AB 边所在的直线上 D P 在△ABC 的AC 边的一个三等分点上 5.已知P是△ABC所在平面内一点,若CB PA PB λλ=+∈,其中R,则点P一定在( )A △ABC 内部 B AC边所在直线上C AB边所在直线上 D BC边所在直线上6.已知向量集合M={ a ∣ a =(1, 2) +m ( 3, 4), m ∈R }, N={ β ∣ β=(-2 , -2) +n( -2, -2), n ∈R }则M∩N=( )A.{(1,1)} B.{(1,1),(-2,-2)} C.{(-2,-2)} D.∅ 7.知,,,OA a OB b AOB OM ==∠且它们均为单位向量则的平分线上的单位向量为 ( ) A.aba b + B.a ba b ++ C.a ba b ++ D.a ba b b a ++8.在△OAB中,,OA a OB b ==OD是AB边的高,则AD λ=等于( ) A.2()a b a a b ⋅-- B.2()a ab a b ⋅-- C.()a b a a b ⋅-- D. ()a a b a b ⋅--9.非零向量,,OA a OB b ==若点关于OA 所在直线的对称点为B1 ,则向量1OB 为( ) A.22()a b b b a ⋅⋅- B.2a b - C.22()a b a ba ⋅⋅- D.2()ab a ba ⋅⋅-10.设(0≦θ<2π)已知两个向量()1cos ,sin OP θθ=,212(2sin ,2cos ),OPPP θθ=+-则向量长度的最大值为( )B. 11.已知A,B,C是不在同一条直线上的三个点,O是平面内的一定点,P是平面ABC内的一动点,若[)1(),0,,2OP OA AB BC λλ-=+∈+∞则点P的轨迹一定过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心5.3 实数与向量的积一.内容精讲:1.实数与向量的积(1) 定义:实数λ与向量a 的积是一个向量,记做λa ,其长度和方向规定如下: ①a a λλ⋅=⋅②0,a a λλ>当时的方向与的方向相同0,a a λλ<当时的方向与的方向相反0,0a λλ==当时(2) 运算律:结合律:()()ua u a λλ=第一分配律:()u a a ua λλ+=+第二分配律:()a b a b λλλ+=+(3) 坐标运算记a =(x,y) ,R λ∈则 (,)a x y λλλ=2.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ使得b =λa▲ ①a ≠0②此定理是用向量研究几何问题的切入点③已知a =(x 1, y 1) , b =(x 2, y 2),则a ∥b .12210x y x y ⇔-=3.平面向量基本定理:如果12,e e 是同一平面内两个不共线的向量,则对这一平面内的任意一个向量a 有且只有一对实数12,λλ使得1122a e e λλ=+不共线的向量12,e e 叫做这个平面内所有向量的一组基底.▲ ①此定理是向量加法运算与共线定理有机结合②此定理是向量运算的坐标表示基础.4.向量的坐标表示――――直角坐标在直角坐标系内,分别取X轴和Y轴方向相同的两个单位向量,i j 作为基底,则对平面上任一向量a 均有唯一的一对实数X,Y使得a =Xi +Yj ,那么(X,Y)就叫做向量a 的(直角)坐标,记做a =(X,Y)▲ 与a =(X,Y)相等的向量的坐标都相等,均为(X,Y).二.练习1. 斜三角形ABC 的外接圆的圆心为O,两条边上的高的交点为H,()OH m OA OB OC =++实数m=_____________2. 已知向量(,12),(4,5),(,10)OA k OB OC k ===-且A,B,C 三点共线,则k=_______________________3. 在三角形OAB 中,(1,2),(2,1),OA OB ==-,,OD AB AD AB λλ==是边上的高若则实数_____________________4. 点P 在一平面上作匀速直线运动,速度向量为V=(4,-3)(既点P 的运动方向与V 相同),且每秒移动的距离为︱V ︱个单位).设开始时点P 的坐标为(-10,10),则5秒后P 的坐标为( )A. (-2,4)B. (-30,25)C. (10,-5)D. (5,-10)5. 在三角形ABC 中,设,AB a AC b ==,点D 在线段BC 上,且,3,,BD DC AD a b =则用,表示为______________________6. 在三角形ABC 内求一点P,使222AP BP CP ++取得最小值,该点是三角形的( )A.垂心B.内心C.重心D.外心7. 在直角坐标平面中,已知点P 1 (1, 2) , P 2 (2, 22 ), P 3 (3, 23 ) , ……..,P n (n,2n ) ,其中n 是正整数,对平面上任意一点,记A 1 为A 0关于点P 1的对称点, A 2为A 1关于点P 2的对称点,……… A 0 为A n-1关于点P n 的对称点.(1) 求向量的坐标(2) 当点A 0曲线C 上移动时,点A 2 的轨迹是函数()y f x =的图象,其中()f x 是以3为周期的周期函数,且当x ∈(0,]3时, ()lg f x x =,求以曲线C 为图象的函数在(1,]4上的解析式.(3) 对任意偶数n,用n 表示向量0n A A 的坐标.8. 已知向量a =(1,2), b =(-2,1),k,t 为正实数,向量21(1),x a t b y ka b t=++=+ (1) ,.x y k ⊥若求的最小值(2)是否存在k ,t,使x y , 若存在,求出k 的范围,若不存在,说明理由..5.4. 向量的数量积一. 内容精讲.1. 平面向量的数量积(1) 向量夹角的概念----------只对非零向量而言.两个非零向量a b 与的方向所在的射线形成的角θ,叫做a b 与的夹角 (0180θ≤≤)(2) 向量的数量积.①定义:两个非零向量a b 与,他们的夹角为θ,则cos a b θ叫做向量a b 与的数量积(或内积) 记做: cos ,00a b a b a θ==规定②投影:cos a θ叫做向量b 在a 方向上的投影③坐标运算:设a =(x 1, y 1) , b =(x 2, y 2),则1212a b x x y y =+2.运算律:设,,,R a b c λ∈ ① 结合律:()()a b a b a b λλλ==② 交换律: a b b a =③ 分配律: ()a b c a c b c +=+④ 符合多项式运算法则,但三个向量的数量积不满足结合律. 特别地:222()2a b a a b b ±=±+ 和 2222()()a b a b a b a b +-=-=-3.数量积的性质及应用121221222221122(1)00,,.(2)(4)cos 0,00,a b a b x x y y a b a a a a a a b a b y y a bb x y x y a b a b a b bc a cθ⊥⇔=⇔+==⇒=≤+==++*===*==非零,求距离的工具.(3)a a 不能说或不能说 二.练习1.已知非零向量,,a b c 满足a b a c ⋅=⋅,则b 与c 的关系是( ) A.相等 B.共线 C.垂直 D.不确定2.如果向量,a b 满足||3a =,||4b =,()(3)81a b a b +⋅+=,则a 与b 的夹角是( ) A.30° B.60° C.90° D.120°3.若,a b 是不共线的两向量,且12,AB a b AC a b λλ=+=+12(,)R λλ∈,则A,B,C 三点共线的充要条件是 A.121λλ==- B.121λλ== C.121λλ=- D.121λλ=( ) 4. .已知△ABC 中,,AB a CA b ==,当0a b ⋅>时,△ABC 为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定5. 设向量a 的模等于4, a 与b 的夹角为5π6,则a 在方向b 上的投影为 ( ) A.2 3 B.-2 3 C.2 D.- 26. 已知a =(k,2),b =(-3,5),且a 与b 夹角为钝角,则k 的取值范围是( ) A.(103,+∞) B.[ 103,+∞] C.(-∞, 103) D. (-∞, 103) 7. 已知A(2,3),B(4,2),P 是x 轴上的动点,当P 点坐标为 时,AP BP ⋅最小,此时∠APB= .8.已知动点P 与定点M(1,1)为起点的向量与向量a =(4,-6)垂直,则动点P 的轨迹是 .9.已知A(a,0),B(0,a),a>0,点P 在线段AB 上,且AP t AB =(0≤t ≤1),则OA OP ⋅的最大值是 .10. 已知向量||),15sin ,15(cos ),75sin ,75(cos b a b a -==那么 的值是 ( )A .21 B .22 C .23 D .1 11. 若向量),sin ,(cos ),sin ,(cos ββαα==b a 则b a 与一定满足 ( ) A.b a 与的夹角等于βα- B.)(b a +⊥)(b a - C.a ∥b D.a ⊥b12. 若|a-b|=32041-,|a |=4,|b |=5,则向量a ·b = ( ) A.103 B.-103 C.102 D.1013. △ABC 的三边长分别为AB=7,BC=5,CA=6,则BC AB ⋅的值为 ( )(A )19 (B )-19 (C )-18 (D )-1414. 在△ABC 中,有命题①→AB -→AC =→BC ;②→AB +→BC +→CA =→0;③若(→AB +→AC )⋅(→AB -→AC )=0,则△ABC 是等腰三角形;④若→AB ⋅→AC >0,则△ABC 为锐角三角形.上述命题正确的是( )A .①②B .①④C .②③D .②③④15.已知平面上直线l 的方向向量→e =(-45,35),点O(0,0)和A(1,-2)在l 上的射影分别是O '和A ',则→O 'A '=λ→e ,其中λ= ( )A .115B .-115C .2D .-2 16.已知向量→a =(cos θ,sin θ),向量→b =(3,-1)则|2→a -→b |的最大值,最小值分别是A . 42,0B .4,4 2C .16,0D .4,0 ( )17.已知a 、b 为两个非零向量,有以下命题:①2a =2b ,②a ·b =2b ,③|a |、=|b |且a ∥b .其中可以作为a =b 的必要但不充分条件的命题是 ( ) A .② B .①③ C .②③ D .①②③ 18. 若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ;19.设),,0(),0,1(),sin ,cos 1(),sin ,cos 1(παββαα∈=-=+=c b a )2,(ππβ∈,a 与c 的夹角1θ,b 与c 的夹角为θ2,且621πθθ=-,则4sin βα-的值为 。
平面向量的综合应用
2、向量数量积: a b a b cos a, b 若a x1,y1 、 b x 2,y 2 则a b x1x 2 y1y 2 3、 a与b的夹角: cos a, b a b ab x1x 2 y1 y 2 x 21 y 21 x 2 2 y 2 2
2
2
2
C
3、已知向量OA 1, 2 , OB 2, m ,若OA OB,则向量OA与 AB
C
3 2 A、 B、 C、 D、 4 4 3 3 重 心。 4、已知在 ABC中, OA OB OB OC OC OA, 则O是 ABC的____
1
y
2
6、平移公式:
x xh
'
y yk
'
或
x x h
'
y y' k
基础检测
1、已知正方形ABCD的边长为1, AB a、 BC =b、 AC =c,则a b c 的模等于
C
2
A、 0 B、 3 C、 2 2 D、
2、设a、是两个非零向量,则 b a b a b 是a b的 A、充分不必要 C、充要条件 夹角为 B、必要不充分 D、既不充分也不必要条件
1、求函数的正周期. 2 、若x 0,2 ,当OP OQ
1时,求x的取值范围.
例2:已知向量a、 b、 c、,设实数 d x、y满足 a b 1, c a x 2 3 b d ya xb, 若a b、 c d,且 c 10
向量的综合应用(一)
娄底一中:刘瑞华
知识网络
概念
1 5730 p 2
平面向量的基本定理及坐标表示重难点解析版
突破6.3 平面向量的基本定理及坐标表示一、学情分析二、学法指导与考点梳理知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2) 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.三、重难点题型突破重难点题型突破1 平面向量的实际背景与概念(一) 平面向量的基本定理与坐标表示 知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·江西高一期末)设12,e e 是平面内的一组基底,则下面四组向量中,能作为基底的是( ) A .21e e -与12e e - B .1223e e +与1246e e -- C .12e e +与12e e - D .121128e e -+与1214e e - 【答案】C 【解析】由12,e e 是平面内的一组基底,所以1e 和2e 不共线,对应选项A :21e e -()12e e =--,所以这2个向量共线,不能作为基底; 对应选项B :1223e e +()121462e e =---,所以这2个向量共线,不能作为基底; 对应选项D :121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭,所以这2个向量共线,不能作为基底;对应选项C :12e e +与12e e -不共线,能作为基底. 故选:C .(2).(2022·内蒙古·阿拉善盟第一中学高一期末)如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE =( )A .21318BA BC -+B .21318BA BC +C .41318BA BC +D .21318BA BC -【答案】B 【解析】 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解. 【详解】由题可得:FE FC CE =+ 1232BC CD =+ ()1223BC CB BA AD =+++ 121233BC BC BA BC ⎛⎫=+-++ ⎪⎝⎭21318BA BC =+. 故选:B .【变式训练1-1】、(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21e e - B .12e e -,12e e + C .212e e -,212e e -+ D .122e e +,124e 2e +【答案】B 【解析】 【分析】不共线的向量能作为基底,逐一判断选项即可. 【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ; 因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D , 故选:B【变式训练1-2】、(2022·江西上饶·一模(理))如图,在ABM 中,3BM CM =,27AN AM =,若AN AB AC λμ=+,则λμ+=( )A .17-B .17C .27-D .27【答案】D 【解析】 【分析】由向量的线性运算把AN 用,AB AC 表示出来后可得结论. 【详解】 ()22227777AN AM AB BM AB BM ==+=+ 2232313()7727777AB BC AB BA AC AB AC =+⨯=++=-+, 所以13,77λμ=-=,132777λμ+=-+=,故选:D(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2). (2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ). (4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2021·安徽·泾县中学高三阶段练习(文))已知平面向量()()2,3,24,5a a b =--=,则a b =___________.【答案】3 【解析】 【分析】设(),=b x y ,利用()24,5-=a b ,求得b ,再利用数量积公式可得多大啊. 【详解】设(),=b x y ,由已知得224325x y --=⎧⎨-=⎩,解得31x y =-⎧⎨=-⎩,即()3,1b =--,所以()()2,33,1633⋅=-⋅--=-=a b . 故答案为:3.(2).(2022·全国·高一专题练习)已知A (1,2),B (3,-1),C (3,4),则AB AC ⋅等于( ) A .11 B .5 C .-1 D .-2【答案】D 【解析】 【分析】直接利用向量数量积的坐标运算即可解决 【详解】∵()2,3AB =-,()2,2AC = ∴()22322AC AB ⋅=⨯+-⨯=- 故选: D .(3).(2022·山东济南·二模)若平面向量a 与b 同向,(2,1)a =,||25b =,则b =( ) A .(4,2)B .(2,4)C .(6,3)D .(4,2)或(2,4)【答案】A 【解析】 【分析】根据题意,设()0b a λλ→→=>,进而根据||25b →=b →. 【详解】因为,a b →→同向,所以设()0b a λλ→→=>,则22||215252b λλλ→=+==,于是,()4,2b →=. 故选:A.【变式训练2-1】、(2022·全国·高三专题练习)已知向量()()2,6,1,a b λ==-,若//a b ,则a b λ+=______. 【答案】(5,15) 【解析】 【分析】由向量平行得3λ=-,再进行向量的坐标运算即可得答案. 【详解】解:因为()()2,6,1,a b λ==-,//a b , 所以62λ-=,解得3λ=-, 所以()()()2,631,35,15a b λ+=---=. 故答案为:()5,15【变式训练2-2】、(2022·青海西宁·高一期末)设()3,1OM =,()5,1ON =--,则MN =( ). A .()8,2-- B .()8,2C .()8,2-D .()2,2-【答案】A 【解析】 【分析】由向量坐标的减法运算可得答案. 【详解】因为()3,1OM =,()5,1ON =--,所以()()()5,13,18,2=-=---=--MN ON OM . 故选:A.(三) 平面向量的数量积 知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a . (3)cos θ=a·b |a||b|. (4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1).(2022·陕西·高三期末(文))已知向量(1,7a =-,3b =,36a b ⋅=,则a 与b 的夹角为( ) A .6πB .4π C .3π D .23π 【答案】A 【解析】 【分析】先计算向量a 的模,再根据向量数量积的定义,将36a b ⋅=展开,即可求得答案.因为(1,7a =-,所以22||1(7)22a =+-= 又因为36a b ⋅=,设a 与b 的夹角为θ ,[0,]θπ∈ , 所以||||cos 36a b θ=,即23cos 36θ⨯=, 解得3cos θ=,故6πθ= ,故选:A.(2).(2021·重庆一中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =--,则下列命题中正确的有( ) A .a b > B .2a b +=C .a b ⊥D .4cos ,5a b =-【答案】BD 【解析】 【分析】由向量的定义判断A ,由模的坐标表示求出模判断B ,根据垂直的坐标表示判断C ,由数量积求得向量的夹角余弦判断D . 【详解】对于A ,由于向量不能比较大小,故A 错误; 对于B ,∵()1,1a b =-+,∴()22112a b +=-+=B 正确;对于C ,∵()()122140a b ⋅=⨯-+⨯-=-≠,∴a b ⊥不成立,故C 错误; 对于D ,∵(12214cos ,555a b a b a b⨯-+⨯-⋅===-⨯,故D 正确.故选:BD .【变式训练3-1】.(2021·河北·武安市第一中学高一阶段练习)(多选题)向量(cos ,sin )a θθ=,(3,1)b =,则2a b -的值可以是( ) A .2 B .22C .4D .2【答案】ABC 【解析】 【分析】利用公式表达出2a b -,利用三角函数恒等变换,求出2a b -的范围,进而求出结果.())()22cos ,2sin 3,12cos 3,2sin 1a b θθθθ-=-=-,所以()()22π22cos 32sin 1843cos 4sin 88sin 3a b θθθθθ⎛⎫-=-+----+ ⎪⎝⎭因为[]πsin 1,13θ⎛⎫+∈- ⎪⎝⎭,所以[]π88sin 0,163θ⎛⎫-+∈ ⎪⎝⎭,[]20,4a b -∈,显然ABC 均满足题意.故选:ABC【变式训练3-2】.(2022·山东济南·高三期末)(多选题)已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .16a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD 【解析】 【分析】根据向量坐标得线性运算和模的坐标表示即可判断A ; 根据向量数量积的坐标表示即可判断B ; 根据()cos ,a b a a b aa b a+⋅+=+即可判断C ; 根据投影向量的定义即可判断D. 【详解】解:(2,23a b +=,则4124a b +=+,故A 错误;()2a b a +⋅=,故B 正确;()1cos ,2a b a a b aa b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误;向量a b +在a 上的投影向量为()2a b a a a a+⋅=,故D 正确. 故选:BD.(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)、(2021·安徽·六安一中高三阶段练习(文))已知()1,2a m =+-,()2,3b m =+,若a b ⊥,则m =______. 【答案】1或4- 【解析】 【分析】根据向量垂直得到等量关系,求出结果. 【详解】由题意得:()()1260m m ++-=,解得:1m =或4-,经检验,均符合要求. 故答案为:1或4-(2)、(2022·陕西宝鸡·一模(理))已知平面向量()1,a m =-,()2,3b m =-,若a b ∥,则m =___________. 【答案】3- 【解析】 【分析】由a b ∥,列方程求解即可 【详解】因为平面向量()1,a m =-,()2,3b m =-,且a b ∥, 所以23m m =-,得3m =-, 故答案为:3-(3)、(2022·辽宁·高一期末)已知向量()1,a m =-,()2,4b =,若a 与b 共线,则m =( ) A .1-B .1C .2-D .2【答案】C 【解析】 【分析】根据平面向量共线坐标表示可得答案. 【详解】由题意得24m =-,即2m =-. 故选:C【变式训练4-1】、(2022·广东湛江·高二期末)已知向量()2,3a =-,()1,2b =-,且()a kb a +⊥,则k =___________.【答案】138【解析】 【分析】求出向量a kb +的坐标,利用平面向量垂直的坐标表示可得出关于实数k 的等式,即可解得k 的值. 【详解】由题意可得()2,32a kb k k +=--+,因为()a kb a +⊥,所以()()()223320a kb a k k +=---+=⋅,即1380k -=,解得138k =. 故答案为:138. 【变式训练4-2】.(2022·全国·高三专题练习)已知向量()12a =,,()22b =-,,()1c λ=,.若()//2c a b +,则λ=________. 【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=, ()//2c a b +,又()1,c λ=, 4λ20∴-=,1λ2∴=.故答案为:12.【变式训练4-3】.(2022·辽宁葫芦岛·高一期末)已知向量()1,1a =,()2,1b =-,若()a b λ+∥()2a b -,则实数λ=( ) A .12B .12-C .2D .-2【答案】B 【解析】 【分析】由平面向量线性运算的坐标表示出a b λ+,2a b -,再由平面向量共线的坐标表示即可得解. 【详解】由已知得()2,1a b =++-λλλ,()23,3a b -=-, 又因为()a b λ+∥()2a b -,所以有()()3231+=--λλ,解得12λ=-.故选:B例5.(2022·重庆八中高一期末)已知3a =,4b =. (1)若a 与b 的夹角为60︒,求()2a b a +⋅;(2)若a 与b 不共线,当k 为何值时,向量a kb +与a kb -互相垂直? 【答案】(1)21 (2)34k =±【解析】 【分析】(1)结合向量数量积运算与运算律计算求解即可; (2)根据()()0a kb a kb +-=解方程即可得答案. (1)解: ()21229234212a b a a b a +⋅=+⋅=+⨯⨯⨯= (2)解:∵向量a kb +与a kb -互相垂直,∴()()0a kb a kb +-=,整理得2220a k b -=,又3a =,4b =,∴29160k -=,解得34k =±.∴当34k =±时,向量a kb +与a kb -互相垂直.【变式训练5-1】.(2022·全国·高三专题练习)已知向量(cos ,sin ),(3,3),[0,π].a x x b x ==-∈ (1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,解不等式()3f x ≥【答案】(1)3π(2)[0,]6π 【解析】 【分析】(1)根据向量垂直的坐标运算,数量积为零得到关于x 的方程,即可得答案. (2)先根据数量积的坐标运算得到()f x a b =⋅的表达式,确定π31cos()62x -+,再解不等式,结合6x π+的范围,求得结果. (1)因为(cos ,sin )a x x =,(3,3b =-,a b ⊥, 所以3cos 30x x =, 所以tan 3x =因为[0,]x π∈,所以3x π=.(2)()(π()cos ,sin 3,33cos 323)6f x a b x x x x x =⋅=⋅-==+.因为[]0,πx ∈,所以ππ7π[,]666x +∈,从而π31cos()62x -+. 由()3f x ≥1cos()62x π+≥,所以1π3cos()262x +,所以663x πππ≤+≤,即06x π≤≤,故不等式()3f x ≥[0,]6π.四、课堂定时训练(45分钟)1.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是( ) A .1e 与12e e + B .12e 2e -与21e 2e - C .12e 2e -与214e 2e - D .12e e +与12e e -【答案】C 【解析】 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可. 【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底; 对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解, 12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底; 故选:C2.(2022·全国·高一专题练习)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A 2B 2C 22D .0【答案】C 【解析】 【分析】应用向量平行的坐标表示列方程求参数值即可. 【详解】由//a b 知:1×2-m 2=0,即2m 2-故选:C.3.(2022·江西·高三期末(文))已知平面向量()1,3a =,()2,1b =-,若()a ab λ⊥+,则实数λ的值为( ) A .10 B .8C .5D .3【答案】A 【解析】 【分析】由()a ab λ⊥+,得()0a a b λ⋅+=,将坐标代入化简计算可得答案 【详解】因为()1,3a =,()2,1b =-, 所以()12,3a b λλλ+=+-. 因为()a ab λ⊥+,所以()12330λλ++-=,解得10λ=. 故选:A.4.(2021·辽宁·沈阳二中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =-,()2,c t =,下列说法正确的是( ) A .若()a b +//c ,则6t = B .若()a b +⊥c ,则23t =C .若1t =,则4cos ,5a c <>=D .若向量a 与向量c 夹角为锐角,则1t >- 【答案】BC 【解析】 【分析】若()()1122,,,a x y b x y ==,根据a ∥b 时1221x y x y =判断A 选项是否正确;根据a b ⊥时12120x x y y +=判断B 选项是否正确;根据121222221122cos ,x a b a b a bx y x y <>==++判断C 选项是否正确;根据向量a 与向量c 夹角为锐角时0a c >,且向量a 与向量c 不平行,判断C 选项是否正确. 【详解】()1,2a =,()2,1b =-,()=1,3a b ∴+-,()2,c t ==22a c t ∴+若()a b +//c ,()2,c t =123t ∴-⨯=⨯6t ∴=-,故A 不正确;若()a b +⊥c ,()2,c t =123=0t ∴-⨯+⨯23t ∴=,故B 正确; 若1t =,则()2,1c =,=22=4a c t +,=5a ,5c =44cos ,555a c a c a c∴<>==⨯,故C 正确; 若向量a 与向量c 夹角为锐角, 则0a c >()1,2a =(),2,c t ==1220a c t ∴⨯+⨯>1t∴>-若向量a 与向量c 平行,则1=22t ⨯⨯,=4t ,故向量a 与向量c 夹角为锐角时1t >-且4t ≠.故D 不正确; 故选:BC5.(2021·广东·仲元中学高一期末)(多选题)已知向量()2,1a =,()3,1b =-,则( ) A .a 与a b -25B .()//a b a +C .向量a 在向量b 10D .若525,5c ⎛= ⎝⎭,则a c ⊥【答案】ACD 【解析】 【分析】对于A :由已知得()50a b -=,,根据向量夹角的计算公式计算可判断; 对于B :由已知得()+a b a ⊥,由此可判断;对于C :由已知得向量a 在向量b 上的投影,从而可判断; 对于D :由5252+105a c ⎛⋅=⨯⨯= ⎝⎭,可判断. 【详解】解:对于A :因为向量()2,1a =,()3,1b =-,所以()50a b -=,,所以a 与a b -的夹角余弦值为2225215+⨯,故A 正确; 对于B :因为()+12a b =-,,所以()+12+120a b a ⋅=-⨯⨯=,所以()+a b a ⊥,故B 不正确; 对于C :向量a 在向量b 上的投影为(()2223+11101031a b b⨯-⨯===-+⋅,所以向量a 在向量b 上的投影向量10C 正确;对于D :因为525,55c ⎛⎫=- ⎪ ⎪⎝⎭,所以5252+1055a c ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭,所以a c ⊥,故D 正确, 故选:ACD.6.(2022·安徽亳州·高三期末(理))如图,在平面四边形ACDE 中,点B 在边AC 上,ABE △是等腰直角三角形,四边形BCDE 是边长为1的正方形,则AD CE ⋅=___________.【答案】-1 【解析】 【分析】以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系,用坐标法求解. 【详解】如图示,以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系.则()1,0A -、()1,0C 、()1,1D 、()0,1E ,所以()21AD =,,()11CE =-,, 所以211AD CE ⋅=-+=-. 故答案为:-17.(2021·江西·赣州市赣县第三中学高三期中(文))已知向量()2,1a =-,10a b ⋅=,52a b +=,则b =___________.【答案】5 【解析】 【分析】由已知,利用向量数量积的运算律有22250a b a b ++⋅=,结合向量模的坐标计算求||a ,进而求b . 【详解】∵52a b +=,则250a b +=,即22250a b a b ++⋅=, ∴252050b ++=,可得5b =. 故答案为:58.(2022·全国·高三专题练习)已知平面向量(),0,0αβαβ≠≠,β与αβ-的夹角为23π,且()0t t t αββ-=>,则t 的最小值是____________.【答案】233- 【解析】 【分析】作半径为2的圆O ,圆O 上取三点,,A B C ,(3,1)C --,(3,1)B -,A 在,B C 两点的优弧上,3BAC π∠=,这样CB α=,CA β=,满足β与αβ-的夹角为23π,然后把模式平方求得t ,可得最小值. 【详解】如图,设圆O 半径为2,,,A B C 在圆O ,设(3,1)C --,(3,1)B -,3BAC π∠=,CB α=,CA β=,设(2cos ,2sin )A θθ,7(,)66ππθ∈-,(23,0)α=,(2cos 3,2sin 1)βθθ=++,由t t αββ-=得222()t t αββ-=,因为0t >,所以21233233243(2cos 3)2cos 323t ααβθθ===≥=-⋅+++,cos 1θ=时等号成立.故答案为:233-.【点睛】本题考查由模求平面向量的数量积,解题关键是用图形表示出向量α,β,确定点,,A B C 的关系,引入坐标后用坐标表示向量的数量积,从而得出最值.。
2022河南省单招数学知识点
2022河南省单招数学知识点
1.集合,简易逻辑考试内容:集合、子集、交集、补集、交集、并集。
2.排列组合:排列、数列数公式,组合、组合数公式,二项式定理展开式。
3.概率,随机事件的概率、可能性事件的概率。
几何部分:
1.平面向量考试内容:向量、向量的加减法、实数与向量的积、平面向量的坐标表示,线段的定比分点、平面向量的数量积、平面两点的距离、平移。
2.函数,映射、函数的单调性、奇偶性,反函数及图像关系,对数的运算、对数函数
3.不等式的基本性质、证明、解法,含值的不等式。
4.三角函数,单位圆中的三角函数、正余弦函数、正切函数及其图像,正弦定理、余弦定理。
5.数列:等差、等比数列及其通向公式,前N项和公式。
6.直线和圆的方程,直线的倾斜角和斜率,点斜式和两点式、一般式平行线与垂直的关系,点到线的距离。
7.圆锥曲线方程:椭圆的几何性质和参数方程,双曲线、抛物线的标准方程和基本性质。
8.直线、平面、简单几何体,直线和平面的判定,距离,三垂线定理。
2022年高考数学一轮复习必备 线段的定比分点及平移
第42课时:第五章 平面向量——线段的定比分点及平移课题:线段的定比分点及平移一.复习目标:1.掌握线段的定比分点坐标公式和中点坐标公式,会用定比分点坐标公式求分点坐标和,会用中点坐标公式解决对称问题;2.掌握平移公式,会用平移公式化简函数式或求平移后的函数解析式.二.知识要点:1.线段的定比分点:内分点、外分点、的确定;2.定比分点坐标公式是 ;线段的中点坐标公式是 ; 3.平移公式是 .三.课前预习:1.若点分的比为34,则点分的比是 . 2.把函数1124y x =-的图象,按向量(2,4)a =-平移后,图象的解析式是( ) 12124y x =- 11324y x =- 11924y x =+ 12124y x =-- 3.将函数241y x x =--顶点按向量平移后得到点(1,3)P '-,则 .4.ABC ∆中三边中点分别是(2,1),(3,4),(2,1)D E F --,则ABC ∆的重心是 .四.例题分析:例1.已知两点(,5)A x ,(2,)B y -,点(1,1)P 在直线上,且||2||AP BP =,求点和点的坐标.例2.已知(1,2),(1,3),(2,2)A B C --,点分的比为,点在线段上,且ABC AMNC S S ∆=32,求点的坐标.例3.已知函数 22(2)1y x =---的图象经过按平移后使得抛物线顶点在轴上,且在轴上截得的弦长为,求平移后函数解析式和.例4.已知,,D E F 分比是ABC ∆的三边,,BC CA AB 上的点,且使BD CE AF DC EA FB==,证明:ABC ∆与DEF ∆的重心相同.五.课后作业:1.已知点按向量平移后得到点,则点按向量平移后的坐标是( )(5,1)-- (5,1)- (5,1)-2.平面上有(2,1)A -,(1,4)B ,(4,3)D -三点,点在直线上,且12AC BC =,连并延长到,使1||||4CE ED =,则点的坐标为( ) 或811(,)33 811(,)33- 5(8,)3-- 3.平移曲线()y f x =使曲线上的点变为,这时曲线方程为( )(1)2y f x =-+ (1)2y f x =++(1)2y f x =-- (2)1y f x =-+4.把一个函数的图象向量(,2)4a π=平移后图象的解析式为sin()24y x π=++,则原来函数图象的解析式为 .5.已知函数11x y x-=+,按向量平移该函数图形,使其化简为反比例函数的解析式,则向量= ,化简后的函数式为 .6.已知(1,0)A ,(0,1)B -,(,)P x y ,为坐标原点,若1OA OB OP λλ+=+,则点的轨迹方程为 .7.已知三角形的三个顶点为(1,2),(4,1),(3,4)A B C ,(1)求三边的长;(2)求边上的中线的长;(3)求重心的坐标;(4)求的平分线的长;(5)在上取一点,使过且平行于的直线把ABC ∆的面积分成的两部分,求点的坐标.8.如图已知三点(0,8),(4,0),(5,3)A B C --,点内分的比是,在上,且BDE ∆的面积是ABC ∆面积的一半,求点的坐标.9.将函数2y x =-的图象进行怎样的平移,才能使平移后得到的图象与函数22y x x =--的两交点关于原点对称并求平移后的图象的解析式。
平面向量
平面向量1.理解向量的概念,掌握向量的几何表示,了解共线向量的概念.2.掌握向量的加法和减法的运算法则及运算律.3.掌握实数与向量的积的运算法则及运算律,理解两个向量共线的充要条件.4.了解平面向量基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.5.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.6.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用;掌握平移公式.向量由于具有几何形式与代数形式的“双重身份”,使它成为中学数学知识的一个交汇点,成为多项内容的媒介.主要考查:1.平面向量的性质和运算法则,共线定理、基本定理、平行四边形法则及三角形法则.2.向量的坐标运算及应用.3.向量和其它数学知识的结合.如和三角函数、数列、曲线方程等及向量在物理中的应用.4.正弦定理、余弦定理及利用三角公式进行恒等变形的能力.以化简、求值或判断三角形的形状为主.解三角形常常作为解题工具用于立体几何中的计算或证明.第1课时向量的概念与几何运算⑴既有又有的量叫向量.的向量叫零向量. 的向量,叫单位向量.⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量 .⑶ 且 的向量叫相等向量.2.向量的加法与减法⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律.⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 .3.实数与向量的积⑴ 实数λ与向量的积是一个向量,记作λ.它的长度与方向规定如下:① | λ |= .② 当λ>0时,λ的方向与的方向 ; 当λ<0时,λ的方向与的方向 ; 当λ=0时,λ .⑵ λ(μ)= . (λ+μ)= .λ(+b )= .⑶ 共线定理:向量b 与非零向量共线的充要条件是有且只有一个实数λ使得 .4.⑴ 平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数1λ、2λ,使得 .⑵ 设1e 、2e 是一组基底,=2111e y e x +,b =2212e y e x +,则与b 共线的充要条件是 .例1.已知△ABC 中,D 为BC 的中点,E 为AD 的中点.设=,=,求.解:=AE -=41(+)-=-43a +41b 变式训练1.如图所示,D 是△ABC 边AB 上的中点,则向量等于( )A .-+21B .--BA 21C .-21D .+21解:A例2. 已知向量2132e e -=,2132e e +=,2192e e -=,其中1e 、2e 不共线,求实数λ、μ,BC使μλ+=.解:c =λ+μb ⇒21e -92e =(2λ+2μ)1e +(-3λ+3μ)2e ⇒2λ+2μ=2,且-3λ+3μ=-9⇒λ=2,且μ=-1变式训练2:已知平行四边形ABCD 的对角线相交于O 点,点P 为平面上任意一点,求证:4=+++证明 +PC =2PO ,+=2PO ⇒++PC +=4PO例3. 已知ABCD 是一个梯形,AB 、CD 是梯形的两底边,且AB =2CD ,M 、N 分别是DC和AB 的中点,若a =,b =,试用a 、b 表示和.解:连NC ,则==-=+=+=4141;21-=-=变式训练3:如图所示,OADB 是以向量=,=为邻边的平行四边形,又=31,=31,试用、表示,,.解:=61a +65b ,=32a +32b ,=21-61b 例4. 设,是两个不共线向量,若与起点相同,t ∈R ,t 为何值时,,t ,31(+)三向量的终点在一条直线上?解:设])(31[t +-=-λ (λ∈R)化简整理得:)31()132(=-+-t λλ∵不共线与,∴⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-2123030132t t λλλ故21=t 时,)(31,,t +三向量的向量的终点在一直线上.变式训练4:已知,,,,OA a OB b OC c OD d OE e ===== ,设t R ∈,如果3,2,a c b d ==()e t a b =+,那么t 为何值时,,,C D E 三点在一条直线上?解:由题设知,23,(3)CD d c b a CE e c t a tb =-=-=-=-+,,,C D E 三点在一条直线上的充要条件是存在实数k ,使得CE kCD = ,即(3)32t a tb ka kb -+=-+,整理得(33)(2)t k a k t b -+=-.①若,a b共线,则t 可为任意实数;②若,a b 不共线,则有33020t k t k -+=⎧⎨-=⎩,解之得,65t =.综上,,a b 共线时,则t 可为任意实数;,a b 不共线时,65t =.D1.认识向量的几何特性.对于向量问题一定要结合图形进行研究.向量方法可以解决几何中的证明.2.注意与O 的区别.零向量与任一向量平行.3.注意平行向量与平行线段的区别.用向量方法证明AB ∥CD ,需证∥,且AB 与CD 不共线.要证A 、B 、C 三点共线,则证∥即可.4.向量加法的三角形法则可以推广为多个向量求和的多边形法则,特点:首尾相接首尾连;向量减法的三角形法则特点:首首相接连终点.第2课时 平面向量的坐标运算1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底,对于一个向量,有且只有一对实数x 、y ,使得=x i +y j .我们把(x 、y)叫做向量的直角坐标,记作 .并且||= .2.向量的坐标表示与起点为 的向量是一一对应的关系.3.平面向量的坐标运算:若=(x 1、y 1),=(x 2、y 2),λ∈R ,则:+= -= λ=已知A(x 1、y 1),B(x 2、y 2),则= .4.两个向量=(x 1、y 1)和=(x 2、y 2)共线的充要条件是 .例1.已知点A (2,3),B (-1,5),且=31AB ,求点C 的坐标.解=31=(-1,32),=+=(1, 311),即C(1, 311)变式训练1.若(2,8)OA = ,(7,2)OB =- ,则31AB= .解: (3,2)--提示:(9,6)AB OB OA =-=--例2. 已知向量=(cos 2α,sin 2α),=(cos 2β,sin 2β),|-|=552,求cos(α-β)的值.解:|-|=55222552=--⇒)cos(βα2cos 22552βα--⇒=55222552=--⇒)cos(βα⇒cos 2βα-=53⇒cos(α-β)=257-变式训练2.已知-2b =(-3,1),2+b =(-1,2),求+b .解 a =(-1,1),b =(1,0),∴a +b =(0,1)例3. 已知向量=(1, 2),=(x, 1),1e =+2,2e =2-,且1e ∥2e ,求x .解:1e =(1+2x ,4),2e =(2-x ,3),1e ∥2e ⇒3(1+2x)=4(2-x)⇒x =21变式训练3.设=(ksinθ, 1),b =(2-cosθ, 1) (0 <θ<π),∥,求证:k≥3.证明: k =θθsin cos 2- ∴k -3=θπθsin )3cos(22--≥0 ∴k≥3例4. 在平行四边形ABCD 中,A(1,1),=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1) 若=(3,5),求点C 的坐标;(2) 当||=||时,求点P 的轨迹.解:(1)设点C 的坐标为(x 0,y 0),)5,1()5,9()0,6()5,3(00--==+=+=y x得x 0=10 y 0=6 即点C(10,6)(2) ∵= ∴点D 的轨迹为(x -1)2+(y -1)2=36 (y ≠1) ∵M 为AB 的中点∴P 分的比为21设P(x ,y),由B(7,1) 则D(3x -14,3y -2) ∴点P 的轨迹方程为)1(4)1()5(22≠=-+-y y x变式训练4.在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且||=2,求的坐标.解 已知A (0,1),B (-3,4) 设C (0,5), D (-3,9)则四边形OBDC 为菱形 ∴∠AOB 的角平分线是菱形OBDC 的对角线OD ∵2103==∴)5103,510(1032-==1.认识向量的代数特性.向量的坐标表示,实现了“形”与“数”的互相转化.以向量为工具,几何问题可以代数化,代数问题可以几何化.2.由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.第3课时 平面向量的数量积1.两个向量的夹角:已知两个非零向量和b ,过O 点作=,=b ,则∠AOB =θ (0°≤θ≤180°) 叫做向量a 与b 的 .当θ=0°时,a 与b ;当θ=180°时,a 与b ;如果与b 的夹角是90°,我们说与b 垂直,记作 .2.两个向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量叫做与b 的数量积(或内积),记作·b ,即·b = .规定零向量与任一向量的数量积为0.若=(x 1, y 1),b =(x 2, y 2),则·b = . 3.向量的数量积的几何意义:|b |cosθ叫做向量b 在方向上的投影 (θ是向量与b 的夹角).·b 的几何意义是,数量·b 等于 .4.向量数量积的性质:设、b 都是非零向量,是单位向量,θ是与b 的夹角.⑴ ·=·= ⑵ ⊥b ⇔⑶ 当与b 同向时,·b = ;当与b 反向时,·b = . ⑷ cos θ= .⑸ |·b |≤ 5.向量数量积的运算律:⑴ ·b = ; ⑵ (λ)·b = =·(λb ) ⑶ (+)·c =4,|b |=5,且与b 的夹角为60°,求:(2+3b )·(3-2b ). 解:(2+3b )(3-2b )=-4变式训练1.已知||=3,|b |=4,|+b |=5,求|2-3b |的值. 解:56例2. 已知向量=(sin θ,1),b =(1,cos θ),-22πθπ<<.(1) 若a ⊥b ,求θ; (2) 求|a +b |的最大值.解:(1)若⊥,则0cos sin =+θθ 即1tan -=θ 而)2,2(ππθ-∈,所以4πθ-=(2))4sin(223)cos (sin 23πθθθ++=++=+当4πθ=时,+的最大值为12+变式训练2:已知(cos ,sin )a αα= ,(cos ,sin )b ββ=,其中0αβπ<<<. (1)求证:a b + 与a b -互相垂直;(2)若ka →+→b 与a k →-→b 的长度相等,求βα-的值(k 为非零的常数).证明:222222()()(cos sin )(cos sin )0a b a b a b ααββ+⋅-=-=+-+= a b ∴+ 与a b -互相垂直(2)k a →+(cos cos ,sin sin )b k k αβαβ→=++,a k →-(cos cos ,sin sin )b k k αβαβ→=--,k a b →+= a kb →-= ,cos()0βα-=,2πβα-=例3. 已知O 是△ABC 所在平面内一点,且满足(-)·(+-2)=0,判断△ABC 是哪类三角形.解:设BC 的中点为D ,则(-)(2-+)=0⇒2·=0⇒BC ⊥AD ⇒△ABC 是等腰三角形.变式训练3:若(1,2),(2,3),(2,5)A B C -,则△ABC 的形状是 .解: 直角三角形.提示:(1,1),(3,3),0,AB AC AB AC AB AC ==-⋅=⊥例4. 已知向量m =(cosθ, sinθ)和n =(2-sinθ, cosθ) θ∈(π, 2π)且|n m +|=528,求cos(82πθ+)的值.解:+=(cos θ-sin θ+2, cos θ+sin θ)由已知(cos θ-sin θ+2)2+(cos θ+sin θ)2=25128化简:cos 257)4(=+πθ又cos 225162)4cos(1)82(=++=+πθπθ∵θ∈(π, 2π) ∴cos 25162)4cos(1)82(=++=+παπθ<0 ∴cos 25162)4cos(1)82(=++=+παπθ=-54 变式训练4.平面向量11),(2a b =-=,若存在不同时为0的实数k 和t ,使2(3)x a t b =+- ,,y ka tb =-+ 且x y ⊥ ,试求函数关系式()k f t =. 解:由11),(2a b =-=得0,||2,||1a b a b ⋅===22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +-⋅-+=-+⋅--⋅+-=33311(3),()(3)44k t t f t t t =-=- 1.运用向量的数量积可以解决有关长度、角度等问题.因此充分挖掘题目所包含的几何意义,往往能得出巧妙的解法.2.注意·b 与ab 的区别.·b =0≠>=,或b =. 3.应根据定义找两个向量的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点15 平面向量的数量积、
线段的定比分点与平移
一、选择题
1.(2011·湖北高考理科·T8)已知向量a = (x+z,3),b =(2,y-z),且a ⊥ b
.若x,y 满足不等式
1x y +≤,则z 的取值范围为( )
(A)[-2,2] (B)[-2,3] (C)[-3,2] (D)[-3,3]
【思路点拨】先由a ⊥b
这一条件寻找x ,y 之间的关系,再画出不等式1x y +≤表示的区域,最后转化
为线性规划问题处理 .
【精讲精析】选D. a b ⊥ 得a b=0 ,⋅
∴2x+3y-z=0,即z=2x+3y ,而1
x y +≤
表示的平面区域为如图阴影部分:
当y x z 32+=经过点()1,0A 时,y x z 32+=取得最大值3, 当y x z 32+=经过点()1,0-C 时,y x z 32+=取得最小值-3,
因此z 的取值范围是[-3,
2.(2011·湖北高考文科·T2)若向量(1,2),(1,1)a b ==-
,则2a b + 与a b - 的夹角等于( )
(A)4π-
(B)6π (C)4π (D)34
π 【思路点拨】先求2a b + 与-
a b 的坐标,再利用数量积的坐标运算求夹角.
【精讲精析】选C. ∵2(3,3)a b += ,(0,3)a b -=
,设2a b + 与a b - 的夹角为α,
最大值等于( )
【思路点拨】本题按照题目要求构造出如图所示的几何图形,然后分析观察不难得到当线
段AC 为直径时,||c
最大.
【精讲精析】选A.如图,构造
,,,120,60,AB a
AD b AC c BAD BCD ===∠=
∠=
所以A ,B ,C
,D 四点共圆,分析可知当线段AC 为
直径时,||c
最大,最大值为2.
4.(2011·全国高考文科·T3)设向量
,a b
满足||||1a b == ,1
2
⋅=- a b ,则2a b += ( )
(A (B (C (D 【精讲精析】选B. 2a b +=== 5.(2011·四川高考文科·T7)与(2011·四川高考理科·T4)相同
如图,正六边形ABCDEF 中,BA CD EF ++=
( ) (A )0
(B )BE (C )AD (D )CF
【思路点拨】BA DE =
,向量加法的几何表示,首尾顺次相连.
【精讲精析】选D.()
BA CD EF DE CD EF CD DE EF ++=++=++ .
CE EF CF =+=故选D.
6.(2011·重庆高考文科·T5)已知向量)2,2(),,1(==
k ,且+与共线,那么a b
的值为( )
(A)1 (B)2 (C)3 (D)4
【思路点拨】由条件可先求出k 的值,然后再求a b
.
【精讲精析】选D.由题意知, )2,3(k +=+,因为+与共线,所以032=-+k k ,解得1=k ,所
以a b 1212
4=??r r g .
二、填空题
7.(2011·上海高考理科·T11)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则A
BA D = .
【思路点拨】本题考查向量的数量积公式,关键是根据向量的方向找出两向量的夹角,并构造三角形求解其余弦值,最终求出结果. 【精讲精析】
由已知条件得1233
AD AC AB =+ ,那么AB AD =
=
15
2.
【答案】
152
8.(2011·重庆高考理科·T12)已知单位向量21,e e 的夹角为
60,则=-12e .
【思路点拨】解答本题可利用122e e -== 求解.
【精讲精析】由题意知121
e e cos 602
==
,
122e e -==
=
关闭Word 文档返回原板块。