醋酸纤维素吸附剂的制备及其性能表征
肉桂酸改性醋酸纤维素的合成及其对烟气中氨的吸附
合成纤维工业,291922(4):36CHINA SYNTHETIN FINER INDUSTRY 研究与开发肉桂酸改性醋酸纤维素的合成及其对烟气中氨的吸附王晋,刘志华,张涛,李晶,刘欣2午永,王昆淼,刘春波,何沛,张承明(云南中烟工业有限责任公司技术中心云南省烟草化学重点实验室,云南昆明65456)摘要:采用自由基接枝聚合方法,以肉桂酸(PCA)对醋酸纤维素(CA)进行接枝改性,得到接枝产物(CA-V-BCA),采用红外光谱和核磁共振氢谱对其结构进行表征;将制得的CA-o-WCA添加在卷烟嘴棒中,研究CA-o-BCA对卷烟主流烟气中氨的影响及其对氨的吸附作用机理。
结果表明:PCA通过自由基聚合成功接枝到CA上;CApWCA对氨存在特异性吸附,随着PCA接枝率的增大,主流烟气中氨释放量出现先减小后不变的趋势,当PCA接枝率达2.0%时,氨释放量的降低率达17.5%,之后随着PCA接枝率的增加,吸附达到饱和,氨释放量不变;CA-o-BCA吸附氨后,CA-o-BCA与氨存在氢键,同时可能发生了酸碱作用;CA-gWCA对主流烟气中氨的选择性吸附机理为CA-o-BCA与氨存在酸碱相互作用。
关键词:醋酸纤维素纤维肉桂酸接枝改性氨气选择性吸附中图分类号:TQ341+.2文献标识码:A 文章编号:591-2642(295)94-0930-24卷烟主流烟气中的氨主要来源于烟草中的氨基酸、蛋白质、硝酸盐、鞍盐、酰胺、生物碱及含氮杂环化合物等含氮化合物的燃烧及热解。
氨在烟气粒相和气相中都存在,不仅影响卷烟的吃味还会刺激人体的视觉系统及呼吸系统,对吸烟者有一定危害7]。
因此,开展有效降低卷烟主流烟气中的氨释放量(^N h7/的研究具有十分重要的意义。
杨智慧[2]以玉米淀粉为原料,采用挤压膨化法制备磷酸酯淀粉,以玉米淀粉取代度(DS/为指标,研究了DS对烟气中甲阻的影响,发现随着DS增加,甲阻减少,^nh7降低率可达64.44%。
醋酸纤维素的制备及应用研究
醋酸纤维素的制备及应用研究醋酸纤维素,是一种人造纤维素,也叫纤维素醋酸酯。
它是以纤维素为原料,经过一系列化学反应而成的,是化学纤维中的一种重要品种。
醋酸纤维素具有一定的特殊性能和应用价值,在纺织、医药、冶金等领域有广泛的应用。
一、醋酸纤维素的制备方法醋酸纤维素的制备方法分为两种:一种是浸渍法,另一种是淀粉醇法。
浸渍法是根据醋酸和硫酸混合物对纤维素的化学处理过程中,利用物理力学及人工环境控制制成的技术。
通常采用棉纤维或木质纤维作为原料。
棉纤维经过脱脂、漂白后,利用机械或手工浸泡到醋酸和硫酸混合物中,进行化学处理,得到醋酸纤维素。
淀粉醇法是在一定的温度和压力下,将淀粉分子与糖醇分子水解成葡萄糖和糖醇,再通过葡萄糖和醋酸的反应,制得醋酸纤维素。
二、醋酸纤维素的性能特点醋酸纤维素具有以下性能特点:1. 强度高:醋酸纤维素具有较好的拉伸强度和抗折强度。
2. 稳定性好:它在酸、碱、水、乙醇、甲醇、丙酮、二氧化碳等介质中表现出优异的化学稳定性。
3. 光泽度佳:由于其分子中富含苯环结构,从而表现出良好的光泽度。
4. 柔软度好:醋酸纤维素柔软度极高,适合用于制作柔软而有韧性的衣物。
三、醋酸纤维素的应用范围醋酸纤维素的应用范围相当广泛。
具体而言,主要包括以下方面:1. 纺织行业:作为一种特殊的纤维,醋酸纤维素广泛用于纺织行业,主要用于生产服装、布料、手套、袜子等。
2. 医药行业:醋酸纤维素是一种具有特殊药用功能的材料,可以制成药用包扎材料、医疗手套、医用胶带等。
3. 冶金行业:醋酸纤维素具有极强的吸水性能,可以在冶金行业被用来干燥钢铁、铸造件等。
4. 化妆品制备:由于醋酸纤维素在吸水性、亲水性、光泽度等方面的优异表现,它在化妆品制备中得到了广泛的应用。
可以制成各种涂料、化妆品、美容产品等。
四、醋酸纤维素的前景随着人们对环境保护和可持续发展问题的重视,醋酸纤维素的优异性能越来越受到人们的重视。
相信在未来,醋酸纤维素将成为化纤行业的重要组成部分。
《醋酸纤维素复合材料的制备及其染料去除研究》
《醋酸纤维素复合材料的制备及其染料去除研究》一、引言随着工业的快速发展和人口的不断增长,水资源的污染问题日益严重,其中染料污染是主要问题之一。
醋酸纤维素(CA)作为一种天然高分子材料,具有优良的物理化学性能和生物相容性,被广泛应用于多个领域。
然而,关于其复合材料在染料去除方面的研究尚待进一步深入。
因此,本文旨在探讨醋酸纤维素复合材料的制备方法及其在染料去除方面的应用研究。
二、醋酸纤维素复合材料的制备2.1 材料与试剂醋酸纤维、有机填料(如活性炭、硅藻土等)、催化剂、溶剂等。
2.2 制备方法采用溶液共混法,将醋酸纤维与有机填料在适当溶剂中混合,通过催化剂作用促进混合物的共混,并控制温度、时间和搅拌速度等参数,得到醋酸纤维素复合材料。
三、染料去除性能研究3.1 实验方法将制备好的醋酸纤维素复合材料用于染料去除实验。
首先,将染料溶液与复合材料混合,在一定条件下进行吸附或降解反应。
然后,通过测定反应前后染料溶液的吸光度或浓度变化,评价复合材料的染料去除性能。
3.2 结果与讨论实验结果表明,醋酸纤维素复合材料对不同类型染料的去除效果有所差异。
其中,对于某些类型染料的去除效果较为显著。
这可能与复合材料中的有机填料种类、比例以及制备工艺等因素有关。
此外,我们还发现,复合材料的染料去除性能受到反应条件(如温度、时间、pH值等)的影响。
通过优化反应条件,可以提高复合材料的染料去除性能。
四、机理分析根据实验结果和文献报道,我们提出了醋酸纤维素复合材料染料去除的可能机理。
一方面,复合材料中的有机填料具有较大的比表面积和良好的吸附性能,能够吸附染料分子。
另一方面,醋酸纤维素的分子结构中存在大量的羟基等亲水性基团,有助于染料的解离和去除。
此外,复合材料还可能通过氧化、还原等化学反应降低染料的毒性或将其转化为无害物质。
五、结论本文成功制备了醋酸纤维素复合材料,并对其在染料去除方面的应用进行了研究。
实验结果表明,该复合材料对某些类型染料的去除效果显著,具有较好的应用前景。
醋酸纤维素塑料的制备工艺及工艺优化
醋酸纤维素塑料的制备工艺及工艺优化醋酸纤维素塑料(Cellulosic acetate)是一种重要的生物可降解塑料,广泛应用于纺织、包装和制造电子产品等领域。
本文将介绍醋酸纤维素塑料的制备工艺及工艺优化措施,以帮助读者更好地了解和应用这种环保材料。
首先,醋酸纤维素塑料的制备工艺包括纤维素的溶解和醋酸酐的化学反应。
常见的制备工艺流程如下:1. 纤维素预处理:纤维素通常来自木质素或棉麻等植物原料,必须通过预处理来提高纯度和溶解性。
预处理包括除杂、粉碎和干燥等步骤。
2. 纤维素的溶解:将经过预处理的纤维素加入溶剂中进行溶解。
常用的溶剂包括N,N-二甲基乙酰胺(DMAc)和氢化可的松等。
在一定的温度和时间条件下,纤维素将与溶剂发生作用,形成纤维素溶液。
3. 醋酸酐处理:将醋酸酐加入纤维素溶液中进行化学反应,生成醋酸纤维素。
反应可以通过添加酸催化剂或酶催化剂来加速。
反应结束后,通过水洗和干燥等工艺,获得醋酸纤维素塑料。
然而,传统的制备工艺存在一些问题,如高能耗、环境污染和工艺周期长等。
因此,为了优化制备工艺,提高工艺效率和产品质量,下面将介绍一些常见的工艺优化措施。
1. 溶剂体系优化:选择合适的溶剂体系可以提高纤维素的溶解性,降低能耗。
研究表明,混合溶剂体系如DMAc/LiCl可以提高溶解度和纤维素溶液的稳定性,有利于醋酸酐的反应。
2. 醋酸酐反应条件优化:醋酸酐处理的反应条件,包括温度、时间和催化剂浓度等,对产品质量和工艺效率起着重要作用。
通过调整反应条件可以控制醋酸纤维素的醋化程度,从而影响其物化性能。
3. 回收利用废水和溶剂:废水和溶剂的回收利用是工艺优化的重要环节。
采用适当的回收系统可以减少废物排放和溶剂浪费,达到环保的目的。
4. 新型催化剂研发:传统的酸催化剂具有催化效果不稳定、易制备难以回收等问题。
因此,研发高效稳定的新型酸催化剂是一项重要工作。
同时,也可以考虑采用酶催化剂,提高制备过程的生物可降解性。
醋酸纤维素的制备及其结构与性能
第49卷第1期2020年1月应㊀用㊀化㊀工AppliedChemicalIndustryVol.49No.1Jan.2020收稿日期:2019 ̄08 ̄12㊀㊀修改稿日期:2019 ̄09 ̄04基金项目:国家自然科学基金资助项目(51703153)作者简介:高立斌(1965-)ꎬ男ꎬ河北井陉人ꎬ工程师ꎬ主要从事化学纤维方面的研究ꎮ电话:19135311079ꎬE-mail:474192140@qq.com通讯联系人:张素英ꎬ女ꎬ硕士ꎬ主要从事纺织纤维方面的研究ꎮE-mail:suyingzh@163.com醋酸纤维素的制备及其结构与性能高立斌1ꎬ张素英2ꎬ史晟1ꎬ凌晨1ꎬ王博文1(1.太原理工大学轻纺工程学院ꎬ山西晋中㊀030600ꎻ2.太原理工大学现代科技学院ꎬ山西太原㊀030024)摘㊀要:将微晶纤维素(MCC)在冰醋酸/醋酸酐/氯化铁体系下乙酰化ꎬ制备醋酸纤维素(CA)ꎬ考察了催化剂类型及用量㊁反应温度㊁反应时间和醋酸酐用量等对CA的取代度和聚合度的影响ꎮ研究表明ꎬ以氯化铁为催化剂ꎬ在冰醋酸/醋酸酐体系下ꎬMCC乙酰化最佳工艺为:0.5gMCCꎬ0.1g氯化铁ꎬ反应温度50ħꎬ反应时间40minꎬ5mL醋酸酐ꎮ醋酸纤维素的各项性能均接近商品醋酸纤维素ꎬ具有一定的应用价值ꎮ关键词:微晶纤维素ꎻ醋酸纤维素ꎻ氯化铁ꎻ结构与性能中图分类号:TQ317.9㊀㊀文献标识码:A㊀㊀文章编号:1671-3206(2020)01-0055-05SynthesisꎬstructureandpropertiesofcelluloseacetateGAOLi ̄bin1ꎬZHANGSu ̄ying2ꎬSHISheng1ꎬLINGChen1ꎬWANGBo ̄wen1(1.CollegeofTextileEngineeringꎬTaiyuanUniversityofTechnologyꎬJinzhong030600ꎬChinaꎻ2.PolytechnicInstituteCollegeꎬTaiyuanUniversityofTechnologyꎬTaiyuan030024ꎬChina)Abstract:Celluloseacetate(CA)waspreparedbyacetylationofmicrocrystallinecelluloseunderglacialaceticacid/aceticanhydride/ferricchloridesystem.Theeffectsofcatalysttypeanddosageꎬreactiontem ̄peratureꎬreactiontimeandaceticanhydridedosageondegreeofsubstitutionanddegreeofpolymerizationofCAwereinvestigated.TheresearchshowsthatthepreparedMCCisacetylatedundertheglacialaceticacid/aceticanhydridesystemwithferricchlorideasthecatalystandtheoptimalpreparationprocessis0.5gMCCꎬ0.1gferricchlorideꎬreactiontemperature50ħꎬreactiontime40minꎬ5mLacetican ̄hydride.Thepropertiesofthecelluloseacetateareclosetothecommercialcelluloseacetateꎬwhichhascertainapplicationvalue.Keywords:microcrystallinecelluloseꎻcelluloseacetateꎻFeCl3ꎻstructureandproperty㊀㊀醋酸纤维素(CA)是纤维素的重要衍生物之一ꎬ全球每年生产的CA有68万t之多[1 ̄3]ꎮ醋酸纤维素具有广泛的工业应用ꎬ如涂料㊁卷烟过滤器㊁纺织纤维㊁消费品㊁过滤膜㊁复合材料㊁层压板以及医药产品等[4 ̄6]ꎮCA主要是通过纤维素在醋酸溶液中与乙酸酐反应而制得ꎬ常以硫酸或高氯酸等强酸为催化剂[7]ꎮ虽然硫酸等无机强酸具有良好的催化活性ꎬ但在反应过程生成的副产物也较多ꎬ而且也会造成反应设备的腐蚀ꎮ传统的CA生产方法中也存在纤维素降解严重和能耗较高等问题ꎮ因此ꎬ有必要开发高效㊁环保的CA生产技术ꎮ本文以几种固体酸为新型催化剂ꎬ对涤棉混纺织物中棉纤维水解制备的MCC进行乙酰化反应ꎬ选出合适的催化剂氯化铁ꎮ然后以氯化铁为催化剂ꎬ制备了CAꎮ考察了反应温度㊁反应时间㊁催化剂用量和醋酸酐用量对CA的取代度和聚合度的影响ꎬ得出CA的最佳制备条件ꎬ并对CA进行了结构与性能表征ꎮ1㊀实验部分1.1㊀试剂与仪器微晶纤维素(MCCꎬ分子量232)ꎬ自制ꎻ乙醇㊁冰醋酸㊁醋酸酐㊁浓硫酸㊁磷钨酸(HPW)㊁氯化铁㊁阳离子交换树脂(NKC ̄9)均为分析纯ꎻ蒸馏水ꎬ自制ꎮFA1400B电子天平ꎻSZCL ̄2型数显智能控温磁力搅拌器ꎻSHB ̄Ш型循环水式多用真空泵ꎻBGZ型电热鼓风干燥箱ꎻJSM ̄6700F型场发射扫描电镜ꎻY ̄2000型X射线衍射仪ꎻFT ̄IR ̄1730型红外光谱仪ꎻTGA4000型热重分析仪ꎮ1.2㊀实验方法在100mL圆底烧瓶中加入0.5gMCC和5mL应用化工第49卷冰醋酸ꎬ在40ħ水浴锅中恒温活化1hꎮ加入5mL醋酸酐和0.1g催化剂ꎬ50ħ恒温搅拌40minꎮ自然冷却至室温ꎬ加入50mL去离子水ꎬ使CA析出ꎮ抽滤ꎬ得到白色的CAꎬ用去离子水和乙醇洗涤ꎬ60ħ烘干6hꎬ备用ꎮ1.3㊀表征方法1.3.1㊀CA物化结构表征㊀采用傅里叶红外光谱仪对样品的表面化学结构进行分析ꎻ采用场发射扫描电镜对样品进行表面形貌分析ꎻ采用热重分析仪在氮气环境下(40mL/min㊁升温速率10ħ/min)对样品的热性能进行分析ꎻ样品的晶体结构采用X射线衍射仪进行分析(2θ的范围是5~60ʎꎬ间隔为0.05ʎ)ꎮ1.3.2㊀取代度㊀根据HG/T3021 1999测定出CA中水解乙酸值AVꎬ再由公式(1)计算出取代度DS[8]ꎮDS=162AV/(6000-42AV)(1)1.3.3㊀聚合度㊀根据HG/T2758 1996测定出CA的特征黏度(ηꎬdL/g)ꎬ由公式(2)计算得出聚合度DP[9]ꎮDP=147η1.2(2)2㊀结果与讨论2.1㊀反应条件对醋酸纤维素制备的影响2.1.1㊀催化剂的筛选㊀分别以浓H2SO4㊁氯化铁㊁大孔苯乙烯系阳离子交换树脂和磷钨酸(HPW)等为催化剂ꎬ催化MCC的乙酰化反应ꎮ以取代度为评价指标ꎬ结果见表1ꎮ表1㊀几种催化剂的催化效果Table1㊀Catalyticeffectsofseveralcatalysts催化剂取代度氯化铁2.54浓H2SO42.95HPW1.96NKC ̄91.54㊀㊀由表1可知ꎬ氯化铁的催化效果几乎等同于浓H2SO4ꎬ故使用氯化铁为催化剂ꎮ2.1.2㊀催化剂用量的影响㊀图1为氯化铁用量对CA取代度和聚合度的影响ꎮ图1㊀催化剂用量对CA取代度和聚合度的影响Fig.1㊀EffectofcatalystdosageontheDSandDPofCA㊀㊀由图1可知ꎬ随着用量的增加ꎬ催化效能随之增加ꎬ反应速度加快ꎬ取代度呈现出上升的趋势ꎮ但是当氯化铁的使用量超过0.2g时ꎬ取代度的增加开始放缓ꎬ这是由于氯化铁的用量0.2g时ꎬMCC的乙酰化反应的速率已经接近最大值ꎬ所以取代度随氯化铁使用量的增加而不会明显增加ꎮ由于氯化铁会一定程度上促进MCC的水解ꎬ所以当氯化铁用量增加时ꎬCA的聚合度会降低ꎮ而且由于纤维素的乙酰化反应是放热反应ꎬ随着反应的进行ꎬ体系的温度会相对升高ꎬ这也会促进CA的水解ꎮ2.1.3㊀反应温度的影响㊀图2为反应温度对CA取代度和聚合度的影响ꎮ图2㊀反应温度对CA取代度和聚合度的影响Fig.2㊀EffectofreactiontemperatureontheDSandDPofCA㊀㊀纤维素的乙酰化反应是一个由非均相反应到均相反应的过程ꎬ在这个过程中ꎬ不溶于冰醋酸的MCC逐渐反应生成可溶于冰醋酸的CAꎮ在非均相反应阶段ꎬ乙酰化反应优先在MCC的非晶区进行ꎬ慢慢再到结晶区ꎮ由图2可知ꎬ当反应体系内的温度较低时ꎬ反应速率较慢ꎮ温度为40ħ时ꎬCA的取代度较小ꎮ随着温度的增加ꎬ化学反应速率不断增加ꎬCA的取代度也随之增加ꎮ当反应温度从40ħ上升到50ħ时ꎬCA的聚合度降低得较为缓慢ꎮ当温度高于50ħ时ꎬ聚合度开始显著下降ꎮ这是由于温度低于50ħ时ꎬMCC的酸水解不明显ꎬ但温度超过50ħ后ꎬMCC的酸水解加剧ꎬ而且随着温度的升高ꎬMCC的水解程度也加深ꎬ所以CA的聚合度降低得越来越快ꎮ2.1.4㊀反应时间的影响㊀图3为反应时间对CA取代度和聚合度的影响ꎮ㊀㊀由图3可知ꎬ随着时间的增加ꎬCA的取代度增加ꎮ这是由于MCC的乙酰化反应随着时间的增加而更加充分ꎬ所以取代度呈上升趋势ꎮ然而ꎬ随着时间的增加ꎬ聚合度下降ꎬ这是由于部分MCC会发生水解ꎬ而且随着时间的延长ꎬ水解的作用越来越明显ꎮ65第1期高立斌等:醋酸纤维素的制备及其结构与性能图3㊀反应时间对CA取代度和聚合度的影响Fig.3㊀EffectofreactiontimeontheDSandDPofCA2.1.5㊀醋酸酐用量的影响㊀图4为醋酸酐用量对CA取代度和聚合度的影响ꎮ图4㊀醋酸酐用量对CA取代度和聚合度的影响Fig.4㊀EffectofacetylicanhydridedosageontheDSandDPofCA㊀㊀由图4可知ꎬ随着醋酸酐用量的增加ꎬ取代度呈现上升趋势ꎮ当醋酸酐用量>4mL时ꎬCA的取代度上升趋势开始放缓ꎮ醋酸酐既能与MCC发生酯化反应ꎬ也会水解消耗酯化反应生成水ꎬ促进醋化反应的进行ꎬ若醋酸酐用量不足ꎬ反应生成的水易引起醋酸酐的水解ꎬ降低CA的取代度ꎮ故随着醋酸酐用量的增加ꎬCA的取代度提高ꎮ醋酸酐用量对聚合度的影响较小ꎬ曲线较为平缓ꎮ2.2㊀醋酸纤维素的物化结构2.2.1㊀化学结构㊀图5为MCC及其乙酰化产物的红外光谱图ꎮ图5㊀CA和市售商品CA的红外光谱图Fig.5㊀FTIRspectraofCAandcommercialCA(CCA)㊀㊀由图5可知ꎬ1165ꎬ1752cm-1处是饱和羧酸酯的C O和C C O的拉伸吸收[10]ꎬ1369cm-1处是 OCOCH3的拉伸ꎬ1235cm-1是乙酰基中 CO 的拉伸[7ꎬ11]ꎮ2951ꎬ2897cm-1处分别是由于饱和的甲氧基和亚甲基的不对称拉伸造成的[12]ꎬ1051cm-1是C O C吡喃糖环骨架的振动[13]ꎮ与MCC相比ꎬCA的红外有一些明显的变化:在3450cm-1处 OH伸缩带的拉伸振动明显减小[14]ꎻ1220cm-1处是C O的伸缩振动增强[15]ꎬ说明乙酰基取代了纤维素链上的 OH基团[16]ꎮ2.2.2㊀晶体结构㊀图6为CA的XRD衍射图谱ꎮ图6㊀CA和市售商品CA的X射线衍射图谱Fig.6㊀XRDpatternsofCAandCCA㊀㊀由图6可知ꎬ与MCC对比ꎬCA中纤维素Ⅰ型的4个衍射峰消失ꎬ说明MCC已经全部转化[17]ꎮ在2θ=10.6ʎ处出现了较弱的衍射峰ꎬ这是醋酸纤维素的结晶峰[18 ̄19]ꎮ在2θ=13ꎬ17.4ꎬ22.3ʎ处均为CA的晶体衍射峰[20]ꎮ在2θ=8.4ʎ处为具有半晶质乙酰化纤维素的主要特征峰[21]ꎮ此外ꎬ在2θ=19.7ʎ处出现了新的衍射峰ꎬ这通常被认为是纤维素链中无序或非晶区[22]ꎮCA等衍射峰都比较微弱ꎬ这说明它的结晶度低ꎬ这是由于体积较大的乙酰基取代羟基ꎬ破坏了纤维素分子间和分子内的氢键所致[23]ꎮ乙酰基使得纤丝间距离的增加和微纤结构的破坏ꎬ引起纤维素结构的紊乱[24]ꎮ2.2.3㊀热稳定性㊀图7为CA的TG ̄DTG曲线ꎮ图7㊀CA和市售商品CA的TG ̄DTG曲线图Fig.7㊀TG ̄DTGcurvesofCAandCCA㊀㊀由图7可知ꎬCA的失重阶段为280~400ħꎬ在370ħ的时候达到最大失重率ꎬ与之前报道的75应用化工第49卷数据一致[25]ꎮ在400~550ħ这一阶段ꎬCA的结晶区完全被破坏ꎬ分解为D ̄葡萄糖单体ꎬ单体可进一步分解为自由基[26 ̄27]ꎮ与MCC相比ꎬCA的热稳定性要高于MCCꎮ有研究报道纤维素酯的热稳定性随着取代度的增加而增加[24]ꎬCA与市售商品CA的热稳定性接近ꎬ从侧面说明它们的取代度也接近ꎮ2.2.4㊀微观形貌㊀图8为CA的SEM图像ꎮ图8㊀CA(dꎬeꎬf)和市售商品CA(aꎬbꎬc)的SEM图像Fig.8㊀SEMimagesofCA(dꎬeꎬf)andCCA(aꎬbꎬc)㊀㊀由图8可知ꎬCA表面凹凸不平ꎬ有很多小的突起ꎮ而市售商品CA的表面相比之下较为平整光滑ꎮ相比商品CAꎬ制备所得的CA粒径较小ꎬ形状更加不规则ꎮ2.2.5㊀其他性能指标㊀表2为工业纺丝用醋酸纤维素和CA的质量指标ꎮ表2㊀CA的质量指标Table2㊀ThequalityindexesofCA项目指标CA水分/%ɤ6.04.62游离酸(以CH3COOH计)/%ɤ0.010.007热稳定性烘烤无黑色或褐色颗粒合格㊀㊀由表2可知ꎬ制备的CA的含水量㊁热稳定性和游离酸均达到了质量标准ꎮ3㊀结论在冰醋酸/醋酸酐体系下ꎬ微晶纤维素乙酰化制成醋酸纤维素的最佳工艺条件为:氯化铁相对于微晶纤维素的质量为20%ꎬ反应温度50ħꎬ反应时间40minꎬ醋酸酐用量相对于微晶纤维素的质量为10ʒ1ꎮ醋酸纤维素的各项性能均接近市售商品ꎬ具有一定的应用价值ꎮ参考文献:[1]㊀ZhangMQ.Polymericmaterialsfromnaturalresources ̄emergingasthetimesrequire[J].ExpressPolymerLet ̄tersꎬ2007ꎬ1(7):406.[2]YanLFꎬLiWꎬQiZHꎬetal.Solvent ̄freesynthesisofcelluloseacetatebysolidsuperacidcatalysis[J].JournalofPolymerResearchꎬ2006ꎬ13(5):375 ̄378.[3]BiswasAꎬShogrenRLꎬWillettJL.Solvent ̄freeprocesstoesterifypolysaccharides[J].Biomacromoleculesꎬ2005ꎬ6(4):1843 ̄1845.[4]YuDGꎬLiXYꎬWangXꎬetal.Zero ̄orderdrugreleasecelluloseacetatenanofiberspreparedusingcoaxialelec ̄trospinning[J].Celluloseꎬ2013ꎬ20(1):379 ̄389.[5]LiJꎬZhangLPꎬPengFꎬetal.Microwave ̄assistedsol ̄vent ̄freeacetylationofcellulosewithaceticanhydrideinthepresenceofiodineasacatalyst[J].Moleculesꎬ2009ꎬ14(9):3551 ̄3566.[6]YuDGꎬYuJHꎬChenLꎬetal.Modifiedcoaxialelectro ̄spinningforthepreparationofhigh ̄qualityketoprofen ̄loadedcelluloseacetatenanofibers[J].CarbohydratePol ̄ymersꎬ2012ꎬ90(2):1016 ̄1023.[7]SteinmeierH.3.Acetatemanufacturingꎬprocessandtech ̄nology3.1chemistryofcelluloseacetylation[J].Macro ̄molecularSymposiaꎬ2004ꎬ208(1):49 ̄60.[8]FilhoGRꎬMonteiroDSꎬMeirelesCDSꎬetal.Synthesisandcharacterizationofcelluloseacetateproducedfromre ̄cyclednewspaper[J].CarbohydratePolymersꎬ2008ꎬ73(1):74 ̄82.[9]MengQLꎬLiYingchun.Homogeneoussynthesisofcellu ̄loseacetate[J].ChemicalResearch&Applicationꎬ2004ꎬ16(2):287 ̄289.[10]MichaelSꎬMichelBꎬHerantKꎬetal.Applicationofchemicalandthermalanalysismethodsforstudyingcellu ̄loseesterplastics[J].AccountsofChemicalResearchꎬ2010ꎬ43(6):888 ̄896.[11]ChenXꎬZouHꎬNiJꎬetal.Synthesisandcharacteristicsofcompositechiralstationaryphasesbasedoncellulosederivatives[J].JournalofSeparationScienceꎬ2003ꎬ26(1/2):29 ̄36.[12]CelebiogluAꎬDemirciSꎬUyarT.Cyclodextrin ̄graftedelectrospuncelluloseacetatenanofibersvia Click reac ̄tionforremovalofphenanthrene[J].AppliedSurfaceSci ̄85第1期高立斌等:醋酸纤维素的制备及其结构与性能enceꎬ2014ꎬ305:581 ̄588.[13]AliSꎬKhatriZꎬOhKWꎬetal.Zein/celluloseacetatehy ̄bridnanofibers:Electrospinningandcharacterization[J].MacromolecularResearchꎬ2014ꎬ22(9):971 ̄977. [14]GonçalvesSMꎬdosSantosDCꎬMottaJFGꎬetal.Struc ̄tureandfunctionalpropertiesofcelluloseacetatefilmsin ̄corporatedwithglycerol[J].CarbohydratePolymersꎬ2019ꎬ209:190 ̄197.[15]SunXFꎬSunRCꎬSunJX.Acetylationofsugarcaneba ̄gasseusingNBSasacatalystundermildreactioncondi ̄tionsfortheproductionofoilsorption ̄activematerials[J].BioresourceTechnologyꎬ2004ꎬ95(3):343 ̄350. [16]SaikiaCNꎬAliFꎬGoswamiTꎬetal.EsterificationofhighR ̄celluloseextractedfromHibiscuscannabinusL[J].In ̄dustrialCropsandProductsꎬ1995ꎬ4(4):233 ̄239. [17]MatsumuraHꎬSugiyamaJꎬGlasserWG.Cellulosicnano ̄composites.I.Thermallydeformablecellulosehexanoatesfromheterogeneousreaction[J].JournalofAppliedPoly ̄merScienceꎬ2015ꎬ78(13):2242 ̄2253.[18]FanGZꎬWangMꎬLiaoCJꎬetal.Isolationofcellulosefromricestrawanditsconversionintocelluloseacetatecatalyzedbyphosphotungsticacid[J].CarbohydratePoly ̄mersꎬ2013ꎬ94(1):71 ̄76.[19]DeusCFHꎬSiefertE.Partiallyacetylatedcellulose:Syn ̄thesisanddeterminationofthesubstituentdistributionviaprotonNMRspectroscopy[J].MakromolekulareChemie ̄MacromolecularChemistryandPhysicsꎬ1991ꎬ192(1):75 ̄83.[20]ChenJꎬXuJꎬWangKꎬetal.Celluloseacetatefiberspre ̄paredfromdifferentrawmaterialswithrapidsynthesismethod[J].CarbohydratePolymersꎬ2016ꎬ137:685 ̄692. [21]FilhoGRꎬCruzSFDꎬPasquiniDꎬetal.Waterfluxthroughcellulosetriacetatefilmsproducedfromheteroge ̄neousacetylationofsugarcanebagasse[J].JournalofMembraneScienceꎬ2000ꎬ177(1):225 ̄231.[22]FreireCSRꎬSilvestreAJDꎬNetoCPꎬetal.Controlledheterogeneousmodificationofcellulosefiberswithfattyacids:Effectofreactionconditionsontheextentofesteri ̄ficationandfiberproperties[J].JournalofAppliedPoly ̄merScienceꎬ2010ꎬ100(2):1093 ̄1102.[23]HuWꎬChenSꎬXuQꎬetal.Solvent ̄freeacetylationofbacterialcelluloseundermoderateconditions[J].Carbo ̄hydratePolymersꎬ2011ꎬ83(4):1575 ̄1581.[24]BarudHSꎬJúniorAMDAꎬSantosDBꎬetal.Thermalbehaviorofcelluloseacetateproducedfromhomogeneousacetylationofbacterialcellulose[J].ThermochimicaAc ̄taꎬ2008ꎬ471(1):61 ̄69.[25]DasAMꎬAliAAꎬHazarikaMP.Synthesisandcharac ̄terizationofcelluloseacetatefromricehusk:Eco ̄friendlycondition[J].CarbohydratePolymersꎬ2014ꎬ112(21):342 ̄349.[26]AntalMJꎬVarhegyiG.Cellulosepyrolysiskinetics:Thecurrentstateofknowledge[J].Indengchemresꎬ1995ꎬ34(3):703 ̄717.[27]YangZhanpingꎬXuSongweiꎬMaXiaolongꎬetal.Charac ̄terizationandacetylationbehaviorofbamboopulp[J].WoodScience&Technologyꎬ2008ꎬ42(8):621 ̄632.(上接第54页)[2]㊀AugeriF.Placementofanexperimentalbituminouscon ̄cretemixtureutilizinganasphaltadditive ̄Verglimit[R].WashingtonD.C.:FederalHighwayAdministrationꎬ1987. [3]今井寿男ꎬ本間良信ꎬ山口美代子.盐化物系冻结路面随时间的变化研究[C]ʊ第21回日本道路会议论文集.东京:日本道路协会ꎬ1995.[4]谭忆秋ꎬ侯明昊ꎬ单丽岩ꎬ等.蓄盐沥青路面缓释络合盐填料的研制[J].建筑材料学报ꎬ2014ꎬ17(2):256 ̄260.[5]夏慧芸ꎬ李芳芳ꎬ宋莉芳ꎬ等.自融雪材料制备及其融雪效果评价[J].公路ꎬ2015(7):269 ̄274. [6]刘状壮ꎬ高杰ꎬ张正伟ꎬ等.融雪抑冰沥青混合料路用性能及盐分溶析特性[J].公路ꎬ2016(8):199 ̄204. [7]陈闻博ꎬ陈盛斌.适用于高海拔山区公路超疏水抗凝冰材料的制备及性能研究[J].公路ꎬ2018(3):231 ̄235.[8]徐鸥明ꎬ韩森.盐分对储盐沥青混合料性能的影响[J].长安大学学报:自然科学版ꎬ2015ꎬ35(4):8 ̄12. [9]ZhengMulianꎬZhouJuanlanꎬWuShujuanꎬetal.Evalua ̄tionoflong ̄termperformanceofanti ̄icingasphaltpave ̄ment[J].ConstructionandBuildingMaterialsꎬ2015ꎬ84:277 ̄283.[10]王春明ꎬ薛忠军ꎬ谢超ꎬ等.三种融雪防冰材料路用性能评价分析[J].公路ꎬ2016(9):267 ̄272.95。
醋酸纤维素纳米纤维的制备及其材料性能研究
醋酸纤维素纳米纤维的制备及其材料性能研究近年来,人们对材料科学的研究愈发深入,提高材料的性能和应用范围已成为科研工作的重要方向。
其中,纳米材料的研究备受关注,醋酸纤维素纳米纤维便是其中之一。
本文对醋酸纤维素纳米纤维的制备以及材料性能进行研究,旨在为相关领域的研究者提供参考。
一、醋酸纤维素纳米纤维的制备1. 手工制备法手工制备法是最早用于纳米纤维制备的方法之一,其操作简便、成本较低。
制备方法如下:首先将醋酸纤维素溶液注入注射器,然后通过锐角容器将注射器插入其中。
随着注射器往下移动,溶液被迫通过狭缝,从而形成纳米纤维。
2. 电纺法电纺法是目前制备醋酸纤维素纳米纤维最常用的方法之一。
其制备方法是在电离场中,将醋酸纤维素溶液经高电压作用下喷出,并在电场作用下呈现纳米纤维形态。
二、醋酸纤维素纳米纤维的材料性能研究1. 机械性能纳米纤维的高比表面积和卓越的力学性能为其功能材料应用提供了广泛的机会。
由于醋酸纤维素纳米纤维具有较高的晶体度和大比表面积,因此其机械强度相对较高。
研究表明,醋酸纤维素纳米纤维的拉伸强度可以达到数十GPa,具有优异的机械性能。
2. 光学性能醋酸纤维素纳米纤维具有优异的透明和折射率等光学特性,因此被广泛应用于光学薄膜、光电材料、生物医学及传感器等领域。
实验研究表明,醋酸纤维素纳米纤维透明度可达90%以上,且优异的折射率调节性能可以适应不同的光学应用需求。
3. 生物相容性醋酸纤维素纳米纤维是一种天然的生物可降解聚合物,具有良好的生物相容性,能够被人体组织和血管等生物组织所承受。
因此,纳米纤维在生物医学领域的应用成为目前的研究热点。
其在细胞培养、组织工程、皮肤再生和癌症治疗等领域有其独特应用。
综上所述,醋酸纤维素纳米纤维的制备及材料性能研究已经成为了当前的研究热点,其在材料科学、生物医学和环境保护等领域的应用前景广阔。
纳米纤维作为一种新型材料,其研究成果不断涌现,必将给我们创新意识的启示,推动材料科学的创新发展。
《醋酸纤维素复合材料的制备及其染料去除研究》
《醋酸纤维素复合材料的制备及其染料去除研究》一、引言随着环境保护意识的日益增强,染料去除技术已成为当前环境科学领域的重要研究方向。
醋酸纤维素(CA)作为一种天然的、可再生的生物材料,具有优异的物理和化学性能,如良好的成膜性、透明度及可降解性等。
因此,其复合材料在染料去除领域具有巨大的应用潜力。
本文将探讨醋酸纤维素复合材料的制备方法,以及其在染料去除方面的应用研究。
二、醋酸纤维素复合材料的制备(一)原料与设备本实验所使用的原料包括醋酸纤维素、功能性添加剂及其他辅助材料。
设备主要包括搅拌器、干燥设备、热压机等。
(二)制备方法1. 溶解:将醋酸纤维素与适量的溶剂混合,通过搅拌器进行充分溶解,形成均匀的溶液。
2. 混合:将功能性添加剂加入到溶液中,通过搅拌器进行充分混合。
3. 浇铸:将混合溶液浇铸在平整的基材上,形成薄膜。
4. 干燥:将薄膜置于干燥设备中,进行干燥处理。
5. 热压:将干燥后的薄膜进行热压处理,以提高其机械强度和稳定性。
(三)复合材料的性能优化通过调整原料配比、溶剂种类、搅拌时间等参数,优化复合材料的性能。
例如,增加功能性添加剂的含量可以提高染料去除效率;调整溶剂种类可以改善复合材料的成膜性和机械强度等。
三、染料去除研究(一)实验方法采用模拟染料废水,将制备好的醋酸纤维素复合材料投入染料废水中,观察其染料去除效果。
同时,设置对照组,比较不同条件下复合材料的染料去除效果。
(二)实验结果与分析1. 染料去除效果:实验结果表明,醋酸纤维素复合材料对染料的去除效果显著。
在一定的条件下,复合材料可以有效地去除废水中的染料,降低废水色度。
2. 影响因素:影响染料去除效果的因素包括复合材料的成分、结构、表面积等。
此外,溶液的pH值、温度、浓度等也会影响染料的去除效果。
3. 机制探讨:醋酸纤维素复合材料通过吸附、络合、静电作用等机制去除染料。
其中,功能性添加剂的存在增强了复合材料的吸附能力和络合能力,提高了染料去除效率。
《醋酸纤维素复合材料的制备及其染料去除研究》
《醋酸纤维素复合材料的制备及其染料去除研究》一、引言随着环境保护意识的日益增强和工业废水处理需求的不断提高,染料去除技术成为了环保领域的研究热点。
醋酸纤维素(CA)作为一种天然的、可生物降解的高分子材料,具有优良的成膜性、良好的溶解性和机械性能,在染料去除领域具有巨大的应用潜力。
本文旨在研究醋酸纤维素复合材料的制备方法,并探讨其在染料去除方面的应用。
二、醋酸纤维素复合材料的制备1. 材料与设备本实验所需材料包括醋酸纤维素、其他添加剂以及必要的溶剂。
设备包括搅拌器、干燥设备、研磨机等。
2. 制备方法(1)将醋酸纤维素与其他添加剂按一定比例混合,在搅拌器中充分搅拌,使各组分均匀混合。
(2)将混合物置于干燥设备中,进行干燥处理,以去除多余的水分和溶剂。
(3)将干燥后的混合物进行研磨,得到均匀的粉末状复合材料。
三、染料去除实验1. 实验方法将制备好的醋酸纤维素复合材料与染料废水混合,在一定的温度和pH值条件下进行反应。
通过观察和记录反应过程中染料浓度的变化,评估复合材料对染料的去除效果。
2. 实验结果与分析(1)通过实验发现,醋酸纤维素复合材料对染料的去除效果与复合材料的组成、反应条件等因素密切相关。
在一定的条件下,复合材料可以有效地去除废水中的染料。
(2)通过分析不同条件下的实验数据,得出最佳的染料去除条件。
例如,在一定温度和pH值下,复合材料对某种染料的去除效果最佳。
四、醋酸纤维素复合材料在染料去除领域的应用前景醋酸纤维素复合材料具有优良的成膜性、良好的溶解性和机械性能,且具有良好的生物相容性和可降解性。
这些特性使得醋酸纤维素复合材料在染料去除领域具有广阔的应用前景。
例如,可以将其应用于印染、纺织、造纸等工业废水的处理,以降低废水中的染料浓度,减少对环境的污染。
此外,醋酸纤维素复合材料还可以与其他材料进行复合,以提高其性能和应用范围。
五、结论本文研究了醋酸纤维素复合材料的制备方法及其在染料去除方面的应用。
醋酸纤维素材料的制备及性能研究
醋酸纤维素材料的制备及性能研究随着化学技术的不断发展和创新,各种新型的材料得以被研发和应用,其中醋酸纤维素就是一种在材料领域中备受瞩目的新材料。
醋酸纤维素是一种由纤维素酯化而成的可塑性大、相容性好、耐水性强的高分子材料。
接下来,本文将探讨醋酸纤维素的制备及其性能研究。
一、醋酸纤维素的制备1.1 醋酸纤维素的常规制备方法醋酸纤维素的制备一般采用化学合成的方法,其主要是通过对纤维素进行酯化反应而产生的。
通常情况下,酸醋解纤维素时,产生的就是醋酸纤维素。
其合成的反应方程式如下:纤维素 + 醋酸酐 + 酸→ 醋酸纤维素这种常规的制备方法简单易行,但其产率较低。
因此,有研究人员采用了其他方法来制备醋酸纤维素,如微波、超声波或离子液体等非传统制备方法,以提高产率和纯度。
1.2 醋酸纤维素的微波制备方法醋酸纤维素微波合成法是将醋酸酐和纤维素与微波辐射相结合,利用微波能量促进酯化反应的速率。
这种制备方法具有简单、快速、高效等优点。
1.3 醋酸纤维素的超声波制备方法醋酸纤维素的超声波制备方法是将醋酸酐和纤维素与超声波辐射相结合,通过超声波的作用来促进酯化反应。
这种制备方法快速、高效、绿色环保。
二、醋酸纤维素的性能研究2.1 醋酸纤维素的物理性能研究醋酸纤维素材料的物理性能主要包括表面形态、热性质、水分吸收性、热胀缩性等方面。
有研究者采用扫描电镜对醋酸纤维素的表面形态进行研究,发现醋酸纤维素具有较高的表面积和丰富的空间结构,显示出其良好的吸附性能。
而对于醋酸纤维素的热性质、水分吸收性、热胀缩性等方面的研究,则可以在工业应用时得到广泛应用。
2.2 醋酸纤维素的力学性能研究醋酸纤维素材料的力学性能主要包括其弹性模量、抗拉强度、断裂韧度等方面的研究。
近年来,有许多研究者对醋酸纤维素的力学性能进行了深入研究。
比如,有研究者利用拉力测试机进行实验研究,发现醋酸纤维素的强度随纤维素含量的增加而增强。
此外,对于醋酸纤维素的断裂韧度等力学性质的研究,则可以为制备醋酸纤维素具有高韧性的新材料提供重要的理论与实践依据。