实验5串行通信
串行通信的工作原理
(1)通信的对应端口,需要保持其波特 率、数据位、校验位、停止位、流控制等设置 一致。
(2)通信过程中,发送设置应该与显示 设置保持一致,不然会出现收发内容不一致的 现象。
4 上位机软件设计
LabVIEW 是由美国国家仪器公司开发的
图 3:LabVIEW 上位机界面
44 • 电子技术与软件工程 Electronic Technology & Software Engineering
图 1:系统结构框图
使其更加智能化、人性化。
1 系统方案
本设计采用 DS18B20 温度传感器进行实 时环境温度检测,然后经过 AT89C52 单片机 处理检测到的温度信号,采用 PWM 调速技术 对直流电机进行调速,通过两个开关 S1 和 S2 改变所需要的温度的初始值,同时,由共阴极 数码管显示,系统框图如图 1 所示。
• 通信技术 Communications Technology
串行通信的工作原理
文/侯光辉
摘
本文针对工业应用中串行通
信 设 备 前 期 开 发 的 困 难 性, 设 计 要 了串行接口仿真系统。系统借助
LabVIEW 中 的 VISA 模 块 函 数, 结
合 EDA 工 具 软 件 Proteus 以 及 虚
在工业应用中,新设备的开发都需要有 说服力的理论依据和足够的实验数据来支撑, 而实际开发过程中会遇到多样的困难,这就需 要前期的系统仿真,来验证方案的正确性、可 行性以及可能会存在的风险。本文以串行接口 RS-232 为例阐述串行通信的工作过程。
串行通讯实验报告
一、实验目的1. 理解串行通讯的基本原理及通信方式。
2. 掌握串行通讯的硬件设备和软件实现方法。
3. 学会使用串行通讯进行数据传输。
4. 通过实验,加深对单片机串行口工作原理和程序设计的理解。
二、实验原理串行通讯是指将数据一位一位地按顺序传送的通信方式。
与并行通讯相比,串行通讯的通信线路简单,成本低,适用于远距离通信。
串行通讯主要有两种通信方式:异步通信和同步通信。
1. 异步通信异步通信中,每个字符之间没有固定的时钟同步,而是通过起始位和停止位来标识字符的开始和结束。
每个字符由起始位、数据位、奇偶校验位和停止位组成。
2. 同步通信同步通信中,数据传输过程中有固定的时钟同步信号,发送方和接收方通过同步时钟来保证数据传输的准确性。
三、实验设备1. 单片机最小系统教学实验模块2. 数码管显示模块3. 串行数据线4. 电脑四、实验内容1. 单片机串行口初始化首先,我们需要对单片机串行口进行初始化,包括设置波特率、通信方式、数据位、停止位等。
2. 数据发送在单片机程序中,编写数据发送函数,将数据通过串行口发送出去。
3. 数据接收编写数据接收函数,从串行口接收数据。
4. 数据显示将接收到的数据通过数码管显示出来。
5. 双机通信通过两套单片机实验模块,实现双机通信。
一台单片机作为发送方,另一台单片机作为接收方。
五、实验步骤1. 将单片机最小系统教学实验模块和数码管显示模块连接到电脑上。
2. 编写单片机程序,初始化串行口,并设置波特率、通信方式、数据位、停止位等。
3. 编写数据发送函数,将数据通过串行口发送出去。
4. 编写数据接收函数,从串行口接收数据。
5. 编写数据显示函数,将接收到的数据通过数码管显示出来。
6. 编写双机通信程序,实现两台单片机之间的通信。
7. 将程序下载到单片机中,进行实验。
六、实验结果与分析1. 通过实验,成功实现了单片机串行口的初始化、数据发送、数据接收和数据显示。
2. 成功实现了双机通信,两台单片机之间可以相互发送和接收数据。
单片机串行通信实验报告(实验要求、原理、仿真图及例程)
《嵌入式系统原理与实验》实验指导实验三调度器设计基础一、实验目的和要求1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。
2.掌握Keil与Proteus的联调技巧。
3.掌握串行通信在单片机系统中的使用。
4.掌握调度器设计的基础知识:函数指针。
二、实验设备1.PC机一套2.Keil C51开发系统一套3.Proteus 仿真系统一套三、实验容1.甲机通过串口控制乙机LED闪烁(1)要求a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时闪烁,关闭所有的LED。
b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。
i.甲机发送“A”,控制乙机LED1闪烁。
ii.甲机发送“B”,控制乙机LED2闪烁。
iii.甲机发送“C”,控制乙机LED1,LED2闪烁。
iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。
c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。
两机的程序要分别编写。
d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下:i.设置串口模式(SCON)ii.设置定时器1的工作模式(TMOD)iii.计算定时器1的初值iv.启动定时器v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。
(2)电路原理图Figure 1 甲机通过串口控制乙机LED闪烁的原理图(3)程序设计提示a.模式1下波特率由定时器控制,波特率计算公式参考:b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。
2.单片机与PC串口通讯及函数指针的使用(1)要求:a.编写用单片机求取整数平方的函数。
b.单片机把计算结果向PC机发送字符串。
c.PC机接收计算结果并显示出来。
d.可以调用Keil C51 stdio.h 中的printf来实现字符串的发送。
项目五 PLC的通信
项目五 PLC的通信
2)将S7-200接入以太网 将S7-200接入以太网,计算机应安装以太网网卡,S7-200 配备以太网模块 CP243-1 或互联网模块 CP-243-1IT。安装 了STEP7-Micro/WIN 之后,计算机上将会有一个标准 的浏览 器,可以用它来访问 CP243-1IT 模块的主页。使用以太网时, 在编程软件中应配置 TCP/IP协议。在“通信”对话框中,应 为网络中的每个以太网/互联网模块指定远程IP 地址。
项目五 PLC的通信
1.工业以太网 SIMATICNET 的顶层为工业以太网,它是基于国际标准 IEEE802.3的开放式网络。以太网可以实现管理 控制网络的 一体化,可以集成到互联网,为全球联网提供了条件。 工业以太网将控制网络集成到信息技术(IT)中,可以与使 用 TCP/IP协议的计算机传 输数据,使用 E-mail和 Web技术, 允许用户在工业以太网的Socket接口上编制自己的协 议,可 以在网络中的任何一点进行设备启动和故障 检 查,使 用 冗 余 网 络 可 以 构 成 冗 余 系统。
项目五 PLC的通信
6)表示层 表示层用于应用层信息内容的形式变换,例如数据加密/ 解密、信息压缩/解压和数据 兼容,把应用层提供的信息变成 能够共同理解的形式。 7)应用层 应用层作为 OSI的最高层,为用户的应用服务提供信息 交换,为应用接口提供操作 标准。
项目五 PLC的通信
(三) 西门子工业自动化通信网络 西门子公司提出的全集成自动化(TIA)系统的核心内容 包括组态和编程的集成、数据 管理的集成以及通信的集成。 通信网络是这个系统非常重要和关键的组件,提供了各部件 和网络间完善的通信功能。SIMATICNET 是西门子公司的 网络产品的总称,它包含了三 个主要的层次,以下分别进行介 绍。
串行通信常用格式
标题:串行通信常用格式解析
一、引言
串行通信是一种常见的数据传输方式,尤其在需要长距离通信或者高带宽成本的情况下,串行通信具有很高的实用价值。
本篇文章将详细解析串行通信的常用格式,包括RS-232、RS-485、USB、I2C以及SPI等。
二、串行通信格式解析
1. RS-232:RS-232是一种广泛应用于计算机和外设之间的串行通信格式,其特点是数据传输速率较慢,但成本低,因此在一些对通信成本敏感的场合得到广泛应用。
2. RS-485:RS-485是一种改进的RS-232,它在多站点通信中表现出了更高的可靠性。
它通过采用差分信号传输,减少了噪声干扰,增强了通信的稳定性。
3. USB:USB是一种通用串行总线,支持即插即用,方便快捷。
USB通信格式支持高速和低速两种模式,适用于需要大量数据传输的场合。
4. I2C:I2C是一种简单、低成本的通信协议,主要用于芯片之间的通信。
它通过两根线(数据线)和一根地线进行通信,适用于需要少量数据传输且需要节省空间的场合。
5. SPI:SPI是一种高速、低功耗的通信协议,主要用于芯片之间的同步通信。
它通过四根线(数据线、时钟线、片选线和地址线)进行通信,适用于需要高速数据传输的场合。
三、总结
串行通信格式的选择应根据具体应用场景和需求进行。
了解并掌握各种格式的特点和适用场合,有助于我们选择最适合的通信方式,提高通信效率和稳定性。
双机通信实验报告.doc
双机通信实验报告。
单片机实验报告(自动化15级)实验名称:串行通信实验1.实验1的目的。
掌握单片机串口的工作模式;2.掌握双机通信的接口电路设计和程序设计。
2.实验设备1。
个人电脑;2.单片机最小系统教学实验模块:3.数码管显示模块三、实验内容1。
两套单片机测试装置(两个实验组)共同完成了实验。
我们U1是机器A,U2是机器B。
机器A将学生的学号后的8位数字发送到机器B。
机器B接收到这8位数字,并将其显示在8位数字的电子管上。
该电路如图1所示。
串行通信模式要求为模式1,波特率为2400位/秒,不是双倍,单片机外部晶振频率为11.0592米。
图1双机通信原理附加要求示意图:机器b收到后,该机器(机器b)的学生编号的最后8位数字被送回机器a,并显示在数码管上。
2.单片机与PC机之间的通信单片机向PC机发送数据。
单片机将本机的学生号(学生本人)反复发送到PC机,发送波特率为1200,采用模式1,单片机外部晶振频率为11.0592米四、实验原理4.1串行通信模式在串行通信中,有两种基本通信模式:异步通信。
异步串行通信规定了字符数据的传输格式,即每个数据以相同的帧格式传输。
每个帧信息由起始位、数据位、奇偶校验位和停止位组成。
本实验主要研究异步通信的实现方法。
在异步通信中,每个字符使用一个起始位和一个停止位作为字符开始和结束的符号,因此占用时间。
因此,为了提高传输数据块时的通信速度,这些标记通常被去除,并采用同步通信。
同步通信不像异步通信那样依赖起始位在每个字符数据的开头发送和接收同步。
相反,同步字符用于在每个数据块传输开始时同步发送方和接收方。
根据通信方式,数据传输线可分为三种类型:单工模式、半双工模式、全双工模式。
(1)单工模式在单工模式中,通信线路的一端连接到发射机,另一端连接到接收机,这形成单向连接,并且仅允许数据在固定方向上传输。
(2)半双工模式在半双工模式下,系统中的每个通信设备由一个发射机和一个接收机组成,它们通过收发器开关连接到通信线路,如图33所示-1.实验1的目的。
单片机双机串行实验报告
单片机双机串行实验报告实验目的:通过单片机实现双机串行通信功能,掌握串行通信的原理、方法和程序设计技巧。
实验原理:双机串行通信是指通过串行口将两台单片机连接起来,实现数据的传输和互动。
常用的串行通信方式有同步串行通信和异步串行通信。
异步串行通信是指通过发送和接收数据时的起始位、停止位和校验位进行数据的传输。
而同步串行通信是指通过外部时钟信号进行数据的同步传输。
实验器材:1.两台单片机开发板(MCU7516)2.两个串口线3.两台计算机实验步骤:1.将两台单片机开发板连接起来,通过串口线连接它们的串行口。
2.在两台计算机上分别打开串口调试助手软件,将波特率设置为相同的数值(例如9600)。
3.在编程软件中,编写两个程序分别用于发送数据和接收数据。
4.在发送数据的程序中,首先要设置串口的波特率、数据位、停止位和校验位,并将数据存储在缓冲区中。
然后利用串口发送数据的指令将数据发送出去。
5.在接收数据的程序中,同样要设置串口的参数。
然后使用串口接收数据的指令将接收到的数据存储在缓冲区中,并将其打印出来。
实验结果与分析:经过实验,我们成功地实现了单片机之间的双机串行通信。
发送数据的单片机将数据发送出去后,接收数据的单片机能够正确地接收到数据,并将其打印出来。
实验中需要注意的是,串口的波特率、数据位、停止位和校验位必须设置为相同的数值。
否则,发送数据的单片机和接收数据的单片机无法正常进行通信。
同时,在实验之前,需要了解单片机开发板支持的串口通信相关的指令和函数。
实验总结:通过本次实验,我们深入了解了单片机之间的双机串行通信原理和方法。
掌握了串口的设置和使用方法,以及相关的指令和函数。
在实验中,我们学会了如何通过串行口实现数据的传输和互动,为今后的单片机应用和开发打下了基础。
同时,我们还发现,双机串行通信在实际应用中有着广泛的用途。
例如,可以通过串行通信实现两台计算机之间的数据传输,或者实现单片机与计算机之间的数据收发。
系统总线和具有基本输入输出功能的总线接口实验报告
系统总线和具有基本输入输出功能的总线接口实验报告一、实验目的1.理解总线与总线接口的概念,了解总线接口的基本输入输出功能。
2.学习使用系统总线进行数据传输的方法。
3.掌握总线接口的基本编程方法。
二、实验原理系统总线是一种计算机系统中实际存在的、能够传输信息的一组导线或卡槽。
实现计算机各个部件间数据传输的功能。
具有高速、可靠、灵活等特点。
总线接口是指计算机中各种扩展设备与主板、芯片等之间连接器的一种电路设计。
总线接口的基本输入输出功能包括数据读取、数据写入、地址读取、地址写入等。
总线接口的编程方法由物理地址访问和逻辑地址访问组成。
物理地址访问是将实际存放数据的地址传递给总线接口,逻辑地址访问是将对应的逻辑地址转化为物理地址然后传递给总线接口。
三、实验器材1.个人电脑2.跑虚拟机的电脑或实机3.开发板或仿真器4.计算机总线卡5.串行通信接口6.实验用数据、程序4.实验步骤1.准备工作(1)将开发板或仿真器连接到计算机,并进行相应的设置。
(2)将计算机总线卡插入计算机的PCI插槽中,并与开发板或仿真器之间进行连接。
(3)将串行通信接口连接至开发板或仿真器的相应引脚上。
2.完成数据传输(1)先进行地址写入和数据写入操作,以确定要传输的数据的位置和内容。
(2)再进行地址读取和数据读取操作,以读取相应位置上的数据。
(3)读取到的数据会被传输到串行通信接口,然后通过串口发送到外部设备。
(4)如果需要,可以重复进行以上操作以进行连续数据传输。
3.编写程序根据实验内容,编写相应的程序实现数据的读取和传输过程,并进行调试和优化。
5.实验结果通过本次实验,我了解了系统总线和总线接口的基本输入输出功能,并学会了总线接口的编程方法。
同时,我也掌握了数据传输的方法,能够熟练地进行数据的读写操作,并能够编写相应的程序进行调试和优化。
6.实验总结通过本次实验,我对系统总线和总线接口的概念有了更深刻的理解,也学会了一些实际应用的技巧。
串行通信及实验
第9章 串行通信及实验
两相邻字符帧之间
• 在串行通信中,两相邻字符帧之间可以没 有空闲位,也可以有若干空闲位,这由用 户来决定。图9.2(b)表示有3个空闲位的 字符帧格式。
第9章 串行通信及实验
9.1.1.3 波特率(baud rate) • 异步通信的另一个重要指标为波特率。 • 波特率为每秒钟传送二进制数码的位数,
2 6 16 15 14 7 13 8
MAX232
第9章 串行通信及实验
9.2.4 RS-232C总线规定 • RS-232C标准总线为25根,采用标准的D型
25芯插头座。各引脚的排列如图9.7所示。
第9章 串行通信及实验
简单的全双工系统
• 在最简单的全双工系统中,仅用发送数据、 接收数据和信号地三根线即可,对于MCS51单片机,利用其RXD(串行数据接收端) 线、TXD(串行数据发送端)线和一根地 线,就可以构成符合RS-232C接口标准的全 双工通信口。
• 另一种常用的电平转换电路是MAX232, 图9.6为MAX232的引脚图。
第9章 串行通信及实验
图9.6 MAX232引脚图
1 3 4 5 11 10 12 9
C1+ C1C2+ C2T1IN T2IN R1OUT R2OUT
Vs+ VsVCC GND T1OUT T2OUT R1IN R2IN
第9章 串行通信及实验
串行通信的优点与缺点
• 两种基本通信方式比较起来,串行通信方 式能够节省传输线,特别是数据位数很多 和远距离数据传送时,这一优点更为突出; 串行通信方式的主要缺点是传送速度比并 行通信要慢。
第9章 串行通信及实验
9.1.1 串行通信的分类 • 按照串行数据的时钟控制方式,串行通信可
双机串行通讯设计实验报告
双机串行通讯设计实验报告实验报告:双机串行通讯设计实验一、实验目的本实验的目的是通过双机串行通讯设计,实现两台计算机之间的数据传输和通信,掌握串行通讯的基本原理和应用。
二、实验原理串行通讯是指信息逐位地按顺序传送的通信方式。
串行通讯的优点是只需一对逻辑线路即可完成数据传输,可以减少硬件成本和物理排布空间。
而并行通讯需要多对逻辑线路,更加复杂。
在本实验中,我们使用两台计算机分别作为发送端和接收端。
数据通过串行通讯线路逐位传输,接收端按照发送端发送的顺序恢复数据。
具体步骤如下:1.确定双机串行通讯的物理连接方式,例如通过串口线连接两台计算机的串行端口。
2.在发送端,将待传输的数据进行串行化处理,即将数据逐位拆分成一个个比特,按照一定的传输格式进行编码。
3.将编码后的数据按照一定的速率逐位地通过串行线路发送到接收端。
4.在接收端,根据发送端的传输格式,逐位地接收并解码数据。
5.接收端将解码后的数据进行处理,恢复为原始数据。
三、实验步骤和结果1.硬件连接:使用串口线将两台计算机的串行端口连接起来。
2.软件设置:在两台计算机上分别进行串口的设置,确定串口的参数(波特率、数据位、停止位等)一致。
3.发送端设计:编写发送端的程序,将待传输的数据进行串行化处理,并按照约定的传输格式进行编码。
4.接收端设计:编写接收端的程序,根据发送端的传输格式,逐位接收和解码数据,并进行恢复处理。
5.实验测试:分别在发送端和接收端运行程序,进行数据传输和通信测试。
通过观察接收端接收到的数据是否与发送端发送的数据一致来验证通讯是否成功。
实验结果显示,通过双机串行通讯设计,发送端的数据能够成功传输到接收端,并且接收端能够正确解码和恢复数据,实现了双机之间的数据传输和通信。
四、实验总结本实验通过双机串行通讯的设计,实现了两台计算机之间的数据传输和通信。
实验结果表明串行通讯的设计和实现是可行的。
串行通讯具有硬件成本低、占用空间少等优点,因此在实际应用中被广泛使用。
串行接口实验报告
一、实验目的1. 理解串行接口的基本原理和功能。
2. 掌握串行接口的硬件连接和软件编程方法。
3. 学习使用串行接口进行数据传输。
4. 了解串行接口在实际应用中的重要性。
二、实验原理串行接口是一种数据传输方式,将数据按位顺序一位一位地传输。
与并行接口相比,串行接口具有传输距离远、传输速度快、抗干扰能力强等优点。
在串行接口中,数据以一定的速率、格式和协议进行传输。
串行接口的基本原理是:发送端将数据按位发送,接收端按照同样的速率和格式接收数据,并通过软件或硬件解码恢复原始数据。
串行接口的硬件连接主要包括发送端和接收端,其中发送端包括发送数据缓冲器、串行移位寄存器、时钟发生器等;接收端包括接收数据缓冲器、串行移位寄存器、时钟恢复电路等。
三、实验内容1. 硬件连接(1)根据实验要求,连接实验板上的串行接口电路。
(2)将实验板与计算机连接,确保通信线路畅通。
2. 软件编程(1)使用C语言编写串行接口发送和接收数据的程序。
(2)设置串行接口的波特率、数据位、停止位和校验位等参数。
(3)实现数据的发送和接收,并对接收到的数据进行处理。
3. 实验步骤(1)启动实验环境,编译并运行串行接口发送和接收数据的程序。
(2)在计算机上打开串行通信调试软件,如串口调试助手。
(3)设置调试软件的波特率、数据位、停止位和校验位等参数,确保与实验程序设置一致。
(4)在调试软件中发送数据,观察实验板接收到的数据是否正确。
(5)修改实验程序,调整发送和接收的数据,验证串行接口通信功能。
四、实验结果与分析1. 实验结果通过实验,成功实现了串行接口的发送和接收功能。
在计算机上发送数据,实验板接收到的数据与发送数据一致,说明串行接口通信功能正常。
2. 实验分析(1)在实验过程中,需要注意串行接口的波特率、数据位、停止位和校验位等参数设置,确保与接收端一致。
(2)在实际应用中,串行接口通信需要考虑抗干扰能力,可以通过采用差分传输、增加滤波电路等措施来提高通信质量。
单片机双机之间的串行通信设计
单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。
二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。
数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。
2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。
3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。
通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。
4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。
5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。
三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。
2. 实验软件:Keil C51集成开发环境。
四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写发送端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。
(4)循环发送指定的数据。
2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。
(2)在Keil C51环境下创建新工程,编写接收端程序。
(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。
嵌入式实验报告_ARM的串行口实验
嵌入式实验报告_ARM的串行口实验一、实验目的本次实验的主要目的是深入了解和掌握 ARM 处理器的串行口通信原理及编程方法。
通过实际操作和编程实践,能够实现基于 ARM 的串行数据收发功能,为后续在嵌入式系统中的应用打下坚实的基础。
二、实验原理串行通信是指数据一位一位地顺序传送。
在 ARM 系统中,串行口通常由发送器、接收器、控制寄存器等组成。
发送器负责将并行数据转换为串行数据并发送出去,接收器则将接收到的串行数据转换为并行数据。
控制寄存器用于配置串行口的工作模式、波特率、数据位长度、停止位长度等参数。
波特率是串行通信中的一个重要概念,它表示每秒传输的比特数。
常见的波特率有 9600、115200 等。
在本次实验中,需要根据实际需求设置合适的波特率,以保证数据传输的准确性和稳定性。
三、实验设备与环境1、硬件设备:ARM 开发板、USB 转串口线、电脑。
2、软件环境:Keil MDK 集成开发环境、串口调试助手。
四、实验步骤1、建立工程在 Keil MDK 中创建一个新的工程,选择对应的 ARM 芯片型号,并配置工程的相关参数,如时钟频率、存储分配等。
2、编写代码(1)初始化串行口首先,需要设置串行口的工作模式、波特率、数据位长度、停止位长度等参数。
例如,设置波特率为 115200,数据位长度为 8 位,停止位长度为 1 位。
(2)发送数据通过编写发送函数,将要发送的数据写入串行口的数据寄存器,实现数据的发送。
(3)接收数据通过中断或者查询的方式,读取串行口的接收寄存器,获取接收到的数据。
(4)主函数在主函数中,调用发送函数发送数据,并处理接收的数据。
3、编译下载编写完成代码后,进行编译,确保代码没有语法错误。
然后,将生成的可执行文件下载到 ARM 开发板中。
4、连接设备使用 USB 转串口线将 ARM 开发板与电脑连接起来,并在电脑上打开串口调试助手,设置与开发板相同的波特率等参数。
5、测试实验在串口调试助手中发送数据,观察开发板是否能够正确接收并回传数据。
串行口实验报告
一、实验目的1. 理解串行通信的基本原理和常用协议。
2. 掌握单片机串行口的工作方式及其程序设计。
3. 通过实际操作,实现单片机之间的串行通信,验证通信协议的正确性。
4. 学习串行通信在实际应用中的调试和故障排除方法。
二、实验设备1. 单片机开发板(如STC89C52、AT89C51等)2. 串行通信模块(如MAX232、CH340等)3. 连接线(杜邦线、串行线等)4. 电脑(用于调试程序)5. 串口调试工具(如串口助手、PuTTY等)三、实验原理串行通信是指数据在一条线路上按位顺序传送,一次只能传送一位。
与并行通信相比,串行通信具有成本低、传输距离远、易于实现等优点。
串行通信的常见协议有RS-232、RS-485、I2C、SPI等。
本实验采用RS-232协议,通过单片机的串行口实现数据的发送和接收。
四、实验步骤1. 硬件连接将单片机的串行口(如RXD、TXD)与串行通信模块的RXD、TXD引脚相连,并通过杜邦线连接到电脑的串口。
2. 软件设计(1)编写单片机程序,实现数据的发送和接收。
(2)编写电脑端程序,用于发送和接收数据。
3. 程序调试(1)将单片机程序烧写到单片机中。
(2)在电脑端打开串口调试工具,设置波特率、数据位、停止位、校验位等参数。
(3)通过串口调试工具发送数据,观察单片机接收到的数据是否正确。
4. 实验结果分析通过实验,成功实现了单片机之间的串行通信。
在调试过程中,遇到以下问题:(1)波特率设置不正确:波特率设置错误会导致数据无法正确接收。
通过查阅相关资料,找到了正确的波特率设置方法。
(2)串行口初始化错误:串行口初始化参数设置错误会导致通信中断。
通过查阅相关资料,找到了正确的初始化方法。
(3)数据接收错误:数据接收过程中,可能出现乱码现象。
通过检查程序代码,发现是数据接收缓冲区溢出导致的。
通过调整接收缓冲区大小,解决了该问题。
五、实验总结通过本次实验,掌握了单片机串行通信的基本原理和编程方法。
串口通信实验
串口通信实验一、实验目的1.掌握ARM的串行口工作原理。
2.学习编程实现ARM的UART通讯。
3.掌握CPU利用串口通讯的方法。
二、实验内容学习串行通讯原理,了解串行通讯控制器,阅读ARM芯片文档,掌握ARM的UART 相关寄存器的功能,熟悉ARM系统硬件的UART相关接口。
编程实现ARM和计算机实现串行通讯:ARM监视串行口,将接收到的字符再发送给串口(计算机与开发板是通过超级终端通讯的),即按PC键盘通过超级终端发送数据,开发板将接收到的数据再返送给PC,在超级终端上显示。
三、实验原理介绍通信方式在通信过程中,如果通信仅在点对点之间进行,或者点对多点之间进行,那么,按消息传输的方向和时间的不同,可以将通信分为单工通信、全双工通信以及半双工通信。
(1)单工消息只能单方向进行传输的一种通信方式称为单工通信。
如图8-1所示,通信只能从A传输到B。
这好比一条绝对方向的单行道路,不准双向通信也不能逆向行驶。
在现代通信系统中,如模拟广播电视系统(不包括现正在研究应用的HFC双向网络)、无线寻呼系统等。
信号只能从广播电视台、无线寻呼中心发送到电视机接收机、BB机上。
图8-1 单工通信方式(2)全双工全双工通信是指通信双方可以同时进行双向数据传输而互不影响的工作方式。
如图8-2所示,在这种工作方式下,通信双方都可以同时进行信息的发送和接收,因此,全双工通信的信道必须是双向信道。
如果是有线的全双工方式,通信双方会有两根独立的信号线分别传输发送信号和接收信号,从而使得发送和接收可同时进行。
生活中的普通电话系统、移动通信系统都是全双工方式。
图8-2 双工通信方式(3)半双工这种方式允许数据传输做双向操作,即不仅可以发送,亦可以接收信号,但是,在同一时刻,只能进行发送和接收任意一个操作。
因此仍然只采用一个信道。
如图8-3所示,如果是有线通信,通信双方只需要一根数据线连接,但是比全双工方式耗时会更多。
如对讲机系统就是采用的半双工通信方式。
串行通信的实验报告
串行通信的实验报告一、实验目的了解串行通信的基本概念和原理,并通过实际搭建串行通信系统,掌握串行通信的实验过程和操作方法。
二、实验设备1. 一台个人电脑2. 两台串行通信设备3. USB转串口线三、实验原理串行通信是将数据按位顺序传输,相对于并行通信来说,节省了传输线的数量。
串行通信一般采用帧的方式进行数据传输,包括起始位、数据位、校验位和停止位。
在实验中,我们将使用两台串行通信设备通过串口进行数据传输。
四、实验步骤1. 将一台串行通信设备连接到个人电脑的USB转串口线上,使用USB接口将其连接到个人电脑的USB接口上。
2. 打开串行通信设备的电源,并将其与个人电脑连接好。
3. 在个人电脑上打开串行通信软件,根据实际情况选择波特率、数据位、校验位和停止位等参数,并建立通信连接。
4. 在串行通信软件中,输入要发送的数据,并点击发送按钮。
5. 在另一台串行通信设备上观察接收到的数据。
五、实验结果与分析经过实验,我们成功地建立了串行通信系统,并进行了数据传输。
在发送端输入的数据在接收端得到了正确的接收,表明串行通信系统正常工作。
通过实验我们可以得出以下结论:1. 串行通信较并行通信更经济和节省资源,因为它只需一根传输线,而并行通信需要多根。
2. 串行通信的传输速率相对较慢,但可以通过改变波特率提高传输速度。
3. 串行通信的稳定性较强,不容易出现数据冲突和传输错误。
六、实验总结通过本次实验,我们了解到了串行通信的基本概念和原理,并通过搭建串行通信系统实际操作了一次串行通信。
实验结果表明串行通信系统正常工作,实验目的得到了满足。
在实验过程中,我们也注意到了一些问题,例如串行通信的传输速率较慢,不适合传输大量数据;同时,串行通信的配置稍显复杂,需要设置多个参数。
综上所述,本次实验使我们对串行通信有了更深入的理解,并有助于我们在日后的相关研究和应用中更好地应用和掌握串行通信技术。
EDA应用大作业《串行通信》
四川工程职业技术学院电子信息工程09-1班《EDA应用》大作业串行通信第3组:杨国勋、李开宏、彭国明2011.10目录一、设计任务 (1)二、硬件设计 (1)1、硬件电路图 (1)2、整体模块 (2)三、软件设计 (2)1、主程序模块 (2)2、发送模块 (5)3、接收模块 (7)四、实验结果 (9)五、开发工具 (10)1、硬件 (10)2、软件 (10)六、项目总结 (10)1、遇到的问题 (10)2、解决的办法 (10)七、参考文献 (10)一、设计任务综合运用所学基本知识,通过在FPGA开发板子完成与计算机进行RS232串口通信,计算机上的软件可以使用串口通信调试软件进行数据发送或接收数据。
根据设计要求,应把系统分成4个模块来完成,这四个模块分别是:时钟模块(向系统各部分提供各种频率的时钟信号)收发模块(进行串行通信的发送和接收)显示模块(显示通信的数据格式)控制模块(控制系统的工作)二、硬件设计1、硬件电路图2、整体模块三、软件设计1、主程序模块module uart_test(clock,key,rdata,wen,sdata,seg,dig);input clock; //系统时钟(48MHz) input[2:0] key; //按键输入(KEY1~KEY3) input[7:0]rdata; //接收到的数据output wen; //发送数据使能output[7:0]sdata; //要发送的数据output[7:0]seg; //数码管段码输出output[7:0]dig; //数码管位码输出//I/O寄存器reg[7:0]sdata;reg[7:0]seg;reg[7:0]dig;//内部寄存器reg[16:0]count; //时钟分频计数器reg[2:0]dout1,dout2,dout3,buff; //消抖寄存器reg[1:0] cnt; //数码管扫描计数器reg[3:0]disp_dat; //数码管扫描显存reg div_clk; //分频时钟wire[2:0]key_edge; //按键消抖输出//时钟分频部分always @(posedge clock)beginif (count < 17'd120000)begincount <= count + 1'b1;div_clk <= 1'b0;endelsebegincount <= 17'd0;div_clk <= 1'b1;endend//按键消抖部分always @(posedge clock)beginif(div_clk)begindout1 <= key;dout2 <= dout1;dout3 <= dout2;endend//按键边沿检测部分always @(posedge clock)beginbuff <= dout1 | dout2 | dout3;endassign key_edge = ~(dout1 | dout2 | dout3) & buff;//2位16进制数输出部分always @(posedge clock) //按键1 beginif(key_edge[0])sdata[7:4] <= sdata[7:4] + 1'b1;endalways @(posedge clock) //按键2beginif(key_edge[1])sdata[3:0] <= sdata[3:0] + 1'b1;endassign wen = key_edge[2]; //按键3//数码管扫描显示部分always @(posedge clock) //定义上升沿触发进程beginif(div_clk)cnt <= cnt + 1'b1;endalways @(posedge clock)beginif(div_clk)begincase(cnt) //选择扫描显示数据2'd0:disp_dat = sdata[7:4]; //第一个数码管2'd1:disp_dat = sdata[3:0]; //第二个数码管2'd2:disp_dat = rdata[7:4]; //第七个数码管2'd3:disp_dat = rdata[3:0]; //第八个数码管endcasecase(cnt) //选择数码管显示位2'd0:dig = 8'b01111111; //选择第一个数码管显示2'd1:dig = 8'b10111111; //选择第二个数码管显示2'd2:dig = 8'b11111101; //选择第七个数码管显示2'd3:dig = 8'b11111110; //选择第八个数码管显示endcaseendendalways @(disp_dat)begincase(disp_dat) //七段译码4'h0:seg = 8'hc0; //显示04'h1:seg = 8'hf9; //显示14'h2:seg = 8'ha4; //显示24'h3:seg = 8'hb0; //显示34'h4:seg = 8'h99; //显示44'h5:seg = 8'h92; //显示54'h6:seg = 8'h82; //显示64'h7:seg = 8'hf8; //显示74'h8:seg = 8'h80; //显示84'h9:seg = 8'h90; //显示94'ha:seg = 8'h88; //显示a4'hb:seg = 8'h83; //显示b4'hc:seg = 8'hc6; //显示c4'hd:seg = 8'ha1; //显示d4'he:seg = 8'h86; //显示e4'hf:seg = 8'h8e; //显示f endcaseendendmodule2、发送模块module send(clk,clkout,Datain,TXD,TI,WR);input WR;input [7:0]Datain; //发送的一字节数据input clk;output clkout;output TXD,TI; //串行数据,发送中断reg[9:0]Datainbuf,Datainbuf2; //发送数据缓存reg WR_ctr,TI,txd_reg;reg [3:0]bincnt; //发送数据计数器reg [15:0] cnt;wire clk_equ;parameter cout = 5000;/*************波特率发生进程****************************/ always@(posedge clk)beginif(clk_equ)cnt = 16'd0;elsecnt=cnt+1'b1;endassign clk_equ = (cnt == cout);assign clkout = clk_equ;/*************读数据到缓存进程****************************/ always@(posedge clk)beginif(WR)beginDatainbuf={1'b1,Datain[7:0],1'b0};//读入数据,并把缓存组成一帧数据,10位WR_ctr = 1'b1; //置开始标志位endelse if(TI==0)WR_ctr = 1'b0;end/*************主程序进程****************************/ always@(posedge clk)beginif(clk_equ)beginif(WR_ctr==1||bincnt<4'd10) //发送条件判断,保证发送数据的完整性beginif(bincnt<4'd10)begintxd_reg = Datainbuf2[0]; //从最低位开始发送Datainbuf2 = Datainbuf>>bincnt; //移位输出bincnt = bincnt+4'd1; //发送数据位计数TI = 1'b0;endelsebincnt = 4'd0;endelsebegin //发送完毕或者处于等待状态时TXD和TI为高txd_reg = 1'b1;TI = 1'b1;endendendassign TXD = txd_reg; //TXD连续输出endmodule3、接收模块module rec(clk,clkout,Dataout,RXD,RI);input clk,RXD;output clkout,RI;output [7:0] Dataout; //并行数据输出reg StartF,RI;reg [9:0] UartBuff; //接收缓存区reg [3:0]count,count_bit;reg [15:0] cnt;reg [2:0]bit_collect; //采集数据缓存区wire clk_equ,bit1,bit2,bit3,bit;parameter cout = 312;//时钟是48M所以16*9600的分频数为312.5,这里取整数/*************波特率发生进程****************************/ always@(posedge clk)beginif(clk_equ)cnt = 16'd0;elsecnt=cnt+1'b1;endassign clk_equ = (cnt == cout);assign clkout = clk_equ;assign bit1 = bit_collect[0]&bit_collect[1]; assign bit2 = bit_collect[1]&bit_collect[2]; assign bit3 = bit_collect[0]&bit_collect[2]; assign bit = bit1|bit2|bit3;always@(posedge clk)beginif(clk_equ)beginif(!StartF) //是否处于接收状态beginif(!RXD)begincount = 4'b0; //复位计数器count_bit = 4'b0;RI = 1'b0;StartF = 1'b1;endelse RI = 1'b1;endelsebegincount = count+1'b1; //位接收状态加1if(count==4'd6)bit_collect[0] = RXD; //数据采集if(count==4'd7)bit_collect[1] = RXD; //数据采集if(count==4'd8)beginbit_collect[2] = RXD; //数据采集UartBuff[count_bit] = bit;count_bit = count_bit+1'b1;//位计数器加1if((count_bit==4'd1)&&(UartBuff[0]==1'b1))//判断开始位是否为0beginStartF = 1'b0; //标志开始接收endRI = 1'b0; //中断标志位低endif(count_bit>4'd9) //检测是否接收结束beginRI = 1'b1; //中断标志为高标志转换结束StartF = 1'b0;endendendendassign Dataout = UartBuff[8:1]; //取出数据位endmodule四、实验结果(1) 在工作状态下,若用户按下K1按键,则数码管1上的数字加 1(0~F循环);(2) 在工作状态下,若用户按下K2按键,则数码管2上的数字加 1(0~F循环);(3) 在工作状态下,若用户按下K3按键,则把数码管1和2上的数字通过串口发送到串口调试软件的接收窗口;(4) 在工作状态下,若用户通过串口调试软件在发送窗口发送数字,则在数码管7和8上显示相应的数字。
单片机实验指导书
目录实验一系统认识实验 (2)实验二端口I/O输入输出实验 (14)实验三外部中断实验 (17)实验四定时器实验 (21)实验五串行口通信实验 (25)实验六串行通信的调试实验 (29)实验七数码管静态显示实验 (33)实验八数码管动态显示实验 (38)实验一系统认识实验一、实验目的1.学习Keil C51编译环境的使用;2.学习STC单片机的下载软件STC-ISP的使用;3.掌握51单片机输出端口的使用方法。
二、实验内容任选单片机的一组I/O端口,连接LED发光二极管,编写程序实现8个LED按二进制加1点亮。
三、接线方案单片机P10~P17/C51单片机接L0~L7/LED显示,如下图:图1-1实验线路四、实验原理51单片机有4个8位的并行I/O端口:P0、P1、P2、P3,在不扩展存储器、I/O端口,在不使用定时器、中断、串行口时,4个并行端口,32根口线均可用作输入或输出。
作为输出时,除P0口要加上拉电阻外,其余端口与一般的并行输出接口用法相同,但作为输入端口时,必须先向该端口写“1”。
例如P0接有一个输入设备,从P0口输入数据至累加器A中,程序为:MOV P0, #0FFHMOV A, P0若将P0.0位的数据传送至C中,程序为:SETB P0.0MOV C, P0.0五、实验步骤1、连接串行通信电缆和电源线;2、根据图1-1实验线路进行电路连接;3、将C51单片机核心板上的三个开关分别拨到“独立”、“运行”“单片机”;4、打开实验箱上的电源开关。
5、利用Keil C51创建实验程序,并进行编译生成后缀为.HEX的文件;6、利用STC-ISP软件将后缀为.HEX的文件下载到单片机ROM中;7、观察实验现象,并记录。
若实验现象有误请重复第5、6步。
六、参考程序ORG 0000H ;程序的开始LJMP MAIN ;转入主程序ORG 0200H ;主程序的开始MAIN: MOV P1,#00H ;P1口做准备M1: INC P1 ;P1口连接输出计数,LCALL DELAY ;转入延时子程序LJMP M1 ;循环DELAY: MOV R5,#255 ;延时子程序D1: MOV R6,#255DJNZ R6,$DJNZ R5,D1RETEND ;程序体结束七、思考题1、利用其他I/O口实现LED加1点亮功能;2、利用P1端口实现流水灯(左移或右移)功能;3、实现LED其他点亮功能。
单片机实验报告
单片机实验报告《单片机系统实验》实验报告院系:学号:姓名:2017年12月一、实验目的1.了解32位单片机(STM32系列)原理及其应用,熟悉单片机的资源,掌握单片机的最小系统设计及扩展技术,掌握单片机的编程语言。
2.通过本实验了解LCD液晶工作原理,能通过编程操作液晶的显示。
二、实验设备STM32实验系统一套,PC机一台。
三、实验原理(1)I/O口及定时器实验:STM32的GPIO口控制4个发光二极管,了解其硬件连接方式,学会使用STM32的一个定时器,掌握对定时器计时方式的编程。
编写程序循环点亮4个发光二极管,控制点亮时间为1秒钟闪烁。
(2)外部中断实验:掌握STM32单片机外部中断的用法,学会设置中断优先级,在实验(1)的基础上完成,如果有外部中断发生改变发光二极管的发光规律。
(如,仅其中2个灯亮,再次触发外部中断后,发光二极管重新变成4个灯循环点亮。
)(3)串行口通信实验:掌握STM32单片机与计算机之间的硬件连接方式,了解二者之间的传输协议,进行数据传输。
(4)LCD实验:掌握STM32单片机与液晶之间的硬件连接方式,单片机如何驱动液晶进行显示。
四、内容与步骤1.学会使用IAR或KEIL的编译链接调试环境,熟悉有关STM32使用到的库,并能顺利建立包含各种库文件的工程。
(2学时)2.I/O口实验:在建立工程的基础上能点亮发光二极管。
(2学时)3.定时器实验:循环定时(用定时器做)点亮4个灯,即每1秒闪烁点亮一个灯,循环往复(或叫跑马灯实验)。
(2学时)4.外部中断实验:按键作为触发外部中断的条件,中断发生时,改变发光二极管的点亮规律。
(2学时)5.串行口通信实验:编写串行口通信实验程序,能在计算机与STM32系统间进行ASCII码的传输。
(2学时)6.LCD实验:通过自行编写库文件和了解液晶显示字库,能在液晶上显示“北京航空航天大学机械工程及自动化学院”字样。
(6学时)五、关键代码1.I/O口及定时器实验/*通过定时器3中断函数实现跑马灯,现象为每个LED灯依次点亮1秒后熄灭*/void TIM3_IRQHandler(void){extern uint8_t LED_Status[5];if(TIM3->SR&0X0001)//溢出中断{if(LED_Status[1]==0){LED1_ON;LED2_OFF;LED3_OFF;LED4_OFF;LED_Status[1]=1;}else if(LED_Status[1]==1){LED1_OFF;LED2_ON;LED3_OFF;LED4_OFF;LED_Status[1]=2;}else if(LED_Status[1]==2){LED1_OFF;LED2_OFF;LED3_ON;LED4_OFF;LED_Status[1]=3;}else if(LED_Status[1]==3){LED1_OFF;LED2_OFF;LED3_OFF;LED4_ON;LED_Status[1]=0;}}TIM3->SR&=~(1<<0);//清除中断标志位}2.外部中断实验/*LED灯的发光规律有两种:一种是每个LED灯依次点亮1秒后熄灭,另一种是每次2个LED灯同时点亮,持续1秒后向前移动1个LED灯的位置。
串行应用实验报告
一、实验目的1. 理解串行通信的基本原理和常用方式。
2. 掌握串行通信接口的硬件连接和软件编程。
3. 实现两个设备之间的串行通信,验证通信的可靠性。
二、实验原理串行通信是指数据在一条线上按位顺序传输,每传输一位数据后,再传输下一位数据。
与并行通信相比,串行通信具有传输距离远、抗干扰能力强、成本较低等优点。
常用的串行通信方式有RS-232、RS-485等。
三、实验设备1. 电脑一台2. 串口通信模块(如:USB转串口模块)3. 串行通信线(如:串行线、USB线)4. 实验板(如:Arduino板)5. 相关软件(如:串口调试助手)四、实验步骤1. 硬件连接(1)将USB转串口模块连接到电脑,确保模块上的指示灯亮起,表示已正常连接。
(2)将串行通信线的一端连接到USB转串口模块的TXD、RXD、GND引脚,另一端连接到实验板的RXD、TXD、GND引脚。
2. 软件设置(1)打开串口调试助手,设置串行通信参数:- 波特率:9600- 数据位:8- 停止位:1- 校验位:无(2)将实验板上的串行通信模块(如Arduino板)连接到电脑,打开实验板上的电源。
3. 编写程序(1)编写实验板的程序,实现数据的发送和接收。
以下为Arduino板示例程序:```cpp#include <SoftwareSerial.h>SoftwareSerial mySerial(10, 11); // RX, TXvoid setup() {Serial.begin(9600);mySerial.begin(9600);}void loop() {if (mySerial.available()) {char received = mySerial.read();Serial.print("Received: ");Serial.println(received);}if (Serial.available()) {char sent = Serial.read();mySerial.print("Sent: ");mySerial.println(sent);}}```(2)将程序上传到实验板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
void delay()
{
uchar i=250;
while(i--);
}
void display()
{
uchar i;
for(i=0;i<6;i++)
{
ZXK=LED[disp_buf[i]];
ES=1;
EA=1;
while(1)
{
k=key();
if(k<10)
{
// ACC=k;
// TB8=P;
SBUF=k; //发送
disp_buf[5]=k;//自己显示
}
displayal() interrupt 4
{
col=0;
while(k&(1<<(col+4)))
col++;
while((P1&0xf0)!=0xf0)
display();
break;
//k=row*4+col;
}
}k=row*4+col;
return k ;
SBUF=k;
disp_buf[5]=k;
}
display();
}
}
void serial() interrupt 4
{
if(TI)
TI=0;
if(RI)
{
RI=0;
// ACC=SBUF;
// if(P==RB8)
P1=0xf0;
if((P1&0xf0)==0xf0)
return k;
delay18();
if((P1&0xf0)==0xf0)
return k;
for(row=0;row<4;row++)
{
P1=~(1<<row);
k=P1&0xf0;
if(k!=0xf0)
disp_buf[0]=SBUF;
}
}
/**串行通信实验
#include <reg51.h>
#include <absacc.h>
#define ZXK XBYTE[0xfeff]
#define ZWK XBYTE[0xfdff]
unsigned char code LED[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0};
#include <reg51.h>
#include <absacc.h>
#include<stdio.h>
#define ZXK XBYTE[0xfeff]
#define ZWK XBYTE[0xfdff]
#define uchar unsigned char
uchar code LED[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,7,0x7f,0x6f,0};
}
void main()
{
uchar k;
SCON=0x50;
TMOD=0x20;
TH1=0xfd;
TL1=0xfd;
TR1=1;
ES=1;
EA=1;
while(1)
{
k=key();
if(k<10)
{
// ACC=k;
// TB8=P;
for(i=0;i<6;i++)
{
ZWK=disp_buf[i];
ZWK=~(1<<i);
ZXK=LED[disp_buf[i]];
delay();
}
}
void delay18ms()
{
unsigned char i;
for(i=0;i<3;i++)
delay();
}
unsigned char key()
{
unsigned char row,col,k=0xff; //k=-1
P1=0xf0;// 高四位输入,低四位输出
if((P1&0xf0)==0xf0) //检查是否有按键
return k;
unsigned char k;
SCON=0x50;//工作方式1,printf只能在方式一使用(必须关中断,TI=1)
TMOD=0x20;//T0不变,T1模式二定时
TH1=0xfd; //(晶振11.0592MHz,波特率9600b/s)
TL1=0xfd;
TR1=1; //启动T1,开串口及总中断
{
while(k&(1<<(col+4)))
col++;
k=row*4+col;
P1=0xf0;
while((P1&0xf0)==0xf0);//等待键释放
break;
}
}
return k;
}
void main()
{
{
if(TI)
TI=0;
if(RI)
{
RI=0;
// ACC=SBUF;
// if(P==RB8)
disp_buf[0]=SBUF; //接收,显示
}
}
*/
unsigned char disp_buf[6]={10,10,10,10,10,10}; //第0位接受,第5位显示
void delay()
{
unsigned char i=250;
while(--i);
}
void display()
{
unsigned char i;
delay18ms();//延时去抖
if((P1&0xf0)==0xf0) //抖动引起,返回
return k;
for(row=0;row<4;row++)
{
P1=~(1<<row);
k=P1&0xf0;
if(k!=0xf0) // 该列有按下
ZWK=~(1<<i);
delay();
ZXK=0xff;
}
}
void delay18()
{
uchar i;
for(i=0;i<3;i++)
display();
}
uchar key()
{
uchar row,col,k=0xff;//k=-1