历年中考数学应用题汇编课件
中考数学综合应用问题(教学课件201908)
;
及丰等至 今陛下每精事始而略于考终 勖请言之 先所给车牛可录取 一人有先众之誉 亦方百馀步 叔向不韪 勿托以尊 得傅导之义 肜等伏读 帝既还洛阳 虽燕主之信乐毅 锋镝如云 镇豫章 无子 舟楫未备 赐绢百匹 都督荆州诸军事 时人谓毅忠于魏氏 于是十二郡中正佥共举默 是以见景帝 且卢 子家 魏氏错役 公于圣世 王濬 体似声真 临御万邦 务依党利 俱陷淫网 时尚书令史扈寅非罪下狱 不以新妇属小郎 都督幽州诸军事 顺叹曰 惠帝即位 臣言岂不少概圣心夫 字伟容 初 吴之未灭也 疆埸无虞 元康七年薨 宜有备预 臣以诏文相承已久 齐之正卿 父观 次弟仲字世混 道未及反 舒自 系理含 鲁国邹人也 所谓大臣 法吏据辞守文 骑二千 当时甚为正直者所疾 忠全元丧 刑狱得无冤滥 骏斥出王佑为河东太守 又已甚焉 宜如古典 赐爵关内侯 而濬乘胜纳降 书文残缺 元帝诏曰 谧重执奏戎 永康二年薨 九州幅裂 若所以资为安之理 宋受禅 外孙骨肉至近 臣作船七年 不营赀产 年 谷不登 贬恶嘉善 谓憙曰 不得皆同 若于事不得不时有所转封 南阳淯阳人也 都督豫州诸军事 广竟以忧卒 后徙封中丘王 太子洗马孟康 侍中 林叔弘推让之美 帝曰 敏字幼达 依刘群 受杜预节度 充虑大功不捷 惮益州刺史周抚 自然是风尘表物 称为任职 陈其攻伐之劳 元康初 帝用勖所作 每念 怛然 保持之 迁尚书郎 简又为贼严嶷所逼 寻徙宁朔将军 累迁屯骑校尉 晋祚始基 咸宁元年八月卒 大王迳得济河 安帝时为建威将军 汝南王亮为太傅杨骏所疑 复问 然俗放都奢 临辞受诏 则恐良史书勋 往者同为散骑常侍 今转恒为廷尉 邃与刁协婚亲 朝贤尝上巳礻契洛 须皇子长乃遣君之 攸 谓左右曰 顾匹夫之独善 既伤陛下矜慈之恩 而当默然也 不许 怀忠愤发 组与藩俱出奔 谷二百斛 都督陕西诸军事 转太常 以志为魏郡太守 弟东安王繇有令名 玄风洽于区外
初中数学复习专题应用题 PPT课件 图文
(2)试写出z与x之间的函数关系式(不必写出x的取值范围)
(3)计算当销售单价为160元时的年获利,并说明同年的年获利,销售单价 还可以定为多少元?相应的年销售分别为多少万件?
(4)公司计划:在第一年按年获利最大确定的销售单价;第二年年获利不 底于1130万元。请你借助函数的大致图象说明,第二年的销售单价x (元)应确定在什么范围内?
1 阅读型应用题
顾名思义,阅读型应用题即给出相关材料,以考 查学生的阅读理解能力。其信息量较大,应注意相关 信息的联想,发现,探索及归纳总结,知识考查往往 源于课本而又高于课本,属边缘问题,需注意。
例一 某高科技发展公司投资500万元,成功研制出一种市场需求量较大的 高科技替代产品,并投入资金1500万元进行批量生产,已知生产每件的 成本为40元,在销售过程中发现:当销售单价定为100元时,年销量为20 万件;当销量单价每增加10元,年销量将减少1万件,设销售单价为x元, 年销量为y(万元),年获利(年获利=年销售额 - 成本 - 投资)为z(万 元)
(1)若把BC作油桶高时,则油桶的底面半径R1等于多少? (2)当把AB作油桶高时,油桶的底面半径R2 与(1)中的R1 相等吗?若相等,请说明理由;若不相等,请求出R2
O1 A
C
O
Байду номын сангаас
B
D
O2
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她 说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说,
年中考数学(全国)总复习精英课件第二轮专题总复习专题七函数的应用(共40张PPT(完整版)3
1.(导学号65244251)(2017·广安)某班级45名同学自发筹集到1 700元资金,用 于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过 560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫 或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元. (1)设用于购买文化衫和相册的总费用为W元,求总费用W(元)与购买的文化 衫件数t(件)的函数解析式. (2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种 方案?并说明理由.
解:第 m 个月的利润为 W,W=x(18-y)=18x-x(6+6x00)=12(x-50)
=24(m2-13m+47),∴第(m+1)个月的利润为 W′=24[(m+1)2-13(m+1)+ 47]=24(m2-11m+35),若 W≥W′,W-W′=48(6-m),m 取最小值 1,W- W′取得最大值 240;若 W<W′,W-W′=48(m-6),由 m+1≤12 知 m 取最 大值 11,W-W′取得最大值 240;∴m=1 或 11.
月份n/月 成本y/(万元/件) 需求量x/(件/月)
1
2
11 12
120 100
【思路引导】设 y=a+bx,将表中相关数据代入可求得 a,b, 根据 12=18-(6+6x00),可作出判断.
解:根据题意,设 y 与 x 满足的解析式为 y=a+bx,
由表中数据可得1112==aa++11b2b000,,解得ab==66,00,∴y=6+60x0,
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m. 【思路引导】第m个月的利润W=x(18-y)=24(m2-13m+47),第(m+1)个月 的利润为W′=24[(m+1)2-13(m+1)+47]=24(m2-11m+35),分情况作差结 合m的范围,由一次函数性质可得.
中考数学应用题汇编及解析
一、代数应用题:1、农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,根据题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 这样乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1(2中位数为 元,众数为(3问题,并指出用(2实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也可以) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅游胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B . (1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,为什么?(3)在山坡上的700米高度(点D )处恰好有一小块平地,可以用来建造索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x (…13分)当320=x 时,38m ax =y∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出: ①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?PQR时)(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.所以,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观察图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范围);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:如果举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图, AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交 AB 于F ,如图1.…………(1分)由垂径定理,可知: E 是AB 中点,F 是 AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分)O BA·图10—2图10—1图1∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π.………………………(7分) ∴帆布的面积为38π×60=160π(平方米). …………………………………(8分)(说明:本题也可以由相交弦定理求圆的半径的长.对于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍继续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时间为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)对于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你根据重叠部分面积y 的变化情况,指出y 取得最大值和最小值时,相对应的x 的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5 D图14-7DP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)对于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;当x =35时,y 取得最大值36.④在DA 边上移动时,当42≤x ≤43及55≤x ≤56时,y 取得最小值0; 当x =49时,y 取得最大值36.图2-4 D 图2-5D P图2-6D图2-3 DQ P 图2-2D 图2-1D Q P。
2024年江西省中考数学总复习:专题三 实际应用题 题型讲练 课件 46张PPT
课堂提升
1.(数学文化)《九章算术》中记载:“今有甲、乙二人持钱不知其数,
甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”
其大意是:“今有甲、乙二人,不知其钱包里有多少钱,若乙把其一半
的钱给甲,则甲的钱数为 50;而甲把其23的钱给乙,则乙的钱数也为 50.
问甲、乙各有多少钱?”设甲的钱数为 x,乙的钱数为 y,根据题意,可
(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应
购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?
解析 [解] (2)设李大爷每天所获利润是 w 元,
由题意得 w=[12-0.5(x-1)-(-0.2x+8.4)]×10x=-3x2+41x
=-3x-4612+1
681 12 .
专题三 实际应用题
知识详解
方程(组)的实际应用题 [例1] 本学期学校开展以“感受中华传统美德”为主题的研学活动, 组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其 中一项活动,共支付票款2 000元,票价信息如下:
地点
票价
历史博物馆 10元/人
民俗展览馆 20元/人
(1)请问参观历史博物馆和民俗展览馆的人数各是多少? 解析 [解] (1)设参观历史博物馆的有 x 人,参观民俗展览馆的有 y 人,
方法总结 读懂一次函数图象的注意事项
1.弄清坐标轴所表示的量,看图找点. 2.图象中平行于x轴的部分表示函数值不变. 3.图象中的拐点表示函数图象在这一刻开始变化. 4.图象中的交点表示两个函数的自变量与函数值分别对应相等,交 点是函数值大小关系的分界点.
[跟踪训练] 3.为了实施乡村振兴战略,帮助农民增加收入,市政府大力扶持农户 发展种植业.张大爷计划明年承租村民部分土地种植某种经济作物,考 虑各种因素,预计明年种植该作物的总成本y(元)与种植面积x(亩)之间 满足一次函数关系,且部分数据如表:
初中数学应用题完整版整理.ppt
整理
初 中 数 学
八 上
某班同学秋游时,照相共用了 3 卷胶卷.秋游后冲洗 3 卷胶卷并 根据同学需要加印照片.已知冲洗胶卷的价 格是 3.0 元/卷,加印照片的价格是 0.45元/张.
(1)试写出冲印合计的费用 y (元)与加印 张数 x 之间的关系式; 解: y= 3×3.0 + 0.45 x
整理
初 中 数 学
八 上
巩固练习 国家规定个人发表文章、出版图书获
得稿费的纳税方法是①:稿费不高于 800 元 的不纳税②;稿费高于 800 元但不高于 4 000 元的应缴纳超过 800 元的那一部分的 14% 的税;③稿费高于 4 000 元的应缴纳全部稿费 的 11% 的税.
(1)当稿费收入高于 800元但不高于 4 000元时,写出应缴纳所得税 y(元)与稿 费收入 x(元)之间的函数关系式;
整理
初 中 数 学
八 上
某班同学秋游时,照相共用了 3 卷胶卷.秋游后冲洗 3 卷胶卷并 根据同学需要加印照片.已知冲洗胶卷的价格 是 3.0 元/卷,加印照片的价格是 0.45元/张.
y=9.0+0.45 x. 你能根据此背景,再创设一些问题吗?
整理
初 中 数 学
八 上
巩固练习 在人才招聘会上,某公
即 y=9.0+0.45 x
整理
初 中 数 学
八 上
某班同学秋游时,照相共用了 3 卷胶卷.秋游后冲洗 3 卷胶卷并 根据同学需要加印照片.已知冲洗胶卷的价 格是 3.0 元/卷,加印照片的价格是 0.45元/张.
y=9.0+0.45 x (2)如果秋游后尚结余49.5元,那么冲洗 胶卷后还可以加印照片多少张? 解:当结余为49.5元时,得 49.5=9.0+0.45 x 解得 x=90
中考数学应用题汇编及解析
中考数学应用题汇编及解析一、代数应用题:1、农科所向农民举荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间治理和土质相同的条件下,Ⅱ号稻谷单位面积的产量比Ⅰ号到谷低20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价是1.6元/千克.(1) 当Ⅱ号稻谷的国家收购价是多少时,在田间治理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻谷的收益相同?(2) 去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间治理.收成后,小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为2.2元/千克,Ⅰ号稻谷国家的收购价未变,如此小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入1040元,那么小王去年卖给国家的稻谷共有多少千克?[解析] (1)由题意,得1.62120%=-(元); (2)设卖给国家的Ⅰ号稻谷x 千克,依照题意,得(120%) 2.2 1.61040x x -⨯=+. 解得,6500x =(千克)(120%) 1.811700x x x +-==(千克)答:(1)当Ⅱ号稻谷的国家收购价是2元时,种植Ⅰ号、Ⅱ号稻谷的收益相同; (2)小王去年卖给国家的稻谷共为11700千克.2、机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此运算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1) 甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍旧为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2) 乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,同时发觉在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%. 如此乙车间加工一台大型机械设备的实际耗油量下降到12千克. 问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?[解析](1)由题意,得70(160%)7040%28⨯-=⨯=(千克) (2)设乙车间加工一台大型机械设备润滑用油量为x 千克, 由题意,得[1(90) 1.6%60%]12x x ⨯--⨯-= 整理,得2657500x x --=部门经理小张那个经理的介绍能反映该公司职员的月工资实际水平吗?欢迎你来我们公司应聘!我公司职员的月平均工资是2500元,薪水是较高的. 解得:1275,10x x ==-(舍去)(9075) 1.6%60%84%-⨯+=答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克?用油的重复利用率是84%.3、某高科技产品开发公司现有职员50名,所有职员的月工资情形如下表:职员 治理人员 一般工作人员人员结构 总经理 部门经理 科研人员销售人员 高级技工 中级技工勤杂工职员数(名) 1 3 2 3 24 1 每人月工资(元)21000 840020252200 1800 1600950请你依照上述内容,解答下列问题:(1)该公司“高级技工”有 名;(2)所有职员月工资的平均数x 为2500元,中位数为 元,众数为 元; (3)小张到这家公司应聘一般工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个 数据向小张介绍职员的月工资 实际水平更合理些;(4)去掉四个治理人员的工资后,请你运算出其他职员的月平均工资y (结果保留整数),并判定y 能否反映该公司职员的月工资实际水平.[解析] (1)由表中数据知有16名;(2)由表中数据知中位数为1700;众数为1600;(3)那个经理的介绍不能反映该公司职员的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也能够) (4)250050210008400346y ⨯--⨯=≈1713(元).y 能反映.4、某旅行胜地欲开发一座景观山.从山的侧面进行堪测,迎面山坡线ABC 由同一平面内的两段抛物线组成,其中AB 所在的抛物线以A 为顶点、开口向下,BC 所在的抛物线以C 为顶点、开口向上.以过山脚(点C )的水平线为x 轴、过山顶(点A )的铅垂线为y 轴建立平面直角坐标系如图(单位:百米).已知AB 所在抛物线的解析式为8412+-=x y ,BC 所在抛物线的解析式为2)8(41-=x y ,且已知)4,(m B . (1)设),(y x P 是山坡线AB 上任意一点,用y 表示x ,并求点B 的坐标;(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20厘米,长度因坡度的大小而定,但不得小于20厘米,每级台阶的两端点在坡面上(见图).①分别求出前三级台阶的长度(精确到厘米); ②这种台阶不能一直铺到山脚,什么缘故?(3)在山坡上的700米高度(点D )处恰好有一小块平地,能够用来建筑索道站.索道的起点选择在山脚水平线上的点E 处,1600=OE (米).假设索道DE 可近似地看成一段以E 为顶点、开口向上的抛物线,解析式为2)16(281-=x y .试求索道的最大悬空..高度.[∴8412+-=x y ,0≥x , (…2分) ∴)8(42y x -=,y x -=82(…3分) ∵)4,(m B ,∴482-=m =4,∴)4,4(B(…4分)(2)在山坡线AB 上,y x -=82,)8,0(A①令80=y ,得00=x ;令998.7002.081=-=y ,得08944.0002.021≈=x ∴第一级台阶的长度为08944.001=-x x (百米)894≈(厘米)(…6分)同理,令002.0282⨯-=y 、002.0383⨯-=y ,可得12649.02≈x 、15492.03≈x ∴第二级台阶的长度为03705.012=-x x (百米)371≈(厘米) (…7分) 第三级台阶的长度为02843.023=-x x (百米)284≈(厘米)(…8分)②取点)4,4(B ,又取002.04+=y ,则99900.3998.32≈=x∵002.0001.099900.34<=-∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚 (…10分)(注:事实上这种台阶从山顶开始最多只能铺到700米高度,共500级.从100米高度到700米高度都不能铺设这种台阶.解题时取点具有开放性) ②另解:连接任意一段台阶的两端点P 、Q ,如图 ∵这种台阶的长度不小于它的高度 ∴︒≤∠45PQR当其中有一级台阶的长大于它的高时, ︒<∠45PQR(…9分)在题设图中,作OA BH ⊥于H则︒=∠45ABH ,又第一级台阶的长大于它的高∴这种台阶不能从山顶一直铺到点B ,从而就不能一直铺到山脚(…10分)(3))7,2(D 、)0,16(E 、)4,4(B 、)0,8(C由图可知,只有当索道在BC 上方时,索道的悬空..高度才有可能取最大值(…11分) 索道在BC 上方时,悬空..高度2)16(281-=x y 2)8(41--x )96403(1412-+-=x x 38)320(1432+--=x(…13分)当320=x 时,38max =y ∴索道的最大悬空..高度为3800米. 5、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图11是反映所挖河渠长度y (米)与挖掘时刻x (时)之间关系的部分图象.请解答下列问题: (1)乙队开挖到30米时,用了_____小时.开挖6小时时,甲队比乙队多挖了______米; (2)请你求出:①甲队在0≤x ≤6的时段内,y 与x 之间的函数关系式; ②乙队在2≤x ≤6的时段内,y 与x 之间的函数关系式;PQR时)③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)假如甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?[解析] (1)2;10;(2)①设甲队在0≤x ≤6的时段内y 与x 之间的函数关系式为y =k 1x ,由图可知,函数图象过点(6,60), ∴6 k 1=60,解得k 1=10, ∴y =10x .②设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =k 2x +b ,由图可知,函数图象过点(2,30)、(6,50),∴22230,650.k b k b +=⎧⎨+=⎩ 解得25,20.k b =⎧⎨=⎩∴y =5x +20.③由题意,得10x >5x +20,解得x >4.因此,4小时后,甲队挖掘河渠的长度开始超过乙队.(说明:通过观看图象并用方程来解决问题,正确的也给分) (3)由图可知,甲队速度是:60÷6=10(米/时).设甲队从开挖到完工所挖河渠的长度为z 米,依题意,得6050.1012z z --=解得 z =110.答:甲队从开挖到完工所挖河渠的长度为110米.6、利达经销店为某工厂代销一种建筑材料(那个地点的代销是指厂家先免费提供货源,待物资售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,预备采取降价的方式进行促销.经市场调查发觉:当每吨售价每下降10元时,月销售量就会增加7. 5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x (元),该经销店的月利润为y (元). (1)当每吨售价是240元时,运算现在的月销售量;(2)求出y 与x 的二次函数关系式(不要求写出x 的取值范畴);(3)请把(2)中的二次函数配方成2()y a x h k =-+的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元;(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.[解析] (1)5.71024026045⨯-+=60(吨).(2)260(100)(457.5)10xy x -=-+⨯,化简得: 23315240004y x x =-+-.(3)24000315432-+-=x x y 23(210)90754x =--+.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x 为210元,而关于月销售额)5.71026045(⨯-+=xx W 23(160)192004x =--+来说, 当x 为160元时,月销售额W 最大.∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,现在,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000, ∴当月利润最大时,月销售额W 不是最大. ∴小静说的不对.(说明:假如举出其它反例,说理正确,也相应给分)二、几何应用题:8、图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图,AB 所在圆的圆心为O . 车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,运算结果保留π).[解析]连结OB ,过点O 作OE ⊥AB ,垂足为E ,交AB 于F ,如图1.…………(1分)由垂径定理,可知: E 是AB 中点,F 是AB 中点,∴EF 是弓形高 .∴AE ==AB 2123,EF =2. …………(2分) 设半径为R 米,则OE =(R -2)米.O BA·图10—2图10—1 AB2米 43米·图1EF A在Rt △AOE 中,由勾股定理,得 R 2=22)32()2(+-R .解得 R =4. ……………………………………………………………………(5分) ∵sin ∠AOE =23=OA AE , ∴ ∠AOE =60°, ………………………………(6分)∴∠AOB =120°. ∴ AB 的长为1804120π⨯=38π. ………………………(7分)∴帆布的面积为38π×60=160π(平方米). …………………………………(8分) (说明:本题也能够由相交弦定理求圆的半径的长.关于此种解法,请参照此评分标准相应给分)9、图14-1至图14-7的正方形霓虹灯广告牌ABCD 差不多上20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O .如图14-1,有一个边长为6个单位长的正方形EFGH 的对称中心也是点O ,它以每秒1个单位长的速度由起始位置向外扩大(即点O 不动,正方形EFGH 通过一秒由6×6扩大为8×8;再通过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD ,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.另有一个边长为6个单位长的正方形MNPQ 从如图14-1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD 的内侧边缘按A →B →C →D →A 移动(即正方形MNPQ 从点P 与点A 重合位置开始,先向左平移,当点Q 与点B 重合时,再向上平移,当点M 与点C 重合时,再向右平移,当点N 与点D 重合时,再向下平移,到达起始位置后仍连续按上述方式移动).正方形EFGH 和正方形MNPQ 从如图14-1的位置同时开始运动,设运动时刻为x 秒,它们的重叠部分面积为y 个平方单位.(1)请你在图14-2和图14-3中分别画出x 为2秒、18秒时,正方形EFGH 和正方形MNPQ 的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;(2)①如图14-4,当1≤x ≤3.5时,求y 与x 的函数关系式;②如图14-5,当3.5≤x ≤7时,求y 与x 的函数关系式; ③如图14-6,当7≤x ≤10.5时,求y 与x 的函数关系式; ④如图14-7,当10.5≤x ≤13时,求y 与x 的函数关系式. (3)关于正方形MNPQ 在正方形ABCD 各边上移动一周的过程,请你依照重叠部分面积y 的变化情形,指出y 取得最大值和最小值时,相对应的x 的取值情形,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)图14-6D 图14-2 图14-3 D D 图14-4D图14-1 (P ) D N 图14-5D图14-7E C BA DFG H M Q NOP[解析](1)相应的图形如图2-1,2-2.当x =2时,y =3; 当x =18时,y =18.(2)①当1≤x ≤3.5时,如图2-3,延长MN 交AD 于K ,设MN 与HG 交于S ,MQ 与FG 交于T ,则MK =6+x ,SK =TQ =7-x ,从而MS =MK -SK =2x -1,MT =MQ -TQ =6-(7-x )= x -1. ∴y=MT ·MS =(x -1)(2x -1)=2x 2-3x +1.②当3.5≤x ≤7时,如图2-4,设FG 与MQ 交于T ,则 TQ =7-x ,∴MT =MQ -TQ =6-(7-x )=x -1. ∴y=MN ·MT =6(x -1)=6x -6.③当7≤x ≤10.5时,如图2-5,设FG 与MQ 交于T ,则 TQ=x -7,∴MT =MQ -TQ =6-(x -7)=13-x . ∴y = MN ·MT =6(13-x )=78-6x .④当10.5≤x ≤13时,如图2-6,设MN 与EF 交于S ,NP 交FG 于R ,延长NM 交BC 于K ,则MK =14-x ,SK =RP =x -7,∴SM =SK -MK=2x -21,从而SN =MN -SM =27-2x ,NR =NP -RP =13-x . ∴y=NR ·SN =(13-x )(27-2x )=2x 2-53x +351.(说明:以上四种情形,所求得的y 与x 的函数关系式正确的,若不化简不扣分) (3)关于正方形MNPQ ,①在AB 边上移动时,当0≤x ≤1及13≤x ≤14时,y 取得最小值0;当x =7时,y 取得最大值36.②在BC 边上移动时,当14≤x ≤15及27≤x ≤28时,y 取得最小值0;当x =21时,y 取得最大值36. ③在CD 边上移动时,当28≤x ≤29及41≤x ≤42时,y 取得最小值0;图2-4 E C B A D F G H Q N O P T 图2-5E C B A DF GH M N O PT 图2-6 E C B A DF G HK N OP R S 图2-3 E C B A D F G H M Q N OP S T 图2-2 E C B A D FG HMN O P 图2-1 E C B AD Q O P当x=35时,y取得最大值36.④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;当x=49时,y取得最大值36.。
中考数学复习应用型综合问题2课件
例2:某商场计划投入一笔 资金采购一批紧俏商品, 经过市场调查发现,如月 初出售,可获利15%,并 可用本和利再投资其它商 品,到月末又可获利10%; 如果月末出售可获利30%, 但要付出仓储费用700元, 请问根据商场的资金状况, 如何购销获利较多?为什 么?
y乙 a( x h)2 k的顶点 为(6,1),又过点(3,4)
4 a(3 6)2 1
a 1 3
y乙
1(x 3
6)2
1
y
y甲
y乙
2 3
x
7
1(x 3
6)2
1
y 1 ( x 5)2 7
3
3
当x 5时, y有最大值,最大值为7 . 3
答 : 5月份出售这种蔬菜,每千克收益最大.
(1)设出发x小时后,汽车离A站 y千米,写出y与x之间的函数 关系式。
(2)当汽车行驶到离A站150千米 的B站时,接到通知要在中午 12点前赶到离B站30千米的C 站,汽车若按原速能否按时 到达?若能是在几点几分, 若不能,车速最少应提高到
分析:根据已知可确定车速 为40千米/时,故(1)便 可解决:y=40x+10,由已 知可知从P地到C站,须在 4小时内走完,而实际这段 路程需4.25小时,所以按
∴ k=10 所以 表示自行车行驶 过程的函数的解析式为y=10x
设表示摩托车行驶过程的函数 的解析式为
y=ax+b ∵ 当x=3时,y=0; x=5时,y=80 ∴ 0=3a+b
80=5a+b 解得: a=40
b=﹣120 ∴表示摩托车行驶过程的函数
解析式为:y=40x-120
(4) 在 3<x<5 时 间 段 内 两 车 均 行 驶在途中自行车在摩托车前 面:10x>40x-120, 两车相遇: 10x=40x-120 自行车在摩托车后面:
2020届中考数学复习课件:专题9 数式应用专题1 (共23张PPT)
第二部分
专题9 数式应用专题1 专题考查情况
典型例题
课堂练习
-18-
解:设购买A型号笔记本电脑x台时的费用为w元, (1)当x=8时, 方案一:w=90%a×8=7.2a, 方案二:w=5a+(8-5)a×80%=7.4a, ∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元. (2)∵若该公司采用方案二购买更合算, ∴x>5, 方案一:w=90%ax=0.9ax, 方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.8ax-4a=a+0.8ax, 则0.9ax>a+0.8ax,
∴a≤150,
∴当a=150时,w取得最小值,
此时w=1 100,200-a=50.
答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.
第二部分
专题9 数式应用专题1 专题考查情况
典型例题
课堂练习
-10-
本题考查一次函数的应用、二元一次方程组的应用、一 元一次不等式的应用,解答本题的关键是明确题意,利用一次函数 的性质和不等式的性质解答.
第二部分
专题9 数式应用专题1 专题考查情况
典型例题
课堂练习
-16-
解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元, 根据题意,可得800 − 800 =24,
������ 2.5������
解得x=20, 经检验,x=20是原方程的根, 则2.5x=50. 答:乙图书每本价格为20元,则甲图书每本价格是50元. (2)设购买甲图书本数为x,则购买乙图书的本数为2x+8, 故50x+20(2x+8)≤1060, 解得x≤10, 故2x+8≤28, 答:该图书馆最多可以购买28本乙图书.
中考数学函数应用题复习PPT课件
解:建立如图坐标系 则C(3000,1200) 1200 y C
x3002 02py120为 0 弹道运行程 的抛物线方
又 A 0 ,0在抛 ,所 物 p 以 3 线 75 上 0
从而弹道方程为
x30002 7500y1200
A 500 3000
B
6000 x
当 x50 时 ,0y367 350
故炮弹能越过障碍物。
当200≤t1<t2≤400时,4·104<t1t2<42•104, ∴t1t2-4•104>0,又t1-t2<0,∴f(t1)<f(t2), 则f(t)在[200,400]上是增函数。
∴当t=200,即 x10 2 ymi n 201 002 当t=100或t=400即x=10或20时,yna x 300103
(通常用解方程(组)、解不等式(组)、利用函数的单调性等 )
作业20:21/4/〈8 教与学〉P34. 7,8
11
欢迎指导!
2021/4/8
12
; https:/// 场外配资 ; 2019.1 ;
言抱有敌意.能见到奎象收拾鞠言,大家当然都很开心.反正只要不弄出人命,那就没哪个大问题.更何况,奎象背后也站着白家.“你呐是自取其辱!”鞠言声音淡漠.“好小子,你口气倒是够大の.今天俺
(,)看琛夜福利电影,请关注微信公众号:k电影天堂
看清爽の小说就到【,贰叁wx,i】第贰贰柒贰章召唤了壹个怪物?奎象龇牙咧嘴,拼命想要从地上爬起来.挣扎了壹会,他红着脸口中直喘粗气.在稍微冷静下来后,他就明白了,他の实历与鞠言全部不是壹个层次.但他更纳闷の是,为何也是善韵境界の鞠言实历如此强大.他曾与善尊境界の
2即021/42/8005年底该乡能=达82到01.小25+康28水.9平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年中考数学应用题汇编1.(B ) 通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.2.(B) 某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表: 月份1月 5月 销售量 3.9万台 4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数).(参考数据:34 5.831≈,35 5.916≈,37 6.083≈,38 6.164≈)3(B ) 凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。
(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式。
(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。
4. 水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x (元/千克)400 250 240 200 150 125 120 销售量y (千克) 30 40 48 60 80 96 100观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.(1) 写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?5.(B)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比例2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.6.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.7..某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.⑴求工程队A原来平均每天维修课桌的张数;⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.8.在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?9.李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.10. 为了整治环境卫生,某地区需要一种消毒药水3250瓶,药业公司接到通知后马上采购两种专用包装箱,将药水包装后送往该地区.已知一个大包装箱价格为5元,可装药水10瓶;一个小包装箱价格为3元,可以装药水5瓶.该公司采购的大小包装箱共用了1700元,刚好能装完所需药水.(1)求该药业公司采购的大小包装箱各是多少个?(2)药业公司准备派A 、B 两种型号的车共10辆运送该批药水,已知A 型车每辆最多可同时装运30大箱和10小箱药水;B 型车每辆最多可同时装运20大箱和40小箱消毒药水,要求每辆车都必须同时装运大小包装箱的药水,求出一次性运完这批药水的所有车型安排方案.(3)如果A 型车比B 型车省油,采用哪个方案最好?11.(B ) 某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.12. 迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?13. 某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系0.3y x =甲;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系2y ax bx =+乙(其中0a a b ≠,,为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元. (1)求y 乙(万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?14. 为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?15. 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?16. 响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?17. 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本) 18. 自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:职工甲 乙 月销售件数(件)200 180 月工资(元) 1800 1700(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?19. 某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.20. 某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y 件.(1)写出y 与x 的函数关系式(标明x 的取值范围);(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售例如达到8000元,销售单价应定为多少?21. 由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的23,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.(1)求4月初猪肉价格下调后每斤多少元?(2)求5、6月份猪肉价格的月平均增长率.22. .某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x 块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?23. 某学校计划租用6辆客车送一批师生参加一年一度的哈尔滨冰雕节,感受冰雕艺术的魅力.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x 辆,租车总费用为y 元.甲种客车 乙种客车 载客量(人/辆)45 30 租金(元/辆) 280 200(1)求出y (元)与x (辆)之间的函数关系式,指出自变量的取值范围;(2)若该校共有240名师生前往参加,领队老师从学校预支租车费用1650元,试问预支的租车费用是否可以结余?若有结余,最多可结余多少元?24. 为了加快社会主义新农村建设,让农民享受改革开放30年取得的成果,党中央、国务院决定:凡农民购买家电和摩托车享受政府13%的补贴(凭购物发票到 乡镇财政所按13%领取补贴). 星星村李伯伯家今年购买了一台彩电和一辆摩托车共花 去6000元,且该辆摩托车的单价比所买彩电的单价的2倍还多600元.(1)李伯伯可以到乡财政所领到的补贴是多少元?(2)求李伯伯家所买的摩托车与彩电的单价各是多少元?25. 常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?26. (1)平安客运公司60座和45座的客车每辆每天的租金分某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话: 李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?27. 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?4 2 1 40 60 80 x (元) (万件) y O28. 预警方案确定:设0000W=月的5克肉价格月的5克玉米价格 当猪当.如果当月W<6,则下个月...要采取措施防止“猪贱伤农”.【数据收集】今年2月~5月玉米、猪肉价格统计表月份 2 3 4 5玉米价格(元/500克) 0.7 0.8 0.9 1猪肉价格(元/500克) 7.5 m 6.25 6【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.29.(B)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该县的A类学校不超过5所,则B类学校至少有多少所?(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?30.新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线252051230y x x=-+-的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?31.某超市经销A、B两种商品,A种商品每件进价20元,售价30元;B种商品每件进价35元,售价48元.(1)该超市准备用800元去购进A、B两种商品若干件,怎样购进才能使超市经销这两种商品所获利润最大(其中B种商品不少于7件)?(2)在“五·一”期间,该商场对A、B两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打八折超过400元售价打七折促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?32.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为lO万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?33.某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)2200 2600售价(元/台)2800 3000 (1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.34. 跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.35. 由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?36. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元?37. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。