2018全国中考数学分类汇编--3方程与不等式应用题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018全国中考数学分类汇编--3方程与不等式应用题
2018全国中考分类汇编――方程与不等式应用题
一.选择题
6. (2018·安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()
A. B.
C. D.
【答案】B
【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.
【详解】由题意得:2017年我省有效发明专利数为
(1+22.1%)a万件,
2018年我省有效发明专利数为
(1+22.1%)•(1+22.1%)a万件,即
b=(1+22.1%)2a万件,
故选B.
【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.
8.(2018·广东广州)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银
求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万
千克?设原来平均每亩产量为x 万千克,根据
题意,列方程为( A )
A .3036101.5x x -=
B .3030101.5x x -=
C .3630101.5x x
-= D .3036101.5x x
+= 10.(2018·湖南邵阳)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算
盘用法.书中有如下问题: 意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人.下列求解结果正确的是( A ) A .大和尚25人,小和尚75人 B .大和尚75人,小和尚25人 C .大和尚50人,小和尚50人 D .大、小和尚各100人
6. (2018·山东泰安)夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为( )
一百馒头一百僧,大僧三个更无争,
小僧三人分一个,大小和尚得几丁.
A. B.
C. D.
【答案】C
【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.
详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.
故选C.
点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.10.(2018·山东淄博)(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()
A.B.
C.D.
【考点】B6:由实际问题抽象出分式方程.
【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.
【解答】解:设实际工作时每天绿化的面积为x万平方
米,则原来每天绿化的面积为万平方米,
依题意得:﹣=30,即.故选:C.
【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2018·四川眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是
A.8% B.9% C.10% D.11%
答案:C
8.(2018·四川绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()
A.9人
B.10人
C.11人
D.12人
【答案】C
【考点】一元二次方程的应用
【解析】【解答】解:设参加酒会的人数为x人,依题可得:x(x-1)=55,
化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故
答案为:C.
【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.
6.(2018·四川宜宾)(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()
A.2% B.4.4% C.20% D.44%
【考点】AD:一元二次方程的应用.
【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.
【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.