北京中考数学试题及答案中考.doc
2022年往年真题练习:北京中考数学试卷(WORD版含答案)
2022年中考往年真题练习: 北京高级中学中等学校招生考试数学试卷学校姓名准考证号考 生 须 知1. 本试卷共6页, 共五道大题, 25道小题, 满分120分。
考试时间120分钟。
2. 在试着和答题卡上认真填写学校名称、 姓名和准考证号。
3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。
4. 在答题卡上, 挑选题、 作图题用2B 铅笔作答, 其他试题用黑色字迹签字笔作答。
5. 考试结束, 请将本试卷、 答题卡和草稿纸一并交回。
一、 挑选题(本题共32分, 每小题4分)下面各题均有四个选项, 其中只有一个是 符合题意的 。
1. 7的 相反数是 A.17B. 7C. 17-D. 7-2. 改革开放以来, 我国国内制作总值由1978年的 3645亿元增长到2022年中考往年真题练习: 的 300670亿元。
将300670用科学记数法表示应为A. 60.3006710⨯ B. 53.006710⨯ C. 43.006710⨯ D. 430.06710⨯3. 若右图是 某几何体的 三视图, 则这个几何体是 A. 圆柱 B. 正方体 C. 球 D. 圆锥主视图 左视图 俯视图 4. 若一个正多边形的 一个外角是 40°, 则这个正多边形的 边数是 。
A. 10 B. 9 C. 8 D. 65. 某班共有41名同学, 其中有2名同学习惯用左手写字, 其余同学都习惯用右手写字, 老师随机请1名同学解答问题, 习惯用左手写字的 同学被选中的 概率是 A. 0B.141C.241D. 16. 某班派9名同学参加拔河比赛, 他们的 体重分别为(单位: 千克) :67,59,61,59,63,57,70,59,65这组数据的 众数和中位数分别为A 59,63B 59,61C 59,59D 57,617. 把3222x x y xy -+分解因式, 结果正确的 是 A. ()()x x y x y +- B. ()222x x xy y-+C. ()2x x y +D. ()2x x y -8. 如图, C 为⊙O 直径AB 上一动点, 过点C 的 直线交⊙O 于D 、 E 两点, 且∠ACD=45°, DF ⊥AB 于点F, EG ⊥AB 于点G, 当点C在AB 上运动时, 设AF=x , DE=y , 下列中图象中, 能表示y 与x 的 函数关系式的 图象大致是二、 填空题(本题共16分, 每小题4分) 9. 不等式325x +≥的 解集是 .10. 如图, AB 为⊙O 的 直径, 弦CD ⊥AB, E 为BC 上一点, 若∠CEA=28, 则∠ABD=°.11. 若把代数式223x x --化为()2x m k -+的 形式, 其中,m k 为常数, 则m k += .12. 如图, 正方形纸片ABCD 的 边长为1, M 、 N 分别为AD 、 BC 边上的 点, 将纸片的 一角沿过点B 的 直线折叠, 使A 落在MN 上, 落点记为A ′, 折痕交AD 于点E, 若M 、 N 分别为AD 、 BC 边的 中点, 则A ′N= ; 若M 、 N 分别为AD 、 BC 边的 上距DC 最近的 n 等分点(2n ≥, 且n 为整数) , 则A ′N= (用含有n 的 式子表示) 三、 解答题(本题共30分, 每小题5分)13. 计算: 101200925206-⎛⎫-+-- ⎪⎝⎭14. 解分式方程: 6122x x x +=-+15. 已知: 如图, 在△ABC 中, ∠ACB=90, CD AB ⊥于点D, 点E 在 AC 上, CE=BC, 过E 点作AC 的 垂线, 交CD 的 延长线于点F . 求证: AB=FC16. 已知2514x x -=, 求()()()212111x x x ---++的 值17. 如图, A 、 B 两点在函数()0my x x=>的 图象上. (1) 求m 的 值及直线AB 的 解析式;(2) 加入一个点的 横、 纵坐标均为整数, 那么我们称这个点是格点. 请直接写出图中阴影部分(不包括边界) 所含格点的 个数。
2020年部编人教版北京市中考数学试题及答案(Word版)
2020年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2020-2020)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。
若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ 12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。
2023年北京市中考数学真题(含答案解析)
2023年北京市中考数学真题学校:___________姓名:___________班级:___________考号:___________.....如图,90AOC ∠=∠=︒,126AOD ∠=,则BOC ∠的大小为(A .36︒B .44︒54︒4.已知10a ->,则下列结论正确的是(A .11a a -<-<<11a a -<-<<C .11a a -<-<<11a a-<-<<5.若关于x 的一元二次方程23x x m -+=有两个相等的实数根,A .9-B .94-946.十二边形的外角和...为()A .30︒B .150︒360︒7.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是()A .14B .138.如图,点A 、B 、C 在同一条线上,点上述结论中,所有正确结论的序号是(A .①②B .①③二、填空题9.若代数式52x -有意义,则实数10.分解因式:23x y y -=11.方程31512x x=+的解为12.在平面直角坐标系xOy 中,若函数则m 的值为.13.某厂生产了1000只灯泡.为了解这灯泡进行检测,获得了它们的使用寿命(单位:小时)使用寿命1000x <1000x ≤<灯泡只数510根据以上数据,估计这1000只灯泡中使用寿命不小于只.14.如图,直线AD ,BC 交于点O 的值为.15.如图,OA 是O 的半径,BC 是 交OC 的延长线于点E .若45AOC ∠=︒16.学校组织学生参加木艺艺术品加工劳动实践活动.A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E 所需时间/分钟99797在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要三、解答题17.计算:114sin602123-⎛⎫︒++-- ⎪⎝⎭18.解不等式组:23535x x x x+⎧>⎪⎨⎪-<+⎩.19.已知210x y +-=,求代数式x(1)求证:四边形AECF 是矩形;(2)AE BE =,2AB =,1tan 2ACB ∠=21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是的宽相等,均为天头长与地头长的和的宽为27cm .若要求装裱后的长是装裱后的宽的自《启功法书》)22.在平面直角坐标系xOy 中,函数y kx =+与过点()0,4且平行于x 轴的线交于点C .(1)求该函数的解析式及点C 的坐标;(2)当3x <时,对于x 的每一个值,函数23y =小于4,直接写出n 的值.23.某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:如下:a .16名学生的身高:(1)求证DB 平分ADC ∠,并求BAD ∠(2)过点C 作CF AD ∥交AB 的延长线于点25.某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为度为0.990方案一:采用一次清洗的方式.结果:当用水量为19个单位质量时,清洗后测得的清洁度为结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约______个单位质量(结果保留小数点后一位)(2)当采用两次清洗的方式时,若第一次用水量为围.参考答案:【详解】如图,所有结果有4种,满足要求的结果有1种,故概率为【点睛】本题考查概率的计算,运用树状图或列表工具是解题的关键.【分析】如图,过D 作DF AE ⊥于F ,则四边形,可得a b c +<,进而可判断①的正误;由a =,AE BC b ==,ABE CDB ∠=∠,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE =∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,EBD ∠=∴BDE △是等腰直角三角形,由勾股定理得,22BE AB AE =+∵AB AE BE +>,【点睛】本题考查了一次函数的图象和性质,特征,利用数形结合的思想是解题的关键.23.(1)166m =,165n =;(2)甲组(3)170,172【分析】(1)根据中位数和众数的定义求解即可;(2)计算每一组的方差,根据方差越小数据越稳定进行判断即可;(3)根据要求,身高的平均数尽可能大且方差小于【详解】(1)解:将这组数据按照从小到大的顺序排列为:165,166,166,167,168,168,170出现次数最多的数是165,出现了3次,即众数由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小;(1)当采用两次清洗的方式并使总用水量最小时,用水量为19-7.7=11.3,即可节水约11.3个单位质量;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过的清洁度能达到0.990,第一次用水量为6个单位质量,总用水量为7.5故答案为:<.【点睛】本题考查了函数图象,根据数据描绘函数图象、26.(1)32t =(2)12t ≤【分析】(1)根据二次函数的性质求得对称轴即可求解;(2)根据题意可得()11,x y 离对称轴更近,1x 右侧,根据对称性求得1213222x x +<<,进而根据【详解】(1)解:∵对于11x =,22x =有1y =∴抛物线的对称轴为直线12322x x x +==,∵抛物线的对称轴为x t =.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,题的关键.28.(1)1C ,2C ;2OC =(2)2313t ≤≤或2633t ≤≤.a、若12C B与O相切,AC经过点O,①当S 位于点()0,3M 时,MP 为O 的切线,作PJ OM ⊥∵()0,3M ,O 的半径为1,且MP 为O 的切线,∴OP MP ⊥,。
北京市中考数学试卷及答案(完整版)
北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
北京市2020年部编人教版中考数学试题及答案(word精析版)
北京市2020年中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2020•北京)2的相反数是()A.2B.﹣2 C.﹣D.考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:B.点评:此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2020•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300 000=3×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2020•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.解答:解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2020•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥考点:由三视图判断几何体.分析:如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.解答:解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.点评:本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)(2020•北京)某篮球队12名队员的年龄如表:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5考点:众数;加权平均数.分析:根据众数及平均数的概念求解.解答:解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选A.点评:本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)(2020•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米考点:函数的图象.分析:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.解答:解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.点评:此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)(2020•北京)如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于圆O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵圆O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)(2020•北京)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.考点:动点问题的函数图象.分析:根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.解答:解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选A.点评:本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)(2020•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).考点:提公因式法与公式法的综合运用.分析:首先提取公因式a,进而利用平方差公式进行分解即可.解答:解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).点评:此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)(2020•北京)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.考点:相似三角形的应用.分析:根据同时同地物高与影长成正比列式计算即可得解.解答:解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.点评:本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)(2020•北京)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y= (k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).考点:反比例函数图象上点的坐标特征.专题:开放型.分析:先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.解答:解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y= (k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)(2020•北京)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2020的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.考点:规律型:点的坐标.分析:根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2020除以4,根据商和余数的情况确定点A2020的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.解答:解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2020÷4=503余2,∴点A2020的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.点评:本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)(2020•北京)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.考点:全等三角形的判定与性质.专题:证明题.分析:由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.解答:证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.点评:本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)(2020•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1﹣5﹣+=﹣4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)(2020•北京)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母、去括号,移项、合并同类项,系数化成1即可求解.解答:解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)(2020•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.考点:整式的混合运算—化简求值.分析:先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.解答:解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.点评:此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)(2020•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.考点:根的判别式.专题:计算题.分析:(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.解答:(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)(2020•北京)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.考点:分式方程的应用.分析:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.解答:解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,由题意得=解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.点评:此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)(2020•北京)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)(2020•北京)根据某研究院公布的2020~2020年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2020~2020年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2020 3.882020 4.122020 4.352020 4.562020 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2020到2020年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2020年成年国民年人均阅读图书的数量约为5本;(3)2020年某小区倾向图书阅读的成年国民有990人,若该小区2020年与2020年成年国民的人数基本持平,估算2020年该小区成年国民阅读图书的总数量约为7500本.考点:扇形统计图;用样本估计总体;统计表.分析:(1)1直接减去个部分的百分数即可;(2)设从2020到2020年平均增长幅度为x,列方程求出x的值即可;(3)根据(2)的结果直接计算.解答:解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)设从2020到2020年平均增长幅度为x,列方程得,3.88×(1+x)4=4.78,1+x≈1.05,x≈0.05,4.78×(1+0.05)≈5.(3)990÷0.66×5=7500,故2020年该小区成年国民阅读图书的总数量约为7500本.故答案为5,7500.点评:本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)(2020•北京)如图,AB是eO的直径,C是»AB的中点,eO的切线BD交AC 的延长线于点D,E 是OB的中点,CE的延长线交切线BD于点F,AF交eO于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.考点:切线的性质;全等三角形的判定与性质;勾股定理.分析:(1)连接OC,由C是的中点,AB是⊙O的直径,则OC⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.解答:(1)证明:连接OC,∵C是AB的中点,AB是⊙O的直径,∴O⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∴OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.点评:本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)(2020•北京)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.考点:相似三角形的判定与性质;勾股定理;解直角三角形.分析:根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AD=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.解答:解:∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.点评:本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2020•北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值.专题:计算题.分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.解答:解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)(2020•北京)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.考点:四边形综合题.分析:(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.解答:解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.点评:此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)(2020•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M<y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?考点:二次函数综合题.分析:(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.解答:解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t≥1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)当x=0时,y最小=0,即过点(0,0),都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.点评:本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
2022北京中考数学答案
2022北京中考数学题参考答案第一部分选择题一、选择题(本题共16分,每小题2分)题号12345678答案B B A D A C D A第二部分非选择题二、填空题(本题共16分,每小题2分)9.x≥810.x(y+1)(y-1)11.x=512.>13.12014.115.116.(1)不唯一,例如ABC(2)ACE三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题满分5分)解:原式=418.(本题满分5分)解:1<x<419.(本题满分5分)解:原式=520.(本题满分5分)21.(本题满分6分)(1)平行四边形判定,例如对角线互相平分的四边形是平行四边形(2)角平分线+平行西→出等腰,先证明DA=DC ,再证平行四边形ABCD 是菱形,然后利用菱形对角线互相垂直证明平行四边形EBFD 是菱形22.(本题满分5分)(1)A(0,1),y=0.5x+1(2)n ≥123.(本题满分6分)(1)m=8.6(2)甲(3)丙24.(本题满分6分)(1)利用同弧所对圆周角等于它所对圆心角的一半证明(2)可以通过证明△ACD 是等边三角形,再证明切线。
25.(本题满分5分)(1)竖直高度最大值为23.2,y=-0.05()2.238-x 2+(2)<26.(本题满分6分)27.(本题满分7分)(1)8字全等,再证平行(2)延续第一问思路,构造8字全等,利用等量代换和勾股逆定理证明△AEF是直角三角形,再反推BH⊥AE,△DEH是直角三角形,利用直角三角形斜边中线等于斜边一半得出结论。
28.(本题满分7分)(1)Q(5,3)(2)利用中位线定理或全等三角形证明(3)4t-2。
2024年北京市中考真题数学试卷含答案解析
2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
2023年北京市中考数学试题和答案解析
2023年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.A.23.9×107B.2.39×108C.2.39×109D.0.239×1091.(2分)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )解:239000000=2.39×108,故选:B.【解答】A.B.C.D.2.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.【解答】A.36°B.44°C.54°D.63°3.(2分)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD-∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD-∠COD=90°-36°=54°.故选:C.【解答】A.-1<-a<a<1B.-a<-1<1<a C.-a<-1<a<1D.-1<-a<1<a 4.(2分)已知a-1>0,则下列结论正确的是( )解:∵a-1>0,∴a>1,∴-a<-1,∴-a<-1<1<a,故选:B.【解答】A.-9B.−94C.94D.9 5.(2分)若关于x的一元二次方程x2-3x+m=0有两个相等的实数根,则实数m的值为( )解:∵关于x 的一元二次方程x 2-3x +m =0有两个相等的实数根,∴Δ=b 2-4ac =(-3)2-4m =0,解得m =94.故选:C .【解答】A .30°B .150°C .360°D .1800°6.(2分)正十二边形的外角和为( )解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C .【解答】A .14B .13C .12D .347.(2分)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是14,故选:A .【解答】A .①②B .①③C .②③D .①②③8.(2分)如图,点A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB <BC ,∠A =∠C =90°,△EAB ≌△BCD ,连接DE .设AB =a ,BC =b ,DE =c ,给出下面三个结论:①a +b <c ;②a +b >a 2+b 2;③2(a +b )>c .上述结论中,所有正确结论的序号是( )√√解:①过点D 作DF ∥AC ,交AE 于点F ;过点B 作BG ⊥FD ,交FD 于点G .∵DF ∥AC ,AC ⊥AE ,∴DF ⊥AE .又∵BG ⊥FD ,∴BG ∥AE ,∴四边形ABGF 为矩形.同理可得,四边形BCDG 也为矩形.∴FD =FG +GD =a +b .∴在Rt △EFD 中,斜边c >直角边a +b .故①正确.②∵△EAB ≌△BCD ,∴AE =BC =b ,∴在Rt △EAB 中,BE =AB 2+AE 2=a 2+b 2.∵AB +AE >BE ,∴a +b >a 2+b 2.故②正确.③∵△EAB ≌△BCD ,∴∠AEB =∠CBD ,又∵∠AEB +∠ABE =90°,∴∠CBD +∠ABE =90°,∴∠EBD =90°.∵BE =BD ,∴∠BED =∠BDE =45°,∴BE =a 2+b 2=c •sin 45°=22c .∴c =2a 2+b 2.∵[2(a +b )]2=2(a 2+2ab +b 2)=2(a 2+b 2)+4ab >2(a 2+b 2),【解答】√√√√√√√√二、填空题(共16分,每题2分)∴2(a +b )>2(a 2+b 2),∴2(a +b )>c .故③正确.故选:D .√√√9.(2分)若代数式5x −2有意义,则实数x 的取值范围是 .解:由题意得:x -2≠0,解得:x ≠2,故答案为:x ≠2.【解答】10.(2分)分解因式:x 2y -y 3= .解:x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).故答案为:y (x +y )(x -y ).【解答】11.(2分)方程35x +1=12x的解为 .解:方程两边同时乘以2x (5x +1)得,3×2x =5x +1,∴x =1.检验:把x =1代入2x (5x +1)=12≠0,且方程左边=右边.∴原分式方程的解为x =1.【解答】12.(2分)在平面直角坐标系xOy 中,若函数y =kx(k ≠0)的图象经过点A (-3,2)和B (m ,-2),则m 的值为.解:∵函数y =k x(k ≠0)的图象经过点A (-3,2),∴k =-3×2=-6,∴反比例函数的关系式为y =-6x ,又∵B (m ,-2)在反比例函数的关系式为y =-6x的图象上,∴m =−6−2=3,故答案为:3.【解答】13.(2分)某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命x <10001000≤x <16001600≤x <22002200≤x <2800x ≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只).故答案为:460.【解答】三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)14.(2分)如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD ,若AO =2,OF =1,FD =2,则BE EC的值为 .解:∵AO =2,OF =1,∴AF =AO +OF =2+1=3,∵AB ∥EF ∥CD ,∴BE EC=AF FD=32,故答案为:32.【解答】15.(2分)如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为.解:∵OA 是⊙O 的半径,AE 是⊙O 的切线,∴∠A =90°,∵∠AOC =45°,OA ⊥BC ,∴△CDO 和△EAO 是等腰直角三角形,∴OD =CD ,OA =AE ,∵OA ⊥BC ,∴CD =12BC =1,∴OD =CD =1,∴OC =2OD =2,∴AE =OA =OC =2,故答案为:2.【解答】√√√√16.(2分)学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B 、C ,D 、E ,F 、G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序;③各道工序所需时间如下表所示:工序A B C D E F G 所需时间/分钟99797102在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要分钟.解:由题意得:9+9+7+9+7+10+2=53(分钟),即由一名学生单独完成此木艺艺术品的加工,需要53分钟;假设这两名学生为甲、乙,∵工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,且工序A ,B 都需要9分钟完成,∴甲学生做工序A ,乙学生同时做工序B ,需要9分钟,然后甲学生做工序D ,乙学生同时做工序C ,乙学生工序C 完成后接着做工序G ,需要9分钟,最后甲学生做工序E ,乙学生同时做工序F ,需要10分钟,∴若由两名学生合作完成此木艺艺术品的加工,最少需要9+9+10=28(分钟),故答案为:53,28.【解答】17.(5分)计算:4sin 60°+(13)-1+|-2|-12.√解:原式=4×32+3+2-23=23+3+2-23=5.【解答】√√√√18.(5分)解不等式组:V Y W Y X x >x +235x −3<5+x.解:VY W Y X x >x +23①5x −3<5+x ②,解不等式①得:x >1,解不等式②得:x <2,∴原不等式组的解集为:1<x <2.【解答】19.(5分)已知x +2y -1=0,求代数式2x +4yx 2+4xy +4y2的值.解:∵x +2y -1=0,∴x +2y =1,∴2x +4yx 2+4xy +4y 2=2(x +2y )(x +2y )2=2x +2y =21=2,∴2x +4yx 2+4xy +4y2的值为2.【解答】20.(6分)如图,在⏥ABCD 中,点E ,F 分别在BC ,AD 上,BE =DF ,AC =EF .(1)求证:四边形AECF 是矩形;(2)若AE =BE ,AB =2,tan ∠ACB =12,求BC 的长.(1)证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∵BE =DF ,∴AD -DF =BC -BE ,即AF =EC ,∴四边形AECF 是平行四边形,∵AC =EF ,∴平行四边形AECF 是矩形;(2)解:∵四边形AECF 是矩形,∴∠AEC =∠AEB =90°,∵AE =BE ,AB =2,∴△ABE 是等腰直角三角形,∴AE =BE =22AB =2,∵tan ∠ACB =AE EC=12,∴EC =2AE =22,∴BC =BE +EC =2+22=32,即BC 的长为32.【解答】√√√√√√√21.(6分)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的110.某人要装裱一副对联,对联的长为100cm ,宽为27cm .若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【解答】解:设天头长为6x cm,地头长为4x cm,则左、右边的宽为x cm,根据题意得,100+(6x+4x)=4×[27+(6x-4x)],解得x=4,答:边的宽为4cm,天头长为24cm.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(0,1)和B(1,2),与过点(0,4)且平行于x 轴的直线交于点C.(1)求该函数的解析式及点C的坐标;x+n的值大于函数y=kx+b(k≠0)的值且小于4,直接写出n的值.(2)当x<3时,对于x的每一个值,函数y=23解:(1)把点A(0,1),B(1,2)代入y=kx+b(k≠0)得:b=1,k+b=2,【解答】解得:k=1,b=1,∴该函数的解析式为y=x+1,由题意知点C的纵坐标为4,当y=x+1=4时,解得:x=3,∴C(3,4);(2)由(1)知:当x=3时,y=x+1=4,因为当x<3时,函数y=2x+n的值大于函数y=x+1的值且小于4,3所以当y=2x+n过点(3,4)时满足题意,3代入(3,4)得:4=2×3+n,3解得:n=2.23.(5分)某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下:a.16名学生的身高:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175;b.16名学生的身高的平均数、中位数、众数:平均数中位数众数166.75m n(1)写出表中m,n的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好,据此推断:在下列两组学生中,舞台呈现效果更好的是(填“甲组”或“乙组”);甲组学生的身高162165165166166乙组学生的身高161162164165175.在选另(3)该舞蹈队要选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为329外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于32,其次要求所选的两名学生9与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为和.解:(1)数据按由小到大的顺序排序:161,162,162,164,165,165,165,166,166,167,168,168,170,172,172,175,则舞蹈队16名学生身高的中位数为m =166+1662=166(cm ),众数为n =165(cm ),故答案为:166,165;(2)甲组学生身高的平均值是:162+165+165+166+1665=164.8(cm ),甲组学生身高的方差是:15×[(164.8-162)2+(164.8-165)2+(164.8-165)2+(164.8-166)2+(164.8-166)2]=2.16,乙组学生身高的平均值是:161+162+164+165+1755=165.4(cm ),乙组学生身高的方差是:15×[(165.4-161)2+(165.4-162)2+(165.4-164)2+(165.4-165)2+(165.4-175)2]=25.04,∵25.04>2.6,∴甲组舞台呈现效果更好.故答案为:甲组;(3)∵168,168,172的平均数为13(168+168+172)=16913(cm ),且所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,∴数据的差别较小,可供选择的有170cm ,172cm ,平均数为:15(168+168+170+172+172)=170(cm ),方差为:15[(168-170)2+(168-170)2+(170-170)2+(172-170)2+(172-170)2]=3.2<329,∴选出的另外两名学生的身高分别为170cm 和172cm .故答案为:170cm ,172cm .【解答】24.(6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分∠ABC ,∠B AC =∠ADB .(1)求证DB 平分∠ADC ,并求∠BAD 的大小;(2)过点C 作CF ∥AD 交AB 的延长线于点F ,若AC =AD ,BF =2,求此圆半径的长.(1)证明:∵∠BAC =∠ADB ,∠BAC =∠CDB ,∴∠ADB =∠CDB ,∴BD 平分∠ADC ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵四边形ABCD 是圆内接四边形,∴∠ABC +∠ADC =180°,∴∠ABD +∠CBD +∠ADB +∠CDB =180°,∴2(∠ABD +∠ADB )=180°,∴∠ABD +∠ADB =90°,∴∠BAD =180°-90°=90°;(2)解:∵∠BAE +∠DAE =90°,∠BAE =∠ADE ,∴∠ADE +∠DAE =90°,∴∠AED =90°,∵∠BAD =90°,∴BD 是圆的直径,∴BD 垂直平分AC ,∴AD =CD ,∵AC =AD ,∴△ACD 是等边三角形,∴∠ADC =60°∵BD ⊥AC ,∴∠BDC =12∠ADC =30°,∵CF ∥AD ,【解答】∴∠F+∠BAD=180°,∴∠F=90°,∵四边形ABCD是圆内接四边形,∴∠ADC+∠ABC=180°,∵∠FBC+∠ABC=180°,∴∠FBC=∠ADC=60°,∴BC=2BF=4,∵∠BCD=90°,∠BDC=30°,∴BC=12BD,∵BD是圆的直径,∴圆的半径长是4.25.(5分)某小组研究了清洗某种含污物品的节约用水策略,部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990.方案一:采用一次清洗的方式:结果:当用水量为19个单位质量时,清洗后测得的清洁度为0.990.方案二:采用两次清洗的方式:记第一次用水量为x1个单位质量,第二次用水量为x2个单位质量,总用水量为(x1+x 2)个单位质量,两次清洗后测得的清洁度为C.记录的部分实验数据如下:x111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x1+x211.810.010.38.98.17.77.87.08.09.112.5C 0.990.9890.990.990.990.990.990.9880.990.990.990对以上实验数据进行分析,补充完成以下内容.(Ⅰ)选出C是0.990的所有数据组,并划“√”;(Ⅱ)通过分析(Ⅰ)中选出的数据,发现可以用函数刻画第一次用水量x1和总用水量x1+x2之间的关系,在平面直角坐标系xOy中画出此函数的图象;结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为个单位质量(精确到个位)时,总用水量最小.根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比、可节水约个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C 0.990(填“>”“=”或”<”).解:(Ⅰ)表格如下:x 111.09.09.07.0 5.5 4.5 3.5 3.0 3.0 2.0 1.0x 20.8 1.0 1.3 1.9 2.6 3.2 4.3 4.0 5.07.111.5x 1+x 211.810.010.38.98.17.77.87.08.09.112.5C 0.990√0.9890.990√0.990√0.990√0.990√0.990√0.9880.990√0.990√0.990√(Ⅱ)函数图象如下:由图象可得,当第一次用水量约为4个单位质量(精确到个位)时,总用水量最小.故答案为:4;(1)当采用两次清洗的方式并使总用水量最小时,用水量为7.7个单位质量,19-7.7=11.3,即可节水约11.3个单位质量.故答案为:11.3;(2)由图可得,当第一次用水量为6个单位质量,总用水量超过8个单位质量,则清洗后的清洁度能达到C <0.990,第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度,故答案为:<.【解答】26.(6分)在平面直角坐标系xOy 中,M (x 1,y 1),N (x 2,y 2)是抛物线y =ax 2+bx +c (a >0)上任意两点,设抛物线的对称轴为x =t .(1)若对于x 1=1,x 2=2,有y 1=y 2,求t 的值;(2)若对于0<x 1<1,1<x 2<2,都有y 1<y 2,求t 的取值范围.解:(1)∵对于x 1=1,x 2=2,有y 1=y 2,∴a +b +c =4a +2b +c ,∴3a +b =0,∴ba =-3.∵对称轴为x =-b 2a=32,∴t =32.(2)∵0<x 1<1,1<x 2<2,∴12<x 1+x 22<32,x 1<x 2,∵y 1<y 2,a >0,∴(x 1,y 1)离对称轴更近,x 1<x 2,则(x 1,y 1)与(x 2,y 2)的中点在对称轴的右侧,【解答】∴x 1+x 22>t ,即t ≤12.27.(7分)在△ABC 中,∠B =∠C =α(0°<α<45°),AM ⊥BC 于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段D M 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF =DC ,连接AE ,EF ,直接写出∠AEF 的大小,并证明.(1)证明:由旋转的性质得:DM =DE ,∠MDE =2α,∵∠C =α,∴∠DEC =∠MDE -∠C =α,∴∠C =∠DEC ,∴DE =DC ,∴DM =DC ,即D 是MC 的中点;(2)∠AEF =90°,证明:如图,延长FE 到H 使FE =EH ,连接CH ,AH ,∵DF =DC ,∴DE 是△FCH 的中位线,∴DE ∥CH ,CH =2DE ,由旋转的性质得:DM =DE ,∠MDE =2α,∴∠FCH =2α,∵∠B =∠C =α,∴∠ACH =α,△ABC 是等腰三角形,∴∠B =∠ACH ,AB =AC设DM =DE =m ,CD =n ,则CH =2m ,CM =m +n ,.DF =CD =n ,∴FM =DF -DM =n -m ,∵AM ⊥BC ,∴BM =CM =m +n ,∴BF =BM -FM =m +n -(n -m )=2m ,∴CH =BF ,在△ABF 和△ACH 中,V Y YW Y Y X AB =AC ∠B =∠ACH BF =CH ,∴△ABF ≌△ACH (SAS ),∴AF =AH ,∵FE =EH ,∴AE ⊥FH ,即∠AEF =90°,【解答】28.(7分)在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”.(1)如图,点A (-1,0),B 1(−22,22),B 2(22,−22).①在点C 1(-1,1),C 2(−2,0),C 3(0,2)中,弦AB 1的“关联点”是 ;②若点C 是弦AB 2的“关联点”,直接写出OC 的长;√√√√√√(2)已知点M (0,3),N (655,0),对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点S 在线段MN 上运动时,直接写出t 的取值范围.√解:(1)①由关联定义可知,若直线CA 、CB 中一条经过点O ,另一条是⊙O 的切线,则称点C 是弦AB 的“关联点”,∵点A (-1,0),B 1(−22,22),点C 1(-1,1),C 2(−2,0),C 3(0,2),∴直线AC 2经过点O ,且B 1C 2与⊙O 相切,∴C 2是弦AB 1的“关联点”,∵C 1(-1,1),A (-1,0)的横坐标相同,与B 1(−22,22)都位于直线y =-x 上,∴AC 1与⊙O 相切,B 1C 1经过点O ,∴C 1是弦AB 1的“关联点”;故答案为:C 1,C 2;②∵A (-1,0),B 2(22,−22),设C (a ,b ),如图所示,共有两种情况,a 、若C 1B 2与⊙O 相切,AC 经过点O ,则C 1B 2,AC 1所在直线为V W X y =x −2y =0,解得V W X x =2y =0,∴C 1(2,0),∴OC 1=2,b 、若AC 2与⊙O 相切,C 2B 2经过点O ,则直线C 2B 2,AC 2所在直线为V W X x =−1y =−x ,解得V W X x =−1y =1,∴C 2(-1,1),∴OC 2=2,综上所述,OC =2;(2)∵线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”,∵弦PQ 随着S 的变动在一定范围内变动,且M (0,3),N (655,0),OM >ON ,∴S 共有2种情况,分别位于点M 和经过点O 的MN 的垂直平分线上,如图所示,①当S 位于点M (0,3)时,MP 为⊙O 的切线,作PJ ⊥OM ,∵M (0,3),⊙O 的半径为1,且MP 是⊙O 的切线,∴OP ⊥MP ,∵PJ ⊥OM ,∴△MPO ∽△POJ ,【解答】√√√√√√√√√√√√√√√∴OP OJ =OMOP,即1OJ=3,解得OJ=13,∴PJ=Q1P 2+Q1J2=223,Q1J=23,∴PQ1=PJ2+Q1J 2=233,同理PQ2=PJ2+Q2J 2=263,∴当S位于M(0,3)时,PQ1的临界值为233和263;②当S位于经过点O的MN的垂线上的点K时,,∵M(0,3),N(655,0),∴MN=OM2+ON2=955,∴OK=OM•ONMN=2,∵⊙O的半径为1,∴∠OKZ=30°,∴△OPQ为等边三角形,∴PQ=1或3,∴当S位于经过点O且垂直于MN的直线上即点K时,PQ1的临界点为1和3,∴在两种情况下,PQ的最小值在1≤t≤233内,最大值在263≤t≤3,综上所述,t的取值范围为1≤t≤233,263≤t≤3.√√√√√√√√√√√√√√√√√√√。
2024年北京市中考数学试题+答案详解
2024年北京市中考数学试题+答案详解(试题部分)考生须知:1.本试卷共6页,共两部分.三道大题,28道小题。
满分100分。
考试时间120分钟。
2.在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上.选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A. 29︒B. 32︒C. 45︒D. 58︒3. 实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. 1b >−B. 2b >C. 0a b +>D. 0ab > 4. 若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( )A. 16−B. 4−C. 4D. 165. 不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( ) A. 34 B. 12 C. 13 D. 146. 为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A. 16810⨯B. 17210⨯C. 17510⨯D. 18210⨯7. 下面是“作一个角使其等于AOB ∠”的尺规作图方法.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A. 三边分别相等的两个三角形全等B. 两边及其夹角分别相等的两个三角形全等C. 两角及其夹边分别相等的两个三角形全等D. 两角分别相等且其中一组等角的对边相等的两个三角形全等8. 如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论: ①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
2022年北京市中考数学试题及答案 全市统考试题
2022年北京中考数学试题及答案全市统考第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A.B.C. D.【参考答案】B2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学计数法表示应为()A.1026.288310⨯ B.112.6288310⨯C.122.6288310⨯ D.120.26288310⨯【参考答案】B3.如图,利用工具测量角,则1∠的大小为()A.30°B.60°C.120°D.150°【参考答案】A4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. 2a -<B.1b <C.a b >D.a b->【参考答案】D5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.34【参考答案】A6.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A.4- B.14-C.14D.4【参考答案】C7.图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.5【参考答案】D8.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【参考答案】A第二部分非选择题二、填空题(共16分,每题2分)9.在实数范围内有意义,则实数x 的取值范围是___________.【参考答案】x ≥8【详解】解:由题意得:x -8≥0,解得:x ≥8.故答案为:x ≥8.10.分解因式:2xy x -=______.【参考答案】()()11x y y +-【详解】2xy x-()21x y =-()()11x y y =+-故答案为:()()11x y y +-.11.方程215x x=+的解为___________.【参考答案】x =5【详解】解:215x x=+方程的两边同乘x (x +5),得:2x =x +5,解得:x =5,经检验:把x =5代入x (x +5)=50≠0.故原方程的解为:x =512.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【参考答案】>【详解】解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25 <,∴1y >2y .故答案为:>.13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.【参考答案】120【详解】解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=双.故答案为:12014.如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【参考答案】1【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【参考答案】1【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ===,∴144AE =,∴1AE =,故答案为:1.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I 号、II 号产品的重量如下:包裹编号I 号产品重量/吨II 号产品重量/吨包裹的重量/吨A 516B 325C 235D 437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II 号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).【参考答案】①.ABC(或ABE 或AD 或ACD 或BCD)②.ABE 或BCD【详解】解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求;选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD.故答案为:ABC(或ABE 或AD 或ACD 或BCD).(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨);选择ABE 时,装运的II 号产品重量为:1258++=(吨);选择AD 时,装运的II 号产品重量为:134+=(吨);选择ACD 时,装运的II 号产品重量为:1337++=(吨);选择BCD 时,装运的II 号产品重量为:2338++=(吨);故答案为:ABE 或BCD.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(1)4sin 45 3.π-+--【参考答案】4【详解】解:0(1)4sin 45 3.π-+--2=1432+⨯-+=4.【点睛】本题考查了实数的混合运算,掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.18.解不等式组:274,4.2x x xx +>-⎧⎪⎨+<⎪⎩【参考答案】14x <<【详解】解:274 4 2x x xx +>-⎧⎪⎨+<⎪⎩①②解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.【参考答案】5【详解】解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC ∆,求证:180.A B C ∠+∠+∠=方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥【参考答案】答案见解析【详解】证明:过点A 作//DE BC ,则B BAD ∠=∠,C EAC ∠=∠.(两直线平行,内错角相等)点D ,A ,E 在同一条直线上,180DAB BAC C ∴∠+∠+∠=︒.(平角的定义)180B BAC C ∴∠+∠+∠=︒.即三角形的内角和为180︒.21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.【参考答案】(1)见解析(2)见解析【小问1详解】证明:∵四边形ABCD 为平行四边形,∴AO CO =,BO DO =,∵AE CF =,∴AO AE CO CF -=-,即EO FO =,∴四边形EBFD 是平行四边形.【小问2详解】∵四边形ABCD 为平行四边形,∴AB CD ,∴DCA BAC ∠=∠,∵,BAC DAC ∠=∠∴DCA DAC ∠=∠,∴DA DC =,∴四边形ABCD 为菱形,∴AC BD ⊥,即EF BD ⊥,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.【参考答案】(1)112y x =+,(0,1)(2)1n ≥【小问1详解】解:将(4,3),(2,0)-代入函数解析式得,3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴函数的解析式为:112y x =+,当0x =时,得1y =,∴点A 的坐标为(0,1).【小问2详解】由题意得,112x n x +>+,即22x n >-,又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b .丙同学得分:10,10,10,9,9,8,3,9,8,10c .甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m 的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【参考答案】(1)8.6(2)甲(3)乙【小问1详解】解:丙的平均数:101010998398108.610+++++++++=,则8.6m =.【小问2详解】2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S ⎡⎤=⨯-+⨯-+⨯-+⨯-=⎣⎦甲,222214(8.67)4(8.610)2(8.69) 1.8410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦乙,22S S < 甲乙,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.【小问3详解】由题意得,去掉一个最高分和一个最低分后的平均分为:甲:889799910=8.6258+++++++,乙:77799101010=9.758+++++++,丙:10109989810=9.1258+++++++,∵去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.【参考答案】(1)答案见解析(2)答案见解析【小问1详解】证明:设AB 交CD 于点H ,连接OC ,由题可知,OC OD ∴=,90OHC OHD ∠=∠=︒,OH OH = ,()Rt COH Rt DOH HL ∴∆≅∆,COH DOH ∴∠=∠,BCBD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠ ,2BOD A ∴∠=∠;【小问2详解】证明:连接AD ,OA OD = ,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠,180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒ ,30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒,223060COB CAO ∴∠=∠=⨯︒=︒,AB Q 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,//OC DE ∴,CE BE ⊥Q ,CE OC ∴⊥,∴直线CE 为O 的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m)与水平距离x (单位:m)近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a =-+<(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).【参考答案】(1)23.20m;()20.05823.20y x =--+(2)<【小问1详解】解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,∴8h =,23.20k =,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得:()220.000823.20a =-+,解得:0.05a =-,∴函数关系关系式为:()20.05823.20y x =--+.【小问2详解】设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:()82023.20x t =+-或()82023.20x t =--,∴根据图象可知,第一次训练时着陆点的水平距离18d =+,第二次训练时,()20.04923.24t x =--+,解得:9x =+9x =∴根据图象可知,第二次训练时着陆点的水平距离29d =,∵()()2023.202523.24t t --<,,∴12d d <.故答案为:<.26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.【参考答案】(1)(0,2);2(2)t 的取值范围为322t <<,0x 的取值范围为023x <<【小问1详解】解:当2c =时,22y ax bx =++,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n =,∴点(1,),(3,)m n 关于对称轴为x t =对称,∴1322t +==;【小问2详解】解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),∵0a >,∴当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时,1t <,∵,m n c <<1<3,∴2t >3,即32t >(不合题意,舍去),当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<,此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,∴13t t -<-,解得:2t <,∵,m n c <<1<3,∴2t >3,即32t >,∴322t <<,∵0(,)x m ,(1,)m ,对称轴为x t =,∴012x t +=,∴013222x +<<,解得:023x <<,∴t 的取值范围为322t <<,0x 的取值范围为023x <<.27.在ABC ∆中,90ACB ∠= ,D 为ABC ∆内一点,连接BD ,DC 延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF 若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【参考答案】(1)见解析(2)CD CH =;证明见解析【小问1详解】证明:在F C E ∆和BCD ∆中,CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FCE BCD ∆∆@,∴CFE CBD Ð=Ð,∴EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.【小问2详解】解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,∴AC 垂直平分BM ,∴AB AM =,在MEC ∆和BDC ∆中,CM CBMCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MEC BDC ∆∆@,∴ME BD =,CME CBD Ð=Ð,∵222AB AE BD =+,∴222AM AE ME =+,∴90AEM ∠=︒,∵CME CBD Ð=Ð,∴BH EM ∥,∴90BHE AEM Ð=Ð=°,即90DHE ∠=︒,∵12CE CD DE ==,∴12CH DE =,∴CD CH =.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)【参考答案】(1)见解析(2)42t -【小问1详解】解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P',∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵//AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅,∴12TA TO OA ==,∵()3,3A ,(1,1)M ,(2,2)N ,∴OA ==,OM ==ON ==,∴12TO OA ==,∴2NT ON OT =-==,∴12NT OM =;【小问2详解】解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT ,∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.。
2020年北京市中考数学试题(解析版)
2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】 根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A. 50.3610⨯B. 53.610⨯C. 43.610⨯D. 43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=43.610⨯,故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键. 3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,也不是中心对称图形,故选项错误;C、不是轴对称图形,是中心对称图形,故选项错误;D、既是轴对称图形,又是中心对称图形,故选项正确.故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为360︒,与边数无关故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A. 2B. -1C. -2D. -3 【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a << 21a ∴-<-<-2a ∴<又a b a -<<b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A. 14B. 13C. 12D. 23【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是21.42= 故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案.【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式17x -有意义,则实数x 的取值范围是_____. 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式17x -有意义,分母不能为0,可得70x -≠,即7x ≠, 故答案为:7x ≠.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∴440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】<2,34,2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组137x y x y -=⎧⎨+=⎩的解为________. 【答案】21x y =⎧⎨=⎩ 【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得48x =,∴2x =,将2x =代入1x y -=,可得1y =, 故答案为:21x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键. 13.在平面直角坐标系xOy 中,直线y x =与双曲线m y x =交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴120y y +=,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD ≌ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】 证明ABD ≌ACD ,已经具备,,AB AC AD AD == 根据选择的判定三角形全等的判定方法可得答案.【详解】解:,,AB AC AD AD ==∴ 要使,ABD ACD ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD ≌故答案为:∠BAD=∠CAD 或(.BD CD =)【点睛】本题考查是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键. 15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得14242ABC S =⨯⨯=个平方单位, 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=ABD S S S S , 故有ABC S =ABD S .故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11()|2|6sin 453---︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=3262+-⨯32=+-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩ 【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集. 【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①② 解不等式①得:1x >,解不等式②得:2x <,∴此不等式组的解集为12x <<.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.【答案】21024x x --,-2【解析】【分析】 先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-. 【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD ∥AB ,∴∠ABP= .∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=12∠BAC ( )(填推理依据)∴∠ABP=12∠BAC【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半 【解析】 【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明:,ABP BPC ∠=∠ 再利用圆的性质得到:∠BPC=12∠BAC ,从而可得答案. 【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD ∥AB , ∴∠ABP= BPC ∠ . ∵AB=AC , ∴点B 在⊙A 上. 又∵∠BPC=12∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据) ∴∠ABP=12∠BAC 故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF . (1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO是△DAB的中位线,再结合已知条件OG∥EF,得到四边形OEFG是平行四边形,再由条件EF⊥AB,得到四边形OEFG是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=12AB=12AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD菱形,∴点O为BD的中点,∵点E为AD中点,∴OE为△ABD的中位线,∴OE∥FG,∵OG∥EF,∴四边形OEFG为平行四边形∵EF⊥AB,∴平行四边形OEFG为矩形.(2)∵点E为AD的中点,AD=10,∴AE=15 2AD=∵∠EFA=90°,EF=4,∴在Rt△AEF中,2222543-=-=AF AE EF.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12AB=5,∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =+;(2)2m ≥ 【解析】 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围. 【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+; (2)当1x >时,函数(0)y mx m =≠函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ; (2)若sinC=13,BD=8,求EF 的长.【答案】(1)见解析;(2)2. 【解析】 【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,sin 13C =,可得3OD r OC r ==,,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得12OE OA BD AB ==,求出OE ,34OF OC BD BC ==,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线, ∴OD ⊥CD ,∴∠ADC+∠ODA=90°, ∵OF ⊥AD ,∴∠AOF+∠DAO=90°, ∵OD=OA , ∴∠ODA=∠DAO , ∴∠ADC=∠AOF ; (2)设半径为r ,在Rt △OCD 中,1sin 3C =, ∴13OD OC , ∴3OD r OC r ==,, ∵OA=r ,∴AC=OC-OA=2r , ∵AB 为⊙O 的直径, ∴∠ADB=90°, 又∵OF ⊥AD , ∴OF ∥BD , ∴12OE OA BD AB ==, ∴OE=4, ∵34OF OC BD BC ==, ∴6OF =,∴2EF OF OE =-=.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 . (2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:x12132 252 3y116 167161954872综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3)73【解析】 【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案; (2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案. 【详解】解:(1)根据题意,在函数1y x =-中, ∵10k =-<,∴函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∵222131()24y x x x =-+=-+, ∴对称轴为:1x =,∴221y x x =-+在20x -≤<中,2y 随x 的增大而减小;综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值; 由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∴在20x -≤<中,有 当2x =-时,73y =, ∴m 的最大值为73; 故答案为:73. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日 11日至20日 21日至30日 平均数 100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.【答案】(1)173;(2)2.9倍;(3)222123s s s >>【解析】 【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案; (2)利用5月份的平均数除以4月份的平均数,即可得到答案; (3)直接利用点状图和方差的意义进行分析,即可得到答案. 【详解】解:(1)平均数:1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=(千克); 故答案为:173; (2)17360 2.9÷=倍; 故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:222123s s s >>;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围. 【答案】(1)120,2x x ==;(2)32t ≤ 【解析】 【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为12y y c ==,抛物线的对称轴为1x =,可得点M ,N 关于1x =对称,从而得到12,x x 的值;(2)根据题意知,抛物线开口向上,对称轴为x t =,分3种情况讨论,情况1:当12,x x 都位于对称轴右侧时,情况2:当12,x x 都位于对称轴左侧时,情况3:当12,x x 位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c , 即抛物线必过(0,c ),∵12y y c ==,抛物线的对称轴为1x =, ∴点M ,N 关于1x =对称, 又∵12x x <, ∴10x =,22x =;(2)由题意知,a >0, ∴抛物线开口向上∵抛物线的对称轴为x t =,12x x <∴情况1:当12,x x 都位于对称轴右侧时,即当1x t ≥时,12y y <恒成立情况2:当12,x x 都位于对称轴左侧时,即1x <2,t x t ≤时,12y y <恒不成立情况3:当12,x x 位于对称轴两侧时,即当1x <2,t x t >时,要使12y y <,必有12x t x t -<-,即()()2212x t x t -<-解得122x x t +>, ∴3≥2t , ∴32t ≤综上所述,32t ≤. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.27.在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示); (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(122a b +;(2)图见解析,222EF AE BF =+,证明见解析. 【解析】 【分析】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得; (2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为ABC 的中位线,且CE AE a ==∴//DE BC ,12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF = 11()22CF BC BF CF ∴==+ ∴CF BF b ==则在Rt CEF中,EF =(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG∵//BG AC∴EAD GBD ∠=∠,DEA DGB ∠=∠∵D 是AB 的中点∴AD BD =在EAD 和GBD △中,EAD GBD DEA DGB AD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅∴ED GD =,AE BG =又∵DF DE ⊥∴DF 是线段EG 的垂直平分线∴EF FG =∵90C ∠=︒,//BG AC∴90GBF C ∠=∠=︒在Rt BGF 中,由勾股定理得:222FG BG BF =+∴222EF AE BF =+.【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键. 28.在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34PP ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线323y x =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值; (3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围. 【答案】(1)平行,P 3;(23(3)23392d ≤≤【解析】【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由1d OE OF =-得到1d 的最小值;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可.平移距离2d 的最大值即点A ,B 点的位置,由此得出2d 的取值范围.【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线323y x =+上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令0y =,直线与x 轴交点为(-2,0),直线与x 轴夹角为60°,∴2sin 603OE ︒==.由垂径定理得:22132OF OC CD ⎛⎫=-= ⎪⎝⎭, ∴13d OE OF =-=;(3)线段AB 的位置变换,可以看作是以点A 32,2⎛⎫ ⎪⎝⎭为圆心,半径为1的圆,只需在⊙O 内找到与之平行,且长度为1的弦即可;点A 到O 的距离为2235222AO ⎛⎫=+= ⎪⎝⎭. 如图,平移距离2d 的最小值即点A 到⊙O 的最小值:53122-=;平移距离2d 的最大值线段是下图AB 的情况,即当A 1,A 2关于OA 对称,且A 1B 2⊥A 1A 2且A 1B 2=1时.∠B 2A 2A 1=60°,则∠OA 2A 1=30°, ∵OA 2=1,∴OM=12, A 2M=32, ∴MA=3,AA 2=2233932⎛⎫+= ⎪ ⎪⎝⎭,∴2d 的取值范围为:23392d ≤≤ 【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.。
北京市中考数学试卷(含答案解析)
2018年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A.B.C.D.2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是A.||4a>B.0c b->C.0ac>D.0a c+>3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.437.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-); ②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-); ③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-); ④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-,7.5-)时,表示左安门的点的坐标为(16.5,16.5-). 上述结论中,所有正确结论的序号是 A .①②③B .②③④C .①④D .①②③④二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE10.若x在实数范围内有意义,则实数x的取值范围是_______.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.12.如图,点A,B,C,D在O上,CB CD∠==,30∠=︒,则ADB∠=︒,50CADACD________.13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,AD=,则CF的长为________.314.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A59151166124500 B5050122278500C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).18.计算:04sin45(π2)18|1|︒+--+-.19.解不等式组:3(1)1922x xxx+>-⎧⎪⎨+>⎪⎩.20.关于x的一元二次方程210ax bx++=.(1)当2b a=+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C .(1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<x<≤,5060≤,90100xx<≤≤);x<6070≤,7080x<≤,8090≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.26.在平面直角坐标系xOy中,直线44=+与x轴、y轴分别交于点A,B,抛物线y x23=+-经过点A,将点B向右平移5个单位长度,得到点C.y ax bx a(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作⊥交DG的延长线于点H,连接BH.EH DE(1)求证:GF GC=;(2)用等式表示线段BH与AE的数量关系,并证明.28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11xk≠)的图象为图形G,若d(G,ABC-≤≤,0△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.2018年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.下列几何体中,是圆柱的为A .B .C .D .【答案】A【解析】A 选项为圆柱,B 选项为圆锥,C 选项为四棱柱,D 选项为四棱锥. 【考点】立体图形的认识2.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B【解析】∵43a -<<-,∴34a <<,故A 选项错误;数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误.【考点】实数与数轴3.方程组33814x yx y-=⎧⎨-=⎩的解为A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩【答案】D【解析】将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.【考点】二元一次方程组的解4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为27140m,则FAST的反射面积总面积约为A.327.1410m⨯B.427.1410m⨯C.522.510m⨯D.622.510m⨯【答案】C【解析】5714035249900 2.510⨯=≈⨯(2m),故选C.【考点】科学记数法5.若正多边形的一个外角是60︒,则该正多边形的内角和为A.360︒B.540︒C.720︒D.900︒【答案】C【解析】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.【考点】正多边形,多边形的内外角和.6.如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A .3B .23C .33D .43【答案】A【解析】原式()2222222a b a b ab aa ab a a b a a b -+--=⋅=⋅=--,∵23a b -=,∴原式3=. 【考点】分式化简求值,整体代入.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2y ax bx c =++(0a ≠).下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A .10mB .15mC .20mD .22.5m【答案】B【解析】设对称轴为x h =,由(0,54.0)和(40,46.2)可知,040202h +<=, 由(0,54.0)和(20,57.9)可知,020102h +>=, ∴1020h <<,故选B .【考点】抛物线的对称轴.8.下图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(6-,3-)时,表示左安门的点的坐标为(5,6-);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(12-,6-)时,表示左安门的点的坐标为(10,12-);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(11-,5-)时,表示左安门的点的坐标为(11,11-);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(16.5-)-,7.5时,表示左安门的点的坐标为(16.5,16.5-).上述结论中,所有正确结论的序号是A.①②③B.②③④C.①④D.①②③④【答案】D【解析】显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;-,④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(18-)”的基础上,将所有点向右平9-)时,表示左安门的点的坐标为(15,18移1.5个单位,再向上平移1.5个单位得到,故④正确.【考点】平面直角坐标系,点坐标的确定,点的平移二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,BAC∠.(填“>”,“=”或“<”)∠________DAE【答案】>【解析】如下图所示,△是等腰直角三角形,∴45AFG∠=∠=︒,∴BAC DAE∠>∠.FAG BAC另:此题也可直接测量得到结果.【考点】等腰直角三角形10.若x在实数范围内有意义,则实数x的取值范围是_______.【答案】0x≥【解析】被开方数为非负数,故0x≥.【考点】二次根式有意义的条件.11.用一组a,b,c的值说明命题“若a b<,则ac bc<”是错误的,这组值可以是a=_____,b=______,c=_______.【答案】答案不唯一,满足a b<,0c≤即可,例如:,2,1-【解析】不等式两边乘(或除以)同一个负数,不等号的方向改变.【考点】不等式的基本性质12.如图,点A,B,C,D在O上,CB CD=,30CAD∠=︒,50ACD∠=︒,则ADB∠= ________.【答案】70【解析】∵CB CD=,∴30CAB CAD∠=∠=︒,∴60BAD∠=︒,∵50ABD ACD∠=∠=︒,∴18070ADB BAD ABD∠=︒-∠-∠=︒.【考点】圆周角定理,三角形内角和定理13.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若4AB=,3AD=,则CF的长为________.【答案】10 3【解析】∵四边形ABCD是矩形,∴4AB CD==,AB CD∥,90ADC∠=︒,在Rt ADC △中,90ADC ∠=︒,∴225AC AD CD =+=, ∵E 是AB 中点,∴1122AE AB CD ==, ∵AB CD ∥,∴12AF AE CF CD ==,∴21033CF AC ==. 【考点】矩形的性质,勾股定理,相似三角形的性质及判定14.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数 线路3035t ≤≤3540t <≤4045t <≤4550t <≤合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大. 【答案】C【解析】样本容量相同,C 线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C .【考点】用频率估计概率15.某公园划船项目收费标准如下:船型两人船四人船六人船八人船(限乘两人)(限乘四人)(限乘六人)(限乘八人)每船租金90100130150(元/小时)某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【解析】租用四人船、六人船、八人船各1艘,租船的总费用为100130150380++=(元)【考点】统筹规划16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】【解析】从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从下图可知,创新产出排名全球第11,对应创新效率排名全球第3.【考点】函数图象获取信息三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ l∥.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=_______,CB=_______,∴PQ l∥(____________)(填推理的依据).【解析】(1)尺规作图如下图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.【考点】尺规作图,三角形中位线定理18.计算:04sin45(π2)18|1|︒+--+-.【解析】解:原式241321222=⨯+-+=-.【考点】实数的运算19.解不等式组:3(1)1922x x x x +>-⎧⎪⎨+>⎪⎩.【解析】解:由①得,2x >-,由②得,3x <,∴不等式的解集为23x -<<.【考点】一元一次不等式组的解法20.关于x 的一元二次方程210ax bx ++=.(1)当2b a =+时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.【解析】(1)解:由题意:0a ≠.∵()22242440b a a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b a -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.【考点】一元二次方程21.如图,在四边形ABCD 中,AB DC ∥,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE . (1)求证:四边形ABCD 是菱形; (2)若5AB =,2BD =,求OE 的长.【解析】(1)证明:∵AB CD ∥∴CAB ACD ∠=∠ ∵AC 平分BAD ∠ ∴CAB CAD ∠=∠ ∴CAD ACD ∠=∠ ∴AD CD = 又∵AD AB = ∴AB CD = 又∵AB CD ∥∴四边形ABCD 是平行四边形 又∵AB AD = ∴ABCD 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB △中,90AOB ∠=︒. ∴222OA AB OB =-=. ∵CE AB ⊥,在Rt AEC △中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 【考点】菱形的性质和判定,勾股定理,直角三角形斜边中线22.如图,AB 是O 的直径,过O 外一点P 作O 的两条切线PC ,PD ,切点分别为C ,D ,连接OP ,CD .(1)求证:OP CD ⊥;(2)连接AD ,BC ,若50DAB ∠=︒,70CBA ∠=︒,2OA =,求OP 的长.【解析】(1)证明:∵PC 、PD 与O ⊙相切于C 、D .∴PC PD =,OP 平分CPD ∠.在等腰PCD △中,PC PD =,PQ 平分CPD ∠. ∴PQ CD ⊥于Q ,即OP CD ⊥. (2)解:连接OC 、OD .∵OA OD =∴50OAD ODA ∠=∠=︒∴18080AOD OAD ODA ∠=︒-∠-∠=︒∴18060COD AOD BOC ∠=︒-∠-∠=︒. 在等腰COD △中,OC OD =.OQ CD ⊥ ∴1302DOQ COD ∠=∠=︒.∵PD 与O ⊙相切于D . ∴OD DP ⊥. ∴90ODP ∠=︒.在Rt ODP △中,90ODP ∠=︒,30POD ∠=︒ ∴243cos cos30332OD OA OP POD ====∠︒.【考点】切线的性质,切线长定理,锐角三角函数23.在平面直角坐标系xOy 中,函数ky x=(0x >)的图象G 经过点A (4,1),直线14l y x b =+∶与图象G 交于点B ,与y 轴交于点C . (1)求k 的值;(2)横、纵坐标都是整数的点叫做整点.记图象G 在点A ,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围. 【解析】(1)解:∵点A (4,1)在ky x=(0x >)的图象上. ∴14k=,∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =-b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b =d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -<-≤或71144b <≤.【考点】一次函数与反比例函数综合,区域内整点个数问题24.如图,Q 是AB 与弦AB 所围成的图形的内部的一定点,P 是弦AB 上一动点,连接PQ并延长交AB 于点C ,连接AC .已知6cm AB =,设A ,P 两点间的距离为x cm ,P ,C 两点间的距离为1cm y ,A ,C 两点间的距离为2cm y .小腾根据学习函数的经验,分别对函数1y ,2y 随自变量x 的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值; /cm x0 1 2 3 4 5 6 1/cm y 5.624.673.762.653.184.372/cm y5.62 5.59 5.53 5.425.19 4.73 4.11(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,1y ),(x ,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:当APC△为等腰三角形时,AP的长度约为____cm.【解析】(1)3.00(2)如下图所示:(3)3.00或4.83或5.88.如下图所示,个函数图象的交点的横坐标即为所求.【考点】动点产生的函数图象问题,函数探究25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:4050≤,x<≤,5060x<x<≤,90100≤,8090≤≤);x6070x<≤,7080x<≤这一组是:x<b.A课程成绩在708070 71 71 71 76 76 77 78 78.578.579 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过75.8分的人数.【解析】(1)78.75(2)B .该学生A 课程分数低于中位数,排名在中间位置之后,而B 课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A 课程成绩超过75.8的人数为36人. ∴3630018060⨯=(人) 答:该年级学生都参加测试.估计A 课程分数超过75.8的人数为180人.【考点】频数分布直方图,中位数,用样本估计总体26.在平面直角坐标系xOy 中,直线44y x =+与x 轴、y 轴分别交于点A ,B ,抛物线23y ax bx a =+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求点C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.【解析】(1)解:∵直线44y x =+与x 轴、y 轴交于A 、B .∴A (1-,0),B (0,4)∴C (5,4)(2)解:抛物线23y ax bx a =+-过A (1-,0)∴30a b a --=.2b a =-∴223y ax ax a =-- ∴对称轴为212a x a -=-=. (3)解:①当抛物线过点C 时.251034a a a--=,解得13a=.②当抛物线过点B时.34a-=,解得43a=-.③当抛物线顶点在BC上时.此时顶点为(1,4)∴234a a a--=,解得1a=-.∴综上所述43a <-或13a ≥或1a =-. 【考点】一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题27.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A ,B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH DE ⊥交DG 的延长线于点H ,连接BH .(1)求证:GF GC =;(2)用等式表示线段BH 与AE 的数量关系,并证明.【解析】(1)证明:连接DF .∵A ,F 关于DE 对称.∴AD FD =.AE FE =.在ADE △和FDE △中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =.(2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴EDG EDF GDF ∠=∠+∠1122ADF CDF =∠+∠ 1452ADC =∠=︒ ∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME △和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME △≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =. ∴222ME AE AM AE =+= ∴2BH AE =.【考点】正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定28.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-).-),C(6,2-,6),B(2-,2(1)求d(点O,ABC△);(2)记函数y kx=,=(11k≠)的图象为图形G,若d(G,ABC-≤≤,0x△)1直接写出k的取值范围;(3)T的圆心为T(,0),半径为1.若d(T,ABC=,直接写出的取值△)1范围.【解析】(1)如下图所示:∵B(2-)-,2-),C(6,2∴D(0,2-)∴d(O,ABC△)2==OD(2)10<≤kk-<≤或01(3)4t =-或0422t -≤≤或422t =+.【考点】点到直线的距离,圆的切线。
北京市历年中考数学试题及答案(word版)
2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013—2015)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为A。
39。
6×102B。
3。
96×103 C. 3.96×104D。
3。
96×104 2。
的倒数是A. B. C. D。
3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为A。
B. C。
D。
4. 如图,直线,被直线所截,∥,∠1=∠2,若∠3=40°,则∠4等于A。
40°B。
50°C。
70° D. 80°5。
如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC。
30m D. 20m6. 下列图形中,是中心对称图形但不是轴对称图形的是7。
某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 6。
2小时B。
6.4小时 C. 6。
5小时 D. 7小时8。
如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为,△APO的面积为,则下列图象中,能表示与的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9。
分解因式:=_________________10。
请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式__________10 11。
2020年北京市中考数学试卷【含答案;word版本试题;可编辑】
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2. 2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033. 如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠1>∠4+∠5D.∠2<∠54. 下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.5. 正五边形的外角和为()A.180∘B.360∘C.540∘D.720∘6. 实数a在数轴上的对应点的位置如图所示,若实数b满足−a<b<a,则b的值可以是()A.2B.−1C.−2D.−37. 不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.238. 有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系二、填空题(本题共16分,每小题2分)9. 若代数式1x−7有意义,则实数x的取值范围是________.10. 已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是________.11. 写出一个比√2大且比√15小的整数________.12. 方程组{x−y=13x+y=7的解为________.13. 在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.1 / 10。
2022年北京市中考数学试卷(含答案)
2022年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.2.(2分)(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为()A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×10123.(2分)(2022•北京)如图,利用工具测量角,则∠1的大小为()A.30°B.60°C.120°D.150°4.(2分)(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2B.b<1C.a>b D.﹣a>b5.(2分)(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.B.C.D.6.(2分)(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.C.D.47.(2分)(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.58.(2分)(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)(2022•北京)若在实数范围内有意义,则实数x的取值范围是.10.(2分)(2022•北京)分解因式:xy2﹣x=.11.(2分)(2022•北京)方程=的解为.12.(2分)(2022•北京)在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=(k>0)的图象上,则y1y2(填“>”“=”或“<”).13.(2分)(2022•北京)某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为双.14.(2分)(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=.15.(2分)(2022•北京)如图,在矩形ABCD中,若AB=3,AC=5,=,则AE的长为.16.(2分)(2022•北京)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下:包裹编号Ⅰ号产品重量/吨Ⅱ号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案(写出要装运包裹的编号).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.18.(5分)(2022•北京)解不等式组:.19.(5分)(2022•北京)已知x2+2x﹣2=0,求代数式x (x+2)+(x+1)2的值.20.(5分)(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一证明:如图,过点A作DE∥BC.方法二证明:如图,过点C作CD∥AB.21.(6分)(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE =CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.22.(5分)(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.23.(6分)(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m 根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是(填“甲”“乙”或“丙”).24.(6分)(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.25.(5分)(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:02581114水平距离x/m20.0021.4022.7523.2022.7521.40竖直高度y/m根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x ﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1d2(填“>”“=”或“<”).26.(6分)(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.27.(7分)(2022•北京)在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.28.(7分)(2022•北京)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′,点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上.若点P(﹣2,0),点Q为点P 的“对应点”.①在图中画出点Q;②连接PQ,交线段ON于点T,求证:NT=OM;(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(<t<1),若P为⊙O外一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时,直接写出PQ长的最大值与最小值的差(用含t的式子表示).2022年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2022•北京)下面几何体中,是圆锥的为()A.B.C.D.【分析】简单几何体的识别.【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.【点评】本题考查简单几何体的识别,正确区分几何体是解题的关键.2.(2分)(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为()A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:262883000000=2.62883×1011.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(2分)(2022•北京)如图,利用工具测量角,则∠1的大小为()A.30°B.60°C.120°D.150°【分析】根据对顶角的性质解答即可.【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A.【点评】本题主要考查了对顶角,熟练掌握对顶角相等是解答本题关键.4.(2分)(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2B.b<1C.a>b D.﹣a>b【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【解答】解:根据图形可以得到:﹣2<a<0<1<b<2;所以:A、B、C都是错误的;故选:D.【点评】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.5.(2分)(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.B.C.D.【分析】列表得出所有等可能的情况数,找出第一次摸到红球、第二次摸到绿球的情况数,即可确定出所求的概率.【解答】解:列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,其中第一次摸到红球、第二次摸到绿球的有1种情况,所以第一次摸到红球、第二次摸到绿球的概率为,故选:A.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6.(2分)(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为()A.﹣4B.C.D.4【分析】根据根的判别式的意义得到12﹣4m=0,然后解一次方程即可.【解答】解:根据题意得Δ=12﹣4m=0,解得m=.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.7.(2分)(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.5【分析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,由此即可解决问题.【解答】解:如图所示,该图形有5条对称轴,故选:D.【点评】此题考查了利用轴对称图形的定义判断轴对称图形的对称轴条数和位置的灵活应用.8.(2分)(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【分析】(1)根据汽车的剩余路程y随行驶时间x的增加而减小判断即可;(2)根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;(3)根据矩形的面积公式判断即可.【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.【点评】本题考查了利用函数的图象解决实际问题,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、填空题(共16分,每题2分)9.(2分)(2022•北京)若在实数范围内有意义,则实数x的取值范围是x≥8.【分析】根据二次根式有意义的条件,可得:x﹣8≥0,据此求出实数x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,解答此题的关键是要明确:二次根式中的被开方数是非负数.10.(2分)(2022•北京)分解因式:xy2﹣x=x(y﹣1)(y+1).【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣x,=x(y2﹣1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.(2分)(2022•北京)方程=的解为x=5.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x+5,解得:x=5,检验:把x=5代入得:x(x+5)≠0,∴分式方程的解为x=5.故答案为:x=5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12.(2分)(2022•北京)在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y =(k>0)的图象上,则y 1>y2(填“>”“=”或“<”).【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k>0,∴反比例函数y=(k>0)的图象在一、三象限,∵5>2>0,∴点A(2,y1),B(5,y2)在第一象限,y随x的增大而减小,∴y1>y2,故答案为:>.【点评】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特征,比较简单.13.(2分)(2022•北京)某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243 2455126321销售量/双根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为120双.【分析】应用用样本估计总体的方法进行计算即可得出答案.【解答】解:根据统计表可得,39号的鞋卖的最多,则估计该商场进鞋号需求最多的滑冰鞋的数量为(双).故答案为:120.【点评】本题主要考查了用样本估计总体,熟练掌握用样本估计总体的方法进行求解是解决本题的关键.14.(2分)(2022•北京)如图,在△ABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则S△ACD=1.【分析】过D点作DH⊥AC于H,如图,根据角平分线的性质得到DE=DH=1,然后根据三角形面积公式计算.【解答】解:过D点作DH⊥AC于H,如图,∵AD平分∠BAC,DE⊥AB,DH⊥AC,∴DE=DH=1,∴S△ACD=×2×1=1.故答案为:1.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.15.(2分)(2022•北京)如图,在矩形ABCD中,若AB=3,AC=5,=,则AE的长为1.【分析】由矩形的性质得出∠ABC=90°,AD∥BC,利用勾股定理求出BC=4,利用相似三角形的性质,即可求出AE的长.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∵AB=3,AC=5,∴BC ===4,∵AD∥BC,∴∠EAF=∠BCF,∠AEF=∠CBF,∴△EAF∽△BCF,∴=,∴,∴,∴AE=1,故答案为:1.【点评】本题考查了矩形的性质,相似三角形的判定与性质,掌握矩形的性质,勾股定理,相似三角形的判定与性质是解决问题的关键.16.(2分)(2022•北京)甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下:包裹编号Ⅰ号产品重量/吨Ⅱ号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案ABC(或ABE或AD或ACD或BCD)(写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案ABE或BCD(写出要装运包裹的编号).【分析】(1)从A,B,C,D,E中选出2个或3个,同时满足I号产品不少于9吨,且不多于11吨,总重不超过19.5吨即可;(2)从(1)中符合条件的方案中选出装运II号产品最多的方案即可.【解答】解:(1)选择ABC时,装运的I号产品重量为:5+3+2=10(吨),总重6+5+5=16<19.5(吨),符合要求;选择ABE时,装运的I号产品重量为:5+3+3=11(吨),总重6+5+8=19<19.5(吨),符合要求;选择AD时,装运的1号产品重量为:5+4=9(吨),总重6+7=13<19.5 (吨),符合要求;选择ACD时,装运的I号产品重量为:5+2+4=11(吨),总重6+5+7=18<19.5(吨),符合要求;选择BCD时,装运的1号产品重量为:3+2+4=9(吨),总重5+5+7=17<19.5(吨),符合要求;选择DCE时,装运的I号产品重量为:4+2+3=9(吨),总重7+5+8=20>19.5(吨),不符合要求;选择BDE时,装运的I号产品重量为:3+4+3=10(吨),总重5+7+8=20>19.5(吨),不符合要求;综上,满足条件的装运方案有ABC或ABE或AD或ACD或BCD.故答案为:ABC(或ABE或AD或ACD或BCD);(2)选择ABC时,装运的I号产品重量为:1+2+3=6(吨);选择ABE时,装运的I号产品重量为:1+2+5=8(吨);选择AD时,装运的II号产品重量为:1+3=4 (吨);选择ACD时,装运的II号产品重量为:1+3+3=7 (吨);选择BCD时,装运的II号产品重量为:2+3+3=8 (吨);故答案为:ABE或BCD.【点评】本题考查方案的选择,读懂题意,尝试不同组合时能否同时满足题目要求的条件是解题的关键.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2022•北京)计算:(π﹣1)0+4sin45°﹣+|﹣3|.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、二次根式的性质、绝对值的性质分别化简,进而合并得出答案.【解答】解:原式=1+4×﹣2+3=1+2﹣2+3=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.18.(5分)(2022•北京)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由2+x>7﹣4x,得:x>1,由x<,得:x<4,则不等式组的解集为1<x<4.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(5分)(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,∴当x2+2x=2时,原式=2(x2+2x)+1=2×2+1=4+1=5.【点评】本题考查了整式的混合运算﹣化简求值,准确熟练地进行计算是解题的关键.20.(5分)(2022•北京)下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角的和等于180°.已知:如图,△ABC,求证:∠A+∠B+∠C=180°.方法一证明:如图,过点A作DE∥BC.方法二证明:如图,过点C作CD∥AB.【分析】方法一:由平行线的性质得:∠B=∠BAD,∠C=∠CAE,再由平角的定义可得∠BAD+∠BAC+∠CAE=180°,从而可求解;方法二:由平行线的性质得:∠A=∠ACD,∠B+∠BCD=180°,从而可求解.【解答】证明:方法一:∵DE∥BC,∴∠B=∠BAD,∠C=∠CAE,∵∠BAD+∠BAC+∠CAE=180°,∴∠B+∠BAC+∠C=180°;方法二:∵CD∥AB,∴∠A=∠ACD,∠B+∠BCD=180°,∵∠B+∠ACB+∠A=180°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.21.(6分)(2022•北京)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE =CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形.【分析】(1)根据对角线互相平分的四边形是平行四边形即可证明;(2)根据平行四边形的性质可得DA=DC,然后利用等腰三角形的性质可得DB⊥EF,进而可以证明四边形EBFD是菱形.【解答】证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∵OA=OC,∴DB⊥EF,∴平行四边形EBFD是菱形.【点评】本题考查平行四边形的性质、等腰三角形的性质、菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(5分)(2022•北京)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象过点(4,3),(﹣2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【分析】(1)先利用待定系数法求出函数解析式为y=x+1,然后计算自变量为0时对应的函数值得到A点坐标;(2)当函数y=x+n与y轴的交点在点A(含A点)上方时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值.【解答】解:(1)把(4,3),(﹣2,0)分别代入y=kx+b得,解得,∴函数解析式为y=x+1,当x=0时,y=x+1=1,∴A点坐标为(0,1);(2)当n≥1时,当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k ≠0)的值.【点评】本题考查了待定系数法求一次函数解析式:掌握待定系数法求一次函数解析式一般步骤是解决问题的关键.也考查了一次函数的性质.23.(6分)(2022•北京)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对甲的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是丙(填“甲”“乙”或“丙”).【分析】(1)根据平均数的定义即可求解;(2)计算甲、乙两位同学的方差,即可求解;(3)根据题意,分别求出甲、乙、丙三位同学的最后得分,即可得出结论.【解答】解:(1)m=×(10+10+10+9+9+8+3+9+8+10)=8.6;(2)甲同学的方差S2甲=×[2×(7﹣8.6)2+2×(8﹣8.6)2+4×(9﹣8.6)2+2×(10﹣8.6)2]=1.04,乙同学的方差S2乙=×[4×(7﹣8.6)2+2×(9﹣8.6)2+4×(10﹣8.6)2]=1.84,∵S2甲<S2乙,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为×(7+8×2+9×4+10)=8.625;乙同学的最后得分为×(3×7+9×2+10×3)=8.625;丙同学的最后得分为×(8×2+9×3+10×3)=9.125,∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.【点评】本题考查折线统计图,平均数、方差,理解平均数、方差的意义和计算方法是正确解答的前提.24.(6分)(2022•北京)如图,AB是⊙O的直径,CD是⊙O的一条弦,AB⊥CD,连接AC,OD.(1)求证:∠BOD=2∠A;(2)连接DB,过点C作CE⊥DB,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为⊙O的切线.【分析】(1)连接AD,首先利用垂径定理得,知∠CAB=∠BAD,再利用同弧所对的圆心角等于圆周角的一半可得结论;(2)连接OC,首先由点F为AC的中点,可得AD=CD,则∠ADF=∠CDF,再利用圆的性质,可说明∠CDF=∠OCF,∠CAB=∠CDE,从而得出∠OCD+∠DCE=90°,从而证明结论.【解答】证明:(1)如图,连接AD,∵AB是⊙O的直径,AB⊥CD,∴,∴∠CAB=∠BAD,∵∠BOD=2∠BAD,∴∠BOD=2∠A;(2)如图,连接OC,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90°,∴∠CDE+∠DCE=90°,∴∠OCD+∠DCE=90°,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.【点评】本题主要考查了圆周角定理,垂径定理,圆的切线的判定等知识,熟练掌握圆周角定理是解题的关键.25.(5分)(2022•北京)单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:02581114水平距离x/m20.0021.4022.7523.2022.7521.40竖直高度y/m根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x ﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.04(x﹣9)2+23.24.记该运动员第一次训练的着陆点的水平距离为d1,第二次训练的着陆点的水平距离为d2,则d1<d2(填“>”“=”或“<”).【分析】(1)先根据表格中的数据找到顶点坐标,即可得出h、k的值,运动员竖直高度的最大值;将表格中除顶点坐标之外的一组数据代入函数关系式即可求出a的值即可得出函数解析式;(2)设着陆点的纵坐标为t,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标,用t表示出d1和d2,然后进行比较即可.【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),∴h=8,k=23.20,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当x=0时,y=20.00,代入y=a(x﹣8)2+23.20得:20.00=a(0﹣8)2+23.20,解得:a=﹣0.05,∴函数关系式为:y=﹣0.05(x﹣8)2+23.20;(2)设着陆点的纵坐标为t,则第一次训练时,t=﹣0.05(x﹣8)2+23.20,解得:x=8+或x=8﹣,∴根据图象可知,第一次训练时着陆点的水平距离d1=8+,第二次训练时,t=﹣0.04(x﹣9)2+23.24,解得:x=9+或x=9﹣,∴根据图象可知,第二次训练时着陆点的水平距离d2=9+,∵20(23.20﹣t)<25(23.24﹣t),∴<,∴d1<d2,故答案为:<.【点评】本题主要考查了二次函数的应用,待定系数法求函数关系式,设着陆点的纵坐标为t,用t表示出d1和d2是解题的关键.26.(6分)(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),N(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),N(3,n)代入抛物线解析式,∴,∵m=n,。
2022年北京中考数学试卷和参考答案
2022年北京市高级中等学校招生考试数学试卷学校 姓名 准考证号考生须知1. 本试卷共8页,共三道大题,29道小题,总分值120分。
考试时间120分钟。
2. 在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3. 试题答案一律填涂在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束后,将本试卷、答题卡和草稿纸一并交回。
..个。
1.如下列图,用量角器度量∠AOB ,可以读出∠AOB 的度数为 〔A 〕 45° 〔B 〕 55° 〔C 〕 125°2. 神舟十号飞船是我国“神舟〞系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为 〔A 〕3108.2⨯〔B 〕31028⨯〔C 〕4108.2⨯〔D 〕51028.0⨯BAO3. 实数a ,b 在数轴上的对应点的位置如下列图,那么正确的结论是 〔A 〕a >-2 〔B 〕a<-3 〔C 〕a>-b 〔D 〕a<-b4. 内角和为540°的多边形是5. 右图是某个几何体的三视图,该几何体是 〔A 〕圆锥 〔B 〕三棱锥 〔C 〕圆柱 〔D 〕三棱柱6. 如果a+b=2,那么代数ba aa b a -•-)(2的值是〔A 〕 2 〔B 〕-2 〔C 〕21〔D 〕21- 7. 甲骨文是我国的一种古代文字,是汉字的早期形式,以下甲骨文中,不是轴对称的是ABCD8. 在1-7月份,某种水果的每斤进价与出售价的信息如下列图,那么出售该种水果每斤利润最大的月份是〔A 〕 3月份 〔B 〕 4月份 〔C 〕 5月份 〔D 〕 6月份 第8题图 第9题图9. 如图,直线m ⊥n ,在某平面直角坐标系中,x 轴∥m ,y 轴∥n ,点A 的坐标为〔-4,2〕,点B 的坐标为〔2,-4〕,那么坐标原点为 〔A 〕O 1〔B 〕O 2〔C 〕O 3〔D 〕O 410. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
:2016年北京中考数学试题及答案-中考总结:话题作文与学期梳理
课程特色:
以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员
想扎实写作基础,稳固提高作文水平的初中生
赠送
《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华
课程特色:
以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型
,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员
现代文阅读答题技巧掌握不够全面,想稳固提高的初中生
赠送
《中学语文知识地图—中学文言文必考140字》
课程特色:
全面地检测与分析学生考试丢分的问题,
让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员
想夯实语文基础知识,成绩稳步提高的初中生赠送
《学生优秀作品及点评指导(2.0版)》
第八章:以小见大与虚实相应
课程特色:
对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员
作文写作水平寻求短期突破的初中生
赠送
《中学考场作文训练营》(图书)第八章:以小见大与虚实相应
课程特色:
对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员
作文写作水平寻求短期突破的初中生
赠送
《中学考场作文训练营》(图书)
第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员
阅读能力迅速提升的5—7级学生
赠送
《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题
课程特色:
针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员
阅读能力迅速提升的5—7级学生
赠送
《语文阅读得高分策略与技巧》(小学版)
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员
写作不知如何下手而又急需快速突破的3—6级学生赠送
《原创作文·专题突破》
第八讲:文章中材料的搭配。
课程特色:
孩子的作文问题,简而言之就是:语言不生动、内容不具体、重点不突出,90%以上的各类作文问题,其实都是以上三大现状的延伸,作文训练营紧紧地抓住了这三大问题,进行专题突破式提高。
适合学员
写作不知如何下手而又急需快速突破的3—6级学生
赠送
《原创作文·专题突破》
课程特色:
本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生赠送
《语文阅读得高分策略与技巧》(初中卷)
本班是黄老师整个课程的精华。
阅读上,将踩分点进行了系统梳理,列举的各类题型堪称经典;写作上,除了正常讲授作文外,还将当节课学生所写的作文进行现场点评;同时针对文言文和文学常识考点,也进行了精彩的讲解。
适合学员
写作基础一般,阅读答题技巧欠缺,急需提高语文成绩直击中考的初中生
赠送
《语文阅读得高分策略与技巧》(初中卷)第二讲:秦汉必考文学常识梳理
第三讲:魏晋南北朝必考文学常识梳理
第四讲:宋代文学常识梳理(上)
第五讲:宋代文学常识梳理(下)
第六讲:明清文学常识梳理
课程特色:
帮助同学了解每位作者的其人其文;使原本空洞的文学常识,变得鲜活起来。
本课程将逐篇梳理重点作家作品,每节课都安排诗歌讲解分析。
适合学员
希望全面掌握文学常识的中学生赠送
课程目标:
·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先
·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获适合人群
适合人群:
·初一年级同步学生
·学习人教版的学生
·程度较好,希望进一步提升、冲刺满分的学生·中上等水平学生,冲刺竞赛的学生
课程目标:
·小升初一的平稳过渡:提前学习初一知识,实现学习观念的转变,初一领先;
·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法;
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群。
适合人群:
·初一年级同步学生
·学习北师版的学生
·程度较好,希望进一步提升、冲刺满分的学生
·希望能够2.5年学完中考相关知识,在期中期末考试、中考确保基础、中等题不失分的同时尽可能在难题多拿分的同学。
·提高学习能力,用最短的时间学习更多的知识和方法
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获
适合人群:
·初一年级同步学生
·预习过基础知识的学生
·程度较好,希望进一步提升、冲刺满分的学生·适合中上等水平学生,冲刺竞赛的学生。
课程目标:
·掌握正确的初中数学学习方法:提高学习能力,用最短的时间学习更多的知识和方法。
·培养良好的学习习惯:提倡多思考、多总结、在开心中学习,在学习中收获。
适合人群:
·初一年级同步学生
·本课程适用学习人教版数学教材的学生
·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:
·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初二年级同步学生
·本课程适用学习人教版数学教材的学生
·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:
·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初二年级同步学生
·本课程适用学习北师版版数学教材的学生
·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:
·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初二年级同步学生
·本课程适用学习人教版数学教材的学生
·程度较好,并且希望进一步提升、冲刺满分的学生课程目标:
·初二年级容易两级分化,补充和扩展学生所学知识,多积累,多思考,多总结。
·紧跟学校进度,注重提升学生水平和能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初二年级同步学生
·本课程适用学习北师数学教材的学生
·程度较好,并且希望进一步提升、冲刺满分的学生
课程目标:
·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初三年级同步学生·预习过基础知识的学生
·适合中上等水平学生,冲刺竞赛的学生
·程度较好,希望进一步提升、冲刺满分的学生课程目标:
·使学生较快的适应初三年级知识的程度更深,题目更难,综合性的逐渐上升情况。
·紧跟学校进度,注重提升学生知识水平和解题能力。
·开阔思路,逐步提升学生信心,应对竞赛类题目。
适合人群:
·初三年级同步学生
·预习过基础知识的学生
·适合中上等水平学生,冲刺竞赛的学生
·程度较好,希望进一步提升、冲刺满分的学生。