二次函数全章教案
二次函数教案(优秀5篇)
二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
二次函数教案(3篇)
二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
二次函数的全章教案
26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。
二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。
三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。
问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。
问题5:什么是二次函数?形如 。
问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。
例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。
求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
二次函数教学设计(精选6篇)
二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
初中数学二次函数教案(5篇)_1
初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
二次函数教案(全)
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教学设计最新6篇
《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教案8篇(二次函数应用教案设计)
《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
数学《二次函数》优秀教案(精选8篇)
数学《二次函数》优秀教案数学《二次函数》优秀教案(精选8篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
优秀的教案都具备一些什么特点呢?下面是小编收集整理的数学《二次函数》优秀教案,仅供参考,欢迎大家阅读。
数学《二次函数》优秀教案篇1教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根。
2、进一步发展估算能力。
(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验。
2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想。
(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。
教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、能够利用二次函数的图象求一元二次方程的近似根。
教学难点利用二次函数的图象求一元二次方程的近似根。
教学方法学生合作交流学习法。
教具准备投影片三张第一张:(记作§2.8.2A)第二张:(记作§2.8.2B)第三张:(记作§2.8.2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可。
但是在图象上我们很难准确地求出方程的解,所以要进行估算。
本节课我们将学习利用二次函数的图象估计一元二次方程的根。
数学《二次函数》优秀教案篇2一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。
2.了解二次函数关系式,会确定二次函数关系式中各项的系数。
二次函数全章教案
二次函数全章教案
一、学习目标
1.知道二次函数的定义,能容易地判断一个方程是否是二次函数;
2.了解二次函数的图像特点和性质;
3.能熟练地求二次函数的极值及判别式的和根;
4.掌握二次函数系数的几何意义,能熟练地画出二次函数图像;
5.理解和掌握二次函数的应用。
二、教学重点
(1)定义及判别二次函数的方法;
(2)二次函数的图像特点和性质;
(3)二次函数求极值及求根的方法。
三、教学难点
(1)能熟练地求二次函数的极值及判别式的和根;
(2)掌握二次函数系数的几何意义,能熟练地画出二次函数图像;
(3)理解和掌握二次函数的应用。
四、教学准备
(1)实物:多边形模型,圆模型;
(2)图片:小鸡兔的函数图像;
(3)抽认卡:定义、特征及应用问题等。
五、教学过程
1.交代课题:谈谈二次函数的定义及判别
(1)教师引出课题,提出判断一个方程是否是二次函数的问题,让学生探究二次函数的定义及判别;
(2)学生交流,用列举法探究,归纳出一元二次函数的定义,如:形如y=ax2+bx+c(a≠0)的函数称为一元二次函数;
(3)引出如何判断一个方程是否是二次函数。
九年级数学《二次函数》教案最新7篇
九年级数学《二次函数》教案最新7篇九年级数学上册二次函数教案2021模板篇一一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系。
(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力。
(三)德育渗透点培养学生独立思考、勇于创新的精神。
二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用。
2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用。
三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答。
因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施。
(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征?学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”。
2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值。
”这是否是真命题呢?引出课题。
(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明。
引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式。
在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明。
(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗?”提出问题,激发学生的学习热情,使学生的思维积极活跃。
二次函数数学教案(优秀6篇)
二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。
2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。
教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。
难点:各种性质的应用。
教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。
五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。
课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
二次函数全章教案(共13节)
教具准备坐标小黑板一块课型新授课教学过程初备统复备情境导入我们已经知道,一次函数12+=xy,反比例函数xy3=xy3=的图象分别是、,那么二次函数2xy=的图象是什么呢?(1)描点法画函数2xy=的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数2xy=的图象,你能得出什么结论?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)22xy=(2)22xy-=共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:22xy=的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.22xy-=的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.注意点:在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.实践与探索2例3.已知正方形周长为Ccm,面积为S cm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1 cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4 cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得)0(1612>=CCS.列表:描点、连线,图象如图26.2.2.(2)根据图象得S=1 cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4 cm2.注意点:(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.2 4 6 8 ……小结与作业课堂小结:通过本节课的学习你有哪些收获?课堂作业:课本P4 习题 1~4家庭作业:《数学同步导学九下》P4 随堂演练实践与探索1 例1.在同一直角坐标系中,画出函数22xy=与222+=xy的图象.解列表.描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数22xy=与222-=xy的图象之间的关系吗?x …-3 -2 -1 0 1 2 3 …22xy=…18 8 2 0 2 8 18 …222+=xy…20 10 4 2 4 10 20 …实践与探索2例2.在同一直角坐标系中,画出函数12+-=xy与12--=xy的图象,并说明,通过怎样的平移,可以由抛物线12+-=xy得到抛物线12--=xy.回顾与反思抛物线12+-=xy和抛物线12--=xy分别是由抛物线2xy-=向上、向下平移一个单位得到的.探索如果要得到抛物线42+-=xy,应将抛物线12--=xy作怎样的平移?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象.221xy=,2)2(21+=xy,2)2(21-=xy,并指出它们的开口方向、对称轴和顶点坐标.解列表.描点、连线,画出这三个函数的图象,如图26.2.5所示.x …-3-2-1 0 1 2 3 …221xy=…2922121229…2)2(21+=xy…212122258225…2)2(21-=xy…22582922121…它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0).探索抛物线2)2(21+=xy和抛物线2)2(21-=xy分别是由抛物线221xy=向左、向右平移两个单位得到的.如果要得到抛物线2)4(21-=xy,应将抛物线221xy=作怎样的平移?教学难点识图能力的培养教具准备投影仪,胶片.课型新授课教学过程初备统复备情境导入由前面的知识,我们知道,函数22xy=的图象,向上平移2个单位,可以得到函数222+=xy的图象;函数22xy=的图象,向右平移3个单位,可以得到函数2)3(2-=xy的图象,那么函数22xy=的图象,如何平移,才能得到函数2)3(22+-=xy的图象呢?实践与探索1 例1.在同一直角坐标系中,画出下列函数的图象.221xy=,2)1(21-=xy,2)1(212--=xy,并指出它们的开口方向、对称轴和顶点坐标.解(1)列表:略(2)描点:(3)连线,画出这三个函数的图象,如图26.2.6所示.观察:它们的开口方向都向,对称轴分别为、、,顶点坐标分别为、、.请同学们完成填空,并观察三个图象之间的关系.实践与探索1 例1.通过配方,确定抛物线6422++-=xxy的开口方向、对称轴和顶点坐标,再描点画图.解6422++-=xxy[]8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=xxxxxx因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8).由对称性列表:注意点:(1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到;(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.探索:对于二次函数cbxaxy++=2,你能用配方法求出它的对称轴和顶点坐标吗?实践与探索2例2.已知抛物线9)2(2++-=xaxy的顶点在坐标轴上,求a的值.分析顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等于0;(2)顶点在y 轴上,则顶点的横坐标等于0.实践与探索2例2.某产品每件成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间关系如下表:x(元)130 150y(件)70 50若日销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售价定为多少元?此时每日销售利润是多少?分析日销售利润=日销售量×每件产品的利润,因此主要是正确表示出这两个量.小结与作业回顾与反思最大值或最小值的求法,第一步确定a的符号,a>0有最小值,a<0有最大值;第二步配方求顶点,顶点的纵坐标即为对应的最大值或最小值.课堂作业:如图26.2.8,在Rt⊿ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)用含y的代数式表示AE;(2)求y与x之间的函数关系式,并求出x的取值范围;(3)设四边形DECF的面积为S,求S与x之间的函数关系,并求出S的最大值.家庭作业:《数学同步导学九下》P18 随堂演练教学后记实践与探索1 例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是)0(2<=aaxy.此时只需抛物线上的一个点就能求出抛物线的函数关系式由题意,得点B的坐标为(0.8,-2.4),又因为点B在抛物线上,将它的坐标代入)0(2<=aaxy,得28.04.2⨯=-a所以415-=a.因此,函数关系式是2415xy-=.实践与探索1 例1.如图26.3.1,一位运动员推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=xxy,问此运动员把铅球推出多远?解如图,铅球落在x轴上,则y=0,因此,035321212=++-xx.解方程,得2,1021-==xx(不合题意,舍去).所以,此运动员把铅球推出了10米.探索此题根据已知条件求出了运动员把铅球推出的实际距离,如果创设另外一个问题情境:一个运动员推铅球,铅球刚出手时离地面35m,铅球落地点距铅球刚出手时相应的地面上的点10m,铅球运行中最高点离地面3m,已知铅球走过的路线是抛物线,求它的函数关系式.你能解决吗?试一试.实践与探索2例2.如图26.3.2,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?(精确到0.1m)分析这是一个运用抛物线的有关知识解决实际问题的应用题,首先必须将水流抛物线放在直角坐标系中,如图26.3.3,我们可以求出抛物线的函数关系式,再利用抛物线的性质即可解决问题.小结与作业回顾与反思确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:(1)一般式:)0(2≠++=acbxaxy,给出三点坐标可利用此式来求.(2)顶点式:)0()(2≠+-=akhxay,给出两点,且其中一点为顶点时可利用此式来求.课堂作业:在一场篮球赛中,队员甲跳起投篮,当球出手时离地高2.5米,与球圈中心的水平距离为7米,当球出手水平距离为4米时到达最大高度4米.设篮球运行轨迹为抛物线,球圈距地面3米,问此球是否投中?家庭作业:《数学同步导学九下》P24 随堂演练情境导入给出三个二次函数:(1)232+-=xxy;(2)12+-=xxy;(3)122+-=xxy.它们的图象分别为观察图象与x轴的交点个数,分别是个、个、个.你知道图象与x轴的交点个数与什么有关吗?另外,能否利用二次函数cbxaxy++=2的图象寻找方程)0(02≠=++acbxax,不等式)0(02≠>++acbxax或)0(02≠<++acbxax的解?实践与探索1 例1.画出函数322--=xxy的图象,根据图象回答下列问题.(1)图象与x轴、y轴的交点坐标分别是什么?(2)当x取何值时,y=0?这里x的取值与方程322=--xx有什么关系?(3)x取什么值时,函数值y大于0?x取什么值时,函数值y小于0?解图象如图26.3.4,(1)图象与x轴的交点坐标为(-1,0)、(3,0),与y轴的交点坐标为(0,-3).(2)当x= -1或x=3时,y=0,x的取值与方程0322=--xx的解相同.(3)当x<-1或x>3时,y>0;当 -1<x<3时,y<0.例2.(1)已知抛物线324)1(22-+++=kkxxky,当k= 时,抛物线与x轴相交于两点.(2)已知二次函数232)1(2-++-=aaxxay的图象的最低点在x轴上,则a= .(3)已知抛物线23)1(2----=kxkxy与x轴交于两点A(α,0),B(β,0),且1722=+βα,则k的值是.分析(1)抛物线324)1(22-+++=kkxxky与x轴相交于两点,相当于方程324)1(22=-+++kkxxk有两个不相等的实数根,即根的判别式⊿>0.(2)二次函数232)1(2-++-=aaxxay的图象的最低点在x轴上,也就是说,方程232)1(2=-++-aaxxa的两个实数根相等,即⊿=0.(3)已知抛物线23)1(2----=kxkxy与x轴交于两点A(α,0),B(β,0),即α、β是方程023)1(2=----kxkx的两个根,又由于1722=+βα,以及αββαβα2)(222-+=+,利用根与系数的关系即可得到结果.实践与探索1例1.利用函数的图象,求下列方程的解:(1)0322=-+xx;(2)02522=+-xx.分析上面甲乙两位同学的解法都是可行的,但乙的方法要来得简便,因为画抛物线远比画直线困难,所以只要事先画好一条抛物线2xy=的图象,再根据待解的方程,画出相应的直线,交点的横坐标即为方程的解.解(1)在同一直角坐标系中画出函数2xy=和32+-=xy的图象,如图26.3.5,得到它们的交点(-3,9)、(1,1),则方程0322=-+xx的解为–3,1.(2)解题略实践与探索2例2.利用函数的图象,求下列方程组的解:(1)⎪⎩⎪⎨⎧=+-=22321xyxy;(2)⎩⎨⎧+=+=xxyxy2632.分析(1)可以通过直接画出函数2321+-=xy和2xy=的图象,得到它们的交点,从而得到方程组的解;(2)也可以同样解决.当1≤x≤2。
二次函数教学设计(精选9篇)
二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。
第22章二次函数,教案
第22章二次函数,教案篇一:20XX最新人教版第二十二章二次函数教案第22章二次函数第一课时篇二:20XX新人教版22章二次函数全章教案第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章二次函数教案(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时,具体安排如下:22.1节二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
②学会观察、归纳、概括函数图象的特点。
③经历二次函数图象平移的过程。
④了解y=ax2,y=a(x+m)2,y=a(x+m)2+n三类二次函数图象之间的关系。
⑤归纳数学平移变换的特征并加以总结。
⑥经历二次函数解析式恒等变形的过程。
⑦会根据二次函数的解析式,确定二次函数的开口方向,对称轴,顶点坐标。
⑧能运用配方法将c=2变换成k+axy+bx-=2)y+(的的形式。
hxa⑨了解二次函数与二次方程的相互关系。
探索二次函数的变化规律,掌握函数的最大值、最小值及函数的增减性的概念及方法。
⑩体会二次函数是一类最优化问题的数学模型。
经历数学建模的基本过程。
感受数学的应用价值。
发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。
(2)学法教法建议1.在教学上要注重引入二次函数概念的现实背景,让学生感受其实际意义,激发学生的学习兴趣;并注意让学生在学习的过程和实际应用中逐步深化对概念的理解和认识。
2. 教材注重与学生已有知识的联系,引导学生与原有的知识联系、比较,经历对知识拓展、归纳、更新的过程。
3. 教材注意内容的呈现方式,让学生参与知识的发生、发展过程。
注重在具体二次函数的研究中掌握方法,理解原理(如图象的变换)。
4. 教材注意沟通二次函数和一元二次方程、不等式的联系和相互转化,提供学生进行探究性学习的题材,重视学生对知识综合应用能力的培养。
课题22.1.2二次函数(第二课时)教学目标x的图象,理解抛物线的知识与技能使学生会用描点法画出y=a2有关概念。
过程与方法使学生经历、探索二次函数y=ax2图象性质的过程。
情感态度与价值观培养学生观察、思考、归纳的良好思维习惯教学重点使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象、会用待定系数法确定二次函数y=ax2的解析式;教学难点用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。
课时安排一课时课前准备教学过程一、情境导入师:1,同学们可以回想一下,一次函数的性质是如何研究的?2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?——图象3.一次函数的图象是什么?那么二次函数的图象是什么?板书课题二、范例x的图象。
师生:画二次函数y=2解:(1)列表:在x的取值范围内列出函数对应值表:(生独立完成)x…-3-2-10123…y…9410149…(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函x的图象,如图所示。
数y=2师:可做适当演示;提问:观察这个函数的图象,它有什么特点?生:讨论师:抛物线概念:像这样的曲线通常叫做抛物线。
顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做、议一议当a>0时,抛物线y=a 2x 开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。
图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)点A 与点B 横坐标大小关系如何?是否都小于0?2) 点A 与点B 纵坐标大小关系如何?(3) 点C 与点D 横坐标关系如何?是否都大于0?(4) 点C 与点D 纵坐标大小关系如何?师生明确:当X<0时,函数值y 随着x 的增大而______,当X>O 时,函数值y 随X 的增大而______;当X =______时,函数值y=a 2x (a>0)取得最值,最 值y=______3.观察函数y =-2x 、y=-22x 的图象, 让学生讨论、交流,达成共识:当a<O 时,抛物线y=ax 2开口 ,在对称轴的左边,曲线自左向右 ;在对称轴的右边,曲线自左向右 , 是抛物线上位置最高的点。
图象的这些特点,反映了当a<O 时,函数y=a 2x 的性质;进一步明确:当x<0时,函数值y 随x 的增大而 ;与x>O 时,函数值y 随x 的增大而 ,当x=0时,函数值y =a 2x 取得最 值是。
五、课堂小结: 1.如何画出函数y=a 2x 的图象?2.函数y =a 2x 具有哪些性质?师:可以引导学生以表格的形式记笔记。
抛物线 开口方向 对称轴 顶点坐标y=ax 2 a>0 a<05、求二次函数y =mx 2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质五、小结:通过本节课的学习,你学到了什么知识?有何体会?1.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则:a 0;b 0;c 0;acb42- 0。
2.二次函数y=ax2+bx+c(a≠0)的图像与系数a、b、c、acb42-的关系:系数的符号图像特征a的符号a>0.抛物线开口向a<0抛物线开口向b的符号b>0.抛物线对称轴在y轴的侧b=0抛物线对称轴是轴b<0抛物线对称轴在y轴的侧c的符号c>0.抛物线与y轴交于C=0抛物线与y轴交于c<0抛物线与y轴交于acb42-的符号acb42->0.抛物线与x 轴有个交点acb42-=0抛物线与x 轴有个交点acb42-<0抛物线与x 轴有个交点六、作业:课后反思yx o出S的最大值,并确定当单价在什么范围内变化时,利润随单价的增大而增大?(3)若超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少元?学生独立分析完成,板书解题过程。
四、反思感悟:1、这节课学习了用什么知识解决哪类问题?2、解决问题的一般步骤是什么?应注意哪些问题?3、学到了哪些思考问题的方法?五、布置作业:六、板书设计补充练习:为改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住.若设绿化带的BC边长为xm,绿化带的面积为ym².(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,满足条件的绿化带的面积最大?课后反思时间科目数学年级九年级课题22.3 实际问题与二次函数(第二课时)图26.2.6练习:如图,有一个抛物线形的水泥门洞.门洞的地面宽度为8m,两侧距地面4 m高处各有一盏灯,两灯间的水平距离为6 m.求这个门洞的高度.(精确到0.1 m)小结:1、在实际应用中,用待定系数法求二次函数的函数关系式的关键是什么?作业:1、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4 m,跨度为10 m.如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图,在对称轴右边1 m处,桥洞离水面的高是多少?2、预习下一节的内容。
课后反思一、情境导入生活中,我们常会遇到与二次函数及其图象有关的问题.请与同伴共同研究,尝试解决下面的问题. 问题1某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m .水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示. 根据设计图纸已知:在图(2)所示直角坐标系中,水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是y =-x 2+2x +54. ①喷出的水流距水平面的最大高度是多少?②如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?分析:本题已经建立直角坐标系,并告诉了关系式,直接运用关系式求解即可。
第①题求最大高度,即求最大值;第②题求半径,即求OB 的长,没求过,其实通过点B 的横坐标即可得到。
已知关系式,能用y =0,求x 的值吗?图26.3.2(第1题)处(即OC=4)达到最高点,最高点高为3 m.已知铅球经过的路线是抛物线,根据图示的直角坐标系,你能算出该运动时间 科目 数学 年级 九年级课题二次函数的复习教学目标知识与技能 掌握本章重要的知识点,能用相关函数知识解决实际问题。
过程与方法 通过梳理本章知识,回顾解决实际问题中所涉及数形结合思想,感受数学的应用价值,激发学习兴趣。
情感态度与价值观在这用本章知识解决具体问题过程中,进一步增强数学应用意识,感受数学的应用价值,激发学习兴趣。
教学重点 本章知识结构梳理及其应用。
教学难点 灵活运用二次函数性质解决实际问题。
课时安排 一课时课前准备教学过程一、情境导入1. 比较下列二次函数的图象特征:开口方向、对称轴、顶点坐标,最值情况,函数单调性等。
2ax y =,y =ax 2+k ,y =a (x+h )2,k m x a y ++=2)(,y=ax 2+bx+c二次函数y=ax 2+bx+c 的图象的对称轴为x=-ab2,最值为y=ab ac 442-2.二次函数解析式的求法:一般式与顶点式一般式:)0(2≠++=a c bx ax y 条件:抛物线上任意三点顶点式:k m x a y ++=2)(条件:顶点+抛物线上任意一点例题讲解与练习:1.二次函数(1)(2)y x x =--的一般式是 ,二次项系数,一次项系数,常数项分别是 。