SOT-Z-3.6中文资料

合集下载

UC3846N中文资料

UC3846N中文资料
元器件交易网

UC3846
SMPS Controller
Features
• Automatic Feed Forward Compensation • Programmable Pulse by Pulse Current Limiting • Automatic Symmetry Correction in Push-Pull Configuration • Enhanced Load Response Characteristics • Parallel Operation Capability for Modulator Power Systems • Differential Current Sense Amplifier with Common Mode Range • Double Pulse Suppression • 200mA Totem-Pole Outputs • ±2% Band gap Reference • Under-Voltage Lockout • Soft-Start Capability • Shutdown Terminal • 500KHz Operation
2
元器件交易网
UC3846
rical Characteristics
(VCC= 15V,TA=0°C to +70°C, unless otherwise specified) Parameter OSCILLATOR SECTION (Note 2) Initial Accuracy Frequency Change with Voltage Frequency Change with Temperature (Note 6) Sync Output High Level Sync Output Low Level Sync Input High Level Sync Input Low Level Sync Input Current ERROR AMPLIFIER SECTION Input Offset Voltage Input Bias Current Input Offset Current Common-Mode Range Open Loop Voltage Gain Unity Gain Bandwidth(Note 6) Common Mode Rejection Ratio Power Supply Rejection Ratio Output Sink Current Output Source Current High Output Voltage Low Output Voltage Amplifier Gain (Note 1, 3) Maximum Differential Input Signal (V4 - V3) (Note 1) Input Offset Voltage (Note 1) Common Mode Rejection Ratio Power Supply Rejection Ratio Input Bias Current (Note 1) Input Offset Current (Note 1) Delay to Outputs (Note 6) VIO IBIAS IIO VCM GVO BW CMRR PSRR ISINK ISOURCE VOH VOL GV VI(DIFF,MAX) VIO CMRR PSRR IBIAS IIO tD VCC = 8 to 40V VO = 1.2 to 3V, VCM = 2V TJ = 25°C VCM = 0 to 38V, VCC = 40V VCC = 8 to 40V VIO = -15mV to 5V, V7 = 2.5V RL = 15KΩ RL = 15KΩ V3 = 0V, Pin 1 open RL = 15KΩ, Pin 1 open V1 = 0.5V, Pin 1 open VCM = 1 to 12V VCC = 8 to 40V V1 = 0.5V, Pin 7 open V1 = 0.5V, Pin 7 open TJ = 25°C 0 80 0.7 75 80 2 -0.4 4.3 2.5 1.1 60 60 0.5 -0.6 40 105 1.0 100 105 6 -0.5 4.6 0.7 2.75 1.2 5 83 84 -2.5 0.08 200 5 -1 250 VCC2 1 3.0 25 -10 1 500 mV uA uA V dB MHz dB dB mA mA V V V V mV dB dB uA uA ns ACCUR ∆f/∆VCC ∆f/∆T VOH(SYNC) VOL(SYNC) VIH(SYNC) VIL(SYNC) II(SYNC) V8 = 0V V8 = 0V Sync Voltage = 3.9V, V8 = 0V TJ = 25°C VCC = 8 to 40V 39 3.9 3.9 43 1 1 4.35 2.3 1.3 47 2 2.5 2.5 1.5 KHz % % V V V V mA Symbol Conditions Min. Typ. Max. Unit

3N60资料

3N60资料

UNISONIC TECHNOLOGIES CO., LTD3N60 Power MOSFET3 Amps, 600/650 VoltsN-CHANNEL POWER MOSFETDESCRIPTIONThe UTC 3N60 is a high voltage and high current power MOSFET , designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in powersupplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.FEATURES* R DS(ON)= 3.6Ω @V GS = 10 V* Ultra low gate charge ( typical 10 nC )* Low reverse transfer capacitance ( C RSS = typical 5.5 pF ) * Fast switching capability * Avalanche energy specified* Improved dv/dt capability, high ruggednessSYMBOL1.Gate*Pb-free plating product number: 3N60LORDERING INFORMATIONOrder NumberPin AssignmentNormal Lead Free Plating Package1 2 3Packing3N60-x-TA3-T 3N60L-x-TA3-TTO-220 G D S TubeABSOLUTE MAXIMUM RATINGS (T C = 25℃, unless otherwise specified)PARAMETER SYMBOL RATINGS UNIT3N60-A 600 VDrain-Source Voltage 3N60-B V DSS650 VGate-Source Voltage V GSS ±30 V Avalanche Current - (Note 1) I AR 3.0 AT C = 25°C 3.0 AContinuous Drain Current T C = 100°C I D1.9 APulsed Drain Current, T P Limited by T JMAX - (Note 1) I DM 12 A Avalanche Energy, Single Pulsed (Note 2) E AS 200 mJ Avalanche Energy, Repetitive, Limited by T JMAX E AR 7.5 mJ Peak Diode Recovery dv/dt (Note 3) dv/dt 4.5 V/ns Power Dissipation P D 75 W Junction Temperature T J +150 Storage Temperature T STG -55 ~ +150Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.Absolute maximum ratings are stress ratings only and functional device operation is not implied.THERMAL DATAPARAMETER SYMBOL TYP MAX UNITJunction-to-Case θJC 1.67 °C/W Junction-to-Ambient θJA 62.5 °C/WELECTRICAL CHARACTERISTICS (T C =25℃, unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNIT Off Characteristics3N60-A 600 VDrain-Source Breakdown Voltage 3N60-B BV DSS V GS = 0 V, I D = 250 µA650 VV DS = 600 V, V GS = 0 V 10µADrain-Source Leakage Current I DSSV DS = 480 V, T C = 125°C 100µAForward V GS = 30 V, V DS = 0 V 100nAGate-Source Leakage Current Reverse I GSSV GS = -30 V, V DS = 0 V -100nABreakdown Voltage TemperatureCoefficientBV DSS /△T J I D = 250 µA, Referenced to 25°C 0.6 V/On Characteristics Gate Threshold Voltage V GS(TH) V DS = V GS , I D = 250 µA 2.0 4.0V Drain-Source On-State Resistance R DS(ON) V GS = 10 V, I D = 1.5A 2.8 3.6ΩDynamic Characteristics Input Capacitance C ISS 350 450pFOutput Capacitance C OSS 50 65pFReverse Transfer Capacitance C RSSV DS = 25 V, V GS = 0 V, f = 1MHz 5.5 7.5pF Switching Characteristics Turn-On Delay Time t D(ON) 10 30ns Turn-On Rise Time t R 30 70ns Turn-Off Delay Time t D(OFF) 20 50nsTurn-Off Fall Time t FV DD = 300V, I D = 3.0 A, R G = 25Ω(Note 4, 5) 30 70ns Total Gate Charge Q G 10 13nCGate-Source Charge Q GS 2.7 nCGate-Drain Charge Q DDV DS = 480V,I D = 3.0A, V GS = 10 V(Note 4, 5)4.9 nCELECTRICAL CHARACTERISTICS(Cont.)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITSource- Drain Diode Ratings and Characteristics Drain-Source Diode Forward Voltage V SD V GS = 0 V, I S = 3.0 A 1.4VMaximum Continuous Drain-SourceDiode Forward CurrentI S 3.0AMaximum Pulsed Drain-Source DiodeForward CurrentI SM 12AReverse Recovery Time t RR 210 ns Reverse Recovery Charge Q RR V GS = 0 V, I S = 3.0 A,dI F /dt = 100 A/µs (Note 4) 1.2 µCNotes: 1. Repetitive Rating : Pulse width limited by T J2. L = 40mH, I AS =3.0A, V DD = 50V, R G = 25 Ω, Starting T J = 25°C 3. I SD ≤ 3.0A, di/dt ≤200A/µs, V DD ≤ BV DSS , Starting T J = 25°C4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%5. Essentially independent of operating temperatureTEST CIRCUITS AND WAVEFORMSV DDV GS (Driver)I SD (D.U.T.)Body DiodeForward Voltage DropV DS(D.U.T.)Fig. 1A Peak Diode Recovery dv/dt Test CircuitFig. 1B Peak Diode Recovery dv/dt WaveformsTEST CIRCUITS AND WAVEFORMS (Cont.)R LDDV DS90%10%V GStFig. 2A Switching Test Circuit Fig. 2B Switching WaveformsFig. 3A Gate Charge Test CircuitFig. 3B Gate Charge Waveform10VLV DDI ASFig. 4A Unclamped Inductive Switching Test Circuit Fig. 4B Unclamped Inductive Switching WaveformsTYPICAL CHARACTERISTICSD r a i n -S o u r c e B r e a k d o w n V o l t a g e , B V D S S (N o r m a l i z e d )Junction Temperature , T J (℃)1.21.11.00.90.8Breakdown Voltage Variation vs .Junction Temperature-100D r a i n -S o u r c e O n -R e s i s t a n c e , R D S (O N ) (N o r m a l i z e d )Junction Temperature , T J (℃)-50502001001503.002.01.00.50.01.52.5On-Resistance V ariation vs.Junction Temperature1010.1Drain -Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )1001011000Maximum Safe Operating AreaD r a i n C u r r e nt , I D (A )Case Temperature , T C (℃)75100012550251.01.52.02.53.0Maximum Drain Current vs .Case Temperature0.5150101Drain-to-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )On-State Characteristics0.1Gate-Source Voltage , V GS (V)D r a i n C u r r e n t , I D (A )Transfer Characteristics1010.1TYPICAL CHARACTERISTICS(Cont.)D r a i n -S o u r c e O n -R e s i s t a n c e , R D S (O N ) (Ω)Drain Current , I D (A)12456On-Resistance Variation vs .Drain Current and Gate Voltage310.10.2Source-Drain Voltage , V SD (V)R e v e r s e D r a i n C u r r e n t , I D R (A )On State Current vs.Allowable Case Temperature 1.80.40.60.81.01.2 1.61.4106000Drain-SourceVoltage , V DS (V)C a p a c i t a n c e (p F )Capacitance Characteristics(Non-Repetitive )G a t e -S o u r c e V o l t a g e , V G S (V )Total Gate Charge , Q G (nC)26108101246420Gate Charge CharacteristicsT h e r m a l R e s p o n s e , θJ C (t )101010101010101Square Wave Pulse Duration , t 1(sec)Transient Thermal Response Curve。

CDZ3.6B中文资料

CDZ3.6B中文资料

Ta=25℃ IZ=5mA n=30pcs
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 AVE:0.0944nA
180 170 160 150 140 130 120 110 100
3.8
3.7
3.6
AVE:3.698V
3.5
Vz DISPERSION MAP
IR DISPERSION MAP
元器件交易网
CDZ3.6B
Diodes
Zener diode
CDZ3.6B
Applications Constant voltage control External dimensions (Unit : mm)
0.16±0.05
Land size figure (Unit : mm)
0.9±0.05
1.0±0.05
① ②
VMN2
0.156 0.35±0.1 0.37±0.03
Structure
Construction Silicon epitaxial planar
ROHM : VMN2 ① ② dot (year week factory) + day EX. CDZ3.6B
Ct DISPERSION MAP
10000
DYNAMIC IMPEDANCE:Zz(Ω)
1000
100
10 0.1 1 ZENER CURRENT:Iz(mA) Zz-Iz CHARACTERISTICS 10
4/4
元器件交易网
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document are no antiradiation design.

常用近500个三极管(MOSFET)中文资料

常用近500个三极管(MOSFET)中文资料

9011,9012,9013,9014,8050,8550三极管的区别9011 NPN 30V 30mA 400mW 150MHz 放大倍数20-809012 PNP 50V 500mA 600mW 低频管放大倍数30-909013 NPN 20V 625mA 500mW 低频管放大倍数40-1109014 NPN 45V 100mA 450mW 150MHz 放大倍数20-908050 NPN 25V 700mA 200mW 150MHz 放大倍数30-1008550 PNP 40V 1500mA 1000mW 200MHz 放大倍数40-140详情如下:90系列三极管参数90系列三极管大多是以90字为开头的,但也有以ST90、C或A90、S90、SS90、UTC90开头的,它们的特性及管脚排列都是一样的。

9011 结构:NPN集电极-发射极电压30V集电极-基电压50V射极-基极电压5V集电极电流0.03A耗散功率0.4W结温150℃特怔频率平均370MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989012 结构:PNP集电极-发射极电压-30V集电极-基电压-40V射极-基极电压-5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009013 结构:NPN集电极-发射极电压25V集电极-基电压45V射极-基极电压5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009014 结构:NPN集电极-发射极电压45V集电极-基电压50V射极-基极电压5V集电极电流0.1A耗散功率0.4W结温150℃特怔频率最小150MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009015 结构:PNP集电极-发射极电压-45V集电极-基电压-50V射极-基极电压-5V集电极电流0.1A耗散功率0.45W结温150℃特怔频率平均300MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009016 结构:NPN集电极-发射极电压20V集电极-基电压30V射极-基极电压5V集电极电流0.025A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989018 结构:NPN集电极-发射极电压15V集电极-基电压30V射极-基极电压5V集电极电流0.05A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-198三极管85508550是一种常用的普通三极管。

LESDA6V1W6T1G SOT-363 规格书LRC 推荐

LESDA6V1W6T1G SOT-363 规格书LRC 推荐

LESDA6V1W6T1G Transil array for data protectionGeneral DescriptionThe L ESDA6V1W6T1G is a monolithic suppressor designed to protect components connected to data and transmission lines against ESD. The device clamp the voltage just above the logic level supply for positive transients, and to a diode drop below ground for negative transients.Applicationsz Computers z Printersz Communication systems z Cellular phones handsets and accessories z Wireline and wireless telephone sets zSet top boxesFeaturesz 5 Unidirectional Transil functions z Breakdown voltage:z V BR = 6.1 V min. and 25 V min. z Low leakage current: < 1 mAz Very small PCB area < 4.2 mm 2 typically z High ESD protection level: up to 25 kV z High integration Complies with the following standardsIEC61000-4-2Level 4 15 kV (air discharge)9 kV(contact discharge)MIL STD 883E - Method 3015-7 Class 325 kV HBM (Human Body Model)Functional diagramLE SD 6V1W 6T1G Absolute Ratings (T amb =25°C )SymbolParameterValueUnitsP PP Peak Pulse Power (t p = 8/20μs)L ESDA6V1W6T1G 100 W T L Maximum lead temperature for soldering during 10s260 °C T stg Storage Temperature Range -40 to +125 °C T opOperating Temperature Range-40 to +125°CLESHAN RADIO COMPANY, LTD.z Device marking:WFS-LESDA6V1W6T1Gz S- Prefix for Automotive and Other ApplicationsRequiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.10090807060504030201000 1.0 3.0 5.0BIAS VOLTAGE (VOLTS)T Y P I C A L C A P A C I T A N C E (p F ) 4.02.01 M H z F R E Q U E N C Y1009080706050403020100T A , AMBIENT TEMPERATURE (°C)P E A K P U L S E D E R A T I N G I N % O F P E A K P O W E R O R C U R R E N T @ T A = 25C°Figure 5. Forward VoltageFigure 6. Clamping Voltage versus Peak Pulse Current (Reverse Direction)0.0010.011.0V F , FORWARD VOLTAGE (VOLTS)100101.0V C , CLAMPING VOLTAGE (VOLTS)I , P E A K P U L S E C U R R E N T (A M P S )p p 0.1I , F O R W A R D C U R R E N T (A )F Figure 3. Pulse Derating CurveFigure 4. Capacitance。

最新BS1363中文版汇总

最新BS1363中文版汇总

B S1363中文版目录责任委员会前言1 范围2 使用条件3 术语和定义4 概述5 型式试验的一般条件6 分类7 标记和标签8 空气间隙、爬电距离和固体绝缘9 带电零件的可触及性10 接地措施11 接线端和接线头12插头的结构13 (不使用)14耐老化和耐潮15绝缘电阻和电气强度16 温升17 (不使用)18 (不使用)19 软线和线箍的连接20 机械强度21 螺丝、载流零件和连接件22 耐热23 耐异常热、火和电痕24 耐过份的残留应力和耐腐蚀25 夹紧型(无螺纹)接线端的电气及热应力附录A(标准的)校正管的结构和校正附录B(标准的)空气间隙和爬电距离的测量附录C(标准的)对比电弧径迹指数值(CTI)和耐漏电起痕指纹值(PTI)的测定附录D(标准的)额定脉冲耐压、额定电压和超压标准之间的关系附录E(标准的)污染等级附录F(标准的)脉冲电压试验图1 试验插销图2a)弹性外壳机械强度试验装置图2b)用于图2a)的硬木板图4a)插销的尺寸及排序图4b) ISODs允许的凹痕图5 用于插头插销的量规图6 插头盖安装螺丝的试验装置图7 安装面板图8 弹性插头的插销绕曲装置图9 插头插销的绝缘衬套磨损试验装置图10 高温压力试验装置图11 插头的通过量规图17a)温升试验的试验装置图17b)温升试验的模拟面板图18 弯曲试验装置图19 用于熔断器夹试验的实心管图20 滚筒图23 压力试验装置图24 球压试验图28 校正管图29 校正管用的校正夹具图32 插销的试验装置图33 插销的扭力试验装置表1 试验顺序表2 与软线尺寸有关的弯折及线夹试验的电流、熔断器额定值及负载表3 a 螺丝和螺母的力矩值表3b 传动装置试验力表4 允许温升表5 (不使用)表6 软线的连接表7 灼热丝试验的应用表8 基本绝缘的最小空气间隙表9 基本绝缘的最小爬电距离表B.1 宽度“X”的最小值表D.1 由低压直接给电气附件提供的额定脉冲耐受电压表F.1 在海平面上,验证空气间隙的试验电压标准参考清单1 范围BS 1363此部分阐明了家用、商用和轻工业、正常使用中有特殊安全性参考的、相线及中线插销带绝缘内衬的13A带熔断器插头的要求。

PZTA06贴片三极管 SOT-323三极管封装PZTA06规格参数

PZTA06贴片三极管 SOT-323三极管封装PZTA06规格参数
FEATURES Low Voltage and High Current General Purpose Amplifier Applications
SOT-223
1. BASE 2. COLLECTOR
3. EMITTER
MAXIMUM RATINGS (Ta=25℃ unless otherwise noted)
【 南京南山半导体有限公司 — 长电三极管选型资料】

Symbol
A A1 A2 b c D D1 E E1 e e1 L θ
Dimensions In Millimeters
Min
Max
1.520
1.800
0.000
0.100
1.500
1.700
0.660
0.820
0.250
0.014
0.244
0.252
0.114
0.122
0.130
0.146
0.269
0.278
0.091(BSC)
0.177
0.185
0.035
0.045

10°
SOT223 包装(SOT223 PACKING)
编带包装(Tape&Reel Packing):
1.包装流程图(Packing procedure):
【 南京南山半导体有限公司 — 长电三极管选型资料】

JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY CO., LTD
SOT-223 Plastic-Encapsulate Transistors
PZTA06 TRANSISTOR (NPN)
Parameter

ZW10U6X系列数据手册

ZW10U6X系列数据手册

低字节。CRC 计算前面所有字节的一共 4 字节。
C 语言实现代码:
/****************************************************************************
有的型号都支持外部地址或内部地址。其中 ZW10U63 支持外部引脚定义芯片地
址。外部引脚定制芯片地址为 1 脚 bit0。最多可定义 2 个设备,除了 0 地址外,
用户可以用电阻上拉(代表 1)或下拉(代表 0)定义芯片的地址。也就是说用户
可以通过外部引脚定义 00,01 的地址。
命令:
Add0
Cmd2
ZW10U6x 系列
高性能工业级 16 位高精度 UART 转 PWM 接口 SOC 芯片
一、 功能概述
● 接口标准
- 通用的 UART 异步通讯协议,固定波特率 4800,1 位开始,8 位数据,1 位停止,无校验, TTL3.3-5V。 - 1 个使能脚(ZW10U6xE 后缀带 E 的),低功耗应用中可以让芯片进入休眠模式。 - 总线可以通过外部引脚编址(0,1)并联 2 个设备。 ● PWM 输出特性 - PWM 输出范围 0.45HZ-700KHZ。 - PWM 频率为 16 位精度。 - 占空比调节方式(0-128)。 ● 高精度内部振荡器 - 出厂时精度校准为±1%。 - 内部带晶振故障检测电路。 ● 超宽的工作电压 - 宽工作电压范围。(1.8V-5.5V)。 - 工业级和扩展级温度范围。 - 上电自复位无需外部电路。 - 上电电压检测电路,低电压自锁电路。 ● 超低的功耗 - 3V 25 条件下的功耗 - 工作模式 2.2mA 。 - 空闲模式 0.5mA 。 - 掉电模式 <1 uA 。 ● I/O 和封装 - 超小的封装 SOT23-6,8 脚 UDFN 封装。特别适合便携式低功耗的应用。 ● 电气特性 - 工作温度 -55°C 到+125°C。 - 存储温度 -65°C 到 +150°C。 - 各个引脚对地的电压 VCC+0.5V。 - 最大工作电压 6.0V。 - 每个 I/O 引脚的 DC 电流 40.0 mA。 - VCC 与 GND 引脚的 DC 电流 200.0 mA。

ELM98XXXA资料

ELM98XXXA资料

ELM98xxxA VOLTAGE REGULATOR■PIN CONFIGURATION123( TOP VIEW )SOT-89123( TOP VIEW )SOT-23■SERIES* Available 1.2V ~6.0V output voltage at 0.1V step as semi-custom-made IC■MARKINGSOT-89①②③④①: Represents the decimal digit of the Output Voltage②: Represents the integer digit of the Output Voltage③ : Represents the assembly lot numberA ~Z repeated (I,O,X excepted)④ : Represents the assembly lot number0~9 repeated■SELECTION GUIDEELM98 x x x A↑↑↑↑a b c d■BLOCK DIAGRAM■STANDARD CIRCUITSOT-23①②③④①: Represents the integer digit of the Output Voltage②: Represents the decimal digit of the Output Voltage③ : Represents the assembly lot number A ~Z repeated (I,O,X excepted)④ : Represents the assembly lot number~9 repeated■MAXIMUM ABSOLUTE RATINGS-40-20204060802.602.622.642.662.682.702.722.742.762.782.80T op (°C)V o u t (v )Vout - T op204060801001202.22.42.62.83.03.2Iout (mA)Vout - IoutV o u t (V )204060801000.20.40.60.81.01.21.41.61.82.00Iout (mA)V d i f (V )Vdif - Iout2.22.42.62.83.03.23.42.02.22.42.62.8Vin (V)Vo u t (V )Vout - Vin5.06.07.02.662.682.702.722.74Vin (V)V o u t (V )Top=25°CVout - Vin-40-200204060802.03.04.05.06.07.0T op(°C)I s s (μA )Iss - T opVin=4.7V12342.03.04.05.06.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response12342.02.53.03.54.04.55.05.56.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response12342.03.04.05.0T ime (ms)O u t p u t V o l t a g e (V )Load T ransient response2.0 4.0 6.08.010.02.03.04.05.06.07.0Vin (V)I s s (μA )Top=25°CIss - Vin204060801001201402.62.83.03.23.4Iout (mA)V o u t (V )Vout - Iout2.6 2.83.0 3.2 3.4 3.62.42.62.83.0Vin (V)V o u t (V )Vout - Vin4.05.06.07.02.962.983.003.023.04Vin (V)V o u t(V )Top=25°CVout - Vin-40-20204060802.902.922.942.962.983.003.023.043.063.083.10T op (°C)V o u t (v )Vout - Top204060801000.20.40.60.81.01.21.41.61.82.00Iout (mA)V d i f (V )Vdif - Iout2.04.06.08.010.02.04.06.0Vin (V)I s s (μA )Top=25°CIss - Vin-40-200204060802.04.06.0T op(°C)I s s (μA )Iss - T opVin=5.0V12342.03.04.05.06.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response12342.02.53.03.54.04.55.05.56.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input Transient Response12342.03.04.05.0T ime (ms)O u t p u t V o l t a g e (V )Load T ransient response204060801001201402.83.03.23.43.63.8Iout (mA)Vout - IoutV o u t (V )3.03.23.43.63.82.62.83.03.23.4Vin (V)Vo u t (V )Vout - Vin4.05.06.07.03.263.283.303.323.34Vin (V)V o u t (V )Top=25°CVout - Vin-40-20204060803.203.223.243.263.283.303.323.343.363.383.40T op (°C)V o u t (v )Vout - T op204060801000.20.40.60.81.01.21.41.61.82.00Iout (mA)V d i f (V )Vdif - Iout2.04.06.08.010.02.04.06.08.0Vin (V)I s s (μA )Top=25°CIss - Vin-40-200204060802.04.06.08.0T op(°C)I s s (μA )Iss - T opVin=5.3V12342.03.04.05.06.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response012342.02.53.03.54.04.55.05.56.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response12342.03.04.05.0T ime (ms)O u t p u t V o l t a g e (V )Load T ransient response204060801001201401601802004.64.85.05.25.4Iout (mA)V o u t (V )Vout - Iout4.6 4.85.0 5.2 5.44.44.64.85.0Vin (V)V o u t (V )Vout - Vin6.07.08.09.04.854.904.955.005.055.105.15Vin (V)V o u t(V )Top=25°CVout - Vin-40-20204060804.904.924.944.964.985.005.025.045.065.085.10T op (°C)V o u t (v )Vout - T op204060801000.20.40.60.81.01.21.41.61.82.00Iout (mA)V d i f (V )Vdif - Iout4.06.08.010.02.04.06.08.0Vin (V)I s s (μA )Top=25°CIss - Vin-40-200204060802.04.06.08.0T op(°C)I s s (μA )Iss - T opVin=7.0V12344.05.06.07.08.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response12344.05.06.07.0T ime (ms)O u t p u t V o l t a g e (V )Load T ransient response12344.04.55.05.56.06.57.07.58.0T ime (ms)I n p u t ,O u t p u t V o l t a g e (V )Input T ransient Response。

DW01 中文技术资料

DW01 中文技术资料

DW01A (文件编号:S&CIC0822)锂电池保护电路一、描述DW01A是一个锂电池保护电路,为避免锂电池因过充电、过放电、电流过大导致电池寿命缩短或电池被损坏而设计的。

它具有高精确度的电压检测与时间延迟电路。

二、主要特点工作电流低;过充检测4.3V,过充释放4.1V;过放检测2.4V,过放释放3.0V;过流检测0.15V,短路电流检测1.0V;充电器检测;过电流保护复位电阻;带自恢复功能工作电压范围广;小封装。

三、应用单一锂电池保护电路。

DW01A (文件编号:S&CIC0822)锂电池保护电路五、极限参数六、电气特性参数(除非特别指定,Tamb=25℃)过充电状态当从正常状态进入充电状态时,可以通过VDD检测到电池电压。

当电池电压进入到这充电状态时,VDD 电压大于VOC P,迟延时间超过TOC,M2关闭。

释放过充电状态进入过充电状态后,要解除过充电状态,进入正常状态,有两种方法。

●如果电池自我放电,并且VDD<VOCR,M2开启,返回到正常状态。

●在移去充电器,连接负载后,如果VDD<VOCP,M2开启,返回到正常模式。

过放电检测当由正常状态进入放电状态时,可以通过VDD检测到电池电压。

当电池电压进入过放电状态时,VDD电压小于VOD P,迟延时间超过TOD,则M1关闭。

释放过放电模式如果在过放电模式有一个充电器连接电池,电压将变为VCSI<VC HA和VDD>VODR,M1开启并返回到常模式;或者当负载悬空,VDD电压恢复到VDD>VODR,M1开启并返回到正常模式(自恢复功能)。

充电检测当一个充电器连接电池,电压将变为VCSI<VCHA,这样IC检测到充电器已接入。

过电流/短路电流检测在正常模式下,当放电电流太大时,由CSI管脚检测到电压大于VOIX(V OI1或V OI2),并且迟延大于TOIX(T OI1或T OI2),则代表过电流(短路)状态。

AD8606ARZ中文资料

AD8606ARZ中文资料
14 OUT D 13 –IN D
V+ 5
AD8608
TOP VIEW (Not to Scale)
12 +IN D 11 V– 10 +IN C
02731-004
概述
AD8605、AD8606和AD86081分别是单路、双路和四路、轨 到轨输入和输出、单电源放大器,具有极低失调电压、低 输入电压和电流噪声以及宽信号带宽等特性。这些放大器 采用ADI公司的DigiTrim®调整专利技术,无需激光调整便 可达到出色的精度。 低失调、低噪声、极低的输入偏置电流和高速度特性相结 合,使这些放大器适合各种应用。滤波器、积分器、光电 二极管放大器和高阻抗传感器等器件均可受益于这些特性 组合。宽带宽和低失真特性则有益于音频和其它交流应 用。具体应用包括光学控制环路、便携式和环路供电仪器 仪表以及便携式设备的音频放大。 AD8605 、 AD8606 和 AD8608 的额定温度范围为 −40°C 至 +125°C扩展工业温度范围。AD8605单通道放大器提供5引 脚SOT-23和5引脚WLCSP两种封装。AD8606双通道放大器 提供 8引脚 MSOP、 8引脚 WLSCP和窄体 SOIC表贴三种封 装。AD8608四通道放大器提供14引脚TSSOP和窄体14引脚 SOIC两种封装。5引脚和8引脚WLCSP封装器件是现有尺寸 最 小 的 表 贴 运 算 放 大 器 。 WLCSP 、 SOT-23 、 MSOP 和 TSSOP封装产品仅提供卷带和卷盘形式。
1
4
9 –IN C 8 OUT C
AD8605 ONLY
图3. 5引脚WLCSP(CB后缀)
图4. 14引脚SOIC_N(R后缀)
OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 14 OUT D –IN D +IN D V– +IN C –IN C OUT C

A2636 中文数据手册 V0.7

A2636 中文数据手册 V0.7

图 9. 建议的定位尺寸 图 9 所列尺寸是建议的开槽尺寸及单芯片的位置.
___________________________________________________________________________________________
或者是 800 与 1600 动态切换 z 内置去开关接触片弹跳影响 z 内置通电复位电路 z 内置稳压电路 z 内置 LED 驱动电路 z 内置时钟发生器,免晶振设计 z 最少的外围元件 z 绿色环保的错列双排插封装
技术指标
工作电压 接口类型 透镜放大比 系统时钟 解析度 帧频
工作电流
封装
4.5~5.5 伏
___________________________________________________________________________________________
版本:0.7
6/10
2008 年 8 月 29 日
10. 装配说明
A2636
3D U+P CMOS 光学鼠标单芯片
10.1 装配指导 图 7 示意单芯片与左右按键及 LED 的位置关系:
最小 值
0 4.5
2000 2.3 0
典型 值
5.0
2.4
800
最大值
40 5.5 100 4000 2.5 24 16 1600
单位
摄氏度 伏 毫伏
帧/秒 毫米 英寸/秒
g 点/英寸
注解 800或者1600
___________________________________________________________________________________________

SCI Bias Resistor Transistors数据手册说明书

SCI Bias Resistor Transistors数据手册说明书

MUN5312DW1,NSBC124EPDXV6,NSBC124EPDP6 Complementary Bias Resistor TransistorsR1 = 22 k W, R2 = 22 k WNPN and PNP Transistors with Monolithic Bias Resistor NetworkThis series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.Features•Simplifies Circuit Design•Reduces Board Space•Reduces Component Count•S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements;AEC-Q101 Qualified and PPAP Capable*•These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS CompliantMAXIMUM RATINGS(T A = 25°C both polarities Q1 (PNP) & Q2 (NPN), unless otherwise noted) Rating Symbol Max Unit Collector-Base Voltage V CBO50Vdc Collector-Emitter Voltage V CEO50Vdc Collector Current − Continuous I C100mAdc Input Forward Voltage V IN(fwd)40Vdc Input Reverse Voltage V IN(rev)10Vdc Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.ORDERING INFORMATIONDevice Package Shipping†MUN5312DW1T1G,SMUN5312DW1T1G*SOT−3633,000 / Tape & Reel NSVMUN5312DW1T3G*SOT−36310,000 / Tape & ReelMUN5312DW1T2G,NSVMUN5312DW1T2G*SOT−3633,000 / Tape & ReelNSBC124EPDXV6T1G,NSVBC124EPDXV6T1G*SOT−5634,000 / Tape & Reel NSBC124EPDXV6T5G SOT−5638,000 / Tape & Reel NSBC124EPDP6T5G SOT−9638,000 / Tape & Reel†For information on tape and reel specifications, including part orientation andtape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.MARKING DIAGRAMSPIN CONNECTIONS12/R=Specific Device CodeM=Date Code*G=Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location.SOT−363CASE 419B−02SOT−563CASE 463A(1)(2)(3)(6)(5)(4)SOT−963CASE 527ADM1R12 M GG1612 M G1THERMAL CHARACTERISTICSCharacteristic Symbol Max Unit MUN5312DW1 (SOT−363) ONE JUNCTION HEATEDTotal Device DissipationT A = 25°C(Note1)(Note2)Derate above 25°C(Note1)(Note2)P D1872561.52.0mWmW/°CThermal Resistance,(Note1) Junction to Ambient(Note2)R q JA670490°C/WMUN5312DW1 (SOT−363) BOTH JUNCTION HEATED (Note3)Total Device DissipationT A = 25°C(Note1)(Note2)Derate above 25°C(Note1)(Note2)P D2503852.03.0mWmW/°CThermal Resistance,Junction to Ambient(Note1)(Note2)R q JA493325°C/WThermal Resistance, Junction to Lead(Note1)(Note2)R q JL188208°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C NSBC124EPDXV6 (SOT−563) ONE JUNCTION HEATEDTotal Device DissipationT A = 25°C(Note1)Derate above 25°C(Note1)P D3572.9mWmW/°CThermal Resistance,Junction to Ambient(Note1)R q JA350°C/WNSBC124EPDXV6 (SOT−563) BOTH JUNCTION HEATED (Note3)Total Device DissipationT A = 25°C(Note1)Derate above 25°C(Note1)P D5004.0mWmW/°CThermal Resistance,Junction to Ambient(Note1)R q JA250°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C NSBC124EPDP6 (SOT−963) ONE JUNCTION HEATEDTotal Device DissipationT A = 25°C(Note4)(Note5)Derate above 25°C(Note4)(Note5)P D2312691.92.2MWmW/°CThermal Resistance,Junction to Ambient(Note4)(Note5)R q JA540464°C/WNSBC124EPDP6 (SOT−963) BOTH JUNCTION HEATED (Note3)Total Device DissipationT A = 25°C(Note4)(Note5)Derate above 25°C(Note4)(Note5)P D3394082.73.3MWmW/°CThermal Resistance,Junction to Ambient(Note4)(Note5)R q JA369306°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C1.FR−4 @ Minimum Pad.2.FR−*****×1.0 Inch Pad.3.Both junction heated values assume total power is sum of two equally powered channels.4.FR−4 @ 100mm2, 1 oz. copper traces, still air.5.FR−4 @ 500mm2, 1 oz. copper traces, still air.ELECTRICAL CHARACTERISTICS (T A =25°C both polarities Q 1 (PNP) & Q 2 (NPN), unless otherwise noted)CharacteristicSymbolMinTypMaxUnitOFF CHARACTERISTICS Collector-Base Cutoff Current (V CB =50V, I E =0)I CBO −−100nAdcCollector-Emitter Cutoff Current (V CE =50V, I B =0)I CEO −−500nAdcEmitter-Base Cutoff Current (V EB =6.0V, I C =0)I EBO −−0.2mAdcCollector-Base Breakdown Voltage (I C =10m A, I E =0)V (BR)CBO 50−−VdcCollector-Emitter Breakdown Voltage (Note 6)(I C =2.0mA, I B =0)V (BR)CEO50−−VdcON CHARACTERISTICS DC Current Gain (Note 6)(I C =5.0mA, V CE =10V)h FE 60100−Collector-Emitter Saturation Voltage (Note 6)(I C =10mA, I B =0.3mA)V CE(sat)−−0.25VInput Voltage (Off)(V CE =5.0V, I C =100m A) (NPN)(V CE =5.0V, I C =100m A) (PNP)V i(off)−− 1.21.2−−VdcInput Voltage (On)(V CE =0.2V, I C =5.0mA) (NPN)(V CE =0.2V, I C =5.0mA) (PNP)V i(on)−− 1.92.0−−VdcOutput Voltage (On)(V CC =5.0V, V B =2.5V, R L =1.0k W )V OL −−0.2VdcOutput Voltage (Off)(V CC =5.0V, V B =0.5V, R L =1.0k W )V OH 4.9−−VdcInput Resistor R115.42228.6k WResistor RatioR 1/R 20.81.01.2Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.6.Pulsed Condition: Pulse Width =300ms, Duty Cycle ≤2%.Figure 1. Derating CurveAMBIENT TEMPERATURE (°C)P D , P O W E R D I S S I P A T I O N (m W )(1) SOT−363; 1.0×1.0 Inch Pad (2) SOT−563; Minimum Pad(3) SOT−963; 100mm 2, 1 oz. Copper TraceFigure 2. V CE(sat) vs. I CFigure 3. DC Current GainFigure 4. Output Capacitance Figure 5. Output Current vs. Input VoltageFigure 6. Input Voltage vs. Output Current1.60.80V R , REVERSE VOLTAGE (V)0.41.22.02.42.83.2C o b , O U T P U T C A P A C I T A N C E (p F )0.010.001I C , COLLECTOR CURRENT (mA)V C E (s a t ), C O L L E C T O R -E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I N10001001I C , COLLECTOR CURRENT (mA)10I C , C O L L E C T O R C U R R E N T (m A )1001010.10.010.001V in , INPUT VOLTAGE (V)V i n , I N P U T V O L T A G E (V )I C , COLLECTOR CURRENT (mA)1010.1100C o b , O U T P U T C A P A C I T A N C E (p F )Figure 7. V CE(sat) vs. I CFigure 8. DC Current GainFigure 9. Output Capacitance Figure 10. Output Current vs. Input VoltageFigure 11. Input Voltage vs. Output Current10320V R , REVERSE VOLTAGE (V)456789 0.001I C , COLLECTOR CURRENT (mA) 0.11V C E (s a t ), C O L L E C T O R -E M I T T E R V O L T A G E (V ) 0.01h F E , D C C U R R E N T G A I NI C , COLLECTOR CURRENT (mA)1I C , C O L L E C T O R C U R R E N T (m A )100101 0.1 0.01 0.001V in , INPUT VOLTAGE (VOLTS)V i n , I N P U T V O L T A G E (V )I C , COLLECTOR CURRENT (mA)1Figure 12. V CE(sat) vs. I CI C , COLLECTOR CURRENT (mA)10010.1Figure 13. DC Current GainFigure 14. Output CapacitanceI C , COLLECTOR CURRENT (mA)10001001I C , COLLECTOR CURRENT (mA)Figure 15. Output Current vs. Input Voltage1001010.10.01V in , INPUT VOLTAGE (V)Figure 16. Input Voltage vs. Output Current0.41.20V R , REVERSE VOLTAGE (V)V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I N 0.81.62.02.4C o b , O U T P U T C A P A C I T A N C E (p F )I C , C O L L E C T O R C U R R E N T (m A )V i n , I N P U T V O L T A G E (V )1010Figure 17. V CE(sat) vs. I CFigure 18. DC Current GainI C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)0.010.11Figure 19. Output CapacitanceFigure 20. Output Current vs. Input VoltageV R , REVERSE VOLTAGE (V)V in , INPUT VOLTAGE (V)Figure 21. Input Voltage vs. Output CurrentI C , COLLECTOR CURRENT (mA)V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I NC o b , O U T P U T C A P A C I T A N C E (p F )I C , C O L L E C T O R C U R R E N T (m A )V i n , I N P U T V O L T A G E (V )SC−88/SC70−6/SOT−363CASE 419B−02ISSUE YNOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.4.DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H.5.DATUMS A AND B ARE DETERMINED AT DATUM H.6.DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP .7.DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.DIM MIN NOM MAX MILLIMETERS A −−−−−− 1.10A10.00−−−0.10dddb 0.150.200.25C 0.080.150.22D 1.80 2.00 2.20−−−−−−0.0430.000−−−0.0040.0060.0080.0100.0030.0060.0090.0700.0780.086MIN NOM MAX INCHES0.100.004E1 1.15 1.25 1.35e 0.65 BSC L 0.260.360.462.00 2.10 2.200.0450.0490.0530.026 BSC0.0100.0140.0180.0780.0820.086*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIMENSIONS: MILLIMETERS0.306XRECOMMENDEDSIDE VIEWEND VIEWPLANEDETAIL AE A20.700.90 1.000.0270.0350.039L20.15 BSC 0.006 BSC aaa 0.150.006bbb 0.300.012ccc 0.100.0046XH EDIMMIN NOM MAX MILLIMETERS A 0.500.550.60b 0.170.220.27C D 1.50 1.60 1.70E 1.10 1.20 1.30e 0.5 BSC L 0.100.200.301.50 1.60 1.700.0200.0210.0230.0070.0090.0110.0590.0620.0660.0430.0470.0510.02 BSC0.0040.0080.0120.0590.0620.066MIN NOM MAX INCHESSOT−563, 6 LEADCASE 463A ISSUE GNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETERS3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.ǒmm inchesǓSCALE 20:1*For additional information on our Pb−Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*0.080.120.180.0030.0050.007SOT−963CASE 527AD ISSUE EDIM MIN NOM MAX MILLIMETERS A 0.340.370.40b 0.100.150.20C 0.070.120.17D 0.95 1.00 1.05E 0.750.800.85e 0.35 BSC 0.95 1.00 1.05H E ANOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEADTHICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.TOP VIEW SIDE VIEWDIMENSIONS: MILLIMETERSRECOMMENDEDMOUNTING FOOTPRINT*L 0.19 REF L20.050.100.156X *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent PUBLICATION ORDERING INFORMATION。

常用近500个三极管(MOSFET)中文资料

常用近500个三极管(MOSFET)中文资料

9011,9012,9013,9014,8050,8550三极管的区别9011 NPN 30V 30mA 400mW 150MHz 放大倍数20-809012 PNP 50V 500mA 600mW 低频管放大倍数30-909013 NPN 20V 625mA 500mW 低频管放大倍数40-1109014 NPN 45V 100mA 450mW 150MHz 放大倍数20-908050 NPN 25V 700mA 200mW 150MHz 放大倍数30-1008550 PNP 40V 1500mA 1000mW 200MHz 放大倍数40-140详情如下:90系列三极管参数90系列三极管大多是以90字为开头的,但也有以ST90、C或A90、S90、SS90、UTC90开头的,它们的特性及管脚排列都是一样的。

9011 结构:NPN集电极-发射极电压30V集电极-基电压50V射极-基极电压5V集电极电流0.03A耗散功率0.4W结温150℃特怔频率平均370MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989012 结构:PNP集电极-发射极电压-30V集电极-基电压-40V射极-基极电压-5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009013 结构:NPN集电极-发射极电压25V集电极-基电压45V射极-基极电压5V集电极电流0.5A耗散功率0.625W结温150℃特怔频率最小150MHZ放大倍数:D64-91 E78-112 F96-135 G122-166 H144-220 I190-3009014 结构:NPN集电极-发射极电压45V集电极-基电压50V射极-基极电压5V集电极电流0.1A耗散功率0.4W结温150℃特怔频率最小150MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009015 结构:PNP集电极-发射极电压-45V集电极-基电压-50V射极-基极电压-5V集电极电流0.1A耗散功率0.45W结温150℃特怔频率平均300MHZ放大倍数:A60-150 B100-300 C200-600 D400-10009016 结构:NPN集电极-发射极电压20V集电极-基电压30V射极-基极电压5V集电极电流0.025A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-1989018 结构:NPN集电极-发射极电压15V集电极-基电压30V射极-基极电压5V集电极电流0.05A耗散功率0.4W结温150℃特怔频率平均620MHZ放大倍数:D28-45 E39-60 F54-80 G72-108 H97-146 I132-198三极管85508550是一种常用的普通三极管。

贴片印字

贴片印字

DTA144EKA PZM16NB BZV49-C16 BAS125-07 BAS125-07W PDTC124ET PDTC124EU BFP181T PDTC143ZK PDTC143ZT PDTC143ZT PZM18NB BZV49-C18 PDTA143ZK DTA115EUA DTA115EKA PDTA143ZT PDTA143ZT SSTPAD100 PZM10NB1 PZM10NB2 PZM10NB3 PZM11NB1 DTA113ZUA PZM11NB2 PZM11NB3 DTA143ZUA PZM12NB1 DTC113ZUA PZM12NB2 PZM12NB3 DTC143ZUA PZM13NB1 PZM13NB2 DTA123JUA PZM13NB3 DTA123JUA PZM15NB1 PZM15NB2 PZM15NB3 DTA144VUA PZM16NB1 PZM16NB2 PZM16NB3 DTC144VUA
N C O S S N N X N N N C O N N N N N J C C C C N C C N C N C C N C C N C N C C C N C C C N
SC59 SOT346 SOT89 SOT143 SOT343 SOT23 SOT323 SOT346 SOT23 SOT23 SOT346 SOT89 SOT346 SC70 SC59 SOT23 SOT23 SOT23 SOT346 SOT346 SOT346 SOT346 SC70 SOT346 SOT346 SC70 SOT346 SC70 SOT346 SOT346 SC70 SOT346 SOT346 SC70 SOT346 SC70 SOT346 SOT346 SOT346 SC70 SOT346 SOT346 SOT346 SC70

3P6MH-AZ资料

3P6MH-AZ资料

1998©Document No. D13533EJ3V0DS00 (3rd edition)Date Published April 2002 N CP(K)Printed in JapanTHYRISTORS3P4MH, 3P6MH3 A MOLD SCRDATA SHEET2002The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.The 3P4MH and 3P6MH are P-gate fully diffused mold SCRs with an average on-current of 3 A. The repeat peak off-voltages (and reverse voltages) are 400 V and 600 V.FEATURES•This transistor features a small and lightweight package and is easy to handle even on the mounting surface due to its TO-202AA dimensions. Processing of lead wires and heatsink (tablet) using jigs is also possible.•Employs flame-retardant epoxy resin (UL94V-0).APPLICATIONSNoncontact switches of consumer electronic euipments,electric equipments, audio quipments, and light indutry equipementsPACKAGE DRAWING (UNIT: mm)ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)ParameterSymbol 3P4MH3P6MHRatings Unit Non-repetitive peak reverse voltage V RSM 500700V R GK = 1 k ΩNon-repetitive peak off-state voltage V DSM 500700V R GK = 1 k ΩRepetitive peak reverse voltage V RRM 400600V R GK = 1 k ΩRepetitive peak off-voltage V DRM 400600V R GK = 1 k ΩAverage on-state current I T(AV) 3 (Tc = 87°C, Single half-wave, θ = 180°)A Refer to Figure 11.Effective on-state current I T(RMS) 4.7A −Surge on-state currentI TSM65 (f = 50 Hz, Sine half-wave, 1 cycle)70 (f = 60 Hz, Sine half-wave, 1 cycle)A Refer to Figure 2.Fusing current∫ i t 2dt 20 (1 ms ≤t ≤10 ms)A 2s −Critical rate of rise of on-state current dI T /dt 50A/µs −Peak gate power dissipation P GM 2 (f ≥50 Hz, Duty ≤10%)W Refer to Figure 3.Average gate power dissipation P G(AV)0.2W Peak gate forward current I FGM 1 (f ≥50 Hz, Duty ≤10%)A −Peak gate reverse voltage V RGM 6V −Junction temperature T j −40 to +125°C −Storage temperatureT stg−55 tp +150°C−Electrode connection <1>Cathode <2>Anode <3>GateStandard weight: 1.4*TC test bench-markData Sheet D13533EJ3V0DS2ELECTRICAL CHARACTERISTICS (T j = 25°C, R GK = 1 k Ω)TYPICAL CHARACTERISTICS (Ta = 25°C)Data Sheet D13533EJ3V0DS34Data Sheet D13533EJ3V0DS[MEMO]Data Sheet D13533EJ3V0DS5M8E 00. 4The information in this document is current as of July, 2001. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.NEC semiconductor products are classified into the following three quality grades:"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application."Standard":Computers, office equipment, communications equipment, test and measurement equipment, audioand visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots"Special":Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disastersystems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)"Specific":Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, lifesupport systems and medical equipment for life support, etc.The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.(Note)(1)"NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.(2)"NEC semiconductor products" means any semiconductor product developed or manufactured by or forNEC (as defined above).••••••。

usp32 616 BULK DENSITY AND TAPPED DENSITY 堆密度和振实密度 ——中英对照

usp32 616 BULK DENSITY AND TAPPED DENSITY 堆密度和振实密度 ——中英对照

616BULK DENSITY AND TAPPED DENSITY松密度和紧密度The bulk density of a solid is often very difficult to measure since the slightest disturbance of the bed may result in a new bulk density. Moreover, it is clear that the bulking properties of a powder are dependent on the “history” of the powder (e.g., how it was handled), and that it can be packed to have a range of bulk densities. Thus, it is essential in reporting bulk density to specify how the determination was made.固体的松密度的测量很困难,测量时,轻微的震动就会导致松密度的不同。

因此,可以知道粉末的松散性取决于粉末的来历。

而且压紧之后,会有一个密度范围。

因此,报告松密度时,必须说明结果是如何得到的。

Because the interparticulate interactions that influence the bulking properties of a powder are also the interactions that interfere with powder flow, a comparison of the bulk and tapped densities can give a measure of the relative importance of these interactions in a given powder. Such a comparison is often used as an index of the ability of the powder to flow. The bulk density often is the bulk density of the powder “as poured” or as passively filled into a measuring vessel. The tapped density is a limiting density attained after “tapping down,” usually in a device that lifts and drops a volumetric measuring cylinder containing the powder a fixed distance.微粒的相互作用不仅影响粉末的松散性,而且影响粉末的流速。

LP2981IM5X-3.6资料

LP2981IM5X-3.6资料

LP2981Micropower 100mA Ultra Low-Dropout RegulatorGeneral DescriptionThe LP2981is a 100mA,fixed-output voltage regulator de-signed specifically to meet the requirements of battery-powered applications.Using an optimized VIP ™(Vertically Integrated PNP)pro-cess,the LP2981delivers unequaled performance in all specifications critical to battery-powered designs:Dropout Voltage.Typically 200mV @100mA load,and 7mV @1mA load.Ground Pin Current.Typically 600µA @100mA load,and 80µA @1mA load.Sleep Mode.Less than 1µA quiescent current when ON/OFF pin is pulled low.Smallest Possible Size.SOT-23and micro SMD packages use an absolute minimum board space.Precision Output.0.75%tolerance output voltages avail-able (A grade).Eleven voltage options,from 2.5V to 5.0V,are available as standard products.Featuresn Ultra low dropout voltagen Output voltage accuracy 0.75%(A Grade)n Guaranteed 100mA output currentn Smallest possible size (SOT-23,micro SMD package)n <1µA quiescent current when shutdown n Low ground pin current at all load currents n High peak current capability (300mA typical)n Wide supply voltage range (16V max)n Fast dynamic response to line and load n Low Z OUT over wide frequency range n Overtemperature/overcurrent protectionn−40˚C to +125˚C junction temperature rangeApplicationsn Cellular Phonen Palmtop/Laptop Computern Personal Digital Assistant (PDA)nCamcorder,Personal Stereo,CameraBlock DiagramVIP ™is a trademark of National Semiconductor Corporation.DS012506-1March 2000LP2981Micropower 100mA Ultra Low-Dropout Regulator©2000National Semiconductor Corporation Connection DiagramsOrdering InformationTABLE 1.Package Marking and Order InformationOutput Voltage(V)GradeOrder InformationPackage Marking Supplied as:5-Lead Small Outline Package (M5)2.5A LP2981AIM5X-2.5L0CA 3000Units on Tape and Reel 2.5A LP2981AIM5-2.5L0CA 1000Units on Tape and Reel 2.5STD LP2981IM5X-2.5L0CB 3000Units on Tape and Reel 2.5STD LP2981IM5-2.5L0CB 1000Units on Tape and Reel 2.7A LP2981AIM5X-2.7L0DA 3000Units on Tape and Reel 2.7A LP2981AIM5-2.7L0DA 1000Units on Tape and Reel 2.7STD LP2981IM5X-2.7L0DB 3000Units on Tape and Reel 2.7STD LP2981IM5-2.7L0DB 1000Units on Tape and Reel 2.8A LP2981AIM5X-2.8L77A 3000Units on Tape and Reel 2.8A LP2981AIM5-2.8L77A 1000Units on Tape and Reel 2.8STD LP2981IM5X-2.8L77B 3000Units on Tape and Reel 2.8STD LP2981IM5-2.8L77B 1000Units on Tape and Reel 2.9A LP2981AIM5X-2.9L0VA 3000Units on Tape and Reel 2.9A LP2981AIM5-2.9L0VA 1000Units on Tape and Reel 2.9STD LP2981IM5X-2.9L0VB 3000Units on Tape and Reel 2.9STD LP2981IM5-2.9L0VB 1000Units on Tape and Reel3.0A LP2981AIM5X-3.0L05A 3000Units on Tape and Reel 3.0A LP2981AIM5-3.0L05A 1000Units on Tape and Reel 3.0STD LP2981IM5X-3.0L05B 3000Units on Tape and Reel 3.0STD LP2981IM5-3.0L05B 1000Units on Tape and Reel 3.1A LP2981AIM5X-3.1L38A 3000Units on Tape and Reel 3.1A LP2981AIM5-3.1L38A 1000Units on Tape and Reel 3.1STD LP2981IM5X-3.1L38B 3000Units on Tape and Reel 3.1STD LP2981IM5-3.1L38B 1000Units on Tape and Reel 3.2A LP2981AIM5X-3.2L35A 3000Units on Tape and Reel 3.2A LP2981AIM5-3.2L35A 1000Units on Tape and Reel 3.2STD LP2981IM5X-3.2L35B 3000Units on Tape and Reel 3.2STD LP2981IM5-3.2L35B 1000Units on Tape and Reel 3.3A LP2981AIM5X-3.3L04A 3000Units on Tape and Reel 3.3A LP2981AIM5-3.3L04A 1000Units on Tape and Reel 3.3STD LP2981IM5X-3.3L04B 3000Units on Tape and Reel 3.3STDLP2981IM5-3.3L04B1000Units on Tape and Reel5-Lead Small Outline Package (M5)DS012506-2Top ViewSee NS Package Number MF05A For ordering information see Table 1micro SMD,5Bump Package (BPA05)DS012506-50Bottom ViewSee NS Package Number BPA05L P 2981 2Ordering Information(Continued)TABLE1.Package Marking and Order Information(Continued)Output Voltage(V)Grade Order Information PackageMarkingSupplied as:5-Lead Small Outline Package(M5)3.6A LP2981AIM5X-3.6L0JA3000Units on Tape and Reel3.6A LP2981AIM5-3.6L0JA1000Units on Tape and Reel3.6STD LP2981IM5X-3.6L0JB3000Units on Tape and Reel3.6STD LP2981IM5-3.6L0JB1000Units on Tape and Reel3.8A LP2981AIM5X-3.8L36A3000Units on Tape and Reel3.8A LP2981AIM5-3.8L36A1000Units on Tape and Reel3.8STD LP2981IM5X-3.8L36B3000Units on Tape and Reel3.8STD LP2981IM5-3.8L36B1000Units on Tape and Reel4.0A LP2981AIM5X-4.0L0ZA3000Units on Tape and Reel4.0A LP2981AIM5-4.0L0ZA1000Units on Tape and Reel4.0STD LP2981IM5X-4.0L0ZB3000Units on Tape and Reel4.0STD LP2981IM5-4.0L0ZB1000Units on Tape and Reel4.7A LP2981AIM5X-4.7L0GA3000Units on Tape and Reel4.7A LP2981AIM5-4.7L0GA1000Units on Tape and Reel4.7STD LP2981IM5X-4.7L0GB3000Units on Tape and Reel4.7STD LP2981IM5-4.7L0GB1000Units on Tape and Reel5.0A LP2981AIM5X-5.0L03A3000Units on Tape and Reel5.0A LP2981AIM5-5.0L03A1000Units on Tape and Reel5.0STD LP2981IM5X-5.0L03B3000Units on Tape and Reel5.0STD LP2981IM5-5.0L03B1000Units on Tape and Reelmicro SMD,5Bump Package(BPA05)2.5A LP2981AIBP-2.5250Units on Tape and Reel2.5A LP2981AIBPX-2.53000Units on Tape and Reel2.5STD LP2981IBP-2.5250Units on Tape and Reel2.5STD LP2981IBPX-2.53000Units on Tape and Reel3.2A LP2981AIBP-3.2250Units on Tape and Reel3.2A LP2981AIBPX-3.23000Units on Tape and Reel3.2STD LP2981IBP-3.2250Units on Tape and Reel3.2STD LP2981IBPX-3.23000Units on Tape and Reel3.3A LP2981AIBP-3.3250Units on Tape and Reel3.3A LP2981AIBPX-3.33000Units on Tape and Reel3.3STD LP2981IBP-3.3250Units on Tape and Reel3.3STD LP2981IBPX-3.33000Units on Tape and ReelLP29813Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.Storage Temperature Range−65˚C to+150˚C Operating Junction TemperatureRange−40˚C to+125˚C Lead Temperature(Soldering,5sec.)260˚C ESD Rating(Note2)2kV Power Dissipation(Note3)Internally Limited Input Supply Voltage(Survival)−0.3V to+16V Input Supply Voltage(Operating) 2.1V to+16V Shutdown Input Voltage(Survival)−0.3V to+16V Output Voltage(Survival,(Note4))−0.3V to+9V I OUT(Survival)Short Circuit Protected Input-Output Voltage(Survival,(Note5))−0.3V to+16VElectrical CharacteristicsLimits in standard typeface are for T J=25˚C,and limits in boldface type applyover the full operating temperature range.Un-less otherwise specified:V IN=V O(NOM)+1V,C IN=1µF,I L=1mA,C OUT=4.7µF,V ON/OFF=2V.Symbol Parameter Conditions Typ LP2981AI-XX LP2981I-XX Units(Note6)(Note6)Min Max Min Max∆V O Output VoltageTolerance I L=1mA−0.750.75−1.25 1.25%V NOM 1mA<I L<100mA−1.0 1.0−2.0 2.0−2.5 2.5−3.53.5Electrical Characteristics(Continued)Note 1:Absolute maximum ratings indicate limits beyond which damage to the component may occur.Electrical specifications do not apply when operating the de-vice outside of its rated operating conditions.Note 2:The ESD rating of pins 3and 4is 1kV.Note 3:The maximum allowable power dissipation is a function of the maximum junction temperature,T J(MAX),the junction-to-ambient thermal resistance,θJA ,and the ambient temperature,T A .The maximum allowable power dissipation at any ambient temperature is calculated using:The value of θJA for the SOT-23package is 220˚C/W and the micro SMD package is 320˚C/W.Exceeding the maximum allowable power dissipation will cause ex-cessive die temperature,and the regulator will go into thermal shutdown.Note 4:If used in a dual-supply system where the regulator load is returned to a negative supply,the LP2981output must be diode-clamped to ground.Note 5:The output PNP structure contains a diode between the V IN and V OUT terminals that is normally reverse-biased.Reversing the polarity from V IN to V OUT will turn on this diode (see Application Hints).Note 6:Limits are 100%production tested at 25˚C.Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC)methods.The limits are used to calculate National’s Average Outgoing Quality Level (AOQL).Note 7:Dropout voltage is defined as the input to output differential at which the output voltage drops 100mV below the value measured with a 1V differential.Note 8:The ON/OFF inputs must be properly driven to prevent misoperation.For details,refer to Application Hints.Note 9:See Typical Performance Characteristics curves.Basic Application CircuitDS012506-4*ON/OFF input must be actively terminated.Tie to V IN if this function is not to be used.**Minimum Output Capacitance is shown to insure stability over full load current range.More capacitance provides superior dynamic performance andadditional stability margin (see Application Hints).***Do not make connections to this pin.LP29815Typical Performance CharacteristicsUnless otherwise specified:T A =25˚C,V IN =V O(NOM)+1V,C OUT =4.7µF,C IN =1µF all voltage options,ON/OFF pin tied to V IN .Output Voltage vs TemperatureDS012506-6Output Voltage vs TemperatureDS012506-7Output Voltage vs TemperatureDS012506-8Dropout CharacteristicsDS012506-9Dropout Characteristics DS012506-10Dropout CharacteristicsDS012506-11L P 2981 6Typical Performance Characteristics Unless otherwise specified:TA=25˚C,V IN=V O(NOM)+1V, C OUT=4.7µF,C IN=1µF all voltage options,ON/OFF pin tied to V IN.(Continued)Dropout Voltage vsTemperatureDS012506-12Dropout Voltage vsLoad CurrentDS012506-13Ground Pin Current vsTemperatureDS012506-14Ground Pin Current vsLoad CurrentDS012506-15Input Current vs V INDS012506-16Input Current vs V INDS012506-17LP29817Typical Performance CharacteristicsUnless otherwise specified:T A =25˚C,V IN =V O(NOM)+1V,C OUT =4.7µF,C IN=1µF all voltage options,ON/OFF pin tied to V IN .(Continued)Line Transient ResponseDS012506-18Line Transient ResponseDS012506-19Load Transient Response DS012506-20Load Transient ResponseDS012506-21Load Transient Response DS012506-22Load Transient ResponseDS012506-23L P 2981 8Typical Performance Characteristics Unless otherwise specified:TA=25˚C,V IN=V O(NOM)+1V, C OUT=4.7µF,C IN=1µF all voltage options,ON/OFF pin tied to V IN.(Continued)Short Circuit CurrentDS012506-24Instantaneous Short CircuitCurrent vs TemperatureDS012506-25Short Circuit CurrentDS012506-26Instantaneous Short CircuitCurrent vs Output VoltageDS012506-27Output Impedance vsFrequencyDS012506-28Ripple RejectionDS012506-29LP29819Typical Performance CharacteristicsUnless otherwise specified:T A =25˚C,V IN =V O(NOM)+1V,C OUT =4.7µF,C IN =1µF all voltage options,ON/OFF pin tied to V IN .(Continued)Output Noise DensityDS012506-30Output Impedance vs FrequencyDS012506-31Input to Output Leakage vs TemperatureDS012506-32Output Reverse Leakage vs TemperatureDS012506-33Turn-On Waveform DS012506-34Turn-Off WaveformDS012506-35L P 2981 10Typical Performance Characteristics Unless otherwise specified:TA=25˚C,V IN=V O(NOM)+1V, C OUT=4.7µF,C IN=1µF all voltage options,ON/OFF pin tied to V IN.(Continued)Application HintsEXTERNAL CAPACITORSLike any low-dropout regulator,the external capacitors used with the LP2981must be carefully selected to assure regula-tor loop stability.INPUT CAPACITOR:An input capacitor whose value is ≥1µF is required with the LP2981(amount of capacitance can be increased without limit).This capacitor must be located a distance of not more than 0.5"from the input pin of the LP2981and returned to a clean analog ground.Any good quality ceramic or tantalum can be used for this capacitor.OUTPUT CAPACITOR:The output capacitor must meet both the requirement for minimum amount of capacitance and E.S.R.(equivalent series resistance)value.Curves are provided which show the allowable ESR range as a function of load current for various output voltages and capacitor val-ues(refer to Figures1,2,3,4).IMPORTANT:The output capacitor must maintain its ESR in the stable region over the full operating temperature range to assure stability.Also,capacitor tolerance and variation with temperature must be considered to assure the minimum amount of capacitance is provided at all times.This capacitor should be located not more than0.5"from the output pin of the LP2981and returned to a clean analog ground.CAPACITOR CHARACTERISTICSTANTALUM:Tantalum capacitors are the best choice for use with the LP2981.Most good quality tantalums can be used with the LP2981,but check the manufacturer’s data sheet to be sure the ESR is in range.It is important to remember that ESR increases at lower tem-peratures and a capacitor that is near the upper limit for sta-bility at room temperature can cause instability when it gets cold.In applications which must operate at very low temperatures, it may be necessary to parallel the output tantalum capacitor with a ceramic capacitor to prevent the ESR from going up too high(see next section for important information on ce-ramic capacitors).CERAMIC:Ceramic capacitors are not recommended for use at the output of the LP2981.This is because the ESR of a ceramic can be low enough to go below the minimum stable value for the LP2981.A2.2µF ceramic was measured and found to have an ESR of about15mΩ,which is low enough to cause oscillations.If a ceramic capacitor is used on the output,a1Ωresistor should be placed in series with the capacitor. ALUMINUM:Because of large physical size,aluminum elec-trolytics are not typically used with the LP2981.They must meet the same ESR requirements over the operating tem-perature range,more difficult because of their steep increase at cold temperature.An aluminum electrolytic can exhibit an ESR increase of as much as50X when going from20˚C to−40˚C.Also,some aluminum electrolytics are not operational below−25˚C be-cause the electrolyte can freeze.ON/OFF Pin Current vsV ON/OFFDS012506-36ON/OFF Thresholdvs TemperatureDS012506-37DS012506-38FIGURE1.5V/3.3µF ESR CurvesLP298111Application Hints(Continued)REVERSE CURRENT PATHThe power transistor used in the LP2981has an inherent di-ode connected between the regulator input and output (see below).If the output is forced above the input by more than a V BE ,this diode will become forward biased and current will flow from the V OUT terminal to V IN .This current must be limited to <100mA to prevent damage to the part.The internal diode can also be turned on by abruptly step-ping the input voltage to a value below the output voltage.To prevent regulator mis-operation,a Schottky diode should be used in any application where input/output voltage condi-tions can cause the internal diode to be turned on (see be-low).As shown,the Schottky diode is connected in parallel with the internal parasitic diode and prevents it from being turned on by limiting the voltage drop across it to about 0.3V.ON/OFF INPUT OPERATIONThe LP2981is shut off by pulling the ON/OFF input low,and turned on by driving the input high.If this feature is not to be used,the ON/OFF input should be tied to V IN to keep the regulator on at all times (the ON/OFF input must not be left floating).To ensure proper operation,the signal source used to drive the ON/OFF input must be able to swing above and below the specified turn-on/turn-off voltage thresholds which guar-antee an ON or OFF state (see Electrical Characteristics).The ON/OFF signal may come from either a totem-pole out-put,or an open-collector output with pull-up resistor to the LP2981input voltage or another logic supply.The high-level voltage may exceed the LP2981input voltage,but must re-main within the Absolute Maximum Ratings for the ON/OFF pin.It is also important that the turn-on/turn-off voltage signals applied to the ON/OFF input have a slew rate which is greater than 40mV/µs.Important:the regulator shutdown function will operate incor-rectly if a slow-moving signal is applied to the ON/OFF input.Micro SMD MountingThe micro SMD package requires specific mounting tech-niques which are detailed in National Semiconductor Appli-cation Note #1112.Referring to the section Surface Mount Technology (SMT)Assembly Considerations ,it should be noted that the pad style which must be used with the 5-pin package is the NSMD (non-solder mask defined)type.DS012506-39FIGURE 2.5V/10µF ESR CurvesDS012506-40FIGURE 3.3V/3.3µF ESR CurvesDS012506-42FIGURE 4.3V/10µF ESR CurvesDS012506-41DS012506-43L P 2981 12Application Hints(Continued)For best results during assembly,alignment ordinals on the PC board may be used to facilitate placement of the micro SMD device.Micro SMD Light SensitivityExposing the micro SMD device to direct sunlight will cause misoperation of the device.Light sources such as Halogen lamps can also affect electrical performance if brought near to the device.The wavelenghts which have the most detrimental effect arereds and infra-reds,which means that the fluorescent light-ing used inside most buildings has very little effect on perfor-mance.A micro SMD test board was brought to within1cmof a fluorescent desk lamp and the effect on the regulatedoutput voltage was negligible,showing a deviation of lessthan0.1%from nominal.LP298113Physical Dimensionsinches (millimeters)unless otherwise noted5-Lead Small Outline Package (M5)NS Package Number MF05AFor Order Numbers,refer to Table 1in the “Ordering Information”section of this document.L P 2981 14LP2981 Physical Dimensions inches(millimeters)unless otherwise noted(Continued)NOTES:UNLESS OTHERWISE SPECIFIED1.EPOXY COATING2.63Sn/37Pb EUTECTIC BUMP3.RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.4.PIN1IS ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.REMAINING PINS ARE NUMBERED COUNTER CLOCKWISE.5.XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1IS PACKAGE WIDTH,X2IS PACK-AGE LENGTH AND X3IS PACKAGE HEIGHT.6.NO JEDEC REGISTRATION AS OF AUG.1999.micro SMD,5Bump Package(BPA05)NS Package Number BPA05AFor Order Numbers,refer to Table1in the“Order Information”section of this document.The dimensions for X1,X2and X3are as given:X1=0.930+/−0.030mmX2=1.107+/−0.030mmX3=0.850+/−0.050mm15NotesLIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation AmericasTel:1-800-272-9959Fax:1-800-737-7018Email:support@National Semiconductor EuropeFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:ap.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax:81-3-5639-7507L P 2981M i c r o p o w e r 100m A U l t r a L o w -D r o p o u t R e g u l a t o rNational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档