测井原理与技术
测井方法与原理
测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。
本文将介绍几种常用的测井方法及其原理。
一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。
它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。
电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。
这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。
二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。
它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。
声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。
这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。
三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。
它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。
核子测井方法包括伽马射线测井、中子测井和密度测井等。
这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。
四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。
它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。
导电测井方法包括感应测井和电阻率测井等。
这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。
总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。
石油勘探中的测井技术与数据解释
石油勘探中的测井技术与数据解释石油勘探是指通过各种科学技术手段,对地下岩石中的石油资源进行探测和评估,以确定勘探区域内是否存在商业价值的石油储量。
而测井技术作为石油勘探中的重要手段之一,能够提供地下岩石中的物性参数,并对岩石中的含油性、饱和度、孔隙度等进行分析和解释,从而辅助决策者做出合理的勘探决策。
本文将着重介绍石油勘探中的测井技术与数据解释。
一、测井技术的基本原理与分类1. 基本原理测井技术是通过钻井工具装备在钻井过程中向地下岩层注入测井探头,获取地下岩石的电、声、密度、核磁共振等物理参数,通过测得的各项参数值来判断地层岩石性质和石油储量。
2. 分类根据测井工具和测井原理的不同,测井技术可以分为电测井、声测井、密度测井、核磁共振测井、核子测井等多种类型。
不同类型的测井技术在石油勘探中具有各自的应用优势,常常需要结合使用,以全面了解地下岩层情况。
二、测井数据的解释与应用1. 参数解释测井数据的解释是根据测井工具测得的各项参数值,通过各种解释方法和模型,对地下岩石的性质、油水分布、储量进行推断和预测。
常用的解释参数包括孔隙度、饱和度、孔隙度分布、压力梯度等。
2. 储量评估测井数据的解释可以帮助石油勘探者评估储层的石油储量,判断勘探区域的商业价值。
通过对测井数据的解读和分析,可以了解区域内岩石的孔隙度、饱和度等参数,并结合岩心分析数据,进行储量计算和预测。
3. 钻井决策测井技术的数据解释在钻井决策中也发挥着至关重要的作用。
通过对测井数据的解释,可以了解钻井过程中遇到的问题,如井壁稳定性、油层测井误差等,并采取相应的措施进行调整和改进。
三、测井技术的应用案例1. 孔隙度与储层评价孔隙度是指岩石中的空隙体积与总体积之间的比值。
通过电测井和密度测井等技术,可以测得岩石的孔隙度参数,并通过数据解释来评价储层的含油性和储量。
2. 饱和度与油水分布饱和度是指储层中孔隙空间中被石油充填的比例。
通过核子测井和声测井技术,可以测得地层的饱和度参数,并进一步解释地层中油层和水层的分布情况,为后续的开发决策提供依据。
测井基础概述(全文)
测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。
简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。
这种测井习惯上称为裸眼测井。
而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。
其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。
2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。
岩石可以导电的。
我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。
地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。
地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。
3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。
常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。
边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。
通常,泥岩GR高,砂岩GR低。
2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。
自然电位就是测量电位的高低,以分辨砂岩还是泥岩。
测井原理及方法
离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。
测井原理与综合解释
测井原理与综合解释测井原理是指利用地球物理仪器和技术,对地下岩石层进行实时监测和测量的过程。
通过测井原理,可以获得有关地下岩石层中所含矿物、岩性、含水性、温度、压力等参数的信息,从而帮助地质学家和工程师进行油气勘探和开发。
测井原理主要依赖于以下几种物理现象和原理:1. 电性测井原理:利用地层中的电性差异,通过测量电阻率、电导率等指标来判断地层的性质。
例如,导电层岩石通常具有良好的含油性能。
2. 密度测井原理:根据地下岩石的密度差异,通过测量岩石的密度来判断地层的性质。
例如,含有矿物质量高的岩石通常具有较高的密度。
3. 声波测井原理:利用地层中声波的传播速度来判断地层的性质。
不同类型的岩石对声波的传播速度有不同的影响。
4. 核磁共振测井原理:利用地层中核磁共振现象,通过测量核磁共振信号来判断地层的性质。
不同类型的岩石对核磁共振信号有不同的响应。
综合解释是指通过将不同类型的测井数据进行综合分析和解释,得出地下岩石层的具体性质和分布。
综合解释的过程包括以下几个步骤:1. 数据校正和质量评估:初步检查测井数据的准确性和有效性,排除可能的误差和异常点。
2. 数据融合:将来自不同类型测井仪器的数据进行融合,形成一个统一的数据集。
3. 数据解释:根据测井原理和地质知识,对数据进行解释,得出地层的特征和性质。
可以使用图表、剖面图等方式展示解释结果。
4. 建模和预测:根据解释结果,建立地下岩石层的模型,并利用模型进行预测和评估。
这可以帮助决策者进行油气资源勘探和开发的决策。
综合解释需要综合考虑不同类型的测井数据,以及地质知识和经验。
准确地解释地下岩石层的性质和分布,对于油气勘探和开发具有重要意义。
生产测井原理与资料解释
生产测井原理与资料解释生产测井原理是一种通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
它是油气开发过程中重要的工具,可以为油气勘探和开发提供重要的数据支持。
基于不同的原理和方法,生产测井可以得到不同的信息,包括油井产能、油层储量、油气组分、储层渗透率等。
生产测井资料解释是指通过对生产测井资料进行分析和解释,得出有关油井和储层性质的结论。
生产测井资料一般以测井曲线的形式呈现,包括电阻率曲线、自然伽马曲线、声波曲线等。
通过对这些曲线进行解析,可以获得有关储层性质和井内流体的定量和定性信息。
电阻率测井是生产测井中最常用的方法之一、它通过测量井内岩石的电阻率来评估储层的孔隙度和渗透率。
在电阻率测井曲线中,较高的电阻率通常表示较低的孔隙度和较低的渗透率,而较低的电阻率则表示反之。
通过对电阻率曲线进行解释,可以判断油井是否有产能,以及井间的储层性质差异。
自然伽马测井是用来测量井内地层放射性物质含量的方法,它可以用于判断油井中的油气含量、岩石类型、垂向流动性等。
自然伽马曲线可以显示地层中放射性元素的分布情况,通过分析曲线的形态和取值,可以判断储层的油气饱和度和岩石类型。
声波测井是一种测量地层中声波传播速度和频谱特征的方法,它可以用来评估储层的孔隙度、渗透率和井内流体性质。
声波测井曲线中的传播速度通常与地层的密度和波速有关,通过测量速度的变化,可以获得有关储层和井内流体的信息。
除了上述方法外,还有许多其他的生产测井原理和方法,如渗压测井、渗透率测井、流量测井等。
每种方法都有其特定的原理和应用范围,可以根据不同的需求选择合适的方法。
总之,生产测井原理是通过测量井内流体的性质和流动特征来评估油井的产能和储层性质的方法。
通过对生产测井资料的解释,可以获得有关油井和储层性质的重要信息,为油气勘探和开发提供数据支持。
在实际应用中,可以根据不同的需求和情况选择合适的生产测井原理和方法,以获得准确可靠的结果。
生产测井技术介绍
生产测井技术介绍引言生产测井是一种用于评估和监测油井生产状态和产量的技术方法。
它是油田开发和生产管理中的重要工具,能够为油藏工程和生产管理提供关键的数据和信息。
本文将介绍生产测井的基本原理和常用技术,并探讨其在油田开发和生产管理中的应用。
生产测井的基本原理生产测井是通过在油井内安装测井仪器,采集井底的数据来评估和监测油井的生产状态和产量。
测井数据可以提供油井、油藏和地层的相关信息,包括油井压力、温度、含水率、产液量和产气量等。
根据测井数据的变化和分析,可以判断油井的生产情况、诊断井口问题以及评估油田的产能和开发潜力。
生产测井的基本原理是利用物理、化学和电磁等测井技术手段,通过测量和分析油井内部的参数和特性来反映油井的生产状况。
常用的生产测井技术包括:井底压力测井、产量测井、含水率测井、井温测井和井底流体采样等。
常用的生产测井技术1. 井底压力测井井底压力是评估和监测油井生产状态的重要参数。
井底压力测井是通过在井下测井仪器中加装压力传感器,实时测量油井的井底压力变化。
井底压力测井可以帮助诊断油井的流体动态特性,评估油藏的产能和开发潜力,以及指导油井的调整和优化。
2. 产量测井产量测井是评估和监测油井产液量和产气量的主要方法。
通过在油管或气管中安装流量计和测压仪器,可以实时测量油井的产液量和产气量变化。
产量测井可以帮助评估油井的生产能力,监测油井的产量变化,以及判断油井的井下环境和动态特性。
3. 含水率测井含水率是评估油井产液中含水量的重要参数。
含水率测井可以通过测量油井产液中的电阻率或射线衰减来判断油井中的含水率。
含水率测井可以帮助评估油藏的剩余油藏和采油效果,监测油井的含水率变化,以及指导油井的调整和优化。
4. 井温测井井温测井是通过测量油井井筒内的温度变化来评估油井的生产状态。
井温测井可以帮助判断油井的产液情况,监测油井的温度变化,以及诊断油井的问题和优化油井的生产。
5. 井底流体采样井底流体采样是通过在油管或气管中安装采样器,采集油井产液和产气的样品,进行实验室分析和测试。
测井原理与解释
测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。
测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。
2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。
3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。
4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。
以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。
同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。
测井方法原理
测井方法原理测井是油气勘探和开发过程中非常重要的工具,它通过测量井孔中的岩石、流体和地层性质,提供了油气储层详细的信息。
本文将介绍测井方法的原理,包括电测井、声波测井和核磁共振测井。
一、电测井方法原理电测井是一种利用电性质来测量地层信息的方法。
它通过在井孔中放置测井电极,通过电流和电阻的测量来判断地层性质。
电测井的原理基于地层的电导率差异,不同类型的岩石和流体具有不同的电导率。
在电测井过程中,测井工具中的电极通过井孔中的电缆与地面上的测井装置相连。
测井装置通过传递电流至井孔中的电极,测量地层中的电阻。
电阻的大小取决于地层的电导率和电极之间的距离。
利用电测井方法可以获取地层的电阻率、自然电位和电极化,从而推断地层中的岩性、含水饱和度和孔隙度。
不同类型的岩石和流体具有不同的电导率,通过测量地层的电阻可以识别不同岩性。
二、声波测井方法原理声波测井是一种利用声波传播特性来测量地层信息的方法。
它通过在井孔中放置发射器和接收器,测量声波在岩石中的传播速度和衰减特性,来推断地层的岩性和孔隙度。
在声波测井中,发射器产生声波信号并将其传播至地层中。
当声波通过不同类型的岩石和流体时,会发生折射、反射和散射等现象。
接收器会接收到传播后的声波信号,并将其转化为电信号传输至地面上的测井装置。
通过测量声波在地层中传播的速度和衰减特性,可以判断地层的岩性和孔隙度。
不同类型的岩石和流体对声波的传播速度和衰减特性有不同的影响,通过对声波信号的分析,可以识别不同的地层。
三、核磁共振测井方法原理核磁共振测井是一种利用核磁共振原理来测量地层信息的方法。
它通过测量地层中核自旋共振现象,得出地层的孔隙度、含水饱和度和流体类型等信息。
在核磁共振测井中,测井工具通过发射射频脉冲产生磁场,使地层中的核自旋进入共振状态。
共振时核自旋可以吸收和发射射频信号,测井工具则接收这些信号,并根据其特征参数来推断地层性质。
通过核磁共振测井方法可以获取地层的孔隙度、含水饱和度和流体类型等信息。
地球物理测井方法原理
地球物理测井方法原理
地球物理测井方法是通过在地下钻井孔内采集各种物理测量数据,用于研究地下岩石、水等介质的性质和分布情况。
其原理主要包括以下几种方法:
1. 电测井(电阻率测井):通过测量电阻率的大小来推断岩石和水等介质的性质。
岩石的电阻率与其孔隙度、孔隙液的含水性相关。
2. 密度测井:利用放射性射线经过地下介质时发生的散射和吸收现象,测量射线的衰减情况,来推断介质的密度、孔隙度等参数。
3. 声波测井(声阻抗测井):通过发射声波信号,并测量声波在地下介质中传播的速度和衰减程度,来推断岩石的弹性性质、孔隙度等参数。
4. 中子测井:利用中子与地下介质中核素发生散射和吸收的现象,测量中子流量的变化,来推断介质的孔隙度、含水性等。
5. 磁测井(自然电磁场测井):利用地球自然磁场或人工产生的磁场对地下岩石的磁性进行测量,来推断岩石磁性、含油气性等。
这些测井方法的原理是基于地下介质对电、密度、声波、中子或磁场的响应特性,在测井仪器记录和分析数据后,可以获得地下介质的性质和分布信息,为油气勘
探、水资源管理、地热研究等提供重要依据。
测井原理与解释
测井原理与解释
测井原理是石油勘探、开采、利用领域中非常重要的一项技术,
它是用来判断地下各种物质类型、性质、含量等信息的手段。
测井原理的基础是物理学、地质学和工程学,凭借多年的研究和
实践,现代测井技术已经发展成为一门系统化的技术体系。
其基本原
理是通过石油井的井壁和井内测量来解释地层岩石的物理和化学特性,以及油气藏的储量和分布。
其中,最基本的测井原理是利用放射性同位素记录井内物质的密度、自然伽马射线测量地层厚度、电性测井记录地层岩石的孔隙度、
导电率等物理性质的变化。
同时,利用声波并测量它在不同材料中传
播的速度,来判别地层岩石的类型、结构和属性等信息。
除此之外,测井原理还包括测量地层应力和自然放射性,以及废
物管理等方面。
现代测井技术可以计算目标地层储层的物理和化学特性,反映地层不同地带的石油、气等自然资源的分布情况,有助于石
油勘探、开采、利用等各方面的决策。
总的来说,测井原理是石油勘探和开采领域中最重要的技术手段
之一。
借助现代测井技术,我们可以精确地解释地层和岩石的物理、
结构、组成、含量等信息,为石油勘探和开采提供精确的数据依据,
为油气资源开发提供有力的支撑。
同时,也有利于环境保护,精准处
理废物和降低开采过程中的负面影响。
感应测井原理
感应测井原理
感应测井是一种利用电磁感应原理测量地层物性的方法。
它利用了地层岩石对电磁场的不同响应,从而获得有关地层的信息。
感应测井是通过电磁感应探测原理来测量地层的电性和导电性。
当感应测井仪器通电时,在测井仪器周围形成一个交变电磁场,这个交变电磁场会穿透地层。
在地层中,交变电磁场会诱导出感应电流。
这个感应电流会遇到地层中电阻和导电性变化而发生变化,这样就可以通过测量感应电流的变化来推断地层的性质。
测量中,感应测井仪器通常采用的是多频道感应测井技术。
它可以同时测量多个频率的电磁场和感应电流,从而提高测量的准确性和分辨率。
感应测井的原理是基于法拉第电磁感应定律和麦克斯韦方程组。
它适用于测井井内的地层物性测量,如电导率、介电常数等。
这些测量结果可以帮助地震学家、地质学家等判断地层性质、岩性和含矿等情况,进而指导油气勘探和开发。
感应测井在勘探领域具有重要的应用价值,尤其是在油田勘探和开发中。
它可以提供关于地下油藏的电性和导电性信息,帮助勘探人员确定油田的边界和储量,进而优化开发方案,提高采收率。
总之,感应测井利用电磁感应原理来测量地层物性的特点。
通过测量地层对交变电磁场的响应,可以得到有关地层的电性和
导电性信息。
这一技术在油气勘探和开发中有着广泛的应用,对于提高勘探效果和开发效率具有重要意义。
测井的三大基本方法
测井的三大基本方法测井的三大基本方法测井是石油勘探开发中不可或缺的一项技术,其主要作用是通过对地下岩石的物理、化学性质进行测量,从而了解油气藏的储层性质、含油气性能等信息。
目前,测井技术已经发展出了多种方法,其中最常见的有电测井、声波测井和核子测井三种基本方法。
下面将详细介绍这三种方法的原理、应用以及注意事项。
一、电测井1. 原理电测井是利用地层中不同岩石对电流的导电性能差异来识别和分析油气藏储层的一种方法。
具体来说,当钻杆上带有电极时,钻杆与地层之间形成一个回路。
当向钻杆上加入直流或交流电源时,由于地层中不同岩石对电流导电性能不同,因此在钻孔内产生了一系列复杂的电场分布和信号变化。
通过对这些信号进行处理和解释,可以得到地层中水含量、孔隙度、渗透率等重要参数。
2. 应用电测井主要用于识别和评价含水层、油气储层的孔隙度、渗透率等参数。
在石油勘探开发中,电测井可以用来确定油气藏的位置、厚度和含油气性质,为后续的钻井和开发提供重要依据。
3. 注意事项在进行电测井之前,需要对钻杆和测量仪器进行彻底检查,确保其正常工作。
此外,在进行数据处理和解释时,需要考虑地层中不同岩石对电流导电性能的影响因素,并且对数据进行合理校正。
二、声波测井1. 原理声波测井是利用地层中不同岩石对声波传播速度和衰减程度的差异来识别和分析油气藏储层的一种方法。
具体来说,在进行声波测井时,向钻孔内发射一定频率的声波信号,并通过接收器记录下信号经过地层后返回到接收器所需的时间。
通过计算这些时间差以及信号频率等参数,可以得到地层中不同岩石的密度、弹性模量等物理参数。
2. 应用探开发中,声波测井可以用来识别和定位油气储层、判断储层中的含油气性质以及评价钻井效果等。
3. 注意事项在进行声波测井之前,需要对测量仪器进行校准和测试,确保其正常工作。
此外,在进行数据处理和解释时,需要考虑地层中不同岩石对声波传播速度和衰减程度的影响因素,并且对数据进行合理校正。
测井技术基本原理及方法简介3
利用近钻头伽马和电阻率,及时确定钻遇地层,并对可能的地层变化给出预测,实现 实时地质导向,以便及时确定下一步钻井方案,提高工程时效与勘探发现率。 利用随钻方位密度中子、方位电阻率,实时确认地层物性及含油性情况,调整井眼 轨迹,提高水平井优质油层的钻遇率。 应用旋转导向系统,实现井下定向,进一步提高钻速,降低卡钻风险,使井眼更 平滑;自动导航系统使井斜快速返回垂直,实现垂直快打。
主要包括:曲线质量评价、分辨率匹配、标准层刻度、区域资料对比分析等
8
7、测井质量控制
测井资料质量控制流程
规章制度
测井设计
作业依据
测井采集
信 息 传 输
曲线质量
现场监督
基地评价
合 格 资 料 拼接合并
预处理
标 准 化
环境校正
测井数据库解释处理来自网络发布97、测井质量控制
深度控制
天滑轮 马 丁 代 克
1.一级标准(行业级):参数已知的、具有 准确和稳定量值的标准井或实验井
两类刻度装置
1.外刻度:借助外部刻度装置,如 标准井、刻度环(夹)等 2.内刻度:使用内嵌刻度装置,如 自检电路、 测试盒等
2.二级标准(企业极):车间刻度装置
3.三级标准(井场级):便携刻度装置
三个刻度目的
1.检查井下仪器工作是否正常 2.检查井下仪器的响应关系是否正确 3.检查井下仪器的稳定性
油气水三相持率,产液能力评价,确定出水位置
流量 = 速度 持率 面积
流 体 界 面 变 化 套 管 腐 蚀 多 种 情 况 组 合
窜 槽
7
7、测井质量控制
必要性 1、井的基准信息;2、测井解释的基础;3、区域对比的依据 测井质量控制是一个全过程的控制 1、测井仪器本身的质量及其控制过程:通过“刻度”等来保障仪器质量
测井原理及各种曲线的应用
一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。
在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。
又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。
在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。
用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。
其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。
另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。
沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。
GR曲线主要测量地层的放射性。
1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。
影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。
地球物理测井方法与原理
地球物理测井方法与原理地球物理测井是一种对地下储层进行测量、分析和评价的方法。
通过测井工具的下井进行物理量的测定,可以获取地下储层的岩性、地层厚度、孔隙度、渗透率等信息,对油气田勘探开发及油层工程有着重要的意义。
本文将介绍地球物理测井的基本原理和常用方法。
一、测井原理地球物理测井的基本原理是利用测井工具发射相应的能量,将能量通过地层传播后,接收到的反射波或散射波作为信息来获取地下储层的特性。
根据测井工具使用的能量类型和测量的物理量,可将地球物理测井方法分为以下几类。
1. 电测井方法电测井方法是利用测井仪器对地层中的电阻率进行测量,以反映岩层的含油、含水性质。
常用的电测井方法有直流电阻率测井、交流电阻率测井和自然电位测井等。
2. 声测井方法声测井方法是利用声波在地下储层中的传播特性,推断出地层的弹性参数和岩性。
主要包括测井声波、声波速度测井、声阻抗测井和共振测井等。
3. 密度测井方法密度测井方法是通过测量地下储层中的密度,来推断岩层的孔隙度、饱和度等。
常见的密度测井方法有伽马射线测井、中子测井和密度测井等。
4. 核磁共振测井方法核磁共振测井方法是利用核磁共振现象对地下储层进行测量,推断岩层的孔隙度、饱和度和渗透率。
核磁共振测井方法在近年来逐渐兴起,具有高分辨率、无辐射等优点。
二、常用测井方法1. 伽马射线测井伽马射线测井是通过测量地下储层中伽马射线的强度,来判断岩石的密度和放射性元素的含量。
根据伽马射线的特性,可以获得地层的层位、岩性和饱和度等信息。
2. 电阻率测井电阻率测井是通过测量地层中的电阻率,来判断岩石的导电性质和饱和度。
不同的岩石具有不同的电阻率特性,通过电阻率测井可以判断地层的岩性变化和油气的分布情况。
3. 声波速度测井声波速度测井是通过测量地层中声波的传播速度,来判断岩石的弹性参数和孔隙度。
声波在不同岩石中的传播速度不同,通过声波速度测井可以获得地层的岩性、渗透率和孔隙度等信息。
4. 中子测井中子测井是通过测量地层中中子的散射和吸收情况,来推断岩石的孔隙度和饱和度。
测井原理及解释技术(以气井为例)
1 按研究的物理性质分类 ① 电法测井 电阻率测井、自然电位测井等; ② 声波测井 声速测井、声幅测井、声波全波列测井等; ③ 放射性测井 自然伽马测井、自然伽马能谱测井、补偿密度测井、 岩性密度测井、补偿中子测井、中子寿命测井等; ④ 其它测井 井温测井、地层测试、井径测井、气测井等。
自然电位曲线的特点:
1 泥岩基线:均质、巨厚的泥岩地层对应的自然电位曲线。 2 最大静自然电位SSP:均质、巨厚的完全含水的纯砂岩层的自然
电位读数与泥岩基线读数的差值。 3 异常:指相对泥岩基线而言,渗透性地层的SP曲线的位置。
A、负异常:当 Rmf﹥Rw时,自然电位为负异常; B、正异常:当 Rmf﹤Rw 时,自然电位为正异常。
整个测井学科涉及知识范围广,需要用到地质学、物理学、数学、 机械设计等相关领域内的知识。
测井公司一般有三个主要业务:测井设备的制造和研发、测井数据 采集、测井资料解释分析。
测井专用车
地面系统
➢ 地面系统作为综合化测井地面系统, 能完成裸眼井、套管井、生产井的 测井作业,以及射孔、取心作业和 工程作业
2 按技术服务项目分类 ① 裸眼井地层评价测井系列 ② 套管井地层评价测井系列 ③ 生产动态测井系列 ④ 工程测井系列
测井系列选择的原则: 针对所需要解决的问题和地层、井况等各种条件,选择能最大
程度为所测物理性质提供直接应用价值的各种测井方法,使测井项 目减至最少,但又能较准确的解决问题,尽可能达到事半功倍的目 的。 基本要求:
(1) 能准确地确定地层界面深度,并能详细地划分薄地层。 (2) 能判断地层的岩性和渗透性。 (3) 能计算储集层的储集性和含油气性参数。 (4) 能划分和评价油气层和水层。
1 电阻率测井系列 提供地层真电阻率和侵入带电阻率,确定储层的含水饱和度。
常规测井的基本原理
常规测井的基本原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!Download tips: This document is carefully compiled by theeditor. l hope that after you downloadthem,they can help yousolve practical problems. The document can be customized andmodified afterdownloading,please adjust and use it according toactual needs, thank you!常规测井基本原理流程:①发射源工作:在钻井作业中,向井下发射源(如放射性同位素、电磁波发生器)发出特定类型的能量场或粒子。
②能量交互:发射的射线或波在穿过地层时,与岩石、流体中的原子核、电子相互作用,产生吸收、散射或激发现象。
③信号响应收集:地层对能量的响应差异导致到达井筒传感器的信号强度、时间延迟或能量谱发生变化。
④数据记录:测井仪器实时记录这些变化,生成反映地层物理特性的曲线或日志,如电阻率、密度、声速等。
⑤深度同步:测井过程中,通过电缆或自带系统精确测量深度,确保所有测量值与井深一一对应。
⑥资料处理:将原始数据上传至地面工作站,进行深度校正、滤波、归一化等处理,提高数据质量。
⑦解释分析:运用地质、地球物理知识,结合测井曲线特征,分析判断地层岩性、孔隙度、含油饱和度等。
⑧综合评价:将测井资料与其他地质、地震数据综合,构建地下地质模型,评估油气藏潜力,指导钻探决策。
常规测井通过分析地层与特定能量场的相互作用,为油气勘探开发提供关键的地层信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想梯度电极系:成对电极之间的距离趋于零,此时M、N、O三点为一点,
AM = AN = AO ∆ U MN R a = 4 π AO
2 MN
MON
E I
I
= 4 π AO
2
视电阻率值与O点处沿井轴方向的电位梯度成正比,故称为梯度电极系 B、按成对电极与不成对电极的相对位置可分为: 、按成对电极与不成对电极的相对位置可分为: 1、正装电极系:成对电极位于不成对电极下方(对于梯度电极系又称为底 部梯度电极系,其测井曲线以明显的极大值显示于高阻层的底界面)
§3 视电阻率测井曲线特征及影响因素
一、梯度电极系视电阻率测井曲线(理论) 特征:1、曲线不对称于地层中点; 2、底(顶)曲线分别在地层底(顶)界面处出现极大值; 3、曲线中部较直的段的读数接近视电阻率值。 二、电位电极系视电阻率测井曲线(理论) 特征:1、曲线对称于地层中点; 2、对应地层中点处出现极大、小值; 3、地层界面处出现平台,当厚度小于L时(薄层),出现“假极 大”。 故厚度小于0.5米的地层不能用电位电极系视电阻率测井曲线去分辨 三、视电阻率实测曲线认识: 较平滑,不象理论曲线那么规则和深刻,厚层多用“半幅点”划界面。
二、岩石孔隙结构
1、孔隙类型:结构模型(单一、双重、多重) 2、孔隙大小及分选(同粒度度量) 3、孔隙度:岩石的孔隙体积占岩石外表体积之比。(分为总、有效、流动)
三、岩石的饱和度:指岩石孔隙中某种流体所占的体积百分数。
岩石中由几相流体充满其孔隙,则这几相流体饱和度之和为1。 原始含油饱和度、原始含水饱和度、目前油、气、水饱和度、残余油饱和度
四、岩石的渗透率:代表岩石让流体通过能力的大小,常用来对比不同
岩石的渗透性。 达西定律(线性渗流定律):单位时间内通过岩心的液体流量与岩心两端的 压差及岩心的横截面积成正比,而与岩心长度及流体粘度成反比。
四、岩石的其它性质
热学性质、导电性、放射性、敏感性
第二章 储层流体的物理性质
一、天然气的物理性质
四、驱油过程中的阻力效应
贾敏效应:气泡通过窄口时产生附加阻力的现象。
五、相对渗透率曲线:Sw、 So~Kro、 Krw的关系曲线 相对渗透率曲线:
A区:单相油流区 降 Sw < Swi=20%, Krw =0, Kro很大 ,此时水不能流动,油相K稍有下
B区:油水同流区 随Sw上升, Krw上升, Kro下降明显,油水同流 C区:纯水流动区 So < Sor, Kro =0, Krw急剧上升( So从15%下降到0, Krw则从60%上升 100%) 该曲线是在油田开发、动态分析、确定Sw、 So 、 Sg、水驱油等有关计算 的重要资料。
四、发展史
1、测井技术开始于法国,1927年佩斯布龙(法)测得第一条电测曲线; 2、我国,测井技术有六十多年历史 A、1941年10月,老君庙油田4号井钻开L油层时发生强烈井喷起火,为提供L油层资料, 1942年用自制的半自动电测仪测得第一条电测曲线; B、 1956年四川为研究自流井气田早期开发历史,对已有几百—几十年历史的盐水井和气 井,进行干井电测,与古代的“岩口簿”对比,比较精确地解决了地层、构造、储层性质 等方面的问题; C、50年代,引进前苏联测井仪器; D、 1958年自制国产多线电测仪及放射性测井仪投入生产,为60年代初期的大庆油田勘探 开发设计,提供了油层评价的重要资料; E、 60年代中后期,又试制成功了声波测井仪,为胜利、大港、江汉油田提供了资料; F、 70年代初,又试制成功了切割式取芯仪,电缆式地层测试仪,双发双收声速测井仪、 补偿密度和声波电视,地层倾角测井仪和数字测井仪,测井系列越来越完善; G、 70年代后期,引进10套特莱赛(美)公司测井仪,该仪器最大耐温177—204°C,耐压 141MPa。
AM << AB
L
O : AM 的中点 L : AM 电极距
理想电位电极系:成对电极之间的距离为无穷远,此时只有A、M两个电极 视电阻率值与M点的电位成正比,故称为电位电极系
B
2、梯度电极系:不成对电极到靠近它的成对电极的距离远远大于成对电极 之间的距离。
AM >> MN
A
L
O : MN 的中点 L : AO 电极距
2、混相采油法: 互溶混相驱、注液化石油气段塞法、富气混相驱、高压 干气混相驱、CO2驱油法 3、化学法: 聚合物溶液驱油法、活性剂溶液非混相驱油法、泡沫驱油 法、胶束-微乳液驱油法
第二部分 一、概念
矿场地球物理(测井)
地球物理测井是用各种专门的仪器放入井中,沿井身测量井 孔剖面上地层的各种物理参数随井深的变化曲线,并根据测量结 果进行综合解释(或数字处理)来判断岩性、确定油气层及其它 矿藏的一种间接手段。 二、工作完成的顺序 1、将装在汽车中的仪器设备运到井场安装好。用铰车提升井下 仪器并同时进行参数测量,得到各种测井资料。经验收合格后, 将资料带回室内; 2、经过资料的综合解释(或数字处理)得到岩层的各种地质参 数,进而判断出油气层。
测井基础知识培训
第一部分 油层物理基础 第一章 储层岩石的物理性质
一、储层骨架性质 1、岩石粒度组成:指构成砂岩的各种大小不同颗粒的含量。即测定不同粒 级颗粒占全岩颗粒的百分数。(表示岩石骨架分散性的一种指标) 2、岩石比面:指单位体积岩石内,岩石骨架的总表面积或单位体积岩石内 总孔隙的内表面积。 (颗粒越细,比面越大) (同样是表示岩石骨架分散 性的一种指标) 对油藏中流体流动影响很大,它可以决定岩石的许多性质,如:表面现象、 流动阻力、渗透率、吸附量等。
Rw1 = Rw 2 =K= Rwn ≡ F
F称为:岩石的地层因素或相对电阻率,只与岩样的孔隙度、胶结情况和孔 孔隙度、 孔隙度 隙形状有关,而与Rw无关。 隙形状 a 根据数理统计分析得:
F =
ϕm
, a : 与岩性有关的比例系数6 − 1.5; m : 胶结指数 ,0.
五、R与含油饱和度的关系 I只与S 有关, 与R , ϕ , 孔隙形状无关 与含油饱和度的关系 W 0
二、地层油的物理性质
溶解油气比:将某一压力、温度下的地层含气原油,在地面进行脱气后,得 1立方米原油所分离出的气量,就是该压力、温度下的地层原油溶解油气比。 体积系数(一般大于1 ) 地层油气两相体积系数:地层压力小于饱和压力时,地层原油和析出气体的 总体积与它在地面脱气后原油体积之比。 压缩系数、粘度 原油凝固点:指原油由能流动到不能流动的转折点。
二、岩石的润湿性:当存在两种非混相流体时,其中某一相流体沿固体
表面延展或附着的倾向性。 驱替过程:非润湿相驱替润湿相的过程。(亲油岩石水驱油) 吸吮过程:润湿相驱替非润湿相的过程。(亲水岩石水驱油)
三、毛管压力曲线:毛管压力和饱和度的关系曲线 毛管压力曲线:
对于研究岩石孔隙结构、分析产油能力、确定岩石润湿性、油水饱和度 分布、采收率、多相流体渗流均有意义。 亲水岩石,毛管压力为正,将其浸泡在油中,水在压力作用下自动进入 岩心,吸吮。 亲油岩石,毛管压力为负,为阻力,水不能自动进入岩心,必须施加外 力克服毛管力,才能水驱油,驱替。
三、电极系 (一)定义:由供电电极和测量电极按一定的位置、距离固定在一个绝缘体 上组成的下井仪器。(包括三个电极) 成对电极:接在同一回路中的两个电极; 不成对电极:接在不同回路中的电极。 (二)分类:A、按电极之间的相对距离可把电极系分为两类: 、按电极之间的相对距离可把电极系分为两类 1、电位电极系:不成对电极到靠近它的成对电极的距离远远小于成对电极 之间的距离。 MOA
第四章
提高原油采收率机理
一、提高原油采收率(Enhanced Oil Recovery,简称EOR) 提高原油采收率 采收率、一次采油、二次采油、三次采油、四次采油 采收率 EOR:除一次、二次采油以外的任何方法。如:热力驱法、混相驱法、化学驱法 注入工作剂时的采收率( 波及系数(程度)( )(E 洗油效率( 注入工作剂时的采收率(ER) =波及系数(程度)( V)×洗油效率(ED) 波及系数:工作剂驱扫国的油层体积所占的百分数。 EV=AShS /Ah 波及系数 洗油效率: 洗油效率:注入工作剂在孔隙中清洗原油的程度。 ED=1- Sor/ Soi 二、提高原油采收率的方法 1、热力采油法: 蒸汽吞吐法、蒸汽驱油法、火烧油层
数理统计法 : I = b
对砂岩: ϕ ↑, m ↓ 差 ⇒ Rt ↓, 反之亦然 Rt 引入电阻增大系数 : I ≡ R0
= b
( )
(1− S0 )
n
S nw
n , b : 与岩性有关, 表示油水在孔隙中的分布状况对Rt 的影响
§2 普通电阻率测井原理
在井孔中测定周围岩石的电阻率,必须给介质通入电流造成一个人工 电场,这个场的分布特点决定于周围介质的电阻率,因此,确定各种介质中 的电场分布特点则该介质的电阻率即可确定,所以电阻率测井实质上是研究 各种介质中的电场分布。在井孔剖面上经常出露的是有限厚的各种电阻率不 同的岩石,当渗透层被钻开后其各带的电阻率也要发生变化。非均匀特性, 各带的电阻率不同,是由于“泥浆侵入”造成的。 “泥浆侵入”现象:在钻井过程中通常保持泥浆柱压力稍大于地层压力,在 这个压差作用下,泥浆滤液向渗透层中渗入,置换了渗透层孔隙中原来的流 体而形成侵入带,同时泥浆中的泥质颗粒附着在井壁上形成泥饼的现象。 一般分为高侵和低侵,在这种综合条件影响下测量的电阻率称为视电阻率, 故称视电阻率测井。 ∆U Ra = K I 视电阻率经井眼、围岩、侵入影响校正求出真电阻率
2、倒装电极系:成对电极位于不成对电极上方(对于梯度电极系又称为顶 部梯度电极系,其测井曲线以明显的极大值显示于高阻层的顶界面) 另外,还分为单极供电、双极供电等 (三)电极系书写方式:在井内由上而下顺序写出电极名称及距离。见表 (四)电极系互换原理:在一个电极系中,保持电极之间的相对位置不变, 只把电极的功能改变(互换供电和测量电极),测量条件不变时,用变化前 后的两个电极系对同一剖面进行视电阻率测井,所得曲线完全相同。 据该原理,四种梯度电极系实为两种,而电位电极系所测曲线对称,故其细 致分类无实用意义。 (五)电极系探测深度:以供电电极为中心,以某一半径作球面,如果球面 内包括的介质对测量结果的贡献为50%时,则此半径定义为电极系探测深度 或探测半径。 一般电极距为L,电位电极系探测深度是2L,梯度电极系的是1.4L