人教版九年级上册21.3实际问题与一元二次方程(第三课时)同步测试题含答案
初中数学 人教版九年级上册 21.3 实际问题与一元二次方程 同步练习(含答案)
实际问题与一元二次方程同步练习一.选择题(共12小题)1.某银行经过最近的两次降息,使一年期存款的年利率由2.25%降低至1.21%,设平均每次降息的百分率为x,则x满足方程()A.2.25%(1-2x)=1.21%B.1.21%(1+2x)=2.25%C.1.21%(1+x)2=2.25%D.2.25%(1-x)2=1.21%2.一次围棋比赛,要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x个参赛棋手,则可列方程为()A.0.5x(x-1)=45B.0.5x(x+1)=45C.x(x-1)=45D.x(x+1)=453.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程()A.180(1-x)2=461B.180(1+x)2=461C.368(1-x)2=442D.368(1+x)2=4424.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()B.15C.16D.255.某件羊毛衫的售价为1000元,因换季促销,商家决定降价销售,在连续两次降价x%后,售价降低了190元,则x为()A.5B.10C.19D.816.2017年底,全国铁路营业里程为12.7万公里,其中高铁2.5万公里;截至2019年底,中国高铁运营里程突破3.5万公里(按3.5万公里计算),约占全球高铁网的七成,若这两年我国高铁里程的增长率相同,在保持年增长率不变的前提下,预计2021年中国高铁里程为多少万公里()A.4.5B.4.7C.4.9D.5.17.疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产量提高到121万只,该厂二、三月份的月平均增长率为()A.12.1%B.20%D.10%8.近几年来安徽省各地区建立了比较完善的经济困难学生资助体系.某地区在2017年给每个经济困难学生发放的资助金额为800元,2019年发放的资助金额为1250元,则该地区每年发放的资助金额的平均增长率为()A.10%B.15%C.20%D.25%9.三角形两边的长分别是8和6,第三边的长是一元二次方程x2-16x+60=0的一个实数根,则该三角形的面积是()A.24B.24或C.48D.10.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10mB.4mC.10mD.8m11.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.1012.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?()A.0.5B.0.6C.2-D.4-2二.填空题(共5小题)13.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.14.如图,在一个长20m,宽10m的矩形草地内修建宽度相等的小路(阴影部分),若剩余草地(空白部分)的面积171m2,则小路的宽度为m.15.今年我国生猪价格不断飙升,某超市的排骨价格由第一季度的每公斤40元上涨到第三季度的每公斤元90,则该超市的排骨价格平均每个季度的增长率为.16.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.17.“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到156个红包,则该群一共有人.三.解答题(共5小题)18.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?19.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.20.受疫情影响,某种蔬菜的价格快速上涨,是原价的1.5倍,同样用48元能买到的蔬菜比原来少了2千克.(1)求这种蔬菜的原价是每千克多少元?(2)政府采取增加采购渠道、财政补贴等多种措施,降低价格,方便老百姓的生活.这种蔬菜的批发价两次下调后,由每千克10元降为每千克6.4元.求平均每次下调的百分率.21.甲商品的进价为每件20元,商场确定其售价为每件40元.(1)若现在需进行降价促销活动,预备从原来的每件40元进行两次调价,已知该商品现价为每件32.4元.若该商品两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在原售价的基础上应如何调整?22.乐高积木是儿童喜爱的玩具.这种塑胶积木一头有凸粒,另一头有可嵌入凸粒的孔,形状有1300多种,每一种形状都有12种不同的颜色,以红、黄、蓝、白、绿色为主.它靠小朋友自己动手动脑,可以拼插出变化无穷的造型,令人爱不释手,被称为“魔术塑料积木”.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价;(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降m(m>0)元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润为5760元。
人教版九年级上册数学 21.3 实际问题与一元二次方程(传播问题)专题练习(Word版,含答案)
人教版九年级上册数学21.3 实际问题与一元二次方程--传播问题专题练习一、单选题1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,设每个支干长出x 个小分支,则下列方程中正确的是( )A .2143x +=B .2143x x ++=C .243x x +=D .()2143x += 2.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确的是( ) A .x +x (1+x )=100B .1+x +x 2=100C .1+x +x (1+x )=100D .x (1+x )=1003.新冠病毒主要是经呼吸道飞沫传播的,在无防护下传播速度很快.已知有1个人患了新冠肺炎,经过两轮传染后共有169个人患了新冠肺炎,每轮传染中平均一个人传染m 人,则m 的值为( )A .11B .12C .13D .14 4.早期,甲肝流行,在一天内,一人能传染4人,若有三人患上甲肝,那么经过两天患上甲肝的人数为( )A .50B .75C .25D .70 5.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )A .x (x +1)=28B .12x (x ﹣1)=28 C .x (x ﹣1)=28 D .12x (x +1)=28 6.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑? A .-10 B .10 C .8 D .9 7.一个同学经过培训后会做某项实验,回到班级后第一节课他教会了若干个同学,第二节课会做的同学每人又教会了同样多的同学,这样全班共有36人会做这项实验,若设1人每次能教会x 名同学,则可列方程为( )A.x+(x+1)x=36B.(x+1)2=36C.1+x+x2=36D.x+(x+1)2=368.在一次同学聚会上,参加的每个人都与其他人握手一次,共握手95次,设参加这次同学聚会的有x人,可得方程()A.x(x﹣1)=190B.x(x﹣1)=380C.x(x﹣1)=95D.(x﹣1)2=380二、填空题9.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有100人患病,设每轮传染中平均一个人传染了x个人,则由题意列出方程___________________.10.今年“国庆节”和“中秋节”双节期间,某微信群规定,群内的每个人都要发一个红包,并保证群内其他人都能抢到且自己不能抢自己发的红包,若此次抢红包活动,群内所有人共收到200个红包,则可以列方程为__.11.有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为____________.12.有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有225人患上此病,则每天一人传染______人.13.某种植物的主干长出若干数目的支干,每个支干长出同样数量的小分支.若主干、支干和小分支的总数是73,设每个支干长出x个小分支,则可列方程为______.14.中秋节当天,小明将收到的一条短信发送给若干人,每个收到短信的人又给相同数量的人转发了这条短信,此时包括小明在内收到这条短信的人共有111人,则小明给_______人发了短信.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,两轮传播后,流感病人总数为288人,则每轮传播中平均一个病人传染的人数为______人.16.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为________.三、解答题17.某种流感病毒,若有一人患了这种流感,则在每轮传染中一人将平均传染x人.(1)现有一人患上这种流感,求第一轮传染后患病的人数(用含x的代数式表示);(2)在进入第二轮传染前,有两位患者被及时隔高并治愈,问第二轮传染后患病的人数会有21人吗?18.某种病毒传播速度非常快,如果最初有两个人感染这种病毒,经两轮传播后,就有五十个人被感染,求每轮传播中平均一个人会传染给几个人?若病毒得不到有效控制,三轮传播后将有多少人被感染?19.新冠肺炎疫情在全球蔓延,造成了严重的人员伤亡和经济损失,其中一个原因是新冠肺炎病毒传播速度非常快.一个人如果感染某种病毒,经过了两轮的传播后被感染的总人数将达到64人.(1)求这种病毒每轮传播中一个人平均感染多少人?(2)按照上面的传播速度,如果传播得不到控制,经过三轮传播后一共有多少人被感染?20.为了宣传垃圾分类,小王写了一封倡议书,用微博转发的方式传播,他设计了如下的转发规则:将倡议书发表在自己的微博上,然后邀请x个好友转发,每个好友转发之后,又邀请x个互不相同的好友转发,已知经过两轮转发后,共有111个人参与了本次活动.(1)x的值是多少?(2)再经过几轮转发后,参与人数会超过10000人?参考答案:1.B2.C3.B4.B5.B6.C7.B8.A9.2(1)100x +=10.x (x ﹣1)=20011.()3333192x x x +++=12.1413.x 2+x +1=7314.1015.1116.1017.(1)(1)x +;(2)不会,18.每轮传播中平均一个人会传染给4个人,若病毒得不到有效控制,三轮传播后将有250人被感染19.(1)7人;(2)512人20.(1)10;(2)再经过两轮转发后,参与人数会超过10000人.。
人教版数学九年级上册第21章_213实际问题与一元二次方程有答案
人教版数学九年级上册第21章 21.3实际问题与一元二次方程同步练习一、单选题(共14题;共28分)1. 王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为3000cm2的无盖长方形工具箱,根据题意列方程为( )A.(80−x)(70−x)=3000B.80×70−4x2=3000C.(80−2x)(70−2x)=3000D.80×70−4x2−(70+80)x=30002. 如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−2x)(20−x)=570B.32x+2×20x=32×20−570C.(32−x)(20−x)=32×20−570D.32x+2×20x−2x2=5703. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1−x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.84. 某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场()A.5个B.6个C.7个D.8个5. 一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人.A.12B.10C.9D.86. 甲公司前年缴税a万元,去年和今年缴税的年平均增长率均为b,则今年该公司应缴税()万元.A.a(1+b%)2B.a(1+b)2C.a(ab%)2D.a(1−b%)27. 奉节特产专卖店销售2015年良种夏季脐橙,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种脐橙要想平均每天获利2240元,为减少库存,每千克脐橙应降价多少元?()A.4元B.6元C.4元或6元D.5元8. 某商场第一季度的利润为82.75万元.其中一月份的利润是25万元,则平均每月利润的增长率为()A.10%B.15%C.12%D.8%9. 如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的19,则竖彩条宽度为( )75A.1cmB.1.5cmC.2cmD.2.5cm10. 制造某种产品,计划经过两年成本降低36%,则平均每年降低()A.18%B.20%C.36%D.以上答案均错11. 有一个两位数,它的数字和等于8,交换数字位置后,得到的新的两位数与原两位数之积为1612,则原来的两位数为()A.26B.62C.26或62D.以上均不对12. 据(南通市2005年国民经济和社会发展统计公报)报告:南通市2005年国内生产总值达1493亿元,比2004年增长11.8%.下列说法:①2004年国内生产总值为1493(1−11.8%)亿元;亿元;②2004年国内生产总值为14931−11.8%亿元;③2004年国内生产总值为14931+11.8%④若按11.8%的年增长率计算,2007年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是()A.③④B..②④C.①④D.①②③13. 有一人患了红眼病,经过两轮传染后共有144人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A.10B.11C.12D.1314. 为了庆祝教师节,市教育工会组织篮球比赛,赛制为单循环比赛(即每两个队比赛一场)共进行了45场比赛,则这次参加比赛的球队个数为()A.8B.9C.10D.11二、填空题(共6题;共6分)波音公司生产某种型号飞机,7月份的月产量为50台,由于改进了生产技术,计划9月份生产飞机98台,那么8,9月飞机生产量平均每月的增长率是________.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程为________.某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是________微克/立方米.原价100元的某商品,连续两次降价后售价为81元,若每次降低的百分率相同,则降低的百分率为________.我市某果园2014年猕猴桃产量为100吨,2016年猕猴桃产量为150吨,设该果园猕猴桃产量的年平均增长率为x,则根据题意可列方程为________.某药品原价是95元,经连续两次降价后,价格变为60.8元,如果每次降价的百分率是一样的,那么每次降价的百分率是________.三、解答题(共5题;共25分)建造一个池底为正方形、深度为2m的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.某商场以80元/个的价格购进1000个保温杯.经市场调研,保温杯定价为100元/个时可全部售完,定价每提高1元,销售量将减少5个.未卖完的保温杯可以直接退还厂家.要使商场利润达到60500元,保温杯的定价应为多少元?如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽.A.解:设小路的宽为xm,依题意有(40−x)(32−x)=1140,整理,得x2−72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(1)写出a,b的值;(2)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.参考答案与试题解析人教版数学九年级上册第21章 21.3实际问题与一元二次方程同步练习一、单选题(共14题;共28分)1.【答案】C【考点】由实际问题抽象出一元二次方程【解析】根据题意可知裁剪后的底面的长为(80−2x)cm,宽为(70−2x)cm,从而可以列出相应的方程,本题得以解决.【解答】解:由题意可得,长和宽均在原来的基础上各剪去2x,所以剩余长方形的底面积为:(80−2x)(70−2x)=3000.故选C.2.【答案】A【考点】由实际问题抽象出一元二次方程【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m2,即可列出方程.【解答】解:根据题意得:种草部分的长为(32−2x)m,宽为(20−x)m,∴(32−2x)(20−x)=570.故选A.3.【答案】C【考点】由实际问题抽象出一元二次方程【解析】设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程即可.【解答】设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,4.【答案】B【考点】一元二次方程的应用一元二次方程的应用——其他问题【解析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数−1)=15×2,把相关数值代入求正数解即可.【解答】解:设这个航空公司共有飞机场x个.x(x−1)=15×2,解得x1=6,x2=−5(不合题意,舍去).所以这个航空公司共有飞机场6个.故选B.5.【答案】C【考点】一元二次方程的应用一元二次方程的应用——其他问题【解析】每个人都要送给他自己以外的其余人,等量关系为:人数×(人数−1)=72,把相关数值代入计算即可.【解答】解:设这小组有x人.由题意得:x(x−1)=72,解得x1=9,x2=−8(不合题意,舍去).即这个小组有9人.故选C.6.【答案】B【考点】一元二次方程的应用【解析】解答此题运用的数量关系:前年缴税数×(1+年平均增长率)2=今年缴税数,由此直接列式解答即可.【解答】解:因为公司前年缴税a万元,两年的年平均增长率均为b,所以今年缴税数=a(1+b)2万元.故选B.7.【答案】B【考点】设每千克脐橙降价x元,利用销售量×每件利润=2240元列出方程求解即可.【解答】解:设每千克橙降应降价x元.×20)=2240.根据题意,得(60−x−40)(100+x2化简,得x2−10x+24=0解得:x1=4,x2=6,∵为减少库存,∴每千克脐橙应降价6元.故选:B.8.【答案】A【考点】一元二次方程的应用【解析】增长后的量=增长前的量×(1+增长率),如果设利润平均月增长率为x,根据“第一季度的利润是82.75万元”,可得出方程解答.【解答】解:设利润平均每月的增长率为x,第一季度的利润是82.75万元,根据题意列方程为:25[1+(1+x)+(1+x)2]=82.75;解得:x1=0.1,x2=−3.1(舍去).故选:A.9.【答案】A【考点】一元二次方程的应用一元二次方程的应用——几何图形面积问题【解析】可设竖彩条的宽是xcm,则横彩条的宽是2xcm,根据彩条所占面积是图案面积的19,75可列方程求解.【解答】解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则(30−2x)( 20−4x)=30×20×(1−19),75整理得:x2−20x+19=0,解得:x1=1,x2=19(不合题意,舍去).答:竖彩条的宽度为1cm.故选A.10.【答案】B【考点】设平均每年降低x%.第一年成本为a元,由题意a(1−x%)2=0.64a,求出x即可.【解答】解:设平均每年降低x%.第一年成本为a元.由题意a(1−x%)2=0.64∵ x=20故选B.11.【答案】C【考点】一元二次方程的应用【解析】首先设原两位数个位数字为x,则十位数字为8−x,则原来的两位数是10(8−x)+x,交换数字位置后得到的新的两位数是10x+8−x,再根据新的两位数与原两位数之积为1612列出方程,再解即可.【解答】解:设原两位数个位数字为x,则十位数字为8−x,由题意得:[10(8−x)+x][10x+8−x]=1612,解得:x1=6,x2=2,当x=6时,8−x=2,当x=2时,8−x=6,则原来的两位数为62或26,故选C.12.【答案】A【考点】一元二次方程的应用【解析】依据增长后的量=(1+增长率)增长的次数×增长前的量即可作出判断.【解答】解:设2004年国内生产总值为为x亿元,则(1+11.8%)x=1493所以x=14931+11.8%故①②错误,③正确;若按11.8%的年增长率计算,2007年的国内生产总值预计为1493(1+1.8%)2亿元.故④正确;故选:A.13.【答案】B【考点】一元二次方程的应用【解析】设每轮传染中平均一个人传染的人数为x人,由两轮后传染的人数为144人为等量关系建立方程求出其解即可.【解答】解:设每轮传染中平均一个人传染的人数为x人,由题意,得x+1+x(x+1)=144,解得:x1=−13(舍去),x2=11.故选B.14.【答案】C【考点】一元二次方程的应用规律型:图形的变化类一元一次方程的应用——其他问题【解析】=45.试题解析:设这次参加比赛的球队个数为∼,有题意可知,x(x−1)2整理得,x2−x−90=0解得:x1=10,x2=−9(不合题意,舍去)故选C.【解答】此题暂无解答二、填空题(共6题;共6分)【答案】40%【考点】一元二次方程的应用——增长率问题【解析】设8、9月飞机生产量平均每月的增长率是x,根据7月份的月产量为50台,计划9月份生产飞机98台,列方程求解.【解答】解:设8,9月飞机生产量平均每月的增长率是x,由题意得,50×(1+x)2=98,解得:x=0.4或x=−2.4(舍),即8,9月飞机生产量平均每月的增长率是40%.故答案为:40%.【答案】50(1−x)2=32【考点】由实际问题抽象出一元二次方程【解析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.【解答】解:由题意可得,50(1−x)2=32.故答案为:50(1−x)2=32.【答案】40.5【考点】有理数的混合运算【解析】根据增长率问题的关系式得到算式50×(1−10%)2,再根据有理数的混合运算的顺序和计算法则计算即可求解.【解答】依题意有50×(1−10%)2=50×0.92=50×0.81=40.5(微克/立方米).答:今年PM2.5的年均浓度将是40.5微克/立方米.故答案为:40.5.【答案】10%【考点】一元二次方程的应用——其他问题【解析】先设平均每次降价的百分率为x,得出第一次降价后的售价是原来的(1−x),第二次降价后的售价是原来的(1−x)2,再根据题意列出方程解答即可.【解答】解:设这两次降低的百分率是x,根据题意可列方程为100×(1−x)2=81,解得:x1=0.1=10%,x2=1.9(不符合题意,舍去).所以降低的百分率是10%.故答案为:10%.【答案】100(1+x)2=150【考点】由实际问题抽象出一元二次方程【解析】2016年的猕猴桃产量=2014年的猕猴桃产量×(1+年平均增长率)2,把相关数值代入即可.【解答】根据题意,得100(1+x)2=150,【答案】20%【考点】一元二次方程的应用【解析】设每次降价的百分率为x,根据原价及连续两次降价后的价格,即可得出关于x的一元二次方程,解之即可得出结论.【解答】设每次降价的百分率为x,根据题意得:95(1−x)2=60.8,解得:x=0.2=20%或x=−1.8(舍去).三、解答题(共5题;共25分)【答案】解:设池底的边长为xm.200x2+800x=6400,解得x1=4,x2=−8(舍),答:池底的边长为4m.【考点】一元二次方程的应用【解析】本题可设正方形池底的边长为xm,池壁的面积为4×22m2.根据池底的造价×池底的面积+池壁的造价×池壁的面积=总造价,方程可列出,进而可求出正方形池底的边长.【解答】此题暂无解答【答案】解:设保温杯的定价应为x元,根据题意得:(x−80)[1000−5(x−100)]=60500,整理得:x2−380x+36100=0,解得:x1=x2=190.答:保温杯的定价应为190元.【考点】一元二次方程的应用【解析】设保温杯的定价应为x元,根据总利润=单个利润×销售数量结合商场总利润达到60500元,即可得出关于x的一元二次方程,解之即可得出结论.【解答】此题暂无解答【答案】解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.【考点】一元二次方程的应用【解析】本题可设小路的宽为xm,将4块种植地平移为一个长方形,长为(40−x)m,宽为(32−x)m.根据长方形面积公式即可求出小路的宽.【解答】此题暂无解答【答案】解:设销售单价为x元,由题意,得:(x−360)[160+2(480−x)]=20000,整理,得:x2−920x+211600=0,解得:x1=x2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.【考点】一元二次方程的应用【解析】根据单件利润×销售量=总利润,列方程求解即可.【解答】解:设销售单价为x元,由题意,得:(x−360)[160+2(480−x)]=20000,整理,得:x2−920x+211600=0,解得:x1=x2=460.答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.【答案】解:(1)a=0.9+0.3=1.2,b=1.2+0.2=1.4.(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:1×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),100所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【考点】用样本估计总体【解析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(1)a=0.9+0.3=1.2,b=1.2+0.2=1.4.(2)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:1×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),100所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.。
人教版九年级数学上册21.3: 实际问题与一元二次方程 同步练习(含答案)
实际问题与一元二次方程同步练习一.选择题(共12小题)1.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x,可列得方程为()A.5(1+x+1.5x)=7.8B.5(1+x×1.5x)=7.8C.7.8(1-x)(1-1.5x)=5D.5(1+x)(1+1.5x)=7.82.如图,某小区规划在一个长40m、宽26m的长方形场地ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草,要使每一块草坪的面积都为144m2,那么通道的宽x应该满足的方程为()A.(40+2x)(26+x)=40×26B.(40-x)(26-2x)=144×6C.144×6+40x+2×26x+2x2=40×26D.(40-2x)(26-x)=144×63.某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.104.一种商品的原价是16元,经过两次提价后的价格为20元,如果每次提价的百分率都是x,根据题意,则x的值应在()A.0 和5%之间B.5%和10%之间C.10%和15%之间D.15%和20%之间5.如图,某中学计划靠墙围建一个面积为80m2的矩形花圃(墙长为12m),围栏总长度为28m,则与墙垂直的边x为()A.4m或10m B.4m C.10m D.8m6.在半径为R的圆形钢板上,挖去四个半径都为r的小圆.若R=16.8,剩余部分的面积为272π,则r的值是()A.3.2B.2.4C.1.6D.0.87.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个8.一块矩形菜地的面积是120m2,如果它的长减少2m,菜地就变成正方形,则原菜地的长是()A.10B.12C.13D.149.为了宣传垃圾分类,童威写了一篇倡议书,决定用微博转发的方式传播.他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发,每个好友转发之后,又邀请n个互不相同的好友转发,依此类推.已知经过两轮转发后,共有111个人参与了宣传活动,则n的值为()A.9B.10C.11D.1210.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A.3cm B.4cm C.4.8cm D.5cm11.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为()A.5%B.8%C.10%D.11%12.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟二.填空题(共5小题)13.我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为.14.运动会入场式上,某班队列为m行n列的矩形方阵.当队伍行进到表演区时,队列进行变形,行数增大2,列数减小3,恰好组成正方形方阵,则该班同学有人.15.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工人.16.一张长方形的会议桌,长3米,宽2米,有一块台布的面积是桌面面积的1.5倍,并且铺在桌面上时,各边垂下的长度相同,则台布各边垂下的长度是米.(结果保留根号)17.如图,市中心广场有一块长50m,宽30m的矩形场地ABCD,现计划修建同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪要使草坪部分的总面积为1000m2,则人行道的宽为m.三.解答题(共5小题)18.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?19.如图1,有一张长40cm,宽20cm的长方形硬纸片,裁去角上2个小正方形和2个小长方形(图中阴影部分)之后,恰好折成如图2的有盖纸盒.(1)若纸盒的高是3cm,求纸盒底面长方形的长和宽;(2)若纸盒的底面积是150cm2,求纸盒的高.20.如图所示,在Rt△ABC中,△B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB 边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?21.适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.22.为了满足市场上的口罩需求,某厂购进A、B两种口罩生产设备若干台,已知购买A 种口罩生产设备共花费360万元,购买B种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求A、B两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?参考答案1-5:DDACC 6-10:CCBBD 11-12:AB13、x(x+12)=86414、3615、5016、17、518、应将每个口罩涨价2元时,才能让顾客得到实惠的同时每天利润为480元.19、:(1)纸盒底面长方形的长为17cm,宽为14cm.(2)若纸盒的底面积是150cm2,纸盒的高为5cm.20、21、(1)0.2或0.5;(2)该文具店每天卖2B铅笔获取的利润不可以达到50元.22、:(1A种口罩生产设备的单价为60万元,则B种口罩生产设备的单价为80万元;(2)每盒口罩可涨价5元.。
人教版九年级上册数学实际问题与一元二次方程同步训练(含答案)
人教版九年级上册数学21.3 实际问题与一元二次方程同步训练一、单选题1.有一人患了流感,经过两轮传染后,共有225人患了流感,设每轮传染中平均每人传染的人数为x 人,则可列方程( ) A .225x x x +⋅=B .(1)225x x x ++=C .()1(1)225x x x +++=D .1(1)(1)225x x x ++++=2.某种药品原价为64元/盒,经过连续两次降价后售价为49元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .264(1)6449x -=- B .64(12)49x -=C .264(1)49x -=D .()264149x -=3.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排21场比赛,则八年级班级的个数为( ) A .5B .6C .7D .84.某厂一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是x ,则可以列方程 ( )A .500(12)720x +=B .2500(1)720x +=C .2720(1)500x +=D .2500(1)720x +=5.某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( ) A .30(1+x )2=50 B .30(1﹣x )2=50 C .30(1+x 2)=50D .30(1﹣x 2)=506.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分比率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( ) A .()25601315x += B .()256012315x += C .()256012315x -=D .()25601315x -=7.已知某企业2019年年营业收入为2500万元,2021年年营业收入达到3600万元,求这两年该企业年营业收入的平均增长率.设这两年年营业收入的平均增长率为x ,根据题意列方程为()A.2500x2=3600B.2500(1+x)=3600C.2500(1+x)2=3600D.2500[1+(1+x)+(1+x)2]=3600 8.如图,一农户要建议个矩形花圃,花圃的一边利用长为12 m的墙,另外三边用25 m长的篱笆围成,为方便进出,在垂直于墙的一边留一个1 m宽的门,花圃面积为80 m2,设于墙垂直的一边长为x m,则可以列出方程是()A.x(26-2x)=80B.x(24-2x)=80C.(x-1)(26-2x)=80D.x(25-2x)=80二、填空题9.某学习小组的成员互赠新年贺卡,共用去72张贺卡,则该学习小组________有名成员;10.由于受疫情影响,某市高铁站客流量已连续两周下降,由每周50万人次下降至每周32万人次,设平均下降率为x,则根据题意列方程为________________.11.目前以5G等为代表的战略性新兴产业蓬勃发展,某市2021年底有5G用户20万户,计划到2023年底该市5G用户数累计达到33.8万户,设该市5G用户数年平均增长率为x,则x的值是______.12.第24届北京冬奥会冰壶混合双人循环赛在冰立方举行.参加比赛的每两队之间都进行一场比赛,共要比赛45场,共有______个队参加比赛.13.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是28,求每个枝干长出多少个小分支.设每个枝干长出x个小分支,则方程为_________(只列方程,不解答).14.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,则道路的宽为_______.15.直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.16.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程______.三、解答题17.如图,一长方形草坪长50米,宽30米,在草坪上有两条互相垂直且宽度相等的长方形小路(阴影部分),非阴影部分的面积是924米2.(1)求小路的宽度;(2)每平方米小路的建设费用为200元,求修建两条小路的总费用.18.为了满足初中学业水平体育与健康考试的需求,某体育用品专卖店从厂家以单价40元进购了一种排球,如果以单价60元出售,那么每月可售出400个,根据销售经验,销售单价每提高1元,销售量相应减少5个.(1)设销售单价提高x元,则每个排球获得的利润是_____元;这种排球这个月的销售量是_____个;(2)若该专卖店准备在这种排球销售上一月获利10500元,同时又要使顾客得到实惠,则售价应定为多少元?19.某口置生产厂生产的口置一月份平均日产量为40000个,一月底因突然爆发新冠肺炎疫情,市场对口置需求量大增,为满足市场需求,工厂决定从二月份起扩大产能,使三月份平均日产量达到48400个(1)求口罩日产量的月平均增长率:(2)按照这个增长率,预计四月份平均日产量为多少?20.某商店以每件60元的价格购进一种小电器,标价150元,经过两次降价,以每件96元出售,结果一个月售出200台.根据以往销售经验,销售单价每降价1元,每月销售量就会增加5台.(1)求平均每次降价的百分率;(2)商店希望一个月内销售该种小电器能获得利润6900元,则该种小电器的销售单价应再降价多少元?答案第1页,共1页参考答案:1.C 2.C 3.C 4.D 5.A 6.D 7.C 8.A 9.910.()250132x -= 11.30% 12.1013.2128x x ++= 14.2m##2米 15.(12)864x x -= 16.()()402021200x x -+= 17.(1)小路的宽为8米;(2)修建两条小路的总费用为115200元. 18.(1)(20+x ),(400-5x ) (2)售价应定为70元19.(1)口罩日产量的月平均增长率为10%. (2)预计四月份平均日产量为53240个. 20.(1)平均每次降价的百分率为20% (2)该种小电器的销售单价应再降价6元。
人教版九年级上册数学 21 3实际问题与一元二次方程 同步训练 (含答案)
二、填空题
9.为了让农民能种植高产、易发芽的种子,某农科ห้องสมุดไป่ตู้验基地大力开展种子实验.该实验基地两年前有150种种子,经过两年不断地努力,现在已有216种种子.若培育的种子平均每年的增长率为x,则x的值为______.
10.在元旦庆祝活动中,每个参加活动的同学都给其余参加活动的同学各送1张贺卡,共送贺卡42张,设参加活动的同学有 人,根据题意,可列方程是______
(1)若销售单价定为每件45元,求每天的销售利润;
(2)要使每天销售这种纪念品盈利1600元,同时又要让利给顾客,那么该纪念品的售价单价应定为每件多少元?
19.如图,老李想用长为 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈 ,并在边 上留一个 宽的门(建在 处,另用其他材料).
(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640 的羊圈?
A. B. C. D.
7.据省统计局发布,2022年我省有效发明专利数比2021年增长23%.假定2023年的年增长率保持不变,2021年和2023年我省有效发明专利分别为a万件和b万件,则()
A. B.
C. D.
8.如图,在一块长为 ,宽为 的矩形 空地内修建四条宽度相等,且与矩形各边垂直的道路,四条道路围成的中间部分恰好是一个正方形,且边长是道路宽的4倍,道路占地总面积为 ,设道路宽为 ,则以下方程正确的是()
11.某次聚会,每两个人握手一次,总共握手 次,那么有___________人参加聚会.
12.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程___________.
人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程 附答案
2020年秋季人教版数学九年级上册同步练习21.3 实际问题与一元二次方程一.传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14B.15C.16D.253.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.74.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.5.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.6.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?二.握手问题1.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1260B.2x(x+1)=1260C.x(x﹣1)=1260D.x(x﹣1)=1260×22.某单位要组织篮球邀请赛,每两队之间都要赛一场且只赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,根据题意,可列方程()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=153.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个4.元旦期间,九年(1)班数学研究小组的同学互送新年贺卡,如果研究小组有x名学生,共送出132张贺卡,那么可列出方程为.5.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.三.增长问题1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=63.某校坚持对学生进行近视眼的防治,近视学生人数逐年减少.据统计,今年的近视学生人数是前年近视学生人数的75%,那么这两年平均每年近视学生人数降低的百分率是多少?设平均每年降低的百分率为x,根据题意列方程得()A.1﹣x2=75%B.(1+x)2=75%C.1﹣2x=75%D.(1﹣x)2=75% 4.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为x,则可列方程为.5.某市继续加大对教育经费的投入,2018年投入2500万元,2020年预计投入3600万元,则该市投入教育经费的年平均增长率为.6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?四.利润问题1.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000 B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=100002.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满:当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640 C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86403.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则每天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100﹣2x)=1800B.C.D.x[100﹣2(x﹣20)]=18004.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x 元.请你帮助商场算一算,满足x的方程是..5.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.6.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.五.面积问题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6002.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=323.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设榣栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=3754.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.5.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.6.学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x米.(1)用x表示绿化区短边的长为米,x的取值范围为.(2)学校计划投资25000元用于此项工程建设,求绿化区的长边长.参考答案一.传播问题1.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.2.解:设平均每天一人传染了x人,根据题意得:1+x+(1+x)×x=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.3.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.4.解:依题意,得:1+x+x(1+x)=121.故答案为:1+x+x(1+x)=121.5.解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)2=1691+x=±13x1=12,x2=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.6.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.二.握手问题1.解:依题意,得:x(x﹣1)=1260.故选:C.2.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选:D.3.解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.4.解:设研究小组有x名学生,可列出方程为:x(x﹣1)=132.故答案为:x(x﹣1)=132.5.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.三.增长问题1.解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.3.解:依题意,得:(1﹣x)2=75%.故选:D.4.解:设平均每次降价的百分率是x,根据题意列方程得,6500(1﹣x)2=5265.故答案为:6500(1﹣x)2=5265.5.解:设该市投入教育经费的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.6.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.四.利润问题1.解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.2.解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.3.解:由题意可得,x(100﹣)=1800,故选:C.4.解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.5.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.6.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.五.面积问题1.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.2.解:设剪去的小正方形边长是xcm,则做成的纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32.故选:D.3.解:设榣栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.4.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.5.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m 的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.6.解:(1)路面宽为(14﹣2x)米,则绿化区短边的长为[10﹣(14﹣2x)]÷2=(x﹣2)米,依题意得2≤14﹣2x≤5,解得≤x≤6;(2)设绿化区的长边长为x米.由题意列方程得150×4x(x﹣2)+200[14×10﹣4x(x﹣2)]=25000,整理得x2﹣2x﹣15=0,解得x1=5,x2=﹣3(不合题意,舍去).答:绿化区的长边长为5米.故答案为:(x﹣2),≤x≤6.。
人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案
人教版九年级数学上册《21.3实际问题与一元二次方程》同步测试题及答案一、选择题1.在一次初三学生数学交流会上,每两名学生握手一次,统计共握手253次.若设参加此会的学生为x 名,据题意可列方程为()A.x(x+1)=253B.x(x−1)=253C.12x(x+1)=253D.12x(x−1)=2532.某小区内的一家快递驿站第一天共收到225件快递,第三天共收到324件快递,设该快递驿站收件量的日平均增长率为x,则下列方程正确的是()A.225(1+x2)=324B.225(1+x)2=324C.225(1+2x)=324D.225+225(1+x)=3243.有一个人患流感,经过两轮传染后共有64个人患流感.设每轮传染中平均一个人传染x个人,则第三轮传染后共有()个人患流感。
A.7 B.8 C.448 D.5124.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.主干,支干和小分支的总数是157,则每个支干长出多少个小分支?设每个支干长出x个小分支,所列方程是()A.x2=157B.(1+x)2=157C.1+x+x2=157D.x+x2=1575.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“健身杯”足球比赛,赛制为单循环形式(每两个队之间赛一场),现计划安排21场比赛,则邀请的参赛队数是()A.5 B.6 C.7 D.86.如图,把一块长为40cm,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则所列方程正确的为()A.(30−2x)(40−2x)=600B.(30+2x)(40+2x)=600C.30×40−2×30x−2×40x=600D.30×40+2×30x+2×40x=6007.某公司年报显示,该公司2023年的利润为6600万元,受市场波动影响,2023年利润增长率为2022年利润增长率的一半,若该公司2021年的利润为5000万元,则该公司2023年利润增长率为()A.5%B.10%C.15%D.20%8.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是()A.3(x−1)x=6210B.3(x−1)=6210C.(3x−1)x=6210D.3x=6210二、填空题9.10月8号到校前,帅童收到学校的一条短信通知发给若干同学,每个收到的同学又给相同数量的同学转发了这条短信,此时收到这条短信的同学共有157人,帅童给个同学发了短信10.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,设每只病鸡传染健康鸡的只数为x只,则可列方程为.11.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为.12.如图是一个三角形点阵图,从上向下有无数多行,其中第一行有1个点,第二行有2个点…第n行有n个点,容易看出,10是三角形点阵中前4行的点数和,则300个点是前行的点数和.13.如图,某小区要在长为16m,宽为12m的矩形空地上建造一个花坛,使花坛四周小路的宽度相等,且花坛所占面积为空地面积的一半,则小路宽为m.三、解答题14.西瓜经营户以3元/千克的价格购进一批小型西瓜,以4元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克这种小型西瓜的售价降低多少元?15.现今网购已经成为消费的新常态,某快递公司今年8月份的投递快递总件数为10万件,由于改进分拣技术,增加投递业务人员,10月份的投递快递总件数达到12.1万件,假设该公司每个月的投递快递总件数平均增长率相同.(1)求该公司的投递快递总件数月平均增长率;(2)如果继续保持上面的月平均增长率,平均每个业务员每月最多可投递快递0.7万件,那么20名投递业务员能否完成今年11月份的快递投递任务?说明理由.16.每年暑假是游泳旺季,今年我市某商店抓住商机,销售某款游泳服.6月份平均每天售出100件,每件盈利40元.为了扩大销售、增加盈利,7月份该店准备采取降价措施,经过市场调研,发现销售单价每降低1元,平均每天可多售出10件.(1)若降价5元,求平均每天的销售数量;(2)当每件游泳服降价多少元时,该商店每天销售利润为6000元?参考答案1.D2.B3.D4.C5.C6.A7.B8.A9.1210.(1+x)2=16911.20%12.2413.214.解:设应将每千克这种小型西瓜的售价降低x元.)−24=200根据题意,得(4−3−x)(200+40x0.1原式可化为:50x2−25x+3=0,解这个方程,得x1=0.2,x2=0.3.∵为了促销,故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克这种小型西瓜的售价降低0.3元.15.(1)解:设该公司的投递快递总件数月平均增长率为x依题意得:10(1+x)2=12.1解得:x1=﹣2.1(不符合题意,舍去),x2=0.1=10%答:该公司的投递快递总件数月平均增长率为10%;(2)解:该公司现有的20名投递业务员能完成今年11月份的快递投递任务,理由如下:由题意可知,11月份的快递投递总件数:12.1×(1+10%)=13.31 (万件)∵0.7×20=14(万件),14>13.31∴该公司现有的20名投递业务员能完成今年11月份的快递投递任务.16.(1)解:∵销售单价每降低1元,平均每天可多售出10件,降价5元∴平均每天可多售出5×10=50(件)∴若降价5元,平均每天的销售数量为100+50=150(件).(2)解:设每件商品降价x元,则每件盈利(40−x)元,平均每天可售出(100+10x)件∵商店每天销售利润为6000元∴(40−x)(100+10x)=6000解得:x1=10,x2=20答:每件游泳服降价10元或20元时,该商店每天销售利润为6000元.。
21.3 实际问题与一元二次方程(第3课时) 人教版数学九年级上册同步习题(含答案)
.
答:2 秒后△PBQ 的面积等于 8cm2. 3、解:(1)设每件衬衫应降价 元.
则依题意,得:(40- )(20+2 )=1200,
整理,得
,解得:
.
∴若商场平均每天赢利 1200 元,每件衬衫应降价 10 元或 20 元. (2)设每件衬衫降价 元时,商场平均每天赢利最多为 y,
则 y=(40- )(20+2 )=
◆典例分析
一辆汽车以 20m/s 的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行 25m 后 停车. (1)从刹车到停车用了多少时间? (2)从刹车到停车平均每秒车速减少多少? (3)刹车后汽车滑行到 15m 时约用了多少时间(精确到 0.1s)? 分析:本题涉及到物理学中的运动知识,具体分析如下: (1)刚刹车时时速还是 20m/s,以后逐渐减少,停车时时速为 0.因为刹车以后,其速度
∴ (20-4 )=15,整理得:
,
解方程:得 =
,∴ ≈4.08(不合题意,舍去), ≈0.9(s).
∴刹车后汽车滑行到 15m 时约用了 0.9s.
◆课下作业
●拓展提高
1、为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的
人均约为
提高到
若每年的年增长率相同,则年增长率为( )
Q
AP
B
3、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件赢
利
40 元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发
现,如果每件衬衫每降价一元,商场平均每天可多售出 2 件.
(1)若商场平均每天赢利 1200 元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天赢利最多?
人教版九年级上册数学实际问题与一元二次方程同步练习(含答案)
人教版九年级上册数学21.3 实际问题与一元二次方程同步练习一、单选题1.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排36场比赛,则八年级班级的个数为( )A .6B .9C .7D .8 2.随着国内新冠疫情逐步得到控制,人们的口罩储备逐渐充足,市场的口罩需求量在逐渐减少,某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到64万只,则该厂七八月份的口罩产量的月平均减少率为( ) A .18% B .20% C .36% D .40% 3.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形,为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x 米,则根据题意,列方程为( )A .35×20-35x -20x +2x 2=600B .35×20-35x -2×20x =600C .(35-2x )(20-x )=600D .(35-x )(20-x )=6004.把一个边长为40cm 的正方形硬纸板的四周按如图所示的方式剪掉一些长方形,将剩余部分折成一个有盖的长方体盒子,折成的一个长方体盒子的表面积为550cm 2,则此时长方体盒子的体积为( )A .750cm 3B .1536cm 3C .2000cm 3D .2304cm 3 5.在 “双减政策” 的推动下, 我校学生课后作业时长有了明显的减少. 2021 年第三季度平均每周作业时长为 630 分钟, 经过 2021 年第四季度和 2022 年第一季度两次整改后, 现䢎平均每周作业时长为 450 分钟,设每季度平均每周作业时长的季度平均下降率为 a , 则可列方程为 ( )A .()6301450-=aB .()4501630+=aC .()26301450-=aD .()24501630+=a6.如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子(纸板的厚度忽略不计)若该无盖盒子的底面积为900cm2,盒子的容积是()A.34500cm D.39000cm4000cm C.33600cm B.37.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却持续蔓延,此肺炎具有人传人的特性,若一人携带病毒未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,设每轮传染中平均每个人传染了x人,则根据题意可列出方程()A.x(1+x)=256B.x+(1+x)2=256C.x+x(1+x)=256D.1+x+x(1+x)=2568.如图,某底板外围呈正方形,其中央是边长为x米的空白小正方形,空白小正方形的四周铺上小块正方形花岗石(即阴影部分),恰好用了144块边长为0.8米的正方形花岗石,则边长x的值是()A.3米B.3.2米C.4米D.4.2米二、填空题9.金滩商场4月份的利润是28万元,预计6月份的利润将达到40万元,设每月利润的平均增长率为x,则根据题意所列方程是__________________.10.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百九十一步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为891平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多_________步.11.新冠肺炎全球蔓延,为防控疫情,做到有“礼”有“距”,“碰肘礼”逐渐流行起来.某次会议上,每两个参加会议的人都相互一次“碰肘礼”,经统计所有人共碰肘36次,则这次会议到会人数是_____人.12.某校团体操表演队伍有6行8列,后又增加了51人,使得团体操表演队伍增加的行、列数相同,问增加了_________行或_________列.13.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x步,则可列方程______.14.襄阳市要组织一次少年足球联赛,要求参赛的每两队之间都要进行两场比赛,共要比赛90场,则共有______个队参加比赛.15.某地区加大教育投入,2021年投入教育经费2000万元,以后每年逐步增长,预计2023年,教育经费投入为2420万元,则该地区教育经费投入年平均增长率为______.16.2022年春季,新一轮的新冠病毒的传染性极强,莱市某社区因1人患了新冠肺炎没有及时隔离治疗,经过两轮的传染后,共有25人患了新冠肺炎,每轮平均1人感染了_____________个人.三、解答题17.劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.若平均每年的增产率相同,求平均每年的增产率.18.如图,学校课外生物小组的试验园地是长30米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道,要使种植面积为532平方米,求小道的宽.19.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和6.05万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率:(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年8月份的投递任务?20.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算.该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校.若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?参考答案:1.B2.B3.C4.A5.C6.C7.D8.C9.()2x+=2814010.611.912.3313.x(x+12)=86414.1015.10%16.417.平均每年的增产率为10%18.小道宽1米.19.(1)该快递公司投递的快递件数的月平均增长率为10%(2)不能完成今年8月份的投递任务,理由见解析20.(1)该市这两年投入基础教育经费的年平均增长率为20% (2)2021年最多可购买电脑880台。
人教版九年级上册 21.3 实际问题与一元二次方程 同步练习(三)
21.3 实际问题与一元二次方程同步练习基础巩固练习一:限时35分钟1.地铁东城某服装店销售一批衬衣,每件进价250元,开始以每件400元的价格销售,每星期能卖出20件,后来因库存积压,决定降价销售,经过两次降价后每件售价为324元,每星期能卖出172件.(1)已知两次降价的百分率相同,求每次降价的百分率;(2)喜欢研究数学的店长在降价的过程中发现,适当的降价可增加销售又可增加收入,且每件衬衣售价每降低1元,销售量会增加2件,若店长想要每星期获利11000元,为了让顾客得到更大的实惠,应把售价定为多少元?2.小可同学在去年暑假的社会调查实践活动中,对本市一果脯制品厂进行采访,获得了如下信息:①该厂一月份果脯的加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;④六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了4.668吨;⑤该厂第一季度共加工果脯18.2吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.3.水果批发市场有一种高档水果,如果每千克盈利(毛利)10元,每天可售出600千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利17元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润7500元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利的10%交纳各种税费,人工贵每日按销售量每千克支出1.5元,水电房租费每日300元,若剩下的每天总纯利润要达到6000元,则每千克涨价应为多少?4.目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?。
人教版九年级数学上册213实际问题与一元二次方程(第三课时)同步测试题含答案初中数学试卷.doc
21.3实际问题与一元二次方程第三课时销售利润问题1.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60 棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?2.某汽车销售公司6刀份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售岀1部汽车,则该部汽车的进价为27万元,每多售岀1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10 部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)__________________________________________________________ 若该公司当月卖岀3部汽车,则每部汽车的进价为___________________________________________ 万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利二销售利润+返利)3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调杳发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,请回答:(1)商场日销售量增加_______ 件,每件商品盈利 ________ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场F1盈利可达到2100元?4.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100 千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,贏得市场,该店应按原售价的几折出售?,5.某单位于“三•八〃妇女节期间组织女职工到温泉"星星竹海〃观光旅游.下面是领队与旅行社导游收费标准的一段对话:领队:组团去"星星竹海"旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领队:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元. 该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到"星星竹海〃观光旅游的共有多少人?6.某公司投资新建了一商场共有商铺30间,据预测,当每间的年租金定为10万元时,可以全部租出,每件的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。
人教版数学九年级上册同步练习:21.3 实际问题与一元二次方程 附答案
2020年秋季人教版数学九年级上册同步练习21.3 实际问题与一元二次方程一.传播问题1.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x人,依题意可列方程()A.1+x=225B.1+x2=225C.(1+x)2=225D.1+(1+x2)=2252.有种传染病蔓延极快,据统计,在某城市人群密集区,每人一天能传染若干人,现有一人患有此病,开始两天共有225人患上此病,平均每天一人传染了多少人?()A.14B.15C.16D.253.某校“研学”活动小组在一次野外实践时,发现一种植物的1个主干上长出x个支干,每个支干上再长出x个小分支.若在1个主干上的主干、支干和小分支的数量之和是43个,则x等于()A.4B.5C.6D.74.有一人患了流感,假如平均一个人传染了x个人,经过两轮感染后共有121人患了流感,依题意可列方程为.5.有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了个人.6.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有169人患新冠肺炎(假设每轮传染的人数相同).求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?二.握手问题1.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1260B.2x(x+1)=1260C.x(x﹣1)=1260D.x(x﹣1)=1260×22.某单位要组织篮球邀请赛,每两队之间都要赛一场且只赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,根据题意,可列方程()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=153.在一次篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.则参赛的球队数为()A.6个B.8个C.9个D.12个4.元旦期间,九年(1)班数学研究小组的同学互送新年贺卡,如果研究小组有x名学生,共送出132张贺卡,那么可列出方程为.5.2019年12月6日,某市举行了2020年商品订货交流会,参加会议的每两家公司之间都签订了一份合同,所有参会公司共签订了28份合同,则共有家公司参加了这次会议.三.增长问题1.目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G用户2万户,计划到2021年底全市5G用户数累计达到8.72万户.设全市5G用户数年平均增长率为x,则x值为()A.20%B.30%C.40%D.50%2.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=63.某校坚持对学生进行近视眼的防治,近视学生人数逐年减少.据统计,今年的近视学生人数是前年近视学生人数的75%,那么这两年平均每年近视学生人数降低的百分率是多少?设平均每年降低的百分率为x,根据题意列方程得()A.1﹣x2=75%B.(1+x)2=75%C.1﹣2x=75%D.(1﹣x)2=75% 4.某市某楼盘的价格是每平方米6500元,由于市场萎靡,开发商为了加快资金周转,决定进行降价促销,经过连续两次下调后,该楼盘的价格为每平方米5265元.设平均每次下调的百分率为x,则可列方程为.5.某市继续加大对教育经费的投入,2018年投入2500万元,2020年预计投入3600万元,则该市投入教育经费的年平均增长率为.6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?四.利润问题1.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x元,则可列方程为()A.(40+x)(600﹣10x)=10000 B.(40+x)(600+10x)=10000C.x[600﹣10(x﹣40)]=10000D.x[600+10(x﹣40)]=100002.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满:当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.设房价定为x元,宾馆当天利润为8640元.则可列方程()A.(180+x﹣20)(50﹣)=8640B.(x+180)(50﹣)﹣50×20=8640 C.x(50﹣)﹣50×20=8640D.(x﹣20)(50﹣)=86403.某商场在销售一种糖果时发现,如果以20元/kg的单价销售,则每天可售出100kg,如果销售单价每增加0.5元,则每天销售量会减少2kg.该商场为使每天的销售额达到1800元,销售单价应为多少?设销售单价应为x元/kg,依题意可列方程为()A.(20+x)(100﹣2x)=1800B.C.D.x[100﹣2(x﹣20)]=18004.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件衬衫每降价1元,商场平均每天可多销出2件.若商场每天要盈利1200元,设每件衬衫应降价x 元.请你帮助商场算一算,满足x的方程是..5.某种商品,平均每天可销售40件,每件赢利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售5件,若每天要赢利2400元,则每件应降价元.6.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.五.面积问题1.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600B.35×20﹣35x﹣2×20x=600C.(35﹣2x)(20﹣x)=600D.(35﹣x)(20﹣2x)=6002.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=323.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为375平方米的矩形临时仓库,仓库一边靠墙,另三边用总长为55米的栅栏围成,若设榣栏AB的长为x米,则下列各方程中,符合题意的是()A.x(55﹣x)=375B.x(55﹣2x)=375C.x(55﹣2x)=375D.x(55﹣x)=3754.学校打算用长16m的篱笆围成一个长方形的生物园饲养小动物,生物园的一面靠墙(如图),面积是30m2,求生物园的长和宽.设生物园的宽(与墙相邻的一边)为xm,则列出的方程为.5.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.6.学校有一块长14米,宽10米的矩形空地,准备将其规划,设计图案如图,阴影应为绿化区(四块绿化区为全等的矩形),空白区为路面,且四周出口一样宽广且宽度不小于2米,不大于5米,路面造价为每平方米200元,绿化区为每平方米150元,设绿化区的长边长为x米.(1)用x表示绿化区短边的长为米,x的取值范围为.(2)学校计划投资25000元用于此项工程建设,求绿化区的长边长.参考答案一.传播问题1.解:设1人平均感染x人,依题意可列方程:(1+x)2=225.故选:C.2.解:设平均每天一人传染了x人,根据题意得:1+x+(1+x)×x=225,(1+x)2=225,解得:x1=14,x2=﹣16(舍去).答:平均每天一人传染了14人.故选:A.3.解:依题意,得:1+x+x2=43,整理,得:x2+x﹣42=0,解得:x1=6,x2=﹣7(不合题意,舍去).故选:C.4.解:依题意,得:1+x+x(1+x)=121.故答案为:1+x+x(1+x)=121.5.解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)2=1691+x=±13x1=12,x2=﹣14(舍去).答:每轮传染中平均一个人传染了12个人.故答案为:12.6.解:(1)设每轮传染中平均每个人传染了x个人,依题意,得:1+x+x(1+x)=169,解得:x1=12,x2=﹣14(不合题意,舍去).答:每轮传染中平均每个人传染了12个人.(2)169×(1+12)=2197(人).答:按照这样的传染速度,第三轮传染后,共有2197人患病.二.握手问题1.解:依题意,得:x(x﹣1)=1260.故选:C.2.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选:D.3.解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,解得:x=9或x=﹣8(舍去),故选:C.4.解:设研究小组有x名学生,可列出方程为:x(x﹣1)=132.故答案为:x(x﹣1)=132.5.解:设共有x家公司参加了这次会议,根据题意,得x(x﹣1)=28整理,得x2﹣x﹣56=0解得x1=8,x2=﹣7(不合题意,舍去)答:共有8家公司参加了这次会议.故答案是:8.三.增长问题1.解:设全市5G用户数年平均增长率为x,则2020年底全市5G用户数为2(1+x)万户,2021年底全市5G用户数为2(1+x)2万户,依题意,得:2+2(1+x)+2(1+x)2=8.72,整理,得:x2+3x﹣1.36=0,解得:x1=0.4=40%,x2=﹣3.4(不合题意,舍去).故选:C.2.解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.3.解:依题意,得:(1﹣x)2=75%.故选:D.4.解:设平均每次降价的百分率是x,根据题意列方程得,6500(1﹣x)2=5265.故答案为:6500(1﹣x)2=5265.5.解:设该市投入教育经费的年平均增长率为x,依题意,得:2500(1+x)2=3600,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).故答案为:20%.6.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.四.利润问题1.解:售价上涨x元后,该商场平均每月可售出(600﹣10x)个台灯,依题意,得:(40+x)(600﹣10x)=10000,故选:A.2.解:设房价定为x元,由题意得:(x﹣20)(50﹣)=8640.故选:D.3.解:由题意可得,x(100﹣)=1800,故选:C.4.解:设每件衬衫应降价x元,根据题意得出:(20+2x)(40﹣x)=1200故答案为:(20+2x)(40﹣x)=1200.5.解:设每件服装应降价x元,根据题意,得:(44﹣x)(40+5x)=2400解方程得x=4或x=32,∵在降价幅度不超过10元的情况下,∴x=32不合题意舍去,答:每件服装应降价4元.故答案是:4.6.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.五.面积问题1.解:依题意,得:(35﹣2x)(20﹣x)=600.故选:C.2.解:设剪去的小正方形边长是xcm,则做成的纸盒的底面长为(10﹣2x)cm,宽为(6﹣2x)cm,依题意,得:(10﹣2x)(6﹣2x)=32.故选:D.3.解:设榣栏AB的长为x米,则AD=BC=米,根据题意可得,x(55﹣x)=375,故选:A.4.解:设宽为x m,则长为(16﹣2x)m.由题意,得x(16﹣2x)=30,故答案为:x(16﹣2x)=30.5.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m 的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.6.解:(1)路面宽为(14﹣2x)米,则绿化区短边的长为[10﹣(14﹣2x)]÷2=(x﹣2)米,依题意得2≤14﹣2x≤5,解得≤x≤6;(2)设绿化区的长边长为x米.由题意列方程得150×4x(x﹣2)+200[14×10﹣4x(x﹣2)]=25000,整理得x2﹣2x﹣15=0,解得x1=5,x2=﹣3(不合题意,舍去).答:绿化区的长边长为5米.故答案为:(x﹣2),≤x≤6.。
人教版九年级上册数学实际问题与一元二次方程(3)同步练习
21.3 实际问题与一元二次方程(第3课时)用一元二次方程解决几何图形问题1.面积(体积)问题属于几何图形的应用题,解决问题的关键是将不规则图形分割或组合、平移成规则图形,找出未知量与__已知量___的内在联系,根据__面积(体积)___公式列出一元二次方程.2.一个正方形的边长增加了3 cm,面积相应增加了39 cm2,则原来这个正方形的边长为__5___cm.知识点1:一般图形的面积问题1.一个面积为35 m2的矩形苗圃,它的长比宽多2 m,则这个苗圃的长为( C )A.5 m B.6 m C.7 m D.8 m2.(2014·襄阳)用一条长40 cm的绳子围成一个面积为64 cm2的长方形.设长方形的长为x cm,则可列方程为( B )A.x(20+x)=64 B.x(20-x)=64C.x(40+x)=64 D.x(40-x)=643.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,这两条直角边长分别为__2_cm,7_cm___.4.(2014·湘潭)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.解:设AB= x m,则BC=(50-2x) m,根据题意得x(50-2x)=300,解得x1=10,x2=15,当x=10,BC=50-2×10=30>25,故x1=10不合题意,舍去,∴x=15,则可以围成AB为15 m,BC为20 m的矩形知识点2:边框与通道问题5.如图,在宽为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上花草.若种植花草的面积为540 m2,求道路的宽.如果设道路的宽为x m,根据题意,所列方程正确的是( A ) A.(20-x)(32-x)=540B.(20-x)(32-x)=100C.(20+x)(32-x)=540D.(20-x)(32+x)=540,第5题图) ,第6题图) 6.(2014·兰州)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,若设道路宽为x米,则根据题意可列出方程__(22-x)(17-x)=300___.7.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,若相框内部的面积为280 cm2,求相框边的宽度.解:由题意得(26-2x)(20-2x)=280,整理得x2-23x+60=0,解得x1=3,x2=20(不合题意,舍去),则相框边的宽度为3 cm8.从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是( B ) A.100 m2B.64 m2C.121 m2D.144 m29.如图,正方形ABCD的边长是1,E,F分别是BC,CD上的点,且△AEF是等边三角形,则BE的长为( A )A.2- 3 B.2+ 3C.2+ 5 D.5-2,第9题图) ,第11题图)10.在一个矩形地毯的四周镶有宽度相同的花边,已知地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方米,则花边的宽为__1___米.11.如图,已知点A是一次函数y=x-4图象上的一点,且矩形ABOC的面积等于3,则点A的坐标为__(3,-1)或(1,-3)___.12.如图是一个矩形花园,花园的长为100米,宽为50米,在它的四角各建一个同样大小的正方形观光休息亭,四周建有与观光休息亭等宽的观光大道,其余部分(图中阴影部分)种植的是不同花草.已知种植花草部分的面积为3600平方米,那么花园各角处的正方形观光休息亭的边长为多少米?解:设正方形观光休息亭的边长为x米,依题意得(100-2x)(50-2x)=3600,整理得x2-75x+350=0,解得x1=5,x2=70,∵x2=70>50,不合题意,舍去,∴x=5,即矩形花园各角处的正方形观光休息亭的边长为5米13.小林准备进行如下操作实验:把一根长为40 cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪?(2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm2.”他的说法对吗?请说明理由.解:(1)设其中一个正方形的边长为x cm,则另一个正方形的边长为(10-x) cm,由题意得x2+(10-x)2=58,解得x1=3,x2=7,4×3=12,4×7=28,所以小林应把绳子剪成12 cm和28 cm的两段(2)假设能围成.由(1)得,x2+(10-x)2=48,化简得x2-10x+26=0,因为Δ=b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根,所以小峰的说法是对的14.如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点P从点A开始沿AB边向点B以1 cm/s 的速度移动,点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2?说明理由.解:(1)设x秒后,△PBQ的面积等于4 cm2,根据题意得x(5-x)=4,解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去,∴x=1 (2)设x秒后,PQ的长度等于5 cm,根据题意得(5-x)2+(2x)2=25,解得x1=0(舍去),x2=2,∴x=2 (3)设x秒后,△PBQ的面积等于7 cm2,根据题意得x(5-x)=7,此方程无解,所以不能先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版九年级上册数学21.3实际问题与一元二次方程--增长率问题同步训练(word、含答案)
人教版九年级上册数学21.3实际问题与一元二次方程--增长率问题同步训练一、单选题1.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%2.2021年顺平县林木覆盖率为39.7%,被评为“河北省森林城市”.为进一步巩固成果,全县大力开展植树造林活动,计划到2023年森林覆盖率达到50%,如果这两年的森林覆盖年平均增长率相同,均为x ,那么符合题意的方程是( ) A .0.397(1)0.5+=x B .0.397(12)0.5+=x C .20.397(1)0.5+=xD .20.397(1)0.5-=x3.某种药品原价为64元/盒,经过连续两次降价后售价为49元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .264(1)6449x -=- B .64(12)49x -=C .264(1)49x -=D .()264149x -=4.某农业基地现有杂交水稻种植面积36公顷,计划两年后将杂交水稻种植面积增加到48公顷,设该农业基地杂交水稻种植面积的年平均增长率为x ,则可列方程为( ) A .248(1)36x += B .248(1)36x -= C .236(1)48x +=D .236(1)48x -=5.电影《长津湖》讲述了一段波澜壮阔的历史,自上映以来,全国票房连创佳绩.据不完全统计,某市第一天票房收入约2亿元,第三天票房收入约达到4亿元,设票房收入每天平均增长率为x ,下面所列方程正确的是( ) A .22(1)4x += B .()2124x +=C .22(1)4x -=D .()22212(1)4x x ++++=6.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增.为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.则口罩日产量的月平均增长率为( )A .8%B .10%C .15%D .20%7.某品牌电动自行车经销商1月至3月统计,该品牌电动自行车1月销售150辆,3月销售216辆.设该品牌电动车销售量的月平均增长率为x ,根据题意列方程得( )A .()15012216x -=B .()21501216x -= C .()15012216x +=D .()21501216x +=8.骑行带头盔,安全有保障.“一盔一带”政策的推行致头盔销量大幅增长,从2019年到2021年我国头盔销售额从18亿元增长到30.42亿元,则我国头盔从2019年到2021年平均每年增长率是( ) A .10% B .15%C .25%D .30%二、填空题9.重庆某风景区2021年三月份共接待游客4000人次,五月份共接待游客9000人次,则每月的平均增长率为______.10.某试验田种植了杂交水稻,2019年平均亩产800千克,2021年平均亩产1000千克,设此水稻亩产量的平均增长率为x ,则可列出的方程是______.11.某商品由于连续两次降低成本,使成本比原来降低了36%,则平均每次降低成本_______(填百分数).12.某药品经过两次降价,每瓶零售价由100元降为81元,若设平均每次降价的百分率为x ,则由题意可列方程为 ________________,可得x =____.13.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 14.随着网络购物的兴起,增加了快递公司的业务量,一家今年刚成立的小型快递公司业务量逐月攀升,今年9月份和11月份完成投送的快递件数分别是20万件和24.2万件,若该公司每月投送的快递件数的平均增长是x ,由题意列出关于x 的方程:______.15.某旅游景点6月份共接待游客64万人次,暑期放假学生旅游人数猛增,且每月的增长率相同,8月份共接待游客81万人次,如果每月的增长率都为x ,则根据题意可列方程 _____.16.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为 _____.三、解答题17.某商场今年8月的营业额为400万元,9月份营业额比8月份增加10%,11月份的营业额达到633.6万元,求9月份到11月份营业额的月平均增长率.18.某产品5月份时每件200元,在6、7月进行了两次提价,且每次提价的百分率相同,此时售价为288元,后因产品销售问题,8月选择降价,降价的百分率与之前每次提价的百分率相同,求8月份该产品的售价?19.某菜农大量种植蔬菜计划以每千克5元的价格对外批发销售,因销售不利,为减少损失,菜农决定降价出售,经过两次下调售价后,以每千克3.2元的单价对外批发销售.求每次下调的百分率.20.王师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到6050元,且从今年二月到四月,每月盈利的增长率都相同.(1)求每月盈利的增长率;(2)按照这个增长率,预计今年五月份的盈利能达到多少元?参考答案:1.B2.C3.C4.C5.A6.B7.D8.D9.50%10.800(1+x)2=100011.20%12.100(1﹣x)2=8110%13.210(1)12.1+=x14.()2x+=20124.215.64(1+x)2=8116.20%17.20%18.230.4元19.每次下调的百分率为20%20.(1)每月盈利的平均增长率为10%(2)按照这个增长率,预计今年五月份这家商店的盈利将达到6655元。
人教版九年级数学上册21.3 实际问题与一元二次方程同步练习含答案【优选】
人教版九年级数学上册第21章《实际问题与一元二次方程》同步练习1带答案一、实践操作题1.在解一元二次方程时,粗心的甲、乙两位同学分别抄错了同一道题,甲抄错了常数项,得到的两根分别是8和2;乙抄错了一次项系数,得到的两根分别是-9和-1.你能找出正确的原方程吗?若能,请你用配方法求出这个方程的根.二、竞赛题2.象棋比赛中,每个选手与其他选手将比赛一场,每局胜者记2分,败者记0分,如果平局,每人各记1分,今有4 位同学统计了比赛中全部选手得分的总和分别为2025,2070,2080,2085分,经核实,其中只有一位同学是正确的,试求这次比赛中共有多少名选手参加?三、趣味题3.某文具店第一次把乒乓球卖出一半后,补充了1000个,以后每次卖出一半后, 都补充了1000个,到第十次卖出一半后恰好剩1000个,文具店原有乒乓球多少个?四、实践应用题4.某公司向银行贷款20万元资金, 约定两年到期时一次性还本付息, 年利率是12%,该公司利用这笔贷款经营,两年到期时除还清贷款的本金和利息外,还盈余6. 4万元,若在经营期间每年比上一年资金增长的百分数相同,试求这个百分数.5.某开发区2002年人口20万,人均住房面积20m2,预计到2004年底, 该地区人口将比2002年增加2万,为使到2004年底该地区人均住房面积达22m2/人,试求2003年和2003年这两年该地区住房总面积的年平均增长率应达到百分之几?五、创新题6.如图,某农户为了发展养殖业,准备利用一段墙( 墙长18米)和55米长的竹篱笆围成三个相连且面积相等的长方形鸡、鸭、鹅各一个.问:( 1)如果鸡、鸭、鹅场总面积为150米2,那么有几种围法?(2)如果需要围成的养殖场的面积尽可能大,那么又应怎样围,最大面积是多少?参考答案1.X2-10x+9=0,x1=9,x2=12.46名3.2000个4. 20%5.10%6.(1)垂直于墙的竹篱笆长10米,平行于墙的竹篱笆长15米(2)垂直于墙的竹篱笆长9.25米,平行于墙的竹篱笆长18米,最大面积166.5米2。
人教版九年级数学上册21.3实际问题与一元二次方程(增长率类问题)同步练习题
实际问题与一元二次方程(增长率类问题)同步练习题一、单选题1.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x ,那么x 满足的方程是( )A .()2501196x +=B .()250501196x ++= C .()()250501501196x x ++++= D .()()505015012196x x ++++= 2.某商品原售价为60元,4月份下降了20%,从5月份起售价开始增长,6月份售价为75元,设5、6月份每个月的平均增长率为x ,则x 的值为( )A .15%B .25%C .20%D .30%3.据报道,为推进某市绿色农业发展.2020~2022年,该市将完成农业绿色发展项目总投资616亿元.已知福州2020年已完成项目投资100亿元,假设后两年该项目投资的平均增长率为x ,依题意可列方程为( )A .()()210010*********x x ++++=B .()21001616x +=C .()31001616x +=D .()21001616x += 4.一种药品经两次降价,由50元调至40.5元,平均每次降价的百分率是( )%.A .20B .90C .10D .305.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格六月底是7.5元/升,八月底是8.4元/升.设该地92号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程,正确的是( ) A .()27.518.4x =+B .()27.518.4x =+C .()28.417.5x =-D .()()27.517.518.4x x =+++6.为创建全国文明城市,某市2019年投入城市文化打造费用2500万元,预计2021年投入3600万元.设这两年投入城市文化打造费用的年平均增长百分率为x ,则下列方程正确的是( )A .2500x 2=3600B .2500(1+x )2=3600C .2500(1+x %)2=3600D .2500(1+x )+2500(1+x )2=36007.某商品经过两次连续提价,每件售价由原来的100元上涨到了121元.设平均每次涨价的百分率为x ,则下列方程中正确的是( )A .()21001121x -=B .()2121110x += C .()21211100x -= D .()21001121x += 8.某超市进行促销活动,第一天营业额为7万,第二、三两天营业额的增长率相同,第三天营业额为10.08万,设每天增长率为x ,则可列出的方程是( )A .()71210.08x +=B .()27110.08x += C .()271210.08x += D .()210.0817x -= 二、填空题9.据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为y 万吨,如果2019年至2021年蔬菜产量的年平均增长率为(0)x x >,那么y 关于x 的函数解析式为_________.10.某种产品今年的年产量是20t ,计划今后两年增加产量.如果每年的产量都比上一年增加x 倍,两年后这种产品的产量y 与x 之间的函数表达式是________________.11.某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y(万件)将随计划所定的x的值而确定,那么y与x之间的关系式应表示为________.12.某厂今年一月份新产品的研发资金为1000元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y ______.13.某工厂实行技术改造,产量年均增长率为x,已知2020年产量为1万件,那么2022年的产量y(万件)与x间的关系式为___________.14.某厂七月份的产值是10万元,设第三季度每个月产值的增长率相同,都为x(x>0),九月份的产值为y万元,那么y关于x的函数解析式为_______.(不要求写取值范围)三、解答题15.为防控新冠疫情,减少交叉感染,某超市在线上销售优质农产品,该超市于今年一月底收购一批农产品,二月份销售256盒,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400盒.若农产品每盒进价25元,原售价为每盒40元,(1)求三、四这两个月销售量的月平均增长率;(2)该超市五月份降价促销,经调查发现,若该农产品每盒降价1元,销售量可增加5盒,当农产品每盒降价多少元时,这种农产品在五月份可获利4250元?16.东平湖景区共接待游客达20万人次,预计在2023年春节长假期间,将接待游客达28.8万人次.(1)求景区2021至2023年春节长假期间接待游客人次的平均增长率;(2)景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?17.某工厂前年的生产总值为10万元,去年比前年的年增长率为x,预计今年比去年的年增长率仍为x,今年的总产值为y万元.(1)求y关于x的函数关系式.(2)当x=20%时,今年的总产值为多少?(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?18.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5.另外每天还需支付其他各项费用80元.(1)请求出y与x之间的函数关系式;(2)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3实际问题与一元二次方程
第三课时销售利润问题
1.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不
超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售
价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?
2. 某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有
如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量
在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月卖出3部汽车,则每部汽车的进价为万元;
(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)
3.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采
取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加_________件,每件商品盈利_________元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
4.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售
出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的
几折出售?,
5.某单位于“三?八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是
领队与旅行社导游收费标准的一段对话:
领队:组团去“星星竹海”旅游每人收费是多少?
导游:如果人数不超过25人,人均旅游费用为100元.
领队:超过25人怎样优惠呢?
导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.
该单位按旅行社的收费标准组团浏览“星星竹海”结束后,共支付给旅行社2700元.
请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?
6.某公司投资新建了一商场共有商铺30间,据预测,当每间的年租金定为10万元时,可以全部租出,每件的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间
每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元。
(1)当每间商铺的年租金定为13万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?
1.解:因为60棵树苗售价为120元×60=7200元<8800元,
所以该校购买树苗超过60棵,设该校共购买了
x 棵树苗,由题意得:
x[120﹣0.5(x ﹣60)]=8800,
解得:x 1=220,x 2=80.
当x 2=220时,120﹣0.5×(220﹣60)=40<100,∴x 1=220(不合题意,舍去);
当x 2=80时,120﹣0.5×(80﹣60)=110>100,∴x=80,答:该校共购买了
80棵树苗.
2.解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为
27万元,每多售出
1部,所有
售出的汽车的进价均降低0.1万元/部,
∴若该公司当月售出3部汽车,则每部汽车的进价为:
27-0.1×(3-1)=26.8,
故答案为:26.8;(2)设需要售出
x 部汽车,
由题意可知,每部汽车的销售利润为:
28-[27-0.1(x-1)]=(0.1x +0.9)(万元),当0≤x ≤10,根据题意,得x?(0.1x +0.9)+0.5x =12,
整理,得x2+14x-120=0,
解这个方程,得x1=-20(不合题意,舍去),x2=6,
当x >10时,根据题意,得x?(0.1x +0.9)+x =12,
整理,得x2+19x-120=0,解这个方程,得x1=-24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要售出
6部汽车.
3.解:(1)降价1元,可多售出2件,降价x 元,可多售出
2x 件,盈利的钱数=50﹣x ,故
答案为2x ;50﹣x ;
(2)由题意得:(50﹣x )(30+2x )=2100 化简得:x 2
﹣35x+300=0 解得:x 1=15,x 2=20 ∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,
4.(1)解:设每千克核桃应降价x 元.
根据题意,得
(60﹣x ﹣40)(100+
2
x ×20)=2240.
化简,得 x 2﹣10x+24=0 解得x 1=4,x 2=6.答:每千克核桃应降价
4元或6元.
(2)解:由(1)可知每千克核桃可降价
4元或6元.
因为要尽可能让利于顾客,所以每千克核桃应降价
6元.
此时,售价为:60﹣6=54(元),10060
54%=90%.
答:该店应按原售价的九折出售.5.解:2700÷100=27>25人∴不能用这种方式设共有x 人。
2700
25
2100x x 2x2-150x-2700=0 x2-75x-1350=0 (x-30)(x-45)=0 x-30=0或x-45=0
∴x1=30 x2=45(不合题意,舍去)答:共有30人6.。