人教八年级数学《平行四边形》单元检测

合集下载

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷含答案

八年级数学(下)第十八章《平行四边形》单元测试卷(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.四边形的内角和等于 º,外角和等于 º .2.正方形的面积为4,则它的边长为 ,一条对角线长为 . 3.一个多边形,若它的内角和等于外角和的3倍,则它是 边形.4.如果四边形ABCD 满足 条件,那么这个四边形的对角线AC 和BD 互相垂直(只需填写一组你认为适当的条件).5.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .6.已知菱形两条对角线的长分别为5cm 和8cm ,则这个菱形的面积是______cm . 7.平行四边形ABCD ,加一个条件__________________,它就是菱形.8.等腰梯形的上底是10cm ,下底是14cm ,高是2cm ,则等腰梯形的周长为______cm . 9.已知菱形的一条对角线长为12,面积为30,则这个菱形的另一条对角线的长为 .10.如图,ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为 .11.如图,梯形ABCD 中,AD ∥BC ,已知AD=4,BC=8,则EF= ,EF 分梯形所得的两个梯形的面积比S 1 :S 2为 .12.下列矩形中,按虚线剪开后,既能拼出平行四边形和梯形,又能拼出三角形的是图形_______(请填图形下面的代号).第10题 第11题13.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米.14.如图,依次连接第一个正方形各边的中点得到第二个正方形,再依次连接第二个正方形各边的中点得到第三个正方形,按此方法继续下去,若第一个正方形的边长为1,则第n 个正方形的面积是 .二、填空题(共4小题,每题3分,共12分) 15.如图,ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE等于( )A .100°B .80°C .60°D .40°16.某校计划修建一座既是中心对称图形又是轴对称图形的花坛,•从学生中征集到设计方案有等腰三角形、正三角形、等腰梯形、菱形等四种图案,你认为符合条件的是( ) A .等腰三角形 B .正三角形 C .等腰梯形 D .菱形17.一个多边形的每一个内角都等于140°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .6条B .7条C .8条D .9条 18.如图,图中的△BDC′是将矩形ABCD 沿对角线BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )对. A .1 B .2 C .3 D .430°30°30°A第13题第15题第18题三、解答题(共60分)19.(5分)如图,在□ABCD中,DB=CD,∠C=70°,AE⊥BD于点E.试求∠DAE的度数.20.(5分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.21.(5分)在一个平行四边形中若一个角的平分线把一条边分成长是2cm和3cm•的两条线段,求该平行四边形的周长是多少?22.(6分)已知:如图,ABCD中,延长AB到E,延长CD到F,使BE=DF 求证:AC与EF互相平分23.(6分)如图,一块正方形地板由全等的正方形瓷砖铺成,这地板的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是多少?24.(6分)顺次连结等腰梯形四边中点所得的四边形是什么特殊的四边形?画出图形,写出已知,求证并证明.已知:求证:证明:25.(6分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN•∥BC,•设MN•交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由?(2)当点O运动何处时,四边形AECF是矩形?并说出你的理由.26.(6分)如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=12BC.•根据上面的结论:(1)你能否说出顺次连结任意四边形各边中点,可得到一个什么特殊四边形?•并说明理由.(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.27.(7分)如图,△ABD、△BCE、△ACF均为等边三角形,请回答下列问题(不要求证明)(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在?28.(8分)如图,以△ABC的三边为边在BC的同侧分别作三个等边三角形,•即△ABD•、•△BCE、△ACF,请回答下列问题,并说明理由.(1)四边形ADEF是什么四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,以A、D、E、F为顶点的四边形不存在.参考答案一、填空题1.360 ,360 2.2,22 3.8 4.四边形ABCD 是菱形或四条边都相等或四边形ABCD是正方形等 5. 6.20 7.一组邻边相等或对角线互相垂直 8.24+49.510.41511.6,7512.② 13.120 14.112n -⎛⎫⎪⎝⎭二、选择题15.•D •16.D 17.A 18.D 三、解答题19.∠DAE=20° 20.略 21.14cm 或16cm 22.略 23.2601块 24.略 25.(1)OE=OF ;(2)当点O 运动到AC 的中点时,四边形AECF•是矩形 26.(1)平行四边形;(2)平行四边形,矩形,菱形,正方形 27.(1)平行四边形;(2)满足∠BAC=150º时,四边形ADEF 是矩形;(3)当△ABC 为等边三角形时,以A 、D 、E 、F 为顶点的四边形不存在 28.(1)平行四边形;(2)当∠BAC=150°时是矩形;(3)∠BAC=60°。

人教版八年级下册数学 第18章 平行四边形 单元测试卷

人教版八年级下册数学  第18章   平行四边形   单元测试卷

人教版八年级下册数学第18章平行四边形单元测试卷一.选择题(本大题共8小题,共24分。

在每小题列出的选项中,选出符合题目的一项)1. 下列条件中,能判定四边形是平行四边形的条件是( )A. 一组对边平行,一组邻角互补B. 一组对边平行,另一组对边相等C. 一组对边平行,一组对角相等D. 一组对边相等,一组邻角相等2. 下列命题,其中是真命题的为( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是菱形C. 一组邻边相等的矩形是正方形D. 一组对边平行,另一组对边相等的四边形是平行四边形3. 如下图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AB的长为1.6km,则M,C 两点间的距离为( )A. 0.5kmB. 0.6kmC. 0.8kmD. 1.2km4. 下列命题是假命题的是( )A. 对角线相等的菱形是正方形B. 对角线互相垂直且平分的四边形是正方形C. 对角线互相垂直的矩形是正方形D. 对角线互相垂直且相等的平行四边形是正方形5. 如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 46. 如图四边ABCD中∠BAD=∠C=90°,AB=AD,AE⊥BC,垂足为E.若线段AE=5,则S=( )四边形ABCDA. 20B. 25C. 18D. 247. 如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.58. 如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( )A. 18B. 18√3C. 36D. 36√3二、填空题(本大题共8小题,共24分)9. 如图,两条射线AM//BN,点C,D分别在射线BN,AM上,只需添加一个条件,即可证明四边形ABCD 是平行四边形,这个条件可以是(写出一个即可).10. 如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为______.11. 如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P 为对角线BD上一点,则PM−PN的最大值为______.12.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为______.13. 已知正方形ABCD的边长为6,如果P是正方形内一点,且PB=PD=2√5,那么AP的长为.14. 已知两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是.15如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为..16. 如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE>CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为______ .三、解答题(本大题共9小题,共72分。

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版)

八年级数学下册《第十八章-平行四边形》单元测试卷及答案(人教版) 班级:___________姓名:___________考号:_____________A.5B.10C.D.25则ABC的周长是()55A.AB∥CD,AB=CD B.AB∥CD,AD∥BCA.①②B.①③C.②③D.①②③A .B .C .D .①BE⊥AC二、填空题13.已知四边形ABCD ,点O 是对角线AC 与BD 的交点,且OA OC =,请再添加一个条件,使得四边形ABCD 成为平行四边形,那么添加的条件可以是_____________.(用数学符号语言表达)14.如图,线段AB ⊥BC ,以C 为圆心,BA 为半径画弧,然后再以A 为圆心,BC 为半径画弧,两弧交于点D ,则四边形ABCD 是矩形,其依据是 _____.15.如图,在ABC ∆中,点D ,E 分别是AB ,AC 的中点,连结BE ,若6AE =,DE=5,∠BEC=90°,则BE =______.16.如图,在正方形ABCD中,E是BC边上一点,连接AE,AB=4CE,F是AE上一点,射线BF与正方形的边⊥交BC于点17.如图,在矩形ABCD中,AB=4,45BD=对角线AC、BD相交于点O,过点O作OE AC18.如图,点E在正方形ABCD的边CD上,若△ABE的面积为18,CE=4,则线段BE的长为_____.三、解答题19.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线分别交BC 、AD 于点E 、F ,G 、H 分别是OB 、OD 的中点.求证:(1)OE =OF ;(2)四边形GEHF 是平行四边形.20.如图,E ,F 是▱ABCD 的对角线AC 上的两点,且AF =CE .求证:(1)△ADE ≌△CBF ;(2)DE ∥BF .21.如图,在平行四边形ABCD 中(1)若点E 、F 是AD 、BC 的中点,连接BE 、DF ,求证BE DF =;(2)若DF 平分ADC ∠且交边BC 于点F ,如果5AB =,BC=8,试求线段BF 的长.(1)求证:OE CB =;(1)求证:180ABO ACO ∠+∠=︒;1.C2.D3.D4.D5.A6.C7.C360 BAC ∠=ABO ∴∠+(2)线段之间的数量关系是过点O 作AOC ∴∠+∠+ABO ∠∠ABO ∴∠=BOC ∠=90AOC ∠∴AOB ∠∴∴四边形是正方形OB OC ∴=在ABO 和FCO 中ABO FCO∴≅∴AO FO=,AB=CFAOF∴是等腰直角三角形∴=AF AO2CF AC AO∴+=2∴+=AB AC AO2。

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA C的坐标为()A.,1)B.(1,1)C.(1D.,1)2、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.103、如图,已知P 是AOB ∠平分线上的一点,60AOB ︒∠=,PD OA ⊥,M 是OP 的中点,4cm DM =,如果C 是OB 上一个动点,则PC 的最小值为( )A .8cmB .5cmC .4cmD .2cm4、顺次连接矩形各边中点得到的四边形是( )A .平行四边形B .矩形C .菱形D .正方形5、如图所示,公路AC 、BC 互相垂直,点M 为公路AB 的中点,为测量湖泊两侧C 、M 两点间的距离,若测得AB 的长为6km ,则M 、C 两点间的距离为( )A .2.5kmB .4.5kmC .5kmD .3km6、如图,已知四边形ABCD 和四边形BCEF 均为平行四边形,∠D =60°,连接AF ,并延长交BE 于点P ,若AP ⊥BE ,AB =3,BC =2,AF =1,则BE 的长为( )A .5B .C .D .7、如图,在菱形ABCD中,AB=5,AC=8,过点B作BE⊥CD于点E,则BE的长为()A.125B.245C.6 D.4858、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC AC⊥于点C.已知16AC=,6BC=.点B到原点的最大距离为()A.22 B.18 C.14 D.109、如图,已知在正方形ABCD中,10AB BC CD AD====厘米,90A B C D∠=∠=∠=∠=︒,点E在边AB 上,且4AE=厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在a与t的值,使BPE与CQP全等时,则t的值为()A.2 B.2或1.5 C.2.5 D.2.5或210、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为()A .46.5cmB .22.5cmC .23.25cmD .以上都不对第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在直角三角形ABC 中,∠B =90°,点D 是AC 边上的一点,连接BD ,把△CBD 沿着BD 翻折,点C 落在AB 边上的点E 处,得到△EBD ,连接CE 交BD 于点F ,BG 为△EBD 的中线.若BC =4,△EBG 的面积为3,则CD 的长为____________2、如图,在▱ABCD 中,BC =3,CD =4,点E 是CD 边上的中点,将△BCE 沿BE 翻折得△BGE ,连接AE ,A 、G 、E 在同一直线上,则AG =______,点G 到AB 的距离为______.3、如图,在ABC 中,2AB AC ==,90BAC ∠=︒,M ,N 为BC 上的两个动点,且MN AM AN +的最小值是________.4、一个三角形三边长之比为4∶5∶6,三边中点连线组成的三角形的周长为30cm ,则原三角形最大边长为_________cm .5、如图,在长方形ABCD 中,9DC =.在DC 上找一点E ,沿直线AE 把AED 折叠,使D 点恰好落在BC上,设这一点为F,若ABF的面积是54,则FCE△的面积=______________.三、解答题(5小题,每小题10分,共计50分)1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.2、如图,在Rt△ABC中,∠ACB=90°.(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作∠ADC,∠BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形.3、如图:在Rt ABC中,90∠=,点O为AB的中点,点P为直线BC上的动点(不与点A︒ACB︒∠=,30∆,连接BQ.B,C重合),连接OC,OP,以OP为边在OC的上方作等边OPQ(1)OBC是________三角形;=;(2)如图1,当点P在边BC上时,运用(1)中的结论证明CP BQ(3)如图2,当点P在CB的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由.4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.5、已知:如图,30∠=︒,45B∠=︒,AD是BC上的高线,CE是AB边上的中线,DG CE于G.ACDAB=,求线段AC的长;(1)若6(2)求证:CG EG.---------参考答案-----------一、单选题1、B【解析】【分析】作CD⊥x轴,根据菱形的性质得到OC=OA Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.【详解】:作CD⊥x轴于点D,则∠CDO=90°,∵四边形OABC是菱形,OA∴OC=OA又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(负值舍去),则点C的坐标为(1,1),故选:B.【点睛】此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.2、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【详解】解:∵四边形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:5AB=,故选:A.【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.3、C【解析】【分析】根据题意由角平分线先得到OPD △是含有30角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP ,DP 的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC 的最小值.【详解】解:∵点P 是∠AOB 平分线上的一点,60AOB ∠=︒, ∴1302AOP AOB ∠=∠=︒,∵PD ⊥OA ,M 是OP 的中点,4cm DM =∴28cm OP DM ==, ∴14cm 2PD OP ==∵点C 是OB 上一个动点∴当PC OB ⊥时,PC 的值最小,∵OP 平分∠AOB ,PD ⊥OA ,PC OB ⊥∴PC 最小值4cm PD ==,故选C .【点睛】本题主要考查了角平分线的性质、含有30角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.4、C【解析】【分析】如图,矩形ABCD 中,利用三角形的中位线的性质证明111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥,再证明四边形ABCD 是平行四边形,再证明,EF FG 从而可得结论.【详解】解:如图,矩形ABCD 中,,AC BD ∴=,,,E F G H 分别为四边的中点,111,,,,222EF BD EF BD GH BD GH BD FG AC ∥∥, ,,EF GH EF GH ∥∴ 四边形ABCD 是平行四边形,11,,,22AC BD EF BD FG AC === ,EF FG ∴= ∴ 四边形EFGH 是菱形.故选C .【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、D【解析】【详解】根据直角三角形斜边上的中线性质得出CM =12AB ,即可求出CM .【解答】解:∵公路AC,BC互相垂直,∴∠ACB=90°,∵M为AB的中点,AB,∴CM=12∵AB=6km,∴CM=3km,即M,C两点间的距离为3km,故选:D.【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.6、D【解析】【分析】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,先证∠DHC=90º,再证四边形ADEF是平行四边形,最后利用勾股定理得出结果.【详解】过点D作DH⊥BC,交BC的延长线于点H,连接BD,DE,∵四边形ABCD是平行四边形,AB=3,∠ADC=60º,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60º,∵DH⊥BC,∴∠DHC =90º,∴∠ADC +∠CDH =90°,∴∠CDH =30°,在Rt △DCH 中,CH =12CD =32,DH ,∴222223(2)192BD BH DH =+=++=, ∵四边形BCEF 是平行四边形,∴AD =BC =EF ,AD ∥EF ,∴四边形ADEF 是平行四边形,∴AF ∥DE ,AF =DE =1,∵AF ⊥BE ,∴DE ⊥BE ,∴22219118BE BD DE =-=-=, ∴BE =故选D .【点睛】本题考查了平行四边形的判定与性质,勾股定理,解题的关键是熟练运用这些性质解决问题.7、B【解析】【分析】根据菱形的性质求得BD 的长,进而根据菱形的面积等于12AC BD CD BE ⋅=⋅,即可求得BE 的长【详解】解:如图,设,AC BD 的交点为O ,四边形ABCD 是菱形AC BD ∴⊥,142AO CO AC ===,DO BO =,5CD AB == 在Rt AOB 中,5AB =,4AO =3BO ∴26BD BO ∴== 菱形的面积等于12AC BD CD BE ⋅=⋅1168242255AC BD BE CD ⋅⨯∴==⨯= 故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得BD 的长是解题的关键.8、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CE12=AC=8,∵BC⊥AC,BC=6,∴BE=10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.解:当2a =,即点Q 的运动速度与点P 的运动速度都是2厘米/秒,若△BPE ≌△CQP ,则BP =CQ ,BE =CP ,∵AB =BC =10厘米,AE =4厘米,∴BE =CP =6厘米,∴BP =10-6=4厘米,∴运动时间t =4÷2=2(秒);当2a ≠,即点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ ,∵∠B =∠C =90°,∴要使△BPE 与△OQP 全等,只要BP =PC =5厘米,CQ =BE =6厘米,即可.∴点P ,Q 运动的时间t =252 2.5BP ÷=÷=(秒).综上t 的值为2.5或2.故选:D .【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.10、C【解析】【分析】如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线,则14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==,即可得到△DEF 的周长==12cm DE DF EF ++,由此即可求出其他四个新三角形的周长,最后求和即可.解:如图所示,8cm AB =,9cm BC =,7cm AC =,DE ,DF ,EF 分别是三角形ABC 的中位线,GH ,GI ,HI 分别是△DEF 的中位线, ∴14.5cm 2DE BC ==,14cm 2EF AB ==,1 3.5cm 2DF AC ==, ∴△DEF 的周长==12cm DE DF EF ++,同理可得:△GHI 的周长==6cm HI HG GI ++,∴第三次作中位线得到的三角形周长为3cm ,∴第四次作中位线得到的三角形周长为1.5cm∴第三次作中位线得到的三角形周长为0.75cm∴这五个新三角形的周长之和为1263 1.50.75=23.25cm ++++,故选C .【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1【解析】【分析】由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,由勾股定理可得,CE =得,26BCD BDE BEG S S S ===△△△,求得CF 的长度,即可求解.【详解】解:由折叠的性质可得,BD CE ⊥,4BE BC ==,12CF CE =,BCD BDE △≌△ ∴BCE 为等腰直角三角形,F 为CE 的中点,BCD BDE SS = ∴12BF CF EF CE ===由勾股定理可得,CE∴12BF CF EF CE ====∵BG 为△EBD 的中线,△EBG 的面积为3∴26BCD BDE BEG S S S ===△△△162BCD S BD CF =⨯=△,解得BD =∴DF BD BF =-=由勾股定理得:CD =【点睛】此题考查了折叠的性质,勾股定理以及直角三角形的性质,解题的关键是灵活利用相关性质进行求解.2、【解析】【分析】根据折叠性质和平行四边形的性质可以证明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的长,进而可得GF的值.【详解】解:如图,GF⊥AB于点F,∵点E是CD边上的中点,∴CE=DE=2,由折叠可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在▱ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,AGB DBAG AED BG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于点F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根据勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=118,∴GF2=AG2-AF2=4-12164=13564,∴GF,故答案为2.【点睛】本题考查了折叠的性质、平行四边形的性质、勾股定理等知识,证明△ABG≌△EAD是解题的关键.3【解析】【分析】过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接A′M,三点D、M、A′共线时,AM AN最小为A′D的长,利用勾股定理求A′D的长度即可解决问题.【详解】解:过点A作AD//BC,且AD=MN,连接MD,则四边形ADMN 是平行四边形,∴MD =AN ,AD =MN ,作点A 关于BC 的对称点A ′,连接A A ′交BC 于点O ,连接A ′M , 则AM =A ′M ,∴AM +AN =A ′M +DM ,∴三点D 、M 、A ′共线时,A ′M +DM 最小为A ′D 的长, ∵AD //BC ,AO ⊥BC ,∴∠DA A '=90°,∵2AB AC ==,90BAC ∠=︒,,∴BC=BO=CO =AO ,∴AA '=在Rt△AD A '中,由勾股定理得:A 'D =∴AM AN +【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.4、24【解析】【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可.【详解】∵ 如图,H、I、J分别为BC,AC,AB的中点∴12HI AB=,12IJ BC=,12HJ AC=又∵30HI IJ HJ++=∴60AB BC AC++=∵AB:AC:BC=4:5:6,即BC边最长∴660=244+5+6BC=⨯故填24.【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面积公式解答即可.【详解】解:∵四边形ABCD是矩形∴AB=CD=9,BC=AD∵12•AB•BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,15AF=.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.设DE=x,则CE=9-x,EF=DE=x.则x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面积=1122CF CE⨯⨯=×4×3=6.【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.三、解答题1、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB =4,BC =3,5AC =,利用勾股定理逆定理即可得到△ABC 是直角三角形;(2)如图,AB =AC =BC ==△ABC 是直角三角形;(3)如图,AB BC CD AD =====AC =222AC AB BC =+,∠ABC =90°,即可得到四边形ABCD 是正方形,10ABCD SAB BC =⋅=.【详解】解:(1)如图所示,AB =4,BC =3,5AC =,∴222AC AB BC =+,∴△ABC 是直角三角形;(2)如图所示,AB ==AC =BC =∴222AC AB BC =+,∴△ABC 是直角三角形;(3)如图所示,AB BC CD AD ==== AC =∴222AC AB BC =+,∴∠ABC =90°,∴四边形ABCD 是正方形,∴10ABCDS AB BC =⋅=.【点睛】 本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.2、(1)见解析(2)见解析【分析】(1)利用垂直平分线和角平分线的尺规作图法,进行作图即可.(2)利用直角三角形斜边中线性质,以及角平分线的性质直接证明CED ∠与EDF ∠都是90︒,最后加上90ACB ∠=︒,即可证明结论.【详解】(1)答案如下图所示:分别以A 、B 两点为圆心,以大于2AB 长为半径画弧,连接弧的交点的直线即为垂直平分线l ,其与AB 的交点为D ,以点D 为圆心,适当长为半径画弧,分别交DA 于点M ,交CD 于点N ,交BD 于点T ,然后分别以点M ,N 为圆心,大于2MN 为半径画弧,连接两弧交点与D 点的连线交AC 于点E ,同理分别以点T ,N 为圆心,大于2TN 为半径画弧,连接两弧交点与D 点的连线交BC 于点F . (2)证明:D 点是AB 与其垂直平分线l 的交点,D ∴点是AB 的中点,CD ∴是Rt △ABC 上的斜边的中线,2AB CD AD ∴==, DE 、DF 分别是∠ADC ,∠BDC 的角平分线,12CDE ADE ADC ∴∠=∠=∠,12CDF CDB ∠=∠,EDF CDE CDF ∠=∠+∠,11190222EDF ADC CDB ADB ∴∠=∠+∠=∠=︒ , CD AD CDE ADE DE DE =⎧⎪∠=∠⎨⎪=⎩, ()CDE ADE SAS ∴∆∆≌,1902CED AED AEC ∴∠=∠=∠=︒, 在四边形CEDF 中,90ACB CED EDF ∠=∠=∠=︒,∴四边形CEDF 是矩形.【点睛】本题主要是考查了尺规作图、直角三角形斜边中线性质以及矩形的判定,熟练利用直角三角形斜边中线性质,找到三角形全等的判定条件,并且选择合适的矩形判定条件,是解决本题的关键.3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明12BC OC OB AB ===,即可证明△OBC 是等边三角形; (2)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =;(3)先证明COP BOQ ∠=∠,即可利用SAS 证明COP BOQ ≌,得到CP BQ =.【详解】(1)∵∠ACB =90°,∠A =30°,O 是AB 的中点, ∴12BC OC OB AB ===, ∴△OBC 是等边三角形,故答案为:等边;(2)由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒-∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=;(3)成立,CP BQ =证明:由(1)可知,OB OC =,60BOC ∠=︒, OPQ 是等边三角形,OP OQ ∴=,60POQ ∠=︒,60COP BOP BOQ ∴∠=︒+∠=∠,即COP BOQ ∠=∠,在COP 和BOQ △中OC OB COP BOQ OP OQ =⎧⎪∠=∠⎨⎪=⎩, ()COP BOQ SAS ∴≌,CP BQ ∴=.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键.4、(1)见解析;(2)正方形ABCD的面积为2a【分析】(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,∵△ACE是等边三角形,∴EO⊥AC(三线合一),即BD⊥AC,∴▱ABCD是菱形;(2)解:∵△ACE是等边三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵▱ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.5、(1)(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD =3,根据等腰直角三角形,得到CD =AD =3,根据勾股定理,得到AC 的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE =DC ,根据等腰三角形三线合一性质,证明即可.【详解】(1)AD BC ⊥90ADB ADC ∴∠=∠=︒30B ∠=︒,6AB =132AD AB ∴== 45ACD ∠=︒45CAD ∴∠=︒3AD CD ∴==AC ∴=(2)连接DE90ADB ∠=︒,AE BE =12ED AB ∴=, 12AD AB =,AD CD =, ED CD ∴=,GD EC ⊥,EG CG ∴=.【点睛】 本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.。

人教版数学八年级下册第18章平行四边形达标检测卷4份含答案

人教版数学八年级下册第18章平行四边形达标检测卷4份含答案

人教版数学八年级下册第18章平行四边形达标检测卷4份第18章单元测试(1)班级姓名成绩一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.□ ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm 5.在□ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm 6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个. A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在□ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若□ABCD•的周长为38cm,△ABD的周长比□ABCD的周长少10cm,则□ABCD的一组邻边长分别为______.14.在□ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则□ABCD的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,•则两条短边的距离是_____cm.16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在□ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.22.如图所示,在□ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,□ABCD 的周长是,AB 的长是DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.24.如图所示,□ABCD 中,AQ 、BN 、CN 、DQ 分别是∠DAB 、∠ABC 、∠BCD 、•∠CDA 的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).FCDAEB25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S =60,•求∠C的度数.△ABE27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E是□ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF=S .△EFC答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°• •15.10 16.结论题设 17.同旁内角互补,两直线平行18.5..13 直角三、21.□ABCD的周长为20cm 22.略24.略23.(1)∠C=45°(2)DF=225.•略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm 28.提示:连结BD,取BD•的中点G,连结MG,NG29.(1)略(2)结论仍成立.提示:过F作FG⊥MN于G 30.略第18章单元测试(2)班级姓名成绩一、选择题(3′×10=30′)1.下列判断四边形是平行四边形的是().A.两组角相等的四边形; B.对角线平分的四边形; C.一组对边相等,一组对角相等的四边形; D.两组对边分别相等的四边形2.根据下列条件,能作出平行四边形的是().A.两组对边长分别是3cm和7cm;B.相邻两边的边长分别是2cm和4cm,一条对角线长是7cm;C.一条边长为6cm,另一条对角线长为10cm,一条边长为8cm;D.一条边长为7cm,两条对角线长为6cm和8cm3.如图1所示,在□ABCD中,EF∥GH∥AB,MN∥BC,则图中的平行四边形的个数为(• ).A.12个 B.16个 C.14个 D.18个(1) (2) (3) 4.已知下列四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形.•其中能判断是平行四边形的命题个数为().A.1个 B.2个 C.3个 D.4个5.以不共线的三点为平行四边形的其中三个顶点作平行四边形,•一共可作平行四边形的个数是().A.2个 B.3个 C.4个 D.5个6.平行四边形的一边为32,则它的两条对角线长不可能是().A.20和40 B.30和50 C.40和50 D.20和607.如图2所示,EF过□ABCD对角线的交点O,分别交AD于E,交BC于点F,若OE=5,四边形CDEF的周长为25,则□ABCD的周长为().A.20 B.30 C.40 D.508.在□ABCD中,∠A:∠B:∠C:∠D的值可以是().A.1:2:3:4 B.1:3:4:2 C.1:1:2:2 D.3:4:3:49.已知O为□ABCD对角线的交点,且△AOB的周长为1,则□ABCD的面积为() A.1 B.2 C.3 D.410.已知O为□ABCD对角线的交点,且△AOB的周长比△BOC的周长多23,则CD-AD•的值为().A.23B.32C.2 D.3二、填空题(3′×10=30′)11.□ABCD中,∠A:∠B=7:2,则∠C=______.12.如图3所示,在□ABCD中,CM⊥AD于M,CN⊥AB于N,若∠B=50°,则∠MCN=_____.13.若平行四边形的周长为40cm,对角线AC、BD•相交于点O,•△BOC•的周长比△AOB的周长大2cm,则AB=________.14.若平行四边形的周长为56cm,相邻两边的长度比为3:4,则四边形的四边长分别为_____________.15.如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是_________.16.四边形ABCD中,∠ADC=∠ABC,要判断这个四边形是平行四边形,•只需判断出__________即可,根据是________________.17.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为___________.18.过平行四边形对角线的交点,且与一组边平行的直线将平行四边形分成的两个四边形________平行四边形.(填“是”或“不是”)19.四边形ABCD中,AC、BD交于点O,且OA=OC,OB=•OD,•∠ABC=•80•°,•则∠ADC=_____.20.已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,•需要增加条件________.(只需填写一个你认为正确的即可)三、解答题(共60′)21.(6′)如右图所示,在□ABCD中,AE、CF分别是∠DAB、∠BCD的平分线,求证:四边形AFCE是平行四边形.22.(6′)如右图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,•并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.23.(8′)如下图所示,已知平行四边形ABCD的周长是36cm,由钝角顶点D向AB、•BC引两条高DE、DF,且,cm,求平行四边形ABCD的面积.24.(8′)如下图所示,□ABCD中,AE⊥BC,AF⊥DC,垂足分别为E、F,∠ADC=•60•°,BE=2,CF=1,连结DE,求△DEC的面积.25.(8′)求证:顺次连结四边形各边中点所得的四边形是平行四边形.26.(8′)如右图所示,△ABC中,CD是△ABC的角平分线,AE⊥CD于E,F为AC的中点,试问EF∥BC吗?为什么?27.(8′)已知□ABCD中,E、F分别是BC、CD的中点,AE、AF分别交BD于M、N.求证:BM=MN=ND.28.(8′)已知如下图所示,在□ABCD中,∠A=60°,E、F分别是AB、CD•的中点,•且AB=2AD.(1)求证:EF:(2)试判断EF与BD的位置关系?答案:一、1.D 2.A 3.D 4.C 5.B 6.A 7.B 8.D 9.D 10.A二、11.140° 12.50° 13.9cm 14.12cm,16cm,12cm,16cm 15.•平行四边形16.∠BAD=∠BCD 两组对角分别相等,则四边形是平行四边形 17.•平行四边形 •18.是 19.80° 20.AB∥DC三、21.略 22.略 23.2 24..提示:连结AC 26.略27.略28.(1)提示:连结DE (2)EF⊥BD第18章单元测试(3)一、选择题.(每小题4分,共32分)1.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.102.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°第2题图第3题图3.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为()A.3B.3.5C.2.5D.2.84. 下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.如图,CD是△ABC的中线,点E,F分别是AC、DC的中点,EF=2,则BD=()A.2B.3C.4D.6第5题图第6题图第7题第8题6.如图所示,将□ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对7.如图所示,在正方形ABCD中,点E、F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AFB.∠DAF=∠BECC.∠AFB+∠BEC=90°D.AG⊥BE8. 如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ∶S△BCM=2∶3.其中正确结论的个数是()A.4个B.3个C.2个D.1个二、填空题.(每小题4分,共32分)9.如图,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F= .第9题图第10题图10.如图所示,在R t△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件时,四边形DECF是正方形.(要求:①不再添加任何辅助线;②只填一个符合要求的条件)11.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=8,BC=10,则EF的长为 .第11题图第12题图12. 如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE 的对角线,若∠D=60°,BC=2,则点D的坐标是 .13.已知一个平行四边形的一条对角线将其分为两个全等的等腰直角三角形,且这条对角线的长为6,则另一条对角线的长为 .14. 如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为 cm.15.如图,已知点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接PA、EF.则线段PA与EF之间的大小关系是 .第15题图第16题图16.如图,E是正方形ABCD的边CD的中点,AE的垂直平分线分别交AE、BC于H、G,若CG=7,BC=8,则GH等于 .三、解答题.(共56分)17.(8分)如图所示,一根长2.5m的木棍(AB)斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍顶端A沿墙下滑,且底端B沿地面向右滑行.(1)如果木棍的顶端A沿墙下滑0.4 m,那么木棍的底端B向外移动了多少距离?(2)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.18.(8分)如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.19.(8分)如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得到△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.20.(8分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,点P从点A出发沿AD边向D以1cm/s的速度运动,点Q从点C出发沿CB边向B以2cm/s的速度运动,如果P、Q分别从A、C同时出发,设运动时间为t s.求:(1)当t为何值时,四边形ABQP为矩形?(2)当t为何值时,四边形PQCD为平行四边形?21.(12分)(2016·湖北十堰)如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为G,H,折痕分别与边BC,AD相交于点E,F.(1)判断四边形CEGF的形状,并证明你的结论;(2)若AB=3,BC=9,求线段CE的取值范围.22.(12分)如图①,菱形ABCD对角线AC,BD的交点O是四边形EFGH 对角线FH的中点,四个顶点A,B,C,D分别在四边形EFGH的边EF,FG,GH,HE 上.(1)求证:四边形EFGH是平行四边形;(2)如图②,若四边形EFGH是矩形,当AC与FH重合时,已知ACBD=2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.答案第十八章达标检测卷一、选择题(每题3分,共30分)1.如图,▱ABCD中,AC=3 cm,BD=5 cm,则边AD的长可以是() A.3 cm B.4 cm C.5 cm D.6 cm2.如图,D,E分别是△ABC的边AB,AC上的点,且AD=DB,AE=EC.若DE =4,则BC的长为()A.2 B.4 C.6 D.83.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是()A.20 cm B.21 cm C.22 cm D.23 cm4.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过点O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为()A.12 B.18 C.24 D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC =90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形?()A.①②B.①③C.①④D.④⑤8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.3 2-49.如图,在菱形ABCD中,AB=2,∠A=120°,P,Q,K分别为线段BC,CD,BD上的任意一点,则P K+Q K的最小值为()A.1 B. 3 C.2 D.3+110.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.若第一个矩形的面积为1,则第n个矩形的面积为()A.14 B.14n-1C.14n D.14n+1二、填空题(每题3分,共30分)11.如图,在▱OABC中,点O为坐标原点,点A的坐标为(3,0),点B的坐标为(4,2),则点C的坐标为__________.12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E,若∠CBF=20°,则∠AED等于________.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,DE⊥AC于点E,∠EDC:∠EDA=1:2,且AC=10,则EC的长度是________.15.如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是线段AO,BO的中点.若AC+BD=30 cm,△OAB的周长为23 cm,则EF的长为__________.16.如图,在▱ABCD中,点E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则有下列结论:①∠B=60°;②AC=BC;③∠AED=∠ACD;④△ABC≌△EAD.其中正确的是__________(在横线上填所有正确结论的序号).17.如图,在菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C′处,得到经过点D的折痕DE.则∠DEC的大小为________.18.菱形ABCD在平面直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2 020 s 时,点P的坐标为__________.19.如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y-4)2的值为________.20.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为____________________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,在▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于点E,F.求证AE=CF.22.如图,正方形ABCD的边长为4,E,F分别为DC,BC的中点.(1)求证△ADE≌△ABF;(2)求△AEF的面积.23.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交AB于点G,交CB的延长线于点F,连接AF,BE.(1)求证△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.24.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD,AC,BC 于点E,O,F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4, BC=8,求菱形AECF的周长.25.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,∠B=60°,G是CD 的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形.(2)①当四边形CEDF是矩形时,求AE的长;②当四边形CEDF是菱形时,求AE的长.26.如图,在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,EF,FD之间的数量关系,并证明.答案一、1.A 2.D 3.C 4.C5.D 点拨:运用三角形的中位线定理和矩形的性质解答.6.C 点拨:根据题意易知△COF 的面积与△AOE 的面积相等,阴影部分的面积为矩形面积的四分之一.7.C8.C 点拨:由题易得∠ABD =∠ADB =45°,再求出∠DAE 的度数.根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,进而在等腰直角三角形中利用勾股定理求出EF 的长.9.B10.B 点拨:第一个矩形的面积为1,易知第二个矩形的面积为14,第三个矩形的面积是116……故第n 个矩形的面积为14n -1. 二、11.(1,2) 12.30 13.65° 14.2.515.4 cm16.①③④ 点拨:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AD =BC ,AD ∥BC .∴∠DAE =∠AEB .∵AE 平分∠DAB ,∴∠DAE =∠BAE .∴∠BAE =∠AEB .∴AB =BE .又AB =AE ,∴AB =AE =BE .∴△ABE 为等边三角形.∴∠B =∠BAE =60°.∴∠B =∠DAE .∵∠BAC =∠BAE +∠EAC =60°+∠EAC >∠B ,∴BC >AC .在△ABC 和△EAD 中,⎩⎨⎧AB =EA ,∠ABC =∠EAD ,BC =AD ,∴△ABC ≌△EAD (SAS ).∴∠BAC=∠AED.∵AB∥CD,∴∠BAC=∠ACD.∴∠AED=∠ACD.故正确的是①③④.17.75°点拨:如图,连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形.由P为AB的中点,利用等腰三角形三线合一的性质得到∠ADP=30°.由题意易得∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出∠DEC=75°.18.(0,3)19.16点拨:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°.又∵BD⊥DE,点F是BE的中点,DF=4,∴BF=DF=EF=4.∴CF=BF-BC=4-y.在Rt△DCF中,DC2+CF2=DF2,即x2+(4-y)2=42=16,∴x2+(y-4)2=16.20.25或52或652三、21.证明:∵四边形ABCD为平行四边形,∴AD=BC,∠D=∠B,∠BAD=∠BCD.又∵AE平分∠BAD,CF平分∠BCD,∴∠DAE=12∠BAD,∠BCF=12∠BCD.∴∠DAE=∠BCF.在△DAE和△BCF中,⎩⎨⎧∠D =∠B ,DA =BC ,∠DAE =∠BCF ,∴△DAE ≌△BCF (ASA ).∴AE =CF .22.(1)证明:∵四边形ABCD 为正方形,∴AB =AD =DC =CB ,∠D =∠B =90°.∵E ,F 分别为DC ,BC 的中点,∴DE =12DC ,BF =12BC .∴DE =BF .在△ADE 和△ABF 中,⎩⎨⎧AD =AB ,∠D =∠B ,DE =BF ,∴△ADE ≌△ABF (SAS ).(2)解:由题易知△ABF ,△ADE ,△CEF 均为直角三角形,且AB =AD =4,DE =BF =CE =CF =12×4=2,∴S △AEF =S 正方形ABCD -S △ADE -S △ABF -S △CEF =4×4-12×4×2-12×4×2-12×2×2=6.23.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠AEG =∠BFG .∵EF 垂直平分AB ,∴EF ⊥AB ,AG =BG .在△AGE 和△BGF 中,⎩⎨⎧∠AEG =∠BFG ,∠AGE =∠BGF ,AG =BG ,∴△AGE ≌△BGF (AAS ).(2)解:四边形AFBE 是菱形.理由如下:∵△AGE ≌△BGF ,∴AE =BF .∵AD ∥BC ,∴四边形AFBE 是平行四边形.又∵EF ⊥AB ,∴四边形AFBE 是菱形.24.(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°.∵四边形ABCD 是矩形,∴AD ∥BC .∴∠EAO =∠FCO .在△AEO 和△CFO 中,⎩⎨⎧∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF ,∴△AEO ≌△CFO (ASA ).∴OE =OF .∵OA =OC ,∴四边形AECF 是平行四边形.又∵EF ⊥AC ,∴四边形AECF 是菱形.(2)解:设AF =x .∵EF 是AC 的垂直平分线,∴AF =CF =x ,∴BF =8-x .在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,即42+(8-x )2=x 2,解得x =5.∴AF =5.∴菱形AECF 的周长为20.25.(1)证明:∵四边形ABCD 是平行四边形,∴CF ∥ED .∴∠FCG =∠EDG .∵G 是CD 的中点,∴CG =DG .在△FCG 和△EDG 中,⎩⎨⎧∠FCG =∠EDG ,CG =DG ,∠CGF =∠DGE ,∴△FCG ≌△EDG (ASA ).∴FG =EG .∵CG =DG ,∴四边形CEDF 是平行四边形.(2)解:①∵四边形ABCD 是平行四边形,∴∠CDA =∠B =60°,DC =AB =3 cm ,BC =AD =5 cm .∵四边形CEDF 是矩形,∴∠CED =90°.在Rt △CED 中,易得ED =12CD =1.5 cm ,∴AE =AD -ED =3.5(cm).故当四边形CEDF 是矩形时,AE =3.5 cm.②若四边形CEDF 是菱形,则CE =ED .由①可知∠CDA =60°,∴△CED 是等边三角形.∴DE =CD =3 cm.∴AE =AD -DE =5-3=2(cm).故当四边形CEDF 是菱形时,AE =2 cm.点拨:在判定三角形全等时,关键是选择恰当的判定条件,有时还需添加适当的辅助线构造全等三角形.同时全等三角形也为平行四边形、矩形、菱形的判定构筑了重要的平台和保障.26.解:(1)如图①所示.(2)如图②,连接AE.∵点E是点B关于直线AP的对称点,∴∠P AE=∠P AB=20°,AE=AB.∵四边形ABCD是正方形,∴AE=AB=AD,∠BAD=90°.∴∠AED=∠ADE,∠EAD=∠DAB+∠BAP+∠P AE=130°.∴∠ADF=180°-130°2=25°.(3)EF2+FD2=2AB2.证明:如图③,连接AE,BF,BD,由轴对称和正方形的性质可得EF=BF,AE =AB=AD,易得∠ABF=∠AEF=∠ADF,又∵∠BAD=90°,∴∠ABF+∠FBD+∠ADB=90°.∴∠ADF+∠ADB+∠FBD=90°.∴∠BFD=90°.在Rt△BFD中,由勾股定理得BF2+FD2=BD2;在Rt△ABD中,由勾股定理得BD2=AB2+AD2=2AB2,∴EF2+FD2=2AB2.。

新人教版 八年级数学 十八章平行四边形 单元检测试卷及答案

新人教版 八年级数学 十八章平行四边形 单元检测试卷及答案

第十八章平行四边形单元综合检测一、选择题(每小题4分,共28分)1.已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是( )2.如图,已知菱形ABCD的对角线AC,BD的长分别是6cm,8cm,AE⊥BC于点E,则AE的长是( )A.5错误!未找到引用源。

cmB.2错误!未找到引用源。

cmC.错误!未找到引用源。

cmD.错误!未找到引用源。

cm3.如图,在平行四边形ABCD中,DE是∠ADC的平分线,F是AB的中点,AB=6,AD=4,则AE∶EF∶BE为( )A.4∶1∶2B.4∶1∶3C.3∶1∶2D.5∶1∶24.(2013·邵阳中考)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连接BE交CD于点O,连接AO,下列结论不正确的是( )A.△AOB≌△BOCB.△BOC≌△EODC.△AOD≌△EODD.△AOD≌△BOC5.如图,过矩形ABCD的四个顶点作对角线AC,BD的平行线,分别相交于E,F,G,H四点,则四边形EFGH为( )A.平行四边形B.矩形C.菱形D.正方形6.(2013·威海中考)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是( )A.BC=ACB.CF⊥BFC.BD=DFD.AC=BF7.如图,△ABC中,AB=AC,点D,E分别是边AB,AC的中点,点G,F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为( )A.3错误!未找到引用源。

cmB.4cmC.2错误!未找到引用源。

cmD.2错误!未找到引用源。

cm二、填空题(每小题5分,共25分)8.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为.9.(2013·厦门中考)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.10.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是.11.(2013·牡丹江中考)如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°.连接AE,再以AE为边作第三个菱形AEGH使∠HAE=60°…按此规律所作的第n个菱形的边长是.12.(2013·钦州中考)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题(共47分)13.(10分)(2013·大连中考)如图,在平行四边形ABCD中,点E,F分别在AD,BC 上,且AE=CF.求证:BE=DF.14.(12分)(2013·晋江中考)如图,BD是菱形ABCD的对角线,点E,F分别在边CD,DA上,且CE=AF.求证:BE=BF.15.(12分)(2013·铁岭中考)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O 为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.16.(13分)(2013·济宁中考)如图1,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图2,在正方形ABCD中,M,N,P,Q分别是边AB,BC,CD,DA上的点,且MP⊥NQ,判断MP与NQ是否相等?并说明理由.答案解析1.【解析】选C.A项,根据两直线平行内错角相等可得到,故正确;B项,根据对顶角相等可得到,故正确;C项,根据两直线平行内错角相等可得到∠1=∠ACB,∠2为一外角,所以不相等,故不正确;D项,根据平行四边形对角相等可得到,故正确.2.【解析】选D.由于菱形ABCD的对角线AC,BD的长分别是6cm,8cm,所以菱形边长为错误!未找到引用源。

人教版初中数学八年级数学下册第三单元《平行四边形》检测题(有答案解析)

人教版初中数学八年级数学下册第三单元《平行四边形》检测题(有答案解析)

一、选择题1.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A .4B .5C .8D .102.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个3.下列条件中不能判定一定是平行四边形的有( )A .一组对角相等,一组邻角互补B .一组对边平行,另一组对边相等C .两组对边相等D .一组对边平行,且另一组对边也平行4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形. 5.四边形ABCD 中,对角线AC BD 、交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB CD =,AD BC =;③AO CO =,BO DO =;④AB ∥CD ,AD BC =.其中一定能判定这个四边形是平行四边形的条件共有( )A .1组;B .2组;C .3组;D .4组. 6.如图,ABE 、BCF 、CDG 、DAH 是四个全等的直角三角形,其中,AE =5,AB =13,则EG 的长是( )A .72B .62C .7D .737.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 8.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163 9.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º10.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2411.如图,长方形纸片ABCD ,点E ,M ,N 分别在边AB ,BC ,AD 上,将纸片分别沿EN ,EM 对折,使点A 落在点'A 处,点B 落在点'B 处,若''30A EB ∠=︒,则NEM ∠的度数为( )A .70︒B .75︒C .80︒D .85︒12.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )①BDF 是等腰三角形 ②12DE BC =③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .4二、填空题13.如图,△ABC 中,∠ACB =90°,AC =BC =4,D 是斜边AB 上一动点,将线段CD 绕点C 逆时针旋转90°至CE ,连接BE ,DE ,点O 是DE 的中点,连接OB 、OC ,下列结论:①△ADC ≌△BEC ;②OB =OC ;③DE >BC ;④AO 的最小值为2.其中正确的是_____________.(把你认为正确结论的序号都填上)14.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.15.如图,点E 是长方形纸片DC 上的中点,将C ∠过E 点折起一个角,折痕为EF ,再将D ∠过点E 折起,折痕为GE ,且C ,D 均落在GF 上的一点H 处.若1649'∠=︒,则CEF ∠=_______.16.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.17.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.18.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.19.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.20.如图,在正方形ABCD 中,AB=6,E 是CD 上一点,BE 交AC 于点F ,连接DF .过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G .∠ABE 的平分线交AD 于点M ,当满足四边形AGDF 面积2BCE S =△时,线段AM 的长度是_______.三、解答题21.已知:如图,在梯形ABCD 中,DF 平分D ∠,若以点D 为圆心,DC 长为半径作弧,交边AD 于点E ,联结EF 、BE 、EC .(1)求证:四边形EDCF 是菱形;(2)若点F 是BC 的中点,请判断线段BE 和EC 的位置关系,并证明你的结论. 22.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.第二步:固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,请写出线段AM 与CN 始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.23.如图,四边形ABCD 中,//AD BC ,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将ABE △沿BE 折叠后得到GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:EGF EDF △△≌;(2)求证:BG CD =;(3)若点F 是CD 的中点,8BC =,求CD 的长.24.如图,在正方形ABCD 中,10cm AB BC CD AD ====,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4cm AE =,如果点P 在线段BC 上以2cm/秒的速度B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动,设运动时间为t 秒.(1)若点Q 与点P 的运动速度相等,经过2秒后,BPE 与CQP 是否全等?请说明理由;(2)若点Q 与点P 的运动速度不相等,则当t 为何值时,BPE 与CQP 全等?此时点Q 的运动速度为多少?25.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.26.如图,平行四边形ABCD 中,BD 是它的一条对角线,过A 、C 两点作,AE BD CF BD ⊥⊥,垂足分别为E 、F ,延长AE 、CF 分别交CD 、AB 于M 、N .(1)求证:四边形CMAN 是平行四边形; (2)已知4,3DE FN ==.求BN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据三角形中位线定理求出DE ,根据题意求出EF ,根据直角三角形的性质计算即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=6, ∵DE=3DF ,∴EF=4,∵∠AFC=90°,E 是AC 的中点,∴AC=2EF=8,故选:C .【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.2.C解析:C【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件; ③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 3.B解析:B【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定逐一验证.【详解】A 、能用两组对角相等的四边形是平行四边形判定平行四边形;B 、不能判定平行四边形,如等腰梯形;C 、能用两组对边相等的四边形是平行四边形判定平行四边形;D 、能用两组对边分别平行的四边形是平行四边形判定平行四边形;故选:B .【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【分析】根据正方形的判定逐项作出判断即可求解.解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.C解析:C【分析】根据平行四边形的判定方法对①②③④分别作出判断即可求解.【详解】解:①AB ∥CD ,AD ∥BC ,根据两组对边分别平行的四边形是平行四边形即可得到四边形是平行四边形;②AB CD =,AD BC =,根据两组对边分别相等的四边形是平行四边形即可得到四边形是平行四边形;;③AO CO =,BO DO =,根据对角线互相平分的四边形是平行四边形即可得到四边形是平行四边形;④AB ∥CD ,AD BC =,无法判定四边形是平行四边形.故选:C【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定定理是解题关键. 6.A解析:A【分析】根据勾股定理求出BE ,证明四边形EFGH 为正方形,根据正方形的性质、勾股定理计算,得到答案.【详解】解:在Rt △ABE 中,AE =5,AB =13,由勾股定理得,BE 12,∵△ABE 、△BCF 、△CDG 、△DAH 是四个全等的直角三角形,∴∠AEB =∠BFC =∠CGD =90°,BF =CG =DH =AE =5,∴∠FEB =∠EFC =∠FGD =90°,EF =EH =12﹣5=7,∴四边形EFGH 为正方形,∴EG,故选:A .【点睛】本题考查的是全等三角形的应用,掌握全等三角形的对应边相等、对应角相等是解题的关键.7.A解析:A【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】解:作PM ⊥AD 于M ,交BC 于N ,∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形,∵ADC ABC S S =△△,AMP AEP SS =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM=AE=1,PF=NC=3, ∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】 本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 8.A解析:A【分析】由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.9.C解析:C【分析】由翻折可知:△BDF≌△BCD,所以∠EBD=∠CBD,∠E=∠C=90°,由于△EDF是等腰三角形,易证∠ABF=45°,所以∠CBD=12∠CBE=22.5°,从而可求出∠BDC=67.5°.【详解】解:由翻折的性质得,∠DBC=∠EBD,∵矩形的对边AD∥BC,∠E=∠C=90°,∴∠DBC=∠ADB,∴∠EBD=∠ADB,∵△EDF是等腰三角形,∠E=90°,∴△EDF是等腰直角三角形,∴∠DFE=45°,∵∠EBD+∠ADB=∠DFE,∴∠DBF=12∠DFE=22.5°,∴∠CBD =22.5°,∴∠BDC=67.5°,故选:C.【点睛】本题考查等腰三角形,涉及矩形的性质,全等三角形的判定与性质等知识,需要学生灵活运用所学知识.10.C解析:C【分析】根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出平行四边形ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵在平行四边形ABCD 中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴平行四边形ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.11.B解析:B【分析】先由翻折的性质得到'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图可得''''A EN B EM NEM A EB ∠+∠=∠+∠,然后根据180AEN NEM MEB ∠+∠+∠=︒,得到2''180NEM A EB ∠+∠=︒,进而可求出NEM ∠的度数.【详解】由翻折的性质可知:'AEN A EN ∠=∠,'BEM B EM ∠=∠,由图知:''''A EN B EM NEM A EB ∠+∠=∠+∠,又∵180AEN NEM MEB ∠+∠+∠=︒,∴''180A EN B EM NEM ∠+∠+∠=︒,∴2''180NEM A EB ∠+∠=︒,又∵''30A EB ∠=︒,∴75NEM ∠=︒.故选:B .【点睛】本题主要考查的是翻折的性质,掌握翻折的性质是解题的关键.12.C解析:C【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.【详解】解:①∵DE∥BC,∴∠ADE=∠B,∠EDF=∠BFD,又∵△ADE≌△FDE,∴∠ADE=∠EDF,AD=FD,AE=CE,∴∠B=∠BFD,∴△BDF是等腰三角形,故①正确;同理可证,△CEF是等腰三角形,∴BD=FD=AD,CE=FE=AE,∴DE是△ABC的中位线,∴DE=1BC,故②正确;2∵∠B=∠BFD,∠C=∠CFE,又∵∠A+∠B+∠C=180°,∠B+∠BFD+∠BDF=180°,∠C+∠CFE+∠CEF=180°,∴∠BDF+∠FEC=2∠A,故④正确.而无法证明四边形ADFE是菱形,故③错误.所以一定正确的结论个数有3个,故选:C.【点睛】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.二、填空题13.①②【分析】先证明∠ACD=∠BCE根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°于是∠EBD=90°然后根据直角三角形斜边中线性质可证得OB=O解析:①②【分析】先证明∠ACD=∠BCE,根据三角形全等判定定理SAS可证明△ADC≌△BEC;根据三角形全等性质可得∠EBC=∠A=45°,于是∠EBD=90°,然后根据直角三角形斜边中线性质可证得;根据OB=OC可知点O在BC的垂直平分线OB=OC;利用三角形三边关系可得DE BC上,找到点O的起始位置及终点位置,即可求出OA的最小值.【详解】解:∵∠ACB=90°,∠DCE=90°∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB即∠ACD=∠BCE∵CE 是由CD 旋转得到.∴CE=CD则在△ACD 和△BCE 中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE ,故①正确;∴∠EBC=∠A=45°,∴∠EBD=90°,∵点O 是DE 的中点, ∴11,,22OC DE OB DE == ∴OB =OC ;故②正确; ∴2DE OC OC OB BC ==+≥,故③错误;如图2,∵CA=CB=4,∠ACB=90°,∴AB=42,当D 与A 重合时,△CDE 与△CAB 重合,O 是AB 的中点P ;当D 与B 重合时,△CDE 与△CBM 重合,O 是BM 的中点Q ;前面已证OB =OC ,所以点O 在BC 的垂直平分线上,∴当D 在AB 边上运动时,O 在线段PQ 上运动,∴当O 与P 重合时,AO 的值最小为1222AB = 故④错误;故答案是:①②.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及直角三角形斜边中线性质,垂直平分线的判定定理,本题的关键是熟练掌握三角形全等的判定定理以及性质.难点是判断点O 的运动路线.14.8【分析】过点A作AM⊥BC过点A作AN⊥BC交DE于N证明△AFN≌△BFE得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC∴∠B=∠C∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A作AM⊥BC,过点A作AN⊥BC交DE于N,证明△AFN≌△BFE,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC,∴∠B=∠C,⊥,∵DE BC∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD,∠B=∠C,∴∠BFE=∠AED=∠CDE,∴AD=AF,过点A作AM⊥BC,在△ABC中,∵AB=AC,∴M为BC的中点,∴BM=1BC=6,2在Rt△ABM中,=∵F为AB中点,FE⊥BC,∴FE为△ABM的中位线,BF=AF=1AB=5,2∴AD=AF=5,BE=13BM=,2过点A作AN⊥BC交DE于N,∵AF=BF,∠AFN=∠BFE,∠ANF=∠BEF=90°,∴△AFN≌△BFE,∴AN=BE=3,在Rt△AND中,=,4∵AD=AF,AN⊥DF,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.15.【分析】根据翻折的性质可得∠GEH=∠1∠HEF=∠CEF从而可求出∠DEH∠CEF的度数【详解】解:∵∠GEH=∠1∴∠GEH=∴∠DEH=+=∴∠HEF=∠CEF=×(180°-)=故答案为:【解析:2551'︒【分析】根据翻折的性质可得∠GEH=∠1,∠HEF=∠CEF,从而可求出∠DEH,∠CEF的度数.【详解】解:∵1649'∠=︒,∠GEH=∠1,∴∠GEH=649'︒,∴∠DEH =649'︒+649'︒=12818'︒,∴∠HEF=∠CEF=12×(180°-12818'︒)=2551'︒,故答案为:2551'︒.【点睛】本题考查了翻折变换的性质,熟练掌握折叠的性质找出相等的角是解题的关键.16.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.17.2或【分析】分两种情况:①过A′作MN∥CD交AD于M交BC于N则直线MN是矩形ABCD的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E即可;②过A′作PQ∥AD交解析:2或23 3【分析】分两种情况:①过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E即可;②过A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,再利用勾股定理求出A′E,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,∴AM=BN=12AD=2,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=2,∴A′N=22A B BN'-=0,即A′与N重合,∴A′M=2= A′E,∴AE=2;②如图2,过A′作PQ∥AD交AB于P,交CD于Q,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A ′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:2或33. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.18.【分析】根据旋转的可证明△BEF ≌△CHE 作FM ⊥CD 于M 分别求出FMMH 的长利用勾股定理即可求解【详解】∵将△BEF 绕点E 顺时针旋转得到△GEH 点H 落在CD 边上∵BE=2AF=2BF=4∴GH=B解析:10【分析】根据旋转的可证明△BEF ≌△CHE ,作FM ⊥CD 于M ,分别求出FM,MH 的长,利用勾股定理即可求解.【详解】∵将△BEF 绕点E 顺时针旋转,得到△GEH ,点H 落在CD 边上,∵BE=2,AF=2,BF=4∴GH=BF=EC=4,222425+=∴在Rt △HEC 中,()222542-=∴BE=CH又∵∠B=∠C=90°,BF=CE=4∴△BEF ≌△CHE作FM ⊥CD 于M ,故四边形AFMD 是矩形,∴DM=AF=2,MH=CM-CH=2,FM=AD=6∴FH=2226210+=故答案为:210.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知勾股定理、正方形的性质、矩形的性质及全等三角形的判定定理.19.8【分析】过C 作于点F 根据正方形的性质找出对应相等的边和角求证出得到即可求三角形的面积【详解】如图所示过C 作于点F 四边形ABCD 是正方形又又在和中故答案为8【点睛】此题考查了正方形的性质和三角形全等 解析:8【分析】过C 作CF l ⊥于点F ,根据正方形的性质找出对应相等的边和角,求证出ABE BCF ≅得到 4CF BE ==即可求三角形的面积.【详解】如图所示,过C 作CF l ⊥于点F ,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,又AE BE ⊥,CF BF ⊥,90AEB BFC ∴∠=∠=︒,又18090ABE CBF ABC ∠+∠=︒-∠=︒,18090ABE BAE AEB ∠+∠=︒-∠=︒,CBF BAE ∴∠=∠,∴在ABE △和BCF △中, AEB BFC BAE CBF AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE BCF ∴≅,4CF BE ∴==,12BCE S BE CF ∴=⨯⨯1442=⨯⨯8=, 故答案为8.【点睛】此题考查了正方形的性质和三角形全等的判定,以及三角形面积的公式,难度一般. 20.【分析】根据正方形ABCD 得结合题意推导得通过证明得从而得到正方形面积结合四边形面积计算得到;过点M 作交BE 于点N 连接ME 根据正方形ABCD 通过计算即可完成求解【详解】∵正方形ABCD ∴∴∵过点D 且解析:3【分析】根据正方形ABCD ,得90ADC BAD ∠=∠=,BAC ACD ∠=∠,AB BC CD AD ====CDF ADG ∠=∠、FCD DAG ∠=∠,通过证明CDF ADG △≌△,得CDF ADG S S =△△,从而得到12ACD S =正方形ABCD 面积,结合四边形AGDF面积BCE =△,计算得到CE ;过点M 作MN BE ⊥交BE 于点N ,连接ME ,根据ABM NBM BCE NME EDM SS S S S ++++=正方形ABCD ,通过计算即可完成求解.【详解】∵正方形ABCD∴90ADC BAD ∠=∠=,//AB CD,AB BC CD AD ====∴90CDF ADF ∠+∠=,90BAC CAD ∠+∠=,BAC ACD ∠=∠∵过点D 且垂直于DF 的直线,与过点A 且垂直于AC 的直线交于点G∴90FDG ADF ADG ∠=∠+∠=,90CAG CAD DAG ∠=∠+∠=∴CDF ADG ∠=∠,BAC DAG ∠=∠∴ACD DAG ∠=∠,即FCD DAG ∠=∠∴FCD DAG CDF ADG CD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CDF ADG △≌△∴CDF ADG S S =△△∵四边形AGDF 面积=12ADF ADG ADF CDF ACD S S S SS +=+==△△△△△正方形ABCD 面积 ∴四边形AGDF 面积=16632⨯⨯= ∵11622BCE S BC CE CE =⨯=⨯△,且满足四边形AGDF 面积2BCE S =△ ∴12632CE ⨯⨯= ∴3CE = ∴22633BE BC CE =+=+=如图,过点M 作MN BE ⊥交BE 于点N ,连接ME∵∠ABE 的平分线交AD 于点M∴ABM NBM ∠=∠∵BM BM =,90BAM BNM ∠=∠=∴ABM NBM △≌△∴6BN AB ==,MN AM =设AM x = 1622ABM NBM S S AB x x ==⨯=△△ 113632222BCE S BC CE =⨯==△ ()(11136222NME S NE MN BE BN MN x =⨯=-⨯=-△()())111222EDM S ED DM CD CE AD AM x =⨯=-⨯-=△ ∵ABM NBM BCE NME EDM S S S S S ++++=正方形ABCD∴()112322x x x +=∴3x ==故答案为:3.【点睛】本题考查了正方形、全等三角形、一元一次方程、二次根式、三角形角平分线、勾股定理的知识;解题的关键是熟练掌握正方形、全等三角形、三角形角平分线的性质,从而完成求解.三、解答题21.(1)见解析;(2)线段BE 和EC 的位置关系是垂直.证明见解析.【分析】(1)根据题意可得ED=DC ,根据SAS 证明△EDF ≌△CDF ,可得EF=CF ,根据梯形的性质和平行线的性质,由等角对等边可得CF=CD ,再根据菱形的判定即可求解;(2)先根据平行四边形的判定可证四边形BEDF 是平行四边形,再根据菱形的性质即可求解.【详解】(1)∵DF 平分EDC ∠,∴EDF CDF ∠=∠.由题意,ED DC =.在△EDF 与△CDF 中,ED DC EDF CDF DF DF =⎧⎪∠=∠⎨⎪=⎩.∴△EDF ≌△CDF .∴EF CF =.∵四边形ABCD 为梯形.∴AD ∥BC .∴EDF DFC ∠=∠.∴DFC CDF ∠=∠.∴CF CD =.∴ED CD CF EF ===.∴四边形ECDF 是菱形.(2)线段BE 和EC 的位置关系是垂直. 理由如下:∵点F 是BC 的中点,∴BF CF =.∴BF ED =.∵ED ∥BF ,∴四边形BEDF 是平行四边形.∴BE ∥DF .∵四边形EDCF 是菱形,∴EC ⊥DF .∴BE ⊥EC .【点睛】考查了梯形的性质、全等三角形的判定与性质、平行四边形的判定和性质及菱形的判定和性质,熟悉相关定理进行正确推理是关键.22.(1)AM CN =,理由见解析;(2)四边形MRNQ 为菱形,证明见解析;(3)MQN ∠=AOE ∠【分析】(1)结论:AM=CN .先证明(AAS)AOS COT ≌△△,推出AS CT =,OS OT =,34∠=∠,再证明(ASA)ESM GTN ≌△△即可解决问题.(2)过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .首先证明四边形QMRN 是平行四边形,再证明QM=QN 即可.(3)结论:∠MQN=∠AOE .理由三角形的外角的性质以及平行线的性质即可解决问题.【详解】(1)关系:AM CN =理由:如图:设EG 分别与AB 、CD 相交于点S 、T ;∵四边形ABCD 与EFGH 都是矩形,且点O 为对角线的中点;∴//AB CD ,//EF GH ,OA OC =,OE OG =;∴12∠=∠;又AOS COT ∠=∠∴(AAS)AOS COT ≌△△ ∴AS CT =,OS OT =;∴ES GT =;又//EF GH ,∴56∠=∠;又12∠=∠;∴34∠=∠∴(ASA)ESM GTN ≌△△ ∴SM TN =,则AS SM CT TN +=+即AM CN =(2)四边形MRNQ 为菱形.证明:过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .由题可知:矩形ABCD ≌矩形EFGH∴AD=EH ,AB ∥CD ,EF ∥HG∴四边形QMRN 为平行四边形,∵QK ⊥EF ,QL ⊥CD ,∴QK=EH ,QL=AD ,∠QKM=∠QLN=90°∴QK=QL ,又∵AB ∥CD ,EF ∥HG ,∴∠KMQ=∠MQN ,∠MQN=∠LNQ ,∴∠KMQ=∠LNQ ,∴△QKM ≌△QLN (AAS )∴MQ=NQ∴四边形MRNQ 为菱形.(3)结论:∠MQN=∠AOE.理由:如图中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.【点睛】本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找确定的三角形解决问题,属于中考压轴题.23.(1)见解析;(2)见解析;(3)2【分析】(1)根据HL证明Rt△EGF≌Rt△EOF即可;(2)证明四边形ABCD为矩形,可得BG=CD;(3)设CD=x,分别表示出BE2,EF2,BF2,证明∠BEF=90°,利用勾股定理得到方程,解之即可.【详解】解:(1)∵E是AD中点,∴AE=DE,由折叠可知:AE=EG,∠EGB=∠EGF=∠D=∠A=90°,∴EG=ED,又EF=EF,∴Rt△EGF≌Rt△EOF(HL);(2)△ABE折叠得到△GBE,∴AB=BG,∵AD∥BC,∠A=∠D=90°,∴∠ABC=90°,∠C=90°,∴四边形ABCD为矩形,∴AB=DC ,∴BG=CD ;(3)∵点E 是AD 中点,AD=BC=8,∴AE=DE=4,∵点F 是CD 中点,∴设CD=x ,则DF=12x , 则BE 2=BG 2+EG 2,即BE 2=CD 2+AE 2,即BE 2=x 2+42,且EF 2=DE 2+DF 2,即EF 2=42+(12x )2, 且BF 2=BC 2+CF 2,即BF 2=82+(12x )2, ∵∠AEB=∠GEB ,∠DEF=∠GEF ,∴∠BEF=∠GEB+∠GEF=90°,∴BF 2=BE 2+EF 2,∴82+(12x )2= x 2+42+42+(12x )2, 解得:x=,即CD=【点睛】本题考查了矩形的判定和性质,勾股定理,折叠的性质,全等三角形的判定和性质,熟记性质,找出三角形全等的条件,合理利用勾股定理得到方程是解题的关键.24.(1)全等,理由见解析;(2)52t =秒,点Q 的运动速度为12cm/s 5. 【分析】(1)由题意可得BP =CQ ,BE =CP ,由“SAS”可证△BPE ≌△CQP ;(2)由全等三角形的性质可得BP =CP =5,BE =CQ =6,即可求点Q 的速度.【详解】解:(1)全等.理由:由题意:2BP CQ t ==,当2t =时,4BP CQ ==, 10AB BC ==,4AE =,1046BE CP ∴==-=,在BPE ∆与CQP ∆中BP CQ B C BE CP =⎧⎪∠=∠⎨⎪=⎩,BPE CQP ∴∆≅∆;(2)P 、Q 运动速度不相等,BP CQ ∴≠,90B C ∠=∠=︒,∴当BP CP =,CQ BE =时,BPE CPQ ∆≅∆,152BP CP BC ∴===,6CQ BE ==, ∴当5522t =÷=(秒)时,BPE CPQ ∆≅∆, 此时点Q 的运动速度为5126(/)25cm s ÷=. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.25.(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ;(2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】 本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.26.(1)见解析;(2)5【分析】(1)只要证明CM ∥AN ,AM ∥CN 即可.(2)先证明△DEM ≌△BFN 得BN =DM ,再在Rt △DEM 中,利用勾股定理即可解决问题.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,∵AM ⊥BD ,CN ⊥BD ,∴AM ∥CN ,∴CM ∥AN ,AM ∥CN ,∴四边形AMCN 是平行四边形.(2)∵四边形AMCN 是平行四边形,∴CM =AN ,∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴DM =BN ,∠MDE =∠NBF ,在△MDE 和△NBF 中,MDE NBF DEM NFB DM BN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MDE ≌△NBF (AAS ),∴ME =NF =3,在Rt △DME 中,∵∠DEM =90°,DE =4,ME =3,∴DM =222234DE ME +=+=5,∴BN =DM =5.【点睛】本题考查平行四边形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是记住平行四边形的判定方法和性质,正确寻找全等三角形解决问题,属于中考常考题型.。

人教版数学八年级第十八章平行四边行单元测试精选(含答案)5

人教版数学八年级第十八章平行四边行单元测试精选(含答案)5

人教版数学八年级第十八章平行四边行单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.453.如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有().A.1个B.2个C.3个D.4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等5.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD 的两条对角线的和是()A .18B .28C .36D .466.如图,平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是( )A .30B .36C .54D .727.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16-83B .-12+83C .8-43D .4-23 8.如图,▱ABCD 中,AB=3,BC=5,BE 平分∠ABC 交AD 于点E 、交AC 于点F ,则AF FC的值为( )A .53B .35C .32D .239.下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB CD ∥,AD BC ∥B .AB CD ∥,AD BC = C .AB CD ∥,AB CD = D .AB CD =,AD BC =10.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 是AB 上一动点,过点D 作DE ⊥AC 于点E ,DF ⊥BC 于点F ,连接EF ,则线段EF 的最小值是( )A.4 B.4.6 C.4.8 D.511.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形12.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是().A.16 B.12 C.8 D.413.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4 B.3 C.2 D.114.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=20°,则∠DHO的度数是()A.20°B.25°C.30°D.40°15.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG与FH交于点O,则图中的菱形共有()A.4个B.5个C.6个D.7个16.在Y ABCD中,AC,BD是对角线,如果添加一个条件,即可推出Y ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD 17.如图,△ABC中,D为AB中点,BE⊥AC.若DE=5,AE=8,则BE的长度是()A.5 B.5.5 C.6 D.6.518.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角线是否垂直D.测量其内角是否有三个直角19.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB 20.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,4BE ,过点E 作//EF BC ,分别交,BD CD 于,G F 两点.若,M N 分别是,DG CE 的中点,则MN 的长为( )A .3B .23C .13D .421.如图,在△ABC 中,CD ⊥AB 于点D ,BE ⊥AC 于点E ,F 为BC 的中点,DE=5,BC=8,则△DEF 的周长是( )A .21B .18C .15D .1322.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB=CD ;③BC=AD ;④BC ∥AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )A .3种B .4种C .5种D .6种 23.如图所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边的中点,菱形ABCD 的周长为36,则OH 的长等于( )A .4.5B .5C .6D .924.菱形、矩形、正方形都具有的性质是( )A .对角线相等且互相平分B .对角线相等且互相垂直平分C .对角线互相平分D .四条边相等,四个角相等25.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.123D.163α=︒,若26.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角30 8AC=,6BD=,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.1227.如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC 上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为( )A.1cm2B.1.5cm2C.2cm2D.3cm2评卷人得分二、填空题28.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.29.在平面直角坐标系中,四边形AOBC是菱形,若点A的坐标是(3,4),则菱形的周长为___,点C的坐标是____;30.已知菱形的两条对角线长分别是6和8,则这个菱形的面积为________.31.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB 和∠CBA,若AD=5,AP=8,则△APB的周长是.32.如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=13 CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=_____,S2=_____.33.已知一个菱形的两条对角线的长分别为5cm和8cm,该菱形的面积为______cm2.34.如图,将矩形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF=_____°.35.已知菱形的周长为40cm,两个相邻角度数比为1:2,则较短的对角线长为_____,面积为_____.36.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是______形,根据的数学原理是:_______________________;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,•当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是_______形,根据的数学原理是:_____________________.37.如图,在矩形ABCD 中,AB 4=,BC 6=,点E 为BC 的中点,将ABE V 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为________.38.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .39.如图,在直角坐标系中,△OBC 的顶点O (0,0),B (﹣6,0),且∠OCB =90°,OC =BC ,则点C 关于y 轴对称的点的坐标是 ___。

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)

人教版八年级下数学《第18章平行四边形》单元测试(含答案)第18章平行四边形一、选择题1.下面几组条件中,能判断一个四边形是平行四边形的是()A. 一组对边相等B. 两条对角线互相平分C. 一组对边平行D. 两条对角线互相垂直2.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()A. ﹣12+8B. 16﹣8C. 8﹣4D. 4﹣23.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为100°的菱形,剪口与折痕所成的角的度数应为()A. 25°或80°或50° D. 40°或50° C. 40°或50° B. 20°4.如图,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的过平行四边形AEMG的面积S1与?HCFM的面积S2的大小关系是()A. S1>S2B. S1=S2C. S1<S2D. 不能确定5.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=﹣的图象上,若点A的坐标为(﹣2,﹣2),则k的值为()A. 4B. ﹣4C. 8D. ﹣86.下列对正方形的描述错误的是()A. 正方形的四个角都是直角B. 正方形的对角线互相垂直C. 邻边相等的矩形是正方形D. 对角线相等的平行四边形是正方形7.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A. 4B. 3C.D. 28.矩形各个内角的平分线围成一个四边形,则这个四边形一定是()A. 正方形B. 菱形C. 矩形D. 平行四边形9.如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠AEB =60°,AB =AD= 2cm,则梯形ABCD的周长为( )A. 6cmB. 8cmC. 10cmD. 12cm10.已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A. B. C. D.11.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC等于()A. B. C. D.12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C.D.二、填空题13.如图,△ABC,△ACE,△ECD都是等边三角形,则图中的平行四边形有哪些________.14.已知菱形的两条对角线长为8和6,那么这个菱形面积是________,菱形的高________.15.如图,A、B是直线m上两个定点,C是直线n上一个动点,且m∥n.以下说法:①△ABC的周长不变;②△ABC的面积不变;③△ABC中,AB边上的中线长不变.④∠C的度数不变;⑤点C到直线m的距离不变.其中正确的有________ (填序号).16.如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F 上,则AF的长为________.17.在?ABCD中,AB=15,AD=9,AB和CD之间的距离为6,则AD和BC之间的距离为________18.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是________.19.如图,如果要使ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是________。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》测试(含答案解析)

一、选择题1.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15 2.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( ) A .8B .16C .82D .162 3.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对4.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD )433a b + 5.已知四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,即可判定该四边形是正方形,那么所添加的这个条件可以是( )A .90D ∠=;B .AB CD =;C .AD BC =; D .BC CD =. 6.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AD ∥BC ,AB =CD C .OA =OC ,OB =OD D .AB =CD ,AD =BC7.如图,点D 和点E 分别是BC 和BA 的中点,已知AC =4,则DE 为( )A .1B .2C .4D .88.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .1253 9.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A 3B .3C .3D .310.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.511.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .32212.如图,矩形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,则折痕为DG 的长为( )A .3B .423C .2D .352二、填空题13.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)14.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.15.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______. 16.如图,在平行四边形ABCD 中,BE 平分ABC ∠,CF BE ⊥,连接AE ,G 是AB 的中点,连接GF ,若4AE =,则GF =_____.17.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠BAD =127°,则∠BCE =____.18.在△ABC 中, AD 是BC 边上的高线,CE 是AB 边上的中线,CD =AE ,且CE <AC .若AD =6,AB =10,则CE =___________19.如图,B ,E ,F ,D 四点在一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为___cm .20.如图,矩形ABCD 中,2AB =,4=AD ,点E 是边AD 上的一个动点;把BAE △沿BE 折叠,点A 落在A '处,如果A '恰在矩形的对称轴上,则AE 的长为______.三、解答题21.如图,BD 为ABC 的角平分线,E 为AB 上一点,BE BC =,连结DE . (1)求证:BDC BDE ≅△△;(2)若7AB =,2CD =,90︒∠=C ,求ABD △的面积.22.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .23.如图,在正方形ABCD 中,点P 是对角线AC 上的一点,点E 在BA 的延长线上,且PB PE =,连结DE .(1)求证:PD PE =.(2)试判断DE 和BP 的数量关系,并说明理由.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?26.如图,在正方形中ABCD ,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.(1)求证:CE CF =;(2)若点G 在AD 上,且45GCE ︒∠=,判断线段GE BE GD 、、之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.2.A解析:A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积.【详解】∵正方形ABCD 中,对角线4AC =,∴AB 2+BC 2=AC 2,∴2AB 2=42,∴AB 2=8.故选:A .【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键. 3.C解析:C【分析】因为图形对折,所以首先△CDB ≌△ABD ,由于四边形是长方形,进而可得△ABE ≌△CDE ,如此答案可得.【详解】解:∵△BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∴CD=AB ,AD=BC ,∵BD=BD ,∴△CDB ≌△ABD (SSS ),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE ≌△CDE ,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进. 4.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论.解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.5.D解析:D【分析】由已知可得该四边形为矩形,再添加条件:一组邻边相等,即可判定为正方形.【详解】解:由∠A=∠B=∠C=90°可判定四边形ABCD 为矩形,因此再添加条件:一组邻边相等,即可判定四边形ABCD 为正方形,【点睛】本题考查正方形的判定.掌握相关判定定理正确推理论证是解题关键.6.B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.7.B解析:B【分析】根据三角形中位线定理解答即可.【详解】解:∵点D和点E分别是BC和BA的中点,∴DE是△ABC的中位线,∴DE=12AC=124=2,故选:B.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A .【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.9.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==, ∴224223BO =-= ∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.10.A解析:A【分析】先由勾股定理求出AB=5,再证四边形CEMF 是矩形,得EF=CM ,当CM ⊥AB 时,CM 最短,此时EF 也最小,则CP 最小,然后由三角形面积求出CM=2.4,即可得出答案.【详解】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴AB=2222345AC BC+=+=,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=12EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=12AB×CM=12AC×BC,∴CM=•AC BCAB=342.45⨯=,∴CP=12EF=12CM=1.2,故选:A.【点睛】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.11.C解析:C【分析】连接CE,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG的长;【详解】连接CE,如图所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD∥BC,∴∠CBE=∠AEB,∵BE平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt△CDE中=∵点F、G分别为BC、BE的中点,∴FG是△CBE的中位线,FG=12故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC的长度是解题的关键. 12.D解析:D【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得A′B的长,然后由勾股定理可得方程:x2+22=(4-x)2,解此方程即可求得AG 的长,继而求得答案.【详解】解:设AG=x,∵四边形ABCD是矩形,∴∠A=90°,∵AB=4,AD=3,∴BD5,由折叠的性质可得:A′D=AD=3,A′G=AG=x,∠DA′G=∠A=90°,∴∠BA′G=90°,BG=AB-AG=4-x,A′B=BD-A′D=5-3=2,∵在Rt△A′BG中,A′G2+A′B2=BG2,∴x2+22=(4-x)2,解得:x=32,∴AG=32,∴在Rt △ADG 中,DG=. 故选:D .【点睛】 此题考查了折叠的性质、矩形的性质以及勾股定理.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.二、填空题13.②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC是菱形,∴∠DFC=∠KFC,∵AE∥FK,∴∠AEF=∠EFK,∵FE=FC,FK⊥EC,∴∠EFK=∠KFC,∴∠DFE=3∠AEF,故③正确,∵四边形EBCN是平行四边形,∴S△BEC=S△ENC,∵S△EHC=2S△EFC,S△EHC>S△ENC,∴S△BEC<2S△CEF,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.14.【分析】由ASA可证△ABQ≌△DAP可得AP=BQ列出方程可求t的值【详解】∵四边形ABCD是正方形∴AD=AB∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°且∠DAQ+∠BAQ=解析:8 3【分析】由“ASA”可证△ABQ≌△DAP,可得AP=BQ,列出方程可求t的值.【详解】∵四边形ABCD是正方形∴AD=AB,∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°,且∠DAQ+∠BAQ=90°,∴∠BAQ=∠ADP,且∠B=∠BAD=90°,AD=AB∴△ABQ≌△DAP(ASA)∴AP=BQ∴2t=8−t∴t =83, 故答案为:83. 【点睛】本题考查了全等三角形判定和性质,正方形的性质,一元一次方程的应用,证明△ABQ ≌△DAP 是本题的关键.15.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.16.2【分析】根据平行四边形的性质结合角平分线的定义可求解即可得利用等腰三角形的性质得到进而可得是的中位线根据三角形的中位线的性质可求解【详解】解:在平行四边形中∴∵平分∴∴∴∵∴∵是的中点∴是的中位线 解析:2【分析】根据平行四边形的性质结合角平分线的定义可求解CBE BEC ∠=∠,即可得CB CE =,利用等腰三角形的性质得到BF EF =,进而可得GF 是ABE △的中位线,根据三角形的中位线的性质可求解.【详解】解:在平行四边形ABCD 中,//AB CD ,∴ABE BEC ∠=∠,∵BE 平分ABC ∠,∴ABE CBE ∠=∠,∴CBE BEC ∠=∠,∴CB CE =,∵CF BE ⊥,∴BF EF =,∵G 是AB 的中点,∴GF 是ABE △的中位线, ∴12GF AE =∵4AE =,∴2GF =; 故答案为:2.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF 是ABE △的中位线是解题的关键.17.37°【分析】由平行四边形的性质得出∠B+∠BAD=180°可得∠B 的度数由直角三角形的两上锐角互余得出∠BCE=90°-∠B 即可【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠B+∠BAD解析:37°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B 的度数,由直角三角形的两上锐角互余得出∠BCE=90°-∠B 即可.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠B+∠BAD=180°,∵∠BAD=127°∴∠B=53°,∵CE ⊥AB ,∴∠E=90°,∴∠BCE=90°-∠B=90°-53°=37°,故答案为:37°.【点睛】本题考查了平行四边形的性质、直角三角形两锐角互余.熟练掌握平行四边形的性质,求出∠B 的度数是解决问题的关键.18.【分析】先根据勾股定理求得AB 再做△ABD 的中位线EF 可得EF=3BF=DF=4从而可得CF=1再次利用勾股定理即可求得CE 【详解】解:∵AD 是BC 边上的高线AD=6AB=10∴∠D=90°∵CE 是【分析】先根据勾股定理求得AB ,再做△ABD 的中位线EF ,可得EF=3,BF=DF=4,从而可得CF=1,再次利用勾股定理即可求得CE .【详解】解:∵AD 是BC 边上的高线,AD =6,AB =10,∴∠D=90°,BD 8==,∵CE 是AB 边上的中线,CD =AE , ∴152CD AE BE AB ====, 取BD 的中点F,连接CF ,∴EF 为△ABD 的中位线, ∴132EF AD ==,EF//AD , ∴∠EFB=∠D=90°, 在Rt △BEF 中,根据勾股定理,2222534BF BE EF =-=-=,∴DF=BD-BF=8-4=4,∴CF=CD-DF=5-4=1,在Rt △CEF 中,根据勾股定理,22221310CE CF EF =+=+=,故答案为:10.【点睛】本题考查三角形中位线的定理,勾股定理.能正确作出辅助线,构造直角三角形是解题关键.19.13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF的面积为50cm2,∴12AC2=50,∴AC=10cm,∴AO=CO=5cm,∵菱形ABCD的面积为120cm2,∴12×AC×BD=120,∴BD=24cm,∴BO=DO=12cm,∴AB,故答案为13.【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答.20.2或【分析】分两种情况:①过A′作MN∥CD交AD于M交BC于N则直线MN是矩形ABCD的对称轴得出AM=BN=AD=2由勾股定理得到A′N=0求得A′M=2再得到A′E即可;②过A′作PQ∥AD交解析:2【分析】分两种情况:①过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,得出AM=BN=12AD=2,由勾股定理得到A′N=0,求得A′M=2,再得到A′E即可;②过A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,再利用勾股定理求出A′E,即可得出结果.【详解】解:分两种情况:①如图1,过A′作MN∥CD交AD于M,交BC于N,则直线MN是矩形ABCD 的对称轴,∴AM=BN=12AD=2,∵△ABE沿BE折叠得到△A′BE,∴A′E=AE,A′B=AB=2,∴,即A′与N重合,∴A′M=2= A′E,∴AE=2;②如图2,过A′作PQ ∥AD 交AB 于P ,交CD 于Q ,则直线PQ 是矩形ABCD 的对称轴,∴PQ ⊥AB ,AP=PB ,AD ∥PQ ∥BC ,∴A′B=2PB ,∴∠PA′B=30°,∴∠A′BC=30°,∴∠EBA′=30°,设A′E=x ,则BE=2x ,在△A′EB 中,()22222x x =+,解得:x=23, ∴AE=A′E=23;综上所述:AE 的长为223, 故答案为:2或33. 【点睛】 本题考查了翻折变换—折叠问题,矩形的性质,勾股定理;正确理解折叠的性质是解题的关键.三、解答题21.(1)证明见解析;(2)7【分析】(1)根据角平分线的性质可得DBC DBE ∠=∠,再根据已知条件BE BC =,BD BD =,即可证明;(2)根据(1)中结果,得2DE CD ==,90DEB C ∠=∠=︒,即可求得ABD △的面积.【详解】(1)∵BD 平分ABC ∠,∴DBC DBE ∠=∠,∴在BDC 和BDE 中,BD BD =,DBC DBE ∠=∠,BE BC =,∴BDC ≌BDE ;(2)∵BDC ≌BDE ,∴2DE CD ==,90DEB C ∠=∠=︒, ∴1172722ABD S AB DE =⋅=⨯⨯=△. 【点睛】本题考查了角平分线的性质、全等三角形的证明和性质、三角形面积等知识,解题的关键是熟练掌握运用以上知识点.22.见解析【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论.【详解】解:证明:∵四边形ABCD 是菱形, AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.23.(1)见解析;(2)DE =,见解析【分析】(1)根据SAS 证明APD APB ≌△△可得PD=PB ,再结合PD=PE 即可得出结论; (2)证明DPE 是等腰直角三角形即可得出结论.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB AD =,∵AC 是正方形ABCD 的对角线,∴=45CAD CAB ∠=∠︒∵AP AP =,∴()APD APB SAS ≌, ∴PD PB =, ∵PB PE =,∴PD PE =. (2)2DE BP =.理由如下: ∵由(1)知,APD APB ≌△△,PD PB PE ==,∴设PEB PBE PDA x ∠=∠=∠=︒,∴1802EPB x ∠=︒-︒,∵45DAP ∠=︒,∴18045135DPA BPA x x ∠=∠=︒-︒-=︒-︒,∴1802(135)45APE EPB BPA x x x ∠=∠-∠=︒-︒-︒-︒=︒-︒,∴135(45)90DPE DPA APE x x ∠=∠-∠=︒-︒-︒-︒=︒.∴DPE 是等腰直角三角形,∴22DE DP BP ==. 【点睛】本题是四边形综合题目,考查了正方形的性质,全等三角形的判定与性质,熟记正方形的性质,证明三角形全等是解决问题的关键.24.(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)t =2;(2)t =3或65t =. 【分析】(1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.(1)见解析;(2)GE=BE+GD ,理由见解析【分析】(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF ;(2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD .【详解】解:(1)证明:∵四边形ABCD 是正方形,∴BC=CD ,∠B=∠CDA ,∴∠B=∠CDF ,在△CBE 与△CDF 中,B CDF BE DF ⎪∠∠⎨⎪⎩==,∴△CBE ≌△CDF (SAS ),∴CE=CF ;(2)GE=BE+GD ,理由:由(1)得△CBE ≌△CDF ,∴∠BCE=∠DCF ,CE=CF .∵∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠GCF=∠DCF+∠DCG=45°,在△ECG 与△FCG 中,CE CF GCE GCF GC GC ⎧⎪∠∠⎨⎪⎩===,∴△ECG ≌△FCG (SAS ),∴GE=GF ,∴GE=DF+GD=BE+GD .【点睛】本题主要考查正方形的性质以及全等三角形的判定和性质,证两条线段相等往往转化为证明这两条线段所在三角形全等,在第二问中也考查了通过全等找出和GE 相等的线段,从而得出线段GE ,BE ,GD 之间的数量关系.。

人教版-八下数学第十八章《平行四边形》单元测试题及答案

人教版-八下数学第十八章《平行四边形》单元测试题及答案
(第8题) (第10题) 第3题 9.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . A BC DOABCD Ol 10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结 论是 . 二、选择题(每题3分,共24分) 11.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、 圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( )A.4种 B.5种 C.7种 D.8种 12.
进行平移后可得到一个边长为1m 的正方
形,所以它的周长为4m . (第8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C. 15.C. 提示:因为ABC ?的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ?的面积不变. 16.A. 提示:由于() BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形 AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C. 19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠=∠?⊥D DAE AED BD AE 中所以在直角. 20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG, 即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ; (2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得 DGE GBF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形; (2)矩,有一个是直角的平行四边形是矩形. 22.下面给出两种参考答案: (1)添加条件AB ∥DC,可得出该四边形是矩形; 理由:因为AB ∥DC,AB=DC,所以四边形ABCD 是平行四边形.又因为AC=BD,所以四边形ABCD 是矩形. (2)添加条件AC 垂直平分BD,那么该四边形是正方形. 理由:因为AC 垂直平分BD,所以AB=AD,BC=CD,又因为AB=DC,所以AB=AD=BC=DC,所以四边形ABCD 是菱形,又因为AC 垂 直BD,所以四边形ABCD 是正方形. 说明:解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联 系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论. 23. O 在AC 的中点时,四边形ABCD 是矩形.因为AO=CO,BO=DO,所以四边形ABCD 是平 行四边形,又()CAN MAC CAE FAC FAE CAN CAE MAC FAC ∠+∠=∠+∠=∠∠=∠∠= ∠21,21,21所以 = 18021 ?= 90,所以四边形ABCD 是矩形. 24.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.

人教版八年级下册数学 第十八章 平行四边形 单元测试题

人教版八年级下册数学 第十八章  平行四边形  单元测试题

人教版八年级下册数学第十八章平行四边形单元测试题一.选择题(本大题共10小题,每小题3分,共30分)1.(3分)▱ABCD的顶点坐标分别是为A(2,8),B(5,2),C(10,4),则点D的坐标是()A.(6,10)B.(10,7)C.(7,10)D.(10,8)2.(4分)如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.OA=OC,OB=OD D.AB∥DC,AD=BC3.(3分)菱形具有而矩形不一定具有的性质是()A.对角线相等 B.对角线平分对角 C.对角线互相平分 D.对角相等4.(3分)如图,▱ABCD中,点O是对角线AC、BD的交点,过点O的直线分别交AD、BC于点M、N,若△CON的面积为3,△DOM的面积为5,则▱ABCD的面积是()A.16 B.24 C.32 D.405.(3分)如图,在▱ABCD中,∠A=110°,则∠1的度数为()A.70°B.65°C.60°D.110°6.(3分)如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°7.(3分)如图,在▱ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 长为( )A .8B .10C .12D .148.(3分)如图,将矩形ABCD 沿EF 折叠后点D 与B 重合.若原矩形的长宽之比为3:1,则AE BF 的值为( )A .12B .13C .34D .45 9.(3分)如图,矩形ABCD 的周长为1,连接矩形ABCD 四条边中点得到四边形A 1B 1C 1D 1,再连接四边形A 1B 1C 1D 1四条边中点得到四边形A 2B 2C 2D 2,如此继续下去,…,则四边形A 10B 10C 10D 10的周长为( )A .(12)5B .(12)10C .(14)5D .(14)1010.(3分)如图,点E 为正方形ABCD 内一点,∠AEB =90°,将Rt △ABE 绕点B 按顺时针方向旋转90°,得到△CBG .延长AE 交CG 于点F ,连接DE .下列结论:①AF ⊥CG ,②四边形BEFG 是正方形,③若DA =DE ,则CF =FG ;其中正确的结论是( )A .①②③B .①②C .②③D .①③二.填空题(共6小题,每小题3分,共18分)11.(3分)如图,平行四边形ABCD中,AC,BD交于点O,且AC+BD=36,AB=11,则△AOB的周长是.12.(3分)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF;把纸片展平,再折一次纸片,使得折痕经过点B,得到折痕BM,同时使得点A的对称点N落在EF上,如果AB=2√3,则AM=.13.(3分)一个平行四边形的一条边长是9,两条对角线的长分别是12和6√5,这个平行四边形的周长是.14.(3分)如图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为.15.(3分)如图,在矩形ABCD中,AD=√2AB,∠BAD的平分线交BC于点E,过D作AE的垂线,垂足为点.H,连接BH并延长,交CD于点F,连接DE交BF于点O,则下列结论:①△ABE≌△AHD;②∠AED=∠CED;③BH=FH;④CD=FH;⑤BC﹣CF=HE,其中正确的是.(填序号)16.(3分)如图,正方形ABCD的边长为2,对角线AC,BD交于点O,E是BC边上的任意一点,过点E分别向BD,AC作垂线,垂足分别为F,G,则四边形OFEG的周长是.三.解答题(共9题,共72分)17.(6分)如图,在▱ABCD中,E,F分别为AD,BC边上的点,AF⊥BC,DE=BF.(1)求证:四边形AFCE是矩形;(2)若∠B=60°,AB=2,四边形AFCE是正方形,直接写出BC的长.18.(6分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE,CF,求证:四边形AECF是平行四边形.19.(6分)无刻度直尺作图:(1)直接写出四边形ABCD的形状.(2)在图1中,先过E点画一条直线平分四边形ABCD的面积,再在AB上画点F,使得AF=AE.(3)在图2中,先在AD上画一点G,使得∠DCG=45°;连接AC,再在AC上画点H,使得GH=GA.20.(6分)如图,在正方形ABCD中,AB=4,E是BC的中点,F是CD上一点,且DF=3CF.(1)求证:AE⊥EF;(2)求四边形AEFD的面积.21.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AE是折痕.(1)如图1,若AB=4,AD=5,求折痕AE的长;(2)如图2,若AE=√5,且EC:FC=3:4,求矩形ABCD的周长.22.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.23.(10分)如图1,在平面直角坐标系中,四边形AOCB为正方形.(1)点E、F分别在边OC、BC上,若OE=BF,∠EAF=60°,①若AE=2,求EC的长;②点G在线段FC上,∠AGC=120°,求证:AG=EG+FG;(2)如图2,在平面直角坐标系中,OC=3,点E、F分别是边OC、BC上的动点,且OE=CF,AE与OF 相交于点P.若点M为边OC的中点,点N为边BC上任意一点,则MN+PN的最小值等于.24.(10分)在菱形ABCD中,∠ABC=60°,E为动点.(1)如图1,当点E在线段AB上,且∠CEN=60°时,求证:CE=EN;(2)如图2,当E在对角线BD的延长线上,且△AEN为等边三角形时,求证:CN⊥AD.25.(12分)在▱ABCD中,点E是AB的中点,点P是BC上一点,连接DE,交AP于点M.N是AP上一点,且AM=MN,连接BN并延长交DC于点F.(1)如图1,求证:四边形EBFD是平行四边形;(2)如图2,连接MC交BF于点H,过点A作AG∥MC交DE于点G.①求证:MC=2AG;AB2=a2+4b2,直接写出▱ABCD的面积(用含a,b ②当点P为BC中点时,若BF=a,AP=b,且254的式子表示).。

人教版八年级下册数学 第十八章 平行四边形 单元培优测试题

人教版八年级下册数学 第十八章  平行四边形  单元培优测试题

人教版八年级下册数学第十八章平行四边形单元培优测试题一.选择题(本大题共10小题,每小题3分,共30分)1.如图,▱ABCD的对角线AC、BD相交于点O,下列说法错误的是()A.AD∥BC B.∠ABC=∠ADC C.OA=OC D.∠ACD=2∠ABD2.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直3.如图,在矩形ABCD纸片中,E为AD上一点,将△CDE沿CE翻折至△CFE.若点F恰好落在AB 上,AF=3,BC=9,则AE=()A.9B.32C.23D.44.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90°时,它是矩形5.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,=()OH的长为3,则S菱形ABCDA.12B.24C.36D.486.如图,菱形ABCD的对角线AC.BD相交于点O,过点D作DH⊥AB于点H,连接CH,若AB=2,AC=23,则CH的长是()A.5B.3C.7D.47.如图,矩形AEFG 的顶点E、F 分别在菱形ABCD 的边AB 和对角线BD 上,连接EG、CF,若EG=5,则CF 的长为()A.4B.5C.5D.78.如图,在平面直角坐标系中,AD∥BC∥x 轴,AD=BC=7,且A(0,3),C(5,﹣1),则四边形ABCD 的面积为()A.14B.21C.28D.309.如图,正方形ABCD 和正方形DEFG 中,A,D,E 在同一条直线上,AD=2DE,M 为BC 的中点,延长FG 交AB 于点N,连接MN,CN,CF,连接FM 分别交CN,CD 于点P、Q,下列说法:①△FQG≌△MQC;②∠BCN=∠MFG;③S △CFQ :S 四边形BMPN =3:7;④FQ=2PQ,其中正确的结论有()A.4个B.3个C.2个D.1个10.如图,在正方形ABCD 中,E、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当0<x<42−2,△PEF 是等腰三角形时,下列关于P 点个数的说法中,P 点最多有()A.8个B.10个C.12个D.14个二.填空题(本大题共6小题,每小题3分,共18分)11.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于点E,若∠A=130°,则∠BEC=°.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是.13.如图,在▱ABCD两对角线A,BD相交于点O,且AC+BD=36,AB=11,则△COD的周长是.14.如图,在矩形ABCD中,AB=4,AD=6,点E是边BC的中点,连接AE,若将△ABE沿AE翻折,点B落在点F处,连接FC,则CF=.15.如图,正方形ABCD的边长为6,点P为BC边上一动点,以P为直角顶点,AP为直角边作等腰Rt△APE,M为边AE的中点,当点P从点B运动到点C,则点M运动的路径长为.16.如图,在矩形ABCD中,AB=6,AD=2,E、F分别是AB和DC上的两个动点,M为BC的中点,则DE+EF+FM的最小值是;若∠EFD=45°,则DE+EF+FM的最小值为.三.解答题(本大题共9小题,共72分)17.(6分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.18.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE 是平行四边形.19.(6分)如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)四边形BFDE是什么特殊四边形?请说明理由;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.20.(6分)如图,点O是△ABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.21.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,连接BE.(1)求证:四边形OCED是菱形;(2)若∠AOB=60°,AB=2,求BE的长.22.(10分)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值;若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动秒时,四边形BCMP的周长最小,其最小值为.23.(10分)如图1,以▱ABCD的邻边AB和BC为边向外作正方形ABFE和正方形BCHG,连接BD、FG,线段BD和FG之间存在怎样的数量关系和位置关系?(1)先将问题特殊化,如图2,当∠ADC=90°时,直接写出BD和FG之间的数量关系和位置关系.(2)再探究一般情况,当∠ADC≠90°时,证明(1)中的结论依然成立.(3)在(2)的条件下,连接EH,M为EH的中点,连接MF,试给出FM和BD的数量关系并证明.24.(10分)如图,点B(m,n)为平面直角坐标系内一点,且m,n满足n=m−6+6−m+6,过点B分别作BA⊥y轴于点A,BC⊥x轴于点C.(1)求证:四边形ABCO是正方形;(2)点E(0,b)为y轴上一点,点F(a,0)为x轴上一点.①如图1,若a=2,b=4,点G为线段BE上一点,且∠EGF=45°,求线段FG的长;②如图2,若a+b=6,直线AF与BE交于点H,连接CH,则CH的最小值为.25.(10分)菱形ABCD中,∠ABC=60°,△BEF为等边三角形,将△BEF绕点B顺时针旋转,M为线段DF的中点,连接AM、EM.(1)如图1,E为边AB上一点(点A、E不重合),则EM、AM的位置关系是,EM、AM的数量关系是;(2)将△BEF旋转至如图2所示位置,(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)若AB=23,EF=1,在旋转过程中,CM的最小值为,此时DF的长为.。

人教版八年级数学下册 第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册   第18章 《平行四边形》 单元测试卷(包含答案)

人教版八年级数学下册第18章平行四边形单元综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在□ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则□ABCD的周长是() A.22 B.20 C.22或20 D.182. 如图,由六个全等的正三角形拼成的图,图中平行四边形的个数是()A.4个B.6个C.8个D.10个3.如图,在▱ABCD中,AE平分∠BAD,若CE=3 cm,AB=4 cm,则▱ABCD的周长是() A.20 cm B.21 cmC.22 cm D.23 cm4.如图,四边形ABCD为平行四边形,延长AD到点E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DCC.∠ADB=90° D.CE⊥DE5.如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小为( ) A.150° B.130° C.120° D.100°6.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤7. 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A.15°或30°B.30°或45°C.45°或60°D.30°或60°8.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49.如图,是边长分别为4和8的正方形ABCD、正方形CEFG并排放在一起,连接BD并延长交EG 于点T,交FG于点P,则GT的长为()A.2 2 B.2 C. 2 D.110. 如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )A.1个B.2个C.3个D.4个二.填空题(共8小题,3*8=24)11.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为______ .12.如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为________.13. 已知平行四边形的三个顶点坐标分别为(-1,0)(0,2)(2,0),则在第四象限的第四个顶点的坐标为___________。

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

人教版八年级数学下册第十八章 平行四边形 单元测试卷(含答案)

第十八章平行四边形单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A.34B.26C.8.5D.6.52.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=4,则AC 的长是( )A.4B.8C.4错误!未找到引用源。

D.8错误!未找到引用源。

3.一个菱形的周长为8 cm,高为1 cm,这个菱形相邻两角的度数之比为( )A.3∶1B.4∶1C.5∶1D.6∶14.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形5.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形6.如图,在矩形ABCD中,对角线AC,BD相交于点O,过O的直线EF分别交AB,CD于点E,F,若图中阴影部分的面积为6,则矩形ABCD的面积为( )A.12B.18C.24D.307.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判定这个四边形是正方形( )A.①②B.①③C.①④D.④⑤8.如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为( )A.20°B.25°C.30°D.35°9.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,EF⊥AB,垂足为F,则EF的长为( )A.1B.错误!未找到引用源。

C.4-2 错误!未找到引用源。

D.3 错误!未找到引用源。

-410.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上的M点处,延长BC,EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S.其中,将正确结论的序号全部选对的是( )△BEF=3S△DEFA.①②③B.①②④C.②③④D.①②③④二、填空题(每题3分,共30分)11.如图,在平行四边形ABCD中,点E,F分别在边BC,AD上,请添加一个条件__________,使四边形AECF是平行四边形(只填一个即可).12.如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为__________.13.如图,已知AB=BC=CD=AD,∠DAC=30°,那么∠B=__________.14.如图,在矩形ABCD中,对角线AC,BD相交于O,DE⊥AC于E,∠EDC∶∠EDA=1∶2,且AC=10,则EC的长度是__________.15.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为__________.16.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB的中点)所在的直线上的点C'处,得到经过点D的折痕DE.则∠DEC的大小为__________.17.正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点,若△PBE是等腰三角形,则腰长为__________.18.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E,F分别是边AD,DC上的点,若AE=4 cm,CF=3 cm,且OE⊥OF,则EF的长为____cm.19.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,错误!未找到引用源。

人教版八年级下册数学第十八章《平行四边形》检测卷及答案解析

人教版八年级下册数学第十八章《平行四边形》检测卷及答案解析

八年级下册数学第十八章《平行四边形》检测卷时间:90分钟满分:120分一、选择题(每小题4分,共40分)1.已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16B.14<α<26C.12<α<20D.以上答案都不正确2.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是()A.45°B.35°C.22.5°D.15.5°3.将矩形纸片ABCD按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形AECF,若AB=3,则BC的长为()A.1B.2C2D34.如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A.∠ABC=90°B.AC=BD C.OA=OB D.OA=AD5.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2∶3,△AOB的周长为13cm,那么BC的长是()A.y x=B.1902y x=-+C.2180y x=-+D.90y x=-+9.如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是()A.15米B.20米C.25米D.30米第6题第7题A.6cm B.9cm C.3cm D.12cm7.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7B.8C.9D.108.如图,在△ABC中,AE⊥BC于点E,BD⊥AC于点D;点F是AB的中点,连结DF,EF,设DFE x∠=°,ACB y∠=°,则()10.如图,平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的个数是()A.2B.3C.4D.5二、填空题(每小题4分,共20分)11.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是_________cm.12.如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=_________.第12题第13题13.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是____________.14.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为_________.第14题第15题15.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是__________.三、解答题(16-20小题,每小题8分;21-22小题,每小题10分)16.如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.17.如图,在矩形ABCD中,以点B为圆心、BC长为半径画弧,交AD边于点E,连接BE,过C点作CF⊥BE,垂足为F.猜想线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,并加以证明.结论:BF=______.证明:18.如图,在□ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.19.如图,在□ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.(1)求证:四边形OBFE是平行四边形;(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.20.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.21.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB 的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.22.我们规定:横、纵坐标相等的点叫做“完美点”.(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.①不管t为何值,E点总是“完美点”;②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.八年级下册数学第十八章《平行四边形》检测卷参考答案一、选择题(每小题4分,共40分)1.B2.C3.D4.D5.B6.A7.B8.B9.C10.C二、填空题(每小题4分,共20分)11;12.4;13.AD=BC;14.1;15.18.三、解答题(16-20小题,每小题8分;21-22小题,每小题10分)16.【分析】(1)由等腰三角形的性质可得∠C=∠A,由平行线的性质可得∠C=∠ADE,从而∠A=∠ADE;(2)先由三角形内角和求出∠ABC=50°,再由三线合一的性质可求出∠EBD=∠DBC=12∠ABC=25°,然后根据平行线的性质求解即可.【解析】(1)证明:∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE.(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°-65°-65°=50°,∵AB=BC,D为AC中点,∴∠EBD=∠DBC=12∠ABC=25°,∵DE∥BC,∴∠BDE=∠DBC=25°.17.【分析】猜想:BF=AE.根据已知及矩形的性质利用AAS判定△BFC≌△EAB,从而得到BF=AE.【解析】猜想:BF=AE.证明:∵四边形ABCD是矩形,∴∠A=90°.∵CF⊥BE,∴∠A=∠BFC=90°,∠AEB=∠FBC.∵BC=BE(同一半径),∴△BFC≌△EAB,∴BF=AE.18.【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE∥CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【解析】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12 BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.19.【分析】(1)首先证明OE是△ABC的中位线,推出OE∥BC,由EF∥OB,即可得出四边形OBFE是平行四边形;(2)当AD⊥BD时,四边形OBFE是矩形.只要证明∠EOB=90°即可解决问题.【解析】(1)∵四边形ABCD是平行四边形,∴点O是AC的中点,又∵点E是边AB的中点,∴OE是△ABC的中位线,∴OE∥BC,又∵点F在CB的延长线上,∴OE∥BF,∵EF∥BD,即EF∥OB,∴FC ⊥BD ,∴∠OBF =90°,∴四边形OBFE 是矩形.20.【分析】(1)先根据等腰三角形的三线合一可得BAD CAD ∠=∠,再根据角平分线的定义可得MAE CAE ∠=∠,从而可得90DAE ∠=°,然后根据垂直的定义可得90ADC AEC ∠=∠=°,最后根据矩形的判定即可得证;(2)先根据等腰直角三角形的性质可得45ACB B ∠=∠=°,再根据直角三角形的性质可得45CAD ACD ∠=∠=°,然后根据等腰三角形的定义可得CD =AD ,最后根据正方形的判定即可得.【解析】(1)∵在△ABC 中,AB =AC ,AD ⊥BC ,∴12BAD CAD BAC ∠=∠=∠(等腰三角形的三线合一),∵AN 是△ABC 外角∠CAM 的平分线,∴12MAE CAE CAM ∠=∠=∠,∴11118090222DAE CAD CAE BAC CAM ∠=∠+∠=∠+=⨯︒=∠︒,又∵AD BC ⊥,CE AN ⊥,∴90ADC AEC ∠=∠=︒,∴四边形ADCE 为矩形.(2)当△ABC 满足90BAC ∠=︒时,四边形ADCE 是一个正方形.证明如下:∵AB AC =,90BAC ∠=︒,∴45ACB B ∠=∠=︒,∵AD BC ⊥,∴45CAD ACD ∠=∠=︒,∴CD AD =,∵四边形ADCE 为矩形,∴矩形ADCE 是正方形,故当90BAC ∠=︒时,四边形ADCE 是一个正方形.21.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF 的长,即可根据直角三角形斜边上的中线性质得出CO 的长.(3)根据平行四边形的判定以及矩形的判定得出即可.【解析】(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6.∵MN∥BC,∴∠1=∠5,∠3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴EF=13=.∴OC=12EF=6.5.(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.22.【分析】(1)根据“完美点”定义可求点A坐标;(2)①由题意可求直线OB的解析式y=x,点E在直线OB上移动,则可证结论;②根据题意可证△EFQ≌△APE,可求PE=FQ,则可求四边形AFQP的面积.【详解】(1)∵点A(x,y)是“完美点”,∴x=y,∵x+y=4,∴x=2,y=2,∴A点坐标(2,2).(2)①∵四边形OABC是正方形,点A坐标为(0,4),∴AO=AB=BC=4,∴B(4,4).设直线OB 的解析式y =kx 过B 点,∴4=4k ,k =1.∴直线OB 解析式y =x ,设点E 坐标(x ,y ),∵点E 在直线OB 上移动,∴x =y ,∴不管t 为何值,E 点总是“完美点”.②∵E 点总是“完美点”,∴EQ =OQ .∵∠BAO =∠AOC =90°,PQ ⊥x 轴,∴四边形AOQP 是矩形,∴AP =OQ ,AO =PQ =4,∴AP =EQ .∵AE ⊥EF ,∴∠AEP +∠FEQ =90°,∠EAP +∠AEP =90°,∴∠FEQ =∠EAP .∵AP =EQ ,∠FEQ =∠EAP ,∠APE =∠EQF =90°,∴△APE ≌△EFQ ,∴PE =FQ .∵S 四边形AFQP =()2AP FQ AO =2(PE +EQ )=2×PQ =8,∴当E 点运动时,四边形AFQP 的面积不变,面积为8.。

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(每小题3分,共30分)
1.已知四边形ABCD是平行四边形,下列结论中,错误的是()
A. AB=CD
B. AC=BD
C.当A C⊥BD时,它是菱形
D.当∠ABC=90°时,它是矩形
2.如图所示,用两个完全相同的直角三角板,不能拼成下列图形的是()
A.平行四边形
B.矩形
C.等腰三角形
D.梯形
3.如图,在平行四边形ABCD中,AB=3㎝,BC=5㎝,对角线AC,BD相交于点O,则OA的取值范
围是()
A.2㎝<OA<5㎝
B. 2㎝<OA<8㎝
C. 1㎝<OA<4㎝
D. 3㎝<OA<8㎝
4.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC②AD=BC③OA=OC④
OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有()
A.3种
B.4种
C.5种
D.6种
5.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,
且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()
A.3
2 B.3
4 C.4 D.8
6.一个正方形的对角线长为2㎝,则它的面积是()
A.2cm2
B.4cm2
C.6cm2
D.8cm2
7.矩形各内角平分线围成的四边形是()
A.平行四边形
B.矩形
C.菱形
D.正方形
8.将一张矩形对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平
面图形是()
A.三角形
B.矩形
C.菱形
D.梯形
9.如图,P,R分别是长方形ABCD
的边BC,CD上的点,E,F分别是
PA,PR的中点,点P在BC上从B
向C移动,点R不动,那么下列
结论成立的是( )
A.线段EF逐渐增大
B.线段EF逐渐减小
C. 线段EF的长不变
D.无法确定
10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,
∠EFB=60°,则矩形ABCD的面积是()
A.12 B24 C.123 D. 163
二.填空题(每小题3分,共24分)
11.如果四边形ABCD是一个平行四边形,那么再加上条件就可以变成矩形。

(只需填一
个条件)
12.矩形的两邻边长分别为3㎝和6㎝,则顺次连接各边中点,所得四边形的面积是
13.如图所示,其中阴影部分(即ABCD)的面积是。

14.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM
的周长为。

15.菱形两对角线长分别为24㎝和10㎝,则菱形的高为㎝。

16.平行四边形、矩形、菱形、正方形的包含关系可用如图表示,则其中最大的圆圈表示。

阴影部分表示。

17. 如图,点P是平行四边形ABCD的对角线上任意一点,PE⊥AB于E,PF⊥AD于F,当PF=PE时,
平行四边形ABCD是形。

18.如图,P是正方形ABCD内一点,如果△ABP为等边三角形,DP的延长线交BC于G,那么∠PCD=
度,∠BPG 度。

第2题图
第13题
二.解答题(共66分)
19.(8分)如图所示,在平行四边形ABCD中,AC,BD交于点O,点E,F分别是OA,OC的中点,请
判断线段BE,DF的大小关系,并证明你的结论。

20.(8分)已知:如图,E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别
交BC,BD于点F,G,连接AC交BD于O,连接OF,判断AB与OF的位置和大小关系,并证明你的
结论。

21.(9分)如图所示,正方形ABCD的边CD在正方形ECGF的边CE
上,连接BE,DG。

(1)观察猜想线段BE与DG之间的大小关系,并证明你的结论;
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,
请写出是哪两个三角形;若不存在,请说明理由。

22.(10分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交
AB于E。

(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由。

23.(9分)如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E,F分别是垂足,
求证:AP=EF
24.(10分)如图所示,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,
PF⊥BE于F,PG⊥AD于G,请你猜想PF,PG,AB之间有什么关系?并证明你的结论。

25.如图,在△ABC中,点O是边AC上一个动点,过O点作直线MN∥BC.设MN交∠ACB的平分线
于点E,交∠ACB的外角平分线于点F。

(1)求证:OE=OF (2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由。

第十八章《平行四边形》检测题平分标准
(人教版八年级数学下册)一.选择题:
二.填空题:
11.有一个角是直角或对角线相等。

12.9cm2
13.1400
14.20
15.
13
120
16.平行四边形,正方体
17菱
18.15;45三.解答题
19.结论:BE=DF
证明:∵,在平行四边形ABCD中,AC,BD交于点O ∴OA=OC.OD=OB
∵点E,F分别是OA,OC的中点
∴OE=OF
∵∠EOB=∠FOD
∴△DOF≌△BOE(SAS)
∴BE=DF
20.结论:O F∥AB,OF=
2
1
AB
理由:∵在平行四边形ABCD中AC,BD交于O
∴OA=OC,OB=OD
∵平行四边形ABCD,CE=CD
∴CE=AB;AB∥CD
∴∠BAF=∠E
∵∠BFA=∠CFE
∴△ABF≌△ECF(AAS)
∴BF=FC
∴OF是△ABC的中位线,
∴OF∥AB,OF=
2
1
AB
21.(1)结论:BE=DG
证明:∵正方形ABCD,正方形ECGF,
∴BC=CD,∠BCD=∠DCG=90°,EC=GC
∴△BCE≌△DCG(SAS)
∴BE=DG
(2)存在。

△BCE和△DCG
22.(1)证明:∵四边形ABCD中,AB∥CD,CE∥AD ∴四边形AECD为平行四边形
∵AC平分∠BAD
∴AD=CD
∴四边形AECD 位菱形
(2)结论:△ABC 是直角三角形
理由:∵E 是AB 的中点,四边形AECD 位菱形
∴BE=EC
∵CE ∥AD
∴∠AEC+∠EAD=180°
∵∠AEC=2∠ECB, ∠EAD=2∠ECA ∴∠ECB+∠ECA=90°即∠BCA=90° ∴△ABC 是直角三角形 23.证明:连接PC
∵正方形ABCD ,PE ⊥DC,PF ⊥BC,E,F 分别是垂足,
∴∠C=∠PFC=∠PEC=90° ∴四边形PFCE 为矩形 ∴EF=PC
∵P 是正方形ABCD 对角线BD 上一点
∴∠ADP=∠CDP=45°,AD=DC,DP=DP ∴△ABP ≌△CBP(SAS) ∴AP=PC ∴AP=EF
24.结论:PF+PG=AB 证明:利用面积法来证明
25.(1)证明:∵CE 平分∠ACB,CF 平分∠ACD, MN ∥BC. ∴OE=OC,OF=OC, ∴OE=OF
(2)解:∵CE,CF 为∠ACB, ∠ACD 的平分线, ∴∠ECF=90° ∴EF=
512
2
2
=13,
∵OC=OE=2
1EF ∴OC=
2
13 (3)结论:当O 运动到AC 的中点时,四边形AECF 为矩形,
理由:∵OE=OF,OA=OC, ∴四边形AECF 为平行四边形, 又∵∠ECF=90°,
∴四边形AECF 为矩形。

相关文档
最新文档