第二章§21平面向量的实际背景及基本概念
高中数学必修四 第二章平面向量 2.1 平面向量的实际背景及基本概念
则点������, ������, ������, ������必在同一条直线上; ⑤有向线段就是向量,向量就是有向线段. 其中说法错误的个数是( )
专题突破
题型一 题型二 题型三 题型四
题型一 向量的有关概念
【例 1】 下列说法正确的是( ) A. ������������ ∥ ������������就是������������所在的直线平行于������������所在的直线 B.长度相等的向量叫相等向量 C.零向量的长度等于 0 D.共线向量是在同一条直线上的向量 解析: ������������ ∥ ������������包含������������所在的直线与������������ 所在的直线平行和重合两种情况,故 A 项错;相等向量不仅要求长度 相等,还要求方向相同,故 B 项错;按定义,零向量的长度等于 0,故 C 项正确;共线向量可以是在一条直线上的向量,也可以是所在直线互 相平行的向量,故 D 项错. 答案:C
题型一 题型二 题型三 题型四
反思1.对向量有关概念的理解要全面、准确,要注意相等向量、 共线向量之间的区别和联系.
2.共线向量也就是平行向量,其要求是几个非零向量的方向相同 或相反,向量所在的直线可以平行,也可以重合,其中“共线”的含义 不同于平面几何中“共线”的含义.
3.零向量是与任一向量共线的,因此,向量共线不具有传递性.
题型一 题型二 题型三 题型四
解:以 A 为原点,正东方向为 x 轴正方向,正北方向为 y 轴正方向 建立直角坐标系.
2.1平面向量的实际背景及基本概念
例1:已知O为正六边形ABCDEF的中心, 在图中所标出的向量中: E D (1)试找出与FE共线的向量;
F
O C
热 热 身
解: (1) OA BC, (2) FE BC
若不相等,则之间有什么关系?
A
B
(3)虽然OA // BC,且|OA|=|BC|,
立
BACK
练习:
1.已知a、b为不共线的非零向量,且
存在向量 c,使 c ∥ a, c ∥ b, 则
c =____ 0
BACK
练习:
1.与非零向量 a (非单位向量)平行的 2 向量中,不相等的单位向量有_____ 个.
BACK
练习:如图,EF是△ABC的中位线,AD是BC 边上的中
线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出
三维目标 1.通过实例,利用平面向量的物理背景以及研 究平面向量的必要性,理解平面向量的概念以 及确定平面向量的两个要素,分清数量与向量 的区别。 2.理解自由向量、平行向量、相等向量、相反 向量等概念,并能判断它们之间的关系,并会 辨认图形中的相等向量或作出与某一向量相等 的向量。 3.在教学过程中,应充分根据平面向量的两个 要素加以研究向量的关系,揭示向量可以平移 这一特性。培养学生数形结合的思想。
教学反思:
位移和距离 这两个量
香港
上海 台北
想一想:
观察下述三个量,哪个与另两个有区别?
m=5kg
(1)
F=20N
(2)
v =20km/h
(3)
(2)(3)都是有大小和方向的量
授课教师:高 波
一、向量的定义
说课课件第二章 平面向量 2.1平面向量的实际背景及基本概念
老鼠由A向东北方向以6m/s的速度逃窜,而猫由B 向正东方向10m/s的速度追. 问猫能否抓到老鼠?
嘻嘻!大笨猫!
C
唉, 哪儿去了?
A
B
猫的速度再快也没用,因为方向错了.
D
12
情景引入
南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发, 乘着马车一直往北走去.有人提醒他“到楚国应该朝南走,你怎能往北呢?” 他却说“不要紧,我有一匹好马!”问:北方人能到达楚国吗?
4
重点 难点
教学重难点
向量概念、向量的几何表示、以及相 等向量、平行向量、共线向量的概念;
让学生感受向量、平行向量或共线向量及 相等向量概念形成过程;
5
教学目标
01 知识技能 02 过程与方法
情感态度与价
03
值观
知识技能 (1) 理解平面向量的概念,学会平面向量的表示方法; (2) 理解零向量、单位向量、相等向量、平行向量的含义。
a
b
l
c
C
OB A
平行向量也叫做共线向量!
22
设计意图——根据目标选择合适题型, 检测学生本节课的学习情况。
23
小试牛刀
1.如图, D、E、F分别是△ABC各边上的中点,在 以A、B、C、D、E、F为端点的有向线段表示 A 的向量中,请分别写出:
(1)与向量 DE 相等的向量有__个, E
F
分别是___________;
()
(6)模相等的两个平行向量是相等的向量;
()
(7)共线向量一定在同一直线上;
()
25
课堂小结
向量的概念; 向量的表示方法; 零向量、单位向量概念; 平行向量、共线向量定义; 共线向量与平行向量关系;
平面向量的实际背景及基本概念
向量的减法
要点一
性质
向量减法满足反交换律,即 $\overset{\longrightarrow}{a} \overset{\longrightarrow}{b} = \overset{\longrightarrow}{b} + \overset{\longrightarrow}{a}$。同时,向量减法不满 足结合律。
• 意义:数乘向量在实际问题中具有重要意义,如表示平行四边形和梯形的性质、求解物理问题中等。
向量的点乘
• 定义:两个向量之间的点乘运算称为内积或标量积。点乘结 果是一个实数,记作$\overset{\longrightarrow}{a} \cdot \overset{\longrightarrow}{b}$。
向量的加法
• 性质:向量加法满足交换律和结合律,即$\overset{\longrightarrow}{a} + \overset{\longrightarrow}{b} = \overset{\longrightarrow}{b} + \overset{\longrightarrow}{a}$,$(\overset{\longrightarrow}{a} + \overset{\longrightarrow}{b}) + \overset{\longrightarrow}{c} = \overset{\longrightarrow}{a} + (\overset{\longrightarrow}{b} + \overset{\longrightarrow}{c})$。
向量的点乘
• 性质:点乘满足交换律和分配律,即$\overset{\longrightarrow}{a} \cdot \overset{\longrightarrow}{b} = \overset{\longrightarrow}{b} \cdot \overset{\longrightarrow}{a}$, $(\lambda\mu)\overset{\longrightarrow}{a} = \lambda(\mu\overset{\longrightarrow}{a})$。此外, 点乘还满足正交变换不变性和垂直性质。
高一数学必修4课件:2-1平面向量的实际背景及基本概念
a=b
有向线段 条________来表示,并且与有向线段的起点无
关.在平面上,两个长度相等且方向一致的有 向线段表示同一个向量
第二章
2.1
成才之路 ·数学 ·人教A版 · 必修4
相同或相反 方向____________的非零向量叫做平
行向量 平行 规定:零向量与任何向量都______ 平行 向量 说明:任一组平行向量都可以移动到
个向量间不能比较大小,因此,A不正确.两个向量的模相 等,但方向却不一定相同,因此B不正确.相等的向量方向一 定相同,相等向量一定共线,因此C正确.对于选项D,两个 向量不相等,可能是长度不同,方向可以相同或相反,所以a 与b有共线的可能,故D不正确.
第二章
2.1
成才之路 ·数学 ·人教A版 · 必修4
ABCD中分别找出长度相等且方向相同的向量即可;(2)共线 向量只需找方向相同或相反的向量即可.
第二章 2.1
成才之路 ·数学 ·人教A版 · 必修4
[解析] 1,
(1)作出图形如图,由已知,有|a|=|c|=|e|=|g|=
|b|=|d|=|f|=|h|= 2 ,而在正方形ABCD中,|AB|=|CD|= |BC|=|AD|=1,|AC|=|BD|= 2.
第二章
2.1
成才之路 ·数学 ·人教A版 · 必修4
单位向量的长度等于(
)
A.0 B.1 C.2 D.不确定
[答案] B
第二章
2.1
成才之路 ·数学 ·人教A版 · 必修4
→ 如图所示,在平行四边形ABCD中,与 AB 共线的向量有 ________.
→ → → [答案] BA,DC,CD
第二章
→ 行到B地的位移,则|AB|=1400km. → BC 表示飞机从B地按东偏南75° 方向飞行到C地的位移, → 则|BC|=1400km.
2.1 平面向量的实际背景及基本概念
§2.1 平面向量的实际背景及基本概念学习目标:了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.学习重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.学习难点:平行向量、相等向量和共线向量的区别和联系.学习过程:一、复习引入 请同学想想哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:1.向量的概念:我们把____________________________________叫向量数量与向量的区别:_______________________________________2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ;.有向线段:____________线段就叫做有向线段,三个要素:______________- ④向量AB 的大小――长度称为向量的模,记作|AB |.3.零向量、单位向量概念:①_______________叫零向量,记作____ 的方向是任意的注意0 与0的区别②__________________________叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①__________________________叫平行向量;②我们规定_________与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b 、c 平行,记作a ∥b ∥c .6、相等向量定义:___________________________________叫相等向量.A(起点) B (终点)a说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与.有向线段的起点无关..........7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有..向线段的起点无关)..........说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.三:理解和巩固:例1 书本第75页例1.例2 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.变式一:与向量长度相等的向量有多少个?变式二:是否存在与向量长度相等、方向相反的向量?变式三:与向量共线的向量有哪些?练习1.(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?2.课本77页练习四小结:向量及向量的有关概念、表示方法,还知道有两个特殊向量,最后学了向量间的两种关系,即平行向量(共线向量)和相等向量课后作业:课本77页习题2.1A组第3、4、5题。
第二章 平面向量的实际背景及基本概念
人教A版必修四·新课标·数学
版块导航
点此进入
点此进入
点此进入
人教A版必修四·新课标·数学
版块导航
人教A版必修四·新课标·数学
版块导航
知识预览
1.向量的概念与几何表示 (1)我们把既有大小又有方向的量叫做向量. (2)具有方向的线段叫做有向线段,A 为起点,B 为终点 → → 的有向线段记作AB, 线段 AB 的长度叫做有向线段AB的长度, → 记作|AB|,有向线段包括三个要素:起点、方向、长度.
人教A版必修四·新课标·数学
版块导航
→ 解:(1)由四边形 ABCD 与 ABDE 是平行四边形,知DC, → → → ED与AB长度相等且方向相同,所以与向量AB相等的向量为 → → DC和ED. → → → → → → (2)依据图形可知DC,ED,EC与AB方向相同,BA,CD, → → → → → → DE, 与AB方向相反, CE CD 所以与向量AB共线的向量有BA, , → → → → → DC,ED,DE,EC,CE.
人教A版必修四·新课标·数学
版块导航
自测自评
1.下列各物理量:①质量;②速度;③位移;④力;⑤ 加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( ) A.1 个 B.2 个 C.3 个 D.4 个
解析:②③④⑤是向量. 答案:D
人教A版必修四·新课标·数学
版块导航
2.下列结论中错误的是( ..
)
人教A版必修四·新课标·数学
版块导航
人教A版必修四·新课标·数学
版块导航
2.1 平面向量的实际背景及基本概念
人教A版必修四·新课标·数学
版块导航
目标定位
目 标 要 求 1.了解向量的实际背景,以位移、力等物理背景抽象出 向量. 2. 理解向量的概念, 相等向量的概念及向量的几何表示. 3.掌握向量的概念及共线向量的概念. 热 点 提 示 1.对向量概念以及共线向量的考查是本节的热点. 2.本节内容常与三角函数、解析几何结合命题. 3.多以选择题、填空题的形式考查.
说课第二章 平面向量 2.1平面向量的实际背景及基本概念
200km .
AC 表示A地至C地的位移,且
280km .
25
平行向量:
向量间的关系
①方向相同或相反的非零向量叫平行向量;
②我们规定0与任一向
a
量平行.
b
c
26
讲授新课
6.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. a
b c
决数学问题。
(三)情感态度与价值观
经历平面向量的概念的探索过程,提高自主探究能力,进
一步提高学习数学的乐趣,由感性思维逐步提升到理性思
维。
7
(四)学科核心素养 a. 数学抽象:平面向量的概念 b. 逻辑推理:共线向量的判断 c. 数学运算:向量相等 d. 直观想象:向量的几何表示 e.数学建模:向量概念的建立
直线与直线的位置关 系里,严格区分直线和 直线位置关系,平行就 是共面前提下的无交 点,平行不共线.
29
相等向量:长度相等,方向相同的两个向量。
a
b
ab
对向量的大小和方向都明确规定
a
b
方向相同
a
b
30
思 (1)相等向量一定是平行向量?
考
a
:
是
b
(2)平行向量一定是相等向量?
以A为起点、B为终点的有向线段 记作: AB
起点写在终点的前面.
A(起点)
B (终点)
线段AB的长度也叫做有向线段 AB 的长度,记作: AB
有向线段的三要素:起点、,它的终 点就唯一确定.
22
3. 向量的表示方法:
(1)几何表示法:用有向线段表示
2.1平面向量的实际背景及基本概念
12.1 平面向量的实际背景及基本概念教学目标一、知识与技能1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示.2. 掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.3. 并会区分平行向量、相等向量和共线向量.二、过程与方法本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念.三、情感、态度与价值观1. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.2. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点、难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教学关键:向量、零向量、单位向量、相等向量、共线向量概念的理解.教学突破方法:本节课内容简单,可让学生仔细阅读课本,并合作探究,得出结论.最后老师画龙点睛. 教法与学法导航教学方法:启发诱导,探究合作.学习方法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教学准备教师准备:多媒体、投影仪.学生准备:练习本.教学过程一、创设情境,导入新课如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线B D 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向? 由此引出新课.二、主题探究,合作交流提出问题①在物理课中,我们学过力的概念.请回顾一下力的表示方式是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?你能否给出准确的定义呢?②数量与向量的区别在哪里?师生互动:教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力就越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.A B C D2至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.提出问题1. 如何表示向量?2. 有向线段和线段有何区别和联系?分别可以表示向量的什么?3. 长度为零的向量叫什么向量?长度为1的向量叫什么向量?4. 满足什么条件的两个向量是相等向量?单位向量是相等向量吗?5. 有一组向量,它们的方向相同或相反,这组向量有什么关系?6. 如果把一组平行向量的起点全部移到一点O ,这时它们是不是平行向量?这时各向量的终点之间有什么关系?师生互动:教师指导学生阅读教材,通过阅读教材思考讨论以上问题.1. 向量的表示方法: ①用有向线段表示; ②用字母a 、b (黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.2. 有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.3. 零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.4. 平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b、c平行,记作a ∥b∥c.5. 相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a 与b 相等,记作a=b ;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点........无关... 6. 共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........).又如上图,a 、b 、c 是一组平行向量,任作一条与a 所在直线平行的直线l ,在l 上任取一点O ,则可在l 上分A(起点)B (终点)a3别作出OA =a ,OB =b ,OC =c .这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.三、拓展创新,应用提高例1 如图,试根据图中的比例尺以及三地的位置,在图中分别用有向线段表示A 地至B 、C 两地的位移.(精确到1 k m )分析:本例是一个简单的实际问题,要求画出有向线段表示位移,目的在于巩固向量概念及其几何表示. 解:AB 表示A 地至B 地的位移,且|AB |≈232 km ;(AB 长度×8 000 000÷100 000)AC 表示A 地至C 地的位移,且|AC |≈296 km .(AC 长度×8 000 000÷100 000) 点评:位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如上图,由A 点确定B 点、C 点的位置.例2 如图,设O 是正六边形ABC D EF 的中心.分别写出图中所示向量与OA OB OC 、、相等的量. 解:OA =CB =DO ;OB =DC =EO ;OC =AB =ED =FO .点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确,向量相等不仅大小相等,还要方向相同.四、小结1. 本节课从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;2. 介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是进一步学习后续课程的基础,必须要在理解的基础上把握好.五、课堂作业1.若正多边形有n 条边,它们对应的向量依次为a 1,a 2,…,a n ,则这n 个向量 ( ).A .都相等B .都共线C .都不共线D .模都相等2.如右图所示,在△ABC 中,D E ∥BC ,则其中共线向量有( ).4A .一组B .二组C .三组D .四组3.若命题p 为a =b ,命题q 为|a |=|b |,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不必要又不充分条件4.如下图所示,在四边形ABC D 中,若AB DC ,则下列各组向量相等的是( ).A .AD 与CB B .OA 与OC C .AC 与DBD .DO 与OB5.已知a ,b 是任意两个向量,有下列条件:①|a |=|b |;②a =b ;③a 与b 的方向相反;④a =0或b =0;⑤a 与b 都是单位向量.其中是向量a 与b 共线的充分不必要条件的为._________(把你认为正确的序号全都填上)6.如图所示,四边形ABC D 和AB D E 都是平行四边形.(1)写出与ED 相等的向量;(2)若|AB |=3,求向量EC 的模.参考答案:1.D 2.C 3.A 4.D 5.②③④6.(1)与ED 相等的向量有DC 和AB ,因为四边形ABC D 和AB D E 都是平行四边形,故AB =ED =DC .(2)向量EC 的模|EC |=6.。
平面向量基本概念
平面向量的实际背景及基本概念1. 向量的概念:我们把既有大小又有方向的量叫向量。
2. 数量的概念:只有大小没有方向的量叫做数量。
数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小3•有向线段:带有方向的线段叫做有向线段。
4•有向线段的三要素:起点,大小,方向5. 有向线段与向量的区别;(1 )相同点:都有大小和方向(2)不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段------------ A---------- ►比如:上面两个有向线段是不同的有向线段。
②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线段表示相同(等)的向量。
③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成6. 向量的表示方法:①用有向线段表示;②用字母a、b (黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB;7. 向量的模:向量AB的大小(长度)称为向量的模,记作| AB |.8. 零向量、单位向量概念:长度为零的向量称为零向量,记为:0。
长度为1的向量称为单位向量。
9. 平行向量定义:0 // a①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a / b / c .10. 相等向量长度相等且方向相同的向量叫相等向量.说明:(1)向量a 与b 相等,记作a = b ; (2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.11. 共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)B(2)共线向量是可以相互平行的。
例1.判断下列说法是否正确,为什么?若两个向量在同一直线上,则这两个向量一定是什么向量?不是,当两个向量方向相同的时候,只要长度不相等就不是相等向量,但是是平行的。
第二章 2.1 平面向量的实际背景及基本概念
平面向量的实际背景及基本概念1.向量的概念和表示方法(1)概念:既有大小,又有方向的量称为向量.(2)向量的表示:表示法几何表示:用有向线段来表示向量,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向,即用有向线段的起点、终点字母表示,如AB,…字母表示:用小写字母a,b,c,…表示,手写时必须加箭头[点睛]向量可以用有向线段表示,但向量不是有向线段.向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段.2.向量的长度(或称模)与特殊向量(1)向量的长度定义:向量的大小叫做向量的长度.(2)向量的长度表示:向量AB,a的长度分别记作:|AB|,|a|.(3)特殊向量:①长度为0的向量为零向量,记作0;②长度等于1个单位的向量,叫做单位向量.[点睛]定义中的零向量和单位向量都是只限制大小,没有确定方向.我们规定零向量的方向是任意的;单位向量有无数个,它们大小相等,但方向不一定相同.3.向量间的关系(1)相等向量:长度相等且方向相同的向量,叫做相等向量,记作:a=b.(2)平行向量:方向相同或相反的非零向量,也叫共线向量;a平行于b,记作a∥b;规定零向量与任一向量平行.[点睛]共线向量仅仅指向量的方向相同或相反;相等向量指大小和方向均相同.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)两个向量能比较大小.()(2)向量的模是一个正实数.()(3)单位向量的模都相等.()(4)向量AB与向量BA是相等向量.()答案:(1)×(2)×(3)√(4)×2.有下列物理量:①质量;②温度;③角度;④弹力;⑤风速.其中可以看成是向量的个数()A.1B.2C.3D.4答案:B3.已知向量a如图所示,下列说法不正确的是()A.也可以用MN表示B.方向是由M指向NC.始点是M D.终点是M答案:D4.如图,四边形ABCD和ABDE都是平行四边形,则与ED相等的向量有______.答案:AB,DC向量的有关概念[典例]有下列说法:①向量AB和向量BA长度相等;②方向不同的两个向量一定不平行;③向量BC是有向线段;④向量0=0,其中正确的序号为________.[解析]对于①,|AB|=|BA|=AB,故①正确;对于②,平行向量包括方向相同或相反两种情况,故②错误;对于③,向量可以用有向线段表示,但不能把二者等同起来,故③错误;对于④,0是一个向量,而0是一个数量,故④错误.[答案]①(1)判断一个量是否为向量应从两个方面入手①是否有大小;②是否有方向.(2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等.②单位向量不一定相等,易忽略向量的方向.[活学活用]有下列说法:①若向量a与向量b不平行,则a与b方向一定不相同;②若向量AB,CD满足|AB|>|CD|,且AB与CD同向,则AB>CD;③若|a|=|b|,则a,b的长度相等且方向相同或相反;④由于零向量方向不确定,故其不能与任何向量平行.其中正确说法的个数是()A.1B.2C.3 D.4解析:选A对于①,由共线向量的定义,知两向量不平行,方向一定不相同,故①正确;对于②,因为向量不能比较大小,故②错误;对于③,由|a|=|b|,只能说明a,b的长度相等,确定不了它们的方向,故③错误;对于④,因为零向量与任一向量平行,故④错误.向量的表示[典例]在如图所示的坐标纸上(每个小方格边长为1),用直尺和圆规画出下列向量:①OA,使|OA|=42,点A在点O北偏东45°;②AB,使|AB|=4,点B在点A正东;③BC,使|BC|=6,点C在点B北偏东30°.[解](1)由于点A在点O北偏东45°处,所以在坐标纸上点A距点O的横向小方格数与纵向小方格数相等.又|OA|=42,小方格边长为1,所以点A距点O的横向小方格数与纵向小方格数都为4,于是点A位置可以确定,画出向量OA如图所示.(2)由于点B在点A正东方向处,且|AB|=4,所以在坐标纸上点B距点A的横向小方格数为4,纵向小方格数为0,于是点B位置可以确定,画出向量AB如图所示.(3)由于点C在点B北偏东30°处,且|BC|=6,依据勾股定理可得:在坐标纸上点C 距点B的横向小方格数为3,纵向小方格数为33≈5.2,于是点C位置可以确定,画出向量BC如图所示.用有向线段表示向量的方法用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形知识求出向量的方向(即夹角)或长度(即模),选择合适的比例关系作出向量.一辆汽车从A点出发向西行驶了100千米到达B点,然后改变方向,向北偏西40°方向行驶了200千米到达C点,最后又改变方向,向东行驶了100千米到达D点.作出向量AB,BC,CD,AD.解:如图所示.共线向量或相等向量[典例]如图所示,O是正六边形ABCDEF的中心,且OA=a,OB=b,OC=c.(1)与a的长度相等、方向相反的向量有哪些?(2)与a共线的向量有哪些?(3)请一一列出与a,b,c相等的向量.[解](1)与a的长度相等、方向相反的向量有OD,BC,AO,FE.(2)与a共线的向量有EF,BC,OD,FE,CB,DO,AO,DA,AD.(3)与a相等的向量有EF,DO,CB;与b相等的向量有DC,EO,FA;与c 相等的向量有FO,ED,AB.[一题多变]1.[变设问]本例条件不变,试写出与向量BC相等的向量.解:与向量BC相等的向量有OD,AO,FE.2.[变条件,变设问]在本例中,若|a|=1,则正六边形的边长如何?解:由正六边形性质知,△FOA为等边三角形,所以边长AF=|a|=1.寻找共线向量或相等向量的方法(1)寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.(2)寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.层级一学业水平达标1.下列说法正确的是()A.向量AB∥CD就是AB所在的直线平行于CD所在的直线B.长度相等的向量叫做相等向量C.若a=b,b=c,则a=cD.共线向量是在一条直线上的向量解析:选C向量AB∥CD包含AB所在的直线与CD所在的直线平行和重合两种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;C显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D错.2.如图,在圆O中,向量OB,OC,AO是()A.有相同起点的向量B.共线向量C.模相等的向量D.相等的向量解析:选C由图可知OB,OC,AO是模相等的向量,其模均等于圆的半径,故选C.3.向量AB与向量BC共线,下列关于向量AC的说法中,正确的为()A.向量AC与向量AB一定同向B.向量AC,向量AB,向量BC一定共线C.向量AC与向量BC一定相等D.以上说法都不正确解析:选B根据共线向量定义,可知AB,BC,AC这三个向量一定为共线向量,故选B.4.如图,在▱ABCD中,点E,F分别是AB,CD的中点,图中与AE平行的向量有()A.1个B.2个C.3个D.4个解析:选C根据向量的基本概念可知与AE平行的向量有BE,FD,FC,共3个.5.已知向量a,b是两个非零向量,AO,BO分别是与a,b同方向的单位向量,则下列各式正确的是()A.AO=BO B.AO=BO或AO=-BOC.AO=1 D.|AO|=|BO|解析:选D由于a与b的方向不知,故AO与BO无法判断是否相等,故A、B选项均错.又AO与BO均为单位向量.∴|AO|=|BO|,故C错D对.6.已知|AB|=1,|AC|=2,若∠ABC=90°,则|BC|=________.解析:由勾股定理可知,BC=AC2-AB2=3,所以|BC|= 3.答案: 37.设a0,b0是两个单位向量,则下列结论中正确的是________(填序号).①a0=b0;②a0=-b0;③|a0|+|b0|=2;④a0∥b0.解析:因为a0,b0是单位向量,|a0|=1,|b0|=1,所以|a0|+|b0|=2.答案:③8.给出下列四个条件:①a=b;②|a|=|b|;③a与b方向相反;④|a|=0或|b|=0.其中能使a∥b成立的条件是________(填序号).解析:若a=b,则a与b大小相等且方向相同,所以a∥b;若|a|=|b|,则a与b的大小相等,而方向不确定,因此不一定有a∥b;方向相同或相反的向量都是平行向量,因此若a 与b方向相反,则有a∥b;零向量与任意向量平行,所以若|a|=0或|b|=0,则a∥b.答案:①③④9.如图,O是正方形ABCD的中心.(1)写出与向量AB相等的向量;(2)写出与OA的模相等的向量.解:(1)与向量AB相等的向量是DC.(2)与OA的模相等的向量有:OB,OC,OD,BO,CO,DO,AO.10.一辆消防车从A地去B地执行任务,先从A地向北偏东30°方向行驶2千米到D地,然后从D地沿北偏东60°方向行驶6千米到达C地,从C地又向南偏西30°方向行驶2千米才到达B地.(1)在如图所示的坐标系中画出AD,DC,CB,AB.(2)求B地相对于A地的位移.解:(1)向量AD,DC,CB,AB如图所示.(2)由题意知AD=BC.所以AD綊BC,则四边形ABCD为平行四边形.所以AB=DC,则B地相对于A地的位移为“在北偏东60°的方向距A地6千米”.层级二应试能力达标1.如图所示,梯形ABCD中,对角线AC与BD交于点P,点E,F分别在两腰AD,BC上,EF过点P,且EF∥AB,则下列等式成立的是()A.AD=BC B.AC=BDC.PE=PF D.EP=PF解析:选D根据相等向量的定义,分析可得:A中,AD与BC方向不同,故AD=BC错误;B中,AC与BD方向不同,故AC=BD错误;C中,PE与PF方向相反,故PE=PF错误;D中,EP与PF方向相同,且长度都等于线段EF长度的一半,故EP=PF正确.2.下列说法正确的是()A.若a∥b,b∥c,则a∥cB.终点相同的两个向量不共线C.若a≠b,则a一定不与b共线D.单位向量的长度为1解析:选D A中,因为零向量与任意向量平行,若b=0,则a与c不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C中,对于两个向量不相等,可能是长度不相等,但方向相同或相反,所以a与b可能共线.3.若a为任一非零向量,b为单位向量,下列各式:①|a|>|b|;②a∥b;③|a|>0;④|b|=±1.其中正确的是()A.①④B.③C.③④D.②③解析:选B a为任一非零向量,所以|a|>0,故③正确;由向量、单位向量、平行向量的概念易判断其他式子均错误.故选B.4.在△ABC中,点D,E分别为边AB,AC的中点,则如图所示的向量中相等向量有()A.一组B.二组C.三组D.四组解析:选A由向量相等的定义可知,只有一组向量相等,即CE=EA.5.四边形ABCD满足AD=BC,且|AC|=|BD|,则四边形ABCD是______(填四边形ABCD的形状).解析:∵AD =BC ,∴AD ∥BC 且|AD |=|BC |,∴四边形ABCD 是平行四边形.又|AC |=|BD |知该平行四边形对角线相等,故四边形ABCD 是矩形.答案:矩形6.如图,O 是正三角形ABC 的中心,四边形AOCD 和AOBE 均为平行四边形,则与向量AD 相等的向量为________;与向量OA 共线的向量为__________;与向量OA 的模相等的向量为________.(填图中所画出的向量)解析:∵O 是正三角形ABC 的中心,∴OA =OB =OC ,易知四边形AOCD 和四边形AOBE 均为菱形,∴与AD 相等的向量为OC ;与OA 共线的向量为DC ,EB ;与OA 的模相等的向量为OB ,OC ,DC ,EB ,AD .答案:OC DC ,EB OB ,OC ,DC ,EB ,AD 7.如图,D ,E ,F 分别是正三角形ABC 各边的中点. (1)写出图中所示向量与向量DE 长度相等的向量. (2)写出图中所示向量与向量FD 相等的向量.(3)分别写出图中所示向量与向量DE ,FD 共线的向量. 解:(1)与DE 长度相等的向量是EF ,FD ,AF ,FC ,BD ,DA ,CE ,EB .(2)与FD 相等的向量是CE ,EB .(3)与DE 共线的向量是AC ,AF ,FC ; 与FD 共线的向量是CE ,EB ,CB .8.如图,已知函数y =x 的图象l 与直线m 平行,A ⎝⎛⎭⎫0,-22,B (x ,y )是m 上的点.求(1)x ,y 为何值时,AB =0; (2)x ,y 为何值时,AB 为单位向量.解:(1)要使AB =0,当且仅当点A 与点B 重合,于是⎩⎪⎨⎪⎧x =0,y =-22.(2)如图,要使得AB 是单位向量,必须且只需|AB |=1.由已知,l ∥m 且点A 的坐标是⎝⎛⎭⎫0,-22, 所以B 1点的坐标是⎝⎛⎭⎫22,0.在Rt △AOB 1中,有|1AB |2=|OA |2+|1OB |2=⎝⎛⎭⎫222+⎝⎛⎭⎫222=1, 即|1AB |=1.上式表示,向量1AB 是单位向量. 同理可得,当B 2的坐标是⎝⎛⎭⎫-22,-2时,向量AB 2―→也是单位向量. 综上有,当⎩⎪⎨⎪⎧x =22,y =0或⎩⎪⎨⎪⎧x =-22,y =-2时,向量AB 是单位向量.。
§2.1平面向量的实际背景及基本概念
2013-1-10
重庆市万州高级中学 曾国荣 wzzxzgr@
9
§2.1平面向量的实际背景及基本概念
§ 2.1.2
向量的几何表示
判断题 1.温度含零上和零下温度,所以温度是向量( 2.向量的模是一个正实数。( 3.若|a|>|b| ,则a > b ) )
2013-1-10 重庆市万州高级中学 曾国荣 wzzxzgr@ 23
§2.1平面向量的实际背景及基本概念
课堂练习 <<教材>> P.5 书面作业 <<教材>> P.77 习题2.1 A组3.4.5.6 B组2 练习1.2.3.4.5
2013-1-10
重庆市万州高级中学 曾国荣 wzzxzgr@
( 2 ) 若 | a | | b |, 则 a b ; ( 3 ) 若 AB DC , 则 四 边 形 ABCD 是 平 行 四 边 形 AB DC ; ;
( 4 )平行四边形 ( 5 )若 m
ABCD 中 , 一 定 有 k;
n, n k , 则 m
( 6 ) 若 a // b , b // c , 则 a // c 其中不正确命题的个数 A .2
12
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.1平面向量的实际背景及基本概念
§ 2.1.3 相等向量与平行向量 1.相等向量:长度相等且方向相同的向量叫做相等向 量。向量 a 与 b 相等,记作:a b
a b V4 c a=b=c
注:1.若向量 a , b
V1 V2 V3
§2.1平面向量的实际背景及基本概念
平面向量的实际背景及基本概念
2.1 平面向量的实际背景及基本概念你昨天听天气预报了吗?今天白天的天气情况如何?温度15~32℃,东南风3~4级.天气情况中涉及两个量:一个是温度,另一个是风速.前者在选定单位后,用一个实数就可以确切地表示;而后者则不同,除说明它的大小外,同时还必须说明它的方向.回顾学习数的概念我们可以从一支笔、一棵树、一本书……中抽象出只有大小的数量“1”.类似地,我们可以对力、位移……这些量进行抽象,形成一种新的量,即本节知识——向量.1.概念(1)向量:既有__大小__,又有__方向__的量叫做向量,如力、位移等.(2)数量:只有大小,没有__方向__的量称为数量,如年龄、身高、长度、面积、体积、质量等.[知识点拨]向量与数量的区别:向量有方向,而数量没有方向;数量之间可以比较大小,而向量之间不能比较大小.(3)有向线段:带有__方向__的线段叫做有向线段.其方向是由__起点__指向__终点__,以A 为起点、B 为终点的有向线段记作 AB →(如图所示),线段__AB __的长度也叫做有向线段AB →的长度,记作|AB →|.书写有向线段时,起点写在终点的前面,上面标上箭头.(4)有向线段的三个要素:__起点__、__方向__、__长度__.知道了有向线段的起点、方向、长度,它的__终点__就唯一确定.[知识点拨]有向线段与向量的区别和联系区别从定义上看,向量有大小和方向两个要素,而有向线段有起点、方向、长度三个要素.因此,这是两个不同的量.在空间中,有向线段是固定的线段,而向量是可以自由平移的联系有向线段是向量的表示,并不是说向量就是有向线段,每一条有向线段对应着一个向量,但每一个向量对应着无数多条有向线段2.向量的表示法(1)几何表示:用__有向线段__表示,此时有向线段的方向就是向量的方向.向量的大小就是向量的__长度__(或称模),如果向量AB →的长度记作 |AB →| .(2)字母表示:通常在印刷时,用黑体小写字母a 、b 、c 、…表示向量,书写时,可写成带箭头的小写字母a →、b →、c →,….还可以用表示向量的有向线段的起点和终点字母表示,如以A 为起点,以B 为终点的向量记为AB →.3.有关概念[知识点拨]1.理解向量概念应关注的三点(1)本书所学向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移.(2)相等向量是平行(共线)向量,但平行(共线)向量不一定是相等的向量. 2.对平行向量、相等向量概念的理解(1)平行向量是指方向相同或相反的非零向量,规定零向量与任意向量平行,即对任意的向量a ,都有0∥a ,这里注意概念中提到的“非零向量”.(2)对于任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关.在平面上,两个长度相等且指向一致的有向线段表示同一个向量,因为向量完全由它的方向和模确定的.(3)相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量. 1.下列物理量中不是向量的有( A )(1)质量 (2)速度 (3)力 (4)加速度 (5)路程 (6)密度 (7)功 (8)电流强度 A .5 B .4 C .3D .2[解析] 看一个量是否为向量,就要看它是否具备向量的两个要素:大小和方向,特别是方向的要求,对各量从物理本身的意义作出判断,(2)(3)(4)既有大小也有方向,是向量,(1)(5)(6)(7)(8)只有大小没有方向,不是向量.2.单位向量的长度等于( B ) A .0B .1C .2D .不确定3.设O 是等边三角形ABC 的外心,则向量OA →,OB →,CO →是( D ) A .相同起点的向量 B .平行向量 C .相等向量D .模相等的向量[解析] 如图,易知A 、B 、C 均错误;由题意得点O 到△ABC 的三个顶点的距离相等,∴|OA →|=|OB →|=|CO →|,故选D .4.如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形,(1)图中与AB →共线的向量有 DC →、CD →、BE →、EB →、AE →、EA →、BA →; (2)图中与AB →相等的向量有 DC →、BE →;(3)图中与AB →模相等的向量有 DC →、CD →、BA →、BE →、EB →、DA →、AD →、CB →、BC →; (4)图中与EC →相等的向量有 BD →.[解析] 根据向量共线、相等和向量模的定义观察图形.命题方向1 ⇨向量相等、向量共线的概念 典例1 给出下列命题: (1)平面向量的方向一定相同; (2)向量的模一定是正数;(3)始点不同,但方向相同且模相等的向量是相等向量;(4)若向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一直线上. 其中正确的序号是__(3)__.[思路分析] 从共线向量、单位向量、相反向量等的概念及特征进行逐一考察,注意各自的特例对命题的影响.[解析] (1)错误.两向量方向相同或相反都视为平行向量.(2)错误.|0|=0.(3)正确.对于一个向量只要不改变其大小和方向,是可以任意移动的.(4)错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →,CD →必须在同一直线上.故填(3).『规律总结』 对于判断命题正误题,应熟记有关概念,看清、理解各命题,逐一进行判断,有时对错误命题的判断只需举一反例即可.〔跟踪练习1〕给出下列几种说法: ①若非零向量a 与b 共线,则a =b ; ②若向量a 与b 同向,且|a |>|b |,则a >b ; ③若两向量可移到同一直线上,则两向量相等; ④若a ∥b ,b ∥c ,则a ∥c . 其中错误的序号是__①②③④__.[解析] ①错误.共线向量指向量的基线互相平行或重合,其方向相同或相反,所以共线向量未必相等.②错误.向量是既有大小,又有方向的量,不能比较大小.③错误.两向量可移到同一直线上,则表示两向量的有向线段在同一条直线上,但两向量的大小和方向不一定都相同.④错误 .当b =0时,则a 与c 就不一定平行了. 命题方向2 ⇨考查向量相等或共线典例2 如图所示,△ABC 中,三边长均不相等,E 、F 、D 分别是AC ,AB ,BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →长度相等的向量; (3)写出与EF →相等的向量.[思路分析] (1)共线向量只需在图中找出与线段EF 平行或共线的所有线段,再把它们表示成向量即可;(2)在图中找出与线段EF 长度相等的所有线段,再把它们表示成向量即可;(3)相等向量必须满足两个条件:方向相同,长度相等,与起始点的位置无关,所以只需在图中找与线段EF 平行且长度相等的所有线段,再将它们表示成方向与EF →的方向相同的向量.[解析] (1)∵E ,F 分别是AC ,AB 的中点,∴EF ∥BC , ∴与EF →共线的向量为FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)∵E ,F ,D 分别是AC ,AB ,BC 的中点,∴EF =12BC ,BD =DC =12BC ,∴EF =BD=DC .∵AB ,BC ,AC 均不相等,∴与EF →长度相等的向量为FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量为DB →,CD →.〔跟踪练习2〕如图所示,点O 为正方形ABCD 对角线的交点,四边形OAED 、OCFB 都是正方形.在图中所示的向量中:(1)分别写出与AO →、BO →相等的向量; (2)写出与AO →共线的向量; (3)写出与AO →的模相等的向量; (4)向量AO →与CO →是否相等? [解析] (1)AO →=BF →,BO →=AE →; (2)与AO →共线的向量为:BF →,CO →,DE →;(3)|AO →|=|CO →|=|DO →|=|BO →|=|BF →|=|CF →|=|AE →|=|DE →|; 向量的几何表示用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形的知识求出向量的方向或长度,选择合适的比例关系作出向量.典例3 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.[解析] (1)向量AB →、BC →、CD →,如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,又|AB →|=|CD →|,∴在四边形ABCD 中, AB 綊CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →.|AD →|=|BC →|=200 km .『规律总结』 1.准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.2.要注意能够运用向量观点将实际问题抽象成数学模型.“数学建模”能力是今后能力培养的主要方向,需要在日常学习中不断积累经验.〔跟踪练习3〕飞机从A 地按北偏西15°的方向飞行1400km 到达B 地,再从B 地按东偏南15°的方向飞行1400km 到达C 地,那么C 地在A 地什么方向?C 地距A 地多远?[解析] 如图所示,AB →表示飞机从A 地按北偏西15°方向飞行到B 地的位移,则|AB →|=1400km .BC →表示飞机从B 地按东偏南15° 方向飞行到C 地的位移,则|BC →|=1400km . 所以AC →为从A 地到C 地的位移.在△ABC 中,|AB |=|BC |=1400,且∠ABC =(90°-15°)-15°=60°,所以∠BAC =60°,且|AC |=1400.所以C 地在A 地北偏东60°-15°=45°,距离A 地1400km . 混淆向量的有关概念典例4 给出下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a ∥b ,b ∥c ,则a ∥c .其中,正确的命题有( )A .0个B .1个C .2个D .3个[错解] D[错因分析] 对向量的有关概念的理解错误,将向量的模与绝对值混淆.[思路分析] ①忽略了0与0的区别,a =0;②混淆了两个向量的模相等和两个实数相等,两个向量的模相等,只能说明它们的长度相等,它们的方向并不确定;③两个向量平行,可以得出它们的方向相同或相反,未必得到它们的模相等;④当b =0时,a 、c 可以为任意向量,故a 不一定平行于c .[点评] 明确向量及其相关概念的联系与区别:(1)区分向量与数量:向量既强调大小,又强调方向,而数量只与大小有关.(2)零向量和单位向量都是通过模的大小来确定的.零向量的方向是任意的.(3)平行向量也叫共线向量,当两共线向量的方向相同且模相等时,两向量为相等向量. 〔跟踪练习4〕下列说法正确的是( C ) A .平行向量就是向量所在直线平行的向量 B .长度相等的向量叫相等向量 C .零向量的长度为0D .共线向量是在一条直线上的向量[解析] 平行向量所在直线可以平行也可以重合,故A 错;长度相等,方向不同的向量不是相等向量,故B 错;共线向量即平行向量,不一定在同一条直线上,故D 错.故选C .K 课堂达标验收e tang da biao yan shou1.下列说法正确的是( C ) A .若|a |>|b |,则a >b B .若|a |=|b |,则a =b C .若a =b ,则a ∥bD .若a ≠b ,则a 与b 不是共线向量[解析] A 中向量不能比较大小,B 中向量模相等,可能方向不同,D 中不相等的向量可能方向相同或相反,可以是共线向量,于是A 、B 、D 都是错误的,C 显然正确.2.若a 为任一非零向量,b 为单位向量,则下列各式: ①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b .其中正确的是( B ) A .①④⑤ B .③ C .①②③⑤D .②③⑤[解析] |a |不一定大于1,|b |=1,∴①④不正确;a 与b 不一定平行,故②不正确.a|a |是a 方向上的单位向量,不一定平行于b ,故⑤不正确.3.如图,在正方形ABCD 中,AC 与BD 交于点O ,则图中与OA →相等的向量是( D )A .OC →B .OD →C .OB →D .CO →[解析] OA →与CO →方向相同且长度相等,则OA →=CO →.4.在四边形ABCD 中,AB →∥CD →,|AB →|≠|CD →|,则四边形ABCD 是( A ) A .梯形 B .平行四边形 C .矩形D .正方形[解析] ∵AB →∥CD →,∴AB ∥CD . 又∵|AB →|≠|CD →|,∴AB ≠CD .∴四边形ABCD 是梯形.5.在平面上将所有模长相等的向量的起点放在同一点,则它们的终点组成__一个圆__. [解析] 模长相等的向量放在同一起点上,则各终点到该起点的距离相等,所以各终点应在同一个圆上.A 级 基础巩固一、选择题1.下列说法中,正确的个数是( B ) ①时间、摩擦力、重力都是向量; ②向量的模是一个正实数; ③相等向量一定是平行向量;④向量a 与b 不共线,则a 与b 都是非零向量. A .1 B .2 C .3D .4[解析] 对于①,时间没有方向,不是向量,摩擦力、重力都是向量,故①错误;对于②,零向量的模为0,故②错误;③正确,相等向量的方向相同,因此一定是平行向量;④显然正确.2.下列说法中,不正确的是( D ) A .向量AB →的长度与向量BA →的长度相等 B .任何一个非零向量都可以平行移动C .长度不相等而方向相反的两个向量一定是共线向量D .两个有共同起点且共线的向量其终点必相同[解析] 很明显选项A ,B ,C 正确,共线向量只与方向有关,方向相同或相反的向量都是共线向量,所以选项D 不正确.3.下列命题中正确的个数为( B )①两个有共同始点且相等的向量,其终点可能不同;②若非零向量AB →与CD →共线,则A 、B 、C 、D 四点共线; ③若非零向量a 与b 共线,则a =b ;④四边形ABCD 是平行四边形,则必有|AB →|=|CD →|; ⑤a ∥b ,则a 、b 方向相同或相反. A .0个 B .1个 C .2个D .3个[解析] ①显然错误;②中AB →与CD →共线,只能说明AB 、CD 所在直线平行或在一条直线上,所以错;③a 与b 共线,说明a 与b 方向相同或相反,a 与b 不一定相等,所以③错; ④对;⑤a 可能为零向量,则a ∥b ,但零向量的方向为任意的,所以⑤错.4.某人向正东方向行进100米后,再向正南方向行进1003米,则此人位移的方向是( C )A .南偏东60°B .南偏东45°C .南偏东30°D .南偏东15°[解析] 如图所示,此人从点A 出发,经由点B ,到达点C ,则tan ∠BAC =1003100=3,∴∠BAC =60°,即位移的方向是东偏南60°,即南偏东30°,应选C . 5.命题“若a ∥b ,b ∥c ,则a ∥c ”( C ) A .恒成立 B .当a ≠0时成立 C .当b ≠0时成立D .当c ≠0时成立6.下列说法正确的是( C )A .若|a |=|b |,则a 、b 的长度相等且方向相同或相反B .若向量AB →、CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →C .若a ≠b ,则a 与b 可能是共线向量D .若非零向量AB →与CD →平行,则A 、B 、C 、D 四点共线[解析] A 不正确.|a |=|b |,但a 与b 方向可任意.B 不正确,向量不能比较大小.C 正确.D 不正确.AB →与CD →平行,则直线AB 与CD 可能平行,可能重合,则A ,B ,C ,D 四点不一定共线,故选C .二、填空题7.零向量与单位向量的关系是__共线__(填“共线”、“相等”、“无关”). 8.等腰梯形ABCD 两腰上的向量AB →与DC →的关系是 |AB →|=|DC →| . 三、解答题9.如图,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中,(1)写出与AF →、AE →相等的向量; (2)写出与AD →模相等的向量.[解析] (1)与AF →相等的向量为BE →、CD →,与AE →相等的向量为BD →. (2)DA →,CF →,FC →.10.如图所示,4×3的矩形(每个小方格都是单位正方形),在起点和终点都在小方格的顶点处的向量中,试问:(1)与AB →相等的向量共有几个;(2)与AB →平行且模为2的向量共有几个? (3)与AB →方向相同且模为32的向量共有几个?[解析] (1)与向量AB →相等的向量共有5个(不包括AB →本身). (2)与向量AB →平行且模为2的向量共有24个. (3)与向量AB →方向相同且模为32的向量共有2个.B 级 素养提升一、选择题1.若|AB →|=|AD →|且BA →=CD →,则四边形ABCD 的形状为( C ) A .平行四边形 B .矩形 C .菱形D .等腰梯形[解析] 由BA →=CD →⇒BA ∥CD 且|BA →|=|CD →|,又|AB →|=|AD →|,故四边形ABCD 为菱形. 2.下列说法中错误的是( C )A .有向线段可以表示向量但不是向量,且向量也不是有向线段B .若向量a 与b 不共线,则a 与b 都是非零向量C .长度相等但方向相反的两个向量不一定共线D .方向相反的两个非零向量必不相等[解析] 长度相等方向相反的两个向量为相反向量,一定为共线向量,故C 错误. 3.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E ,点F 分别在两腰AD ,BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是( D )A .AD →=BC →B .AC →=BD → C .PE →=PF →D .EP →=PF →[解析] 由相等向量的定义,显然EP →=PF →.4.已知A ={与a 共线的向量},B ={与a 长度相等的向量},C ={与a 长度相等,方向相反的向量},其中a 为非零向量,则下列命题中错误的是( B )A .C AB .A ∩B ={a }C .C BD .A ∩B{a }[解析] 因为A ∩B 中还含有a 方向相反的向量,所以B 错. 二、填空题5.如图ABCD 是菱形,则在向量AB →、BC →、CD →、DA →、DC →和AD →中,相等的有__2__对.[解析] AB →=DC →,BC →=AD →.其余不等.6.把同一平面内所有模不小于1,不大于2的向量的起点,移到同一点O ,则这些向量的终点构成的图形的面积等于__3π__.[解析] 这些向量的终点构成的图形是一个圆环,其面积为π·22-π·12=3π. 三、解答题7.如图所示,已知四边形ABCD 和四边形ABDE 都是平行四边形. (1)与AB →相等的向量有哪些?(2)与AB →共线的向量有哪些? (3)若|AB →|=1.5,求|CE →|的大小.[解析] (1)与AB →相等的向量即与AB →同向且等长的向量,有ED →,DC →.(2)与AB →共线的向量即与AB →方向相同或相反的向量,有BA →,ED →,DC →,EC →,DE →,CD →,CE →.(3)若|AB →|=1.5,则|CE →|=|EC →|=|ED →|+|DC →|=2|AB →|=3.8.已知飞机从甲地按北偏东30°的方向飞行2000km 到达乙地,再从乙地按南偏东30°的方向飞行2000km 到达丙地,再从丙地按西南方向飞行10002km 到达丁地,问丁地在甲地的什么方向?丁地距甲地多远?[解析] 如图所示,A 、B 、C 、D 分别表示甲地、乙地、丙地、丁地,依题意知,三角形ABC 为正三角形,∴AC =2000km .又∵∠ACD =45°,CD =10002,∴△ACD 为直角三角形,即AD =10002km ,∠CAD =45°. 答:丁地在甲地的东南方向,距甲地10002km .C 级 能力拔高如图四边形ABCD 、CEFG 、CGHD 都是互相全等的菱形,则下列关系不一定成立的是( C )A .|AB →=|EF →| B .AB →与FH →共线 C .BD →=EH →D .DC →与EF →共线[解析] A 一定成立,B 一定成立,D 因DC →与EF →一定不共线,故一定不成立,故选C .。
人教a版必修4学案:2.1平面向量的实际背景及基本概念(含答案)
回顾归纳 对于命题判断正误题, 应熟记有关概念, 看清、 理解各命题, 逐一进行判断, 有时对错误命题的判断只需举一反例即可. 变式训练 1 判断下列命题是否正确,并说明理由. (1)若向量 a 与 b 同向,且|a|>|b|,则 a>b; (2)若向量|a|=|b|,则 a 与 b 的长度相等且方向相同或相反; (3)对于任意|a|=|b|,且 a 与 b 的方向相同,则 a=b; (4)向量 a 与向量 b 平行,则向量 a 与 b 方向相同或相反.
第二章 § 2.1
平面向量
平面向量的实际背景及基本概念
自主学习
知识梳理 1.向量的概念 (1)向量:既有大小,又有方向的量叫做向量,如速度、位移、力等. (2)数量:只有大小,没有方向的量称为数量,如面积、体积、质量等. 注意:数量可以比较大小,而向量无法比较大小. 2.向量的几何表示 (1)有向线段:带有________的线段叫做有向线段,其方向是由________指向________, → 以 A 为起点、B 为终点的有向线段记作AB. 有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向、长度,它 的终点就唯一确定. → → → (2)向量的有关概念:向量AB的________,也就是向量AB的长度(或称模),记作|AB|.长 度为______的向量叫做零向量,记作 0.长度等于______个单位的向量,叫做单位向量. (3)向量的表示法: ①几何表示:用有向线段表示,此时有向线段的方向就是向量的方向; ②字母表示:用一个小写的英文字母表示,或用表示向量的有向线段的 ________ 和 ______的字母表示. (4)平行向量:方向________或________的非零向量叫做平行向量.向量 a 与 b 平行, 通常记为 a∥b.规定零向量与任何向量都________,即对于任意向量 a,都有 0∥a. 3.相等向量与共线向量 (1)相等向量:________相等且方向相同的向量叫做相等向量.向量 a 与 b 相等,通常 记为 a=b.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起 点无关.在平面上,两个长度相等且指向一致的有向线段表示同一个向量. (2)共线向量:任意一组平行向量都可以移动到同一________上,因此,平行向量也叫 共线向量. 自主探究 谈谈你对平行向量、共线向量、相等向量这三个概念的认识.
人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14
向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。
平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。
一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。
所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。
由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。
2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。
但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。