KIC3201T-51中文资料

合集下载

新普特温度控制器产品说明书

新普特温度控制器产品说明书

I8C00-C24I8C001Ordering Examples: i8C33, 1⁄8 DIN compact universal temperature process controller with 2 relay outputs.*2 Analog output is not available with “-AL ” units.*3 “-SM ” option not available on iSstrain models.1⁄8 DIN Ultra Compact Case, Temperature, Process and Strain PID Controllersi8C Seriesi8C33 shown smaller than actual size.The ultra-compact i8C and iS8C controllers are similar to the full size i8 in an ultra-compact enclosure. Only 51 mm (2") behind the panel.U Ultra Compact 1⁄8 DIN Controller U Full Autotune PID Control U Built-In Excitation U NEMA 4 (IP65) BezelU RS232, RS422/485 or Modbus Communication, Menu Selectable2Universal Temperature and Process Input ("i" Models)Accuracy: ±0.5°C temp; 0.03% rdg Resolution: 1°/0.1°; 10 μV process Temperature Stability: RTD: 0.04°C/°CTC @ 25°C (77°F): 0.05°C/°C Cold Junction Compensation Process: 50 ppm/°C NMRR: 60 dB CMRR: 120 dBA/D Conversion: Dual slope Reading Rate: 3 samples/s Digital Filter: Programmable Display: 4-digit 9-segment LED 10.2 mm (0.40"); i32, i16, i16D, i8DV 21 mm (0.83"); i8 10.2 mm (0.40") and 21 mm (0.83"); i8DH RED , GREEN , and AMBER programmable colors for process variable, setpoint and temperature unitsInput Types: Thermocouple, RTD, analog voltage, analog currentThermocouple Lead Resistance: 100 Ω maxThermocouple Types (ITS 90): J, K, T, E, R, S, B, C, N, L (J DIN)RTD Input (ITS 68): 100/500/1000 Ω Pt sensor, 2-, 3- or 4-wire; 0.00385 or 0.00392 curveVoltage Input: 0 to 100 mV, 0 to 1V, 0 to 10 VdcInput Impedance: 10 M Ω for 100 mV 1 M Ω for 1 or 10 VdcCurrent Input: 0 to 20 mA (5 Ω load)Configuration: Single-ended Polarity: UnipolarStep Response: 0.7 sec for 99.9%Decimal Selection: Temperature: None, 0.1 Process: None, 0.1, 0.01 or 0.001Setpoint Adjustment: -1999 to 9999 counts Span Adjustment: 0.001 to 9999 countsOffset Adjustment: -1999 to 9999Excitation (Not Included withCommunication): 24 Vdc @ 25 mA (not available for low-power option)Universal Strain and Process Input ("iS" Models)Accuracy: 0.03% reading Resolution: 10/1μVTemperature Stability: 50 ppm/°C NMRR: 60 dB CMRR: 120 dBA/D Conversion: Dual slope Reading Rate: 3 samples/s Digital Filter: ProgrammableInput Types: Analog voltage and current Voltage Input: 0 to 100 mVdc, -100 mVdc to 1 Vdc, 0 to 10 VdcInput Impedance: 10 M Ω for 100 mV; 1 M Ω for 1V or 10 VdcCurrent Input: 0 to 20 mA (5 Ω load)Linearization Points: Up to 10Configuration: Single-ended Polarity: UnipolarStep Response: 0.7 sec for 99.9%Decimal Selection: None, 0.1, 0.01 or 0.001Setpoint Adjustment: -1999 to 9999 countsSpan Adjustment: 0.001 to 9999 counts Offset Adjustment: -1999 to 9999Excitation (Optional In Place Of Communication): 5 Vdc @ 40 mA; 10 Vdc @ 60 mAControlAction: Reverse (heat) or direct (cool)Modes: Time and amplitude proportional control; selectable manual or auto PID, proportional, proportional with integral, proportional with derivative and anti-reset Windup, and on/off Rate: 0 to 399.9 s Reset: 0 to 3999 sCycle Time: 1 to 199 s; set to 0 for on/off Gain: 0.5 to 100% of span; setpoints 1 or 2Damping: 0000 to 0008Soak: 00.00 to 99.59 (HH:MM), or OFF Ramp to Setpoint:00.00 to 99.59 (HH:MM), or OFF Auto Tune: Operator initiated from front panelControl Output 1 and 2Relay: 250 Vac or 30 Vdc @ 3 A (resistive load); configurable for on/off, PID and ramp and soakOutput 1: SPDT, can be configured as alarm 1 outputOutput 2: SPDT, can be configured as alarm 2 outputSSR: ******************.5A (resistive load); continuousDC Pulse: Non-isolated; 10 Vdc @ 20 mA Analog Output (Output 1 Only):Non-isolated, proportional 0 to 10 Vdc or 0 to 20 mA; 500 Ω maxOutput 3 Retransmission:Isolated Analog Voltage and Current Current: 10 V max @ 20 mA output Voltage: 20 mA max for 0 to 10 V output Network and CommunicationsEthernet: Standards compliance IEEE 802.3 10 Base-T Supported Protocols: TCP/IP, ARP, HTTPGETRS232/RS422/RS485: Selectable from menu; both ASCII and Modbus protocol selectable from menu; programmable 300 to 19.2 Kb; complete programmable setup capability; program to transmit current display, alarm status, min/max, actual measured input value and statusCommon Specifications(All i/8, i/16, i/32 DIN)RS485: Addressable from 0 to 199 Connection: Screw terminalsAlarm 1 and 2 (Programmable)Type: Same as output 1 and 2Operation: High/low, above/below, band, latch/unlatch, normally open/ normally closed and process/deviation; front panel configurationsAnalog Output (Programmable):Non-isolated, retransmission 0 to 10 Vdc or 0 to 20 mA, 500 Ω max (output 1 only); accuracy is ±1% of FS when following conditions are satisfied: input is not scaled below 1% of input FS, analog output is not scaled below 3% of output FSGeneralPower: 90 to 240 Vac ±10%, 50 to 400Hz*, 110 to 375 Vdc, equivalent voltageLow Voltage Power Option: 24 Vac**, 12 to 36 Vdc for i/iS; 20 to 36 Vdc for dual display, ethernet, and isolated analog output from qualified safety approved source IsolationPower to Input/Output: 2300 Vac per 1 minute testFor Low Voltage Power Option: 1500 Vac per 1 minute test Power to Relay/SSR Output: 2300 Vac per 1 minute testRelay/SSR to Relay/SSR Output: 2300 Vac per 1 minute test RS232/485 to Input/Output: 500 Vac per 1 minute test Environmental Conditions:All Models: 0 to 55°C (32 to 131°F) 90% RH non-condensing Dual Display Models:0 to 50°C (32 to 122°F), 90% RH non-condensing (for UL only)Protection:i/iS32, 16, 16D, 8C:NEMA 4X/Type 4 (IP65) front bezel i/iS8, 8DH, 8DV:NEMA 1/Type 1 front bezel Approvals: UL, C-UL, CE perEN61010- 1:2001, FM (temperature units only)Dimensionsi/8 Series: 48 H x 96 W x 127 mm D (1.89 x 3.78 x 5")i/16 Series: 48 H x 48 W x 127 mm D (1.89 x 1.89 x 5")i/32 Series: 25.4 H x 48 W x 127 mm D (1.0 x 1.89 x 5")Panel Cutouti/8 Series: 45 H x 92 mm W (1.772 x 3.622"), 1⁄8 DINi/16 Series: 45 mm (1.772") square, 1⁄16 DINi/32 Series: 22.5 H x 45 mm W (0.886 x 1.772"), 1⁄32 DIN Weighti/8 Series: 295 g (0.65 lb) i/16 Series: 159 g (0.35 lb) i/32 Series: 127 g (0.28 lb)* No CE compliance above 60 Hz.** Units can be powered safely with 24 Vacpower, but no certification for CE/UL are claimed.I8C00-C24I8C00。

LTC3201EMS;LTC3201EMS#PBF;LTC3201EMS#TR;LTC3201EMS#TRPBF;中文规格书,Datasheet资料

LTC3201EMS;LTC3201EMS#PBF;LTC3201EMS#TR;LTC3201EMS#TRPBF;中文规格书,Datasheet资料

I OUT = 100mAI IN = 205mAV IN = 3.6V1/LTC320123201fABSOLUTE AXI U RATI GSW W WU PACKAGE/ORDER I FOR ATIOUUW (Note 1)ELECTRICAL CHARACTERISTICSThe q denotes the specifications which apply over the full operatingtemperature range, otherwise specifications are at T A = 25°C. V IN = 3.6V, C FILTER = C FLY = 0.22µF, C IN = C OUT = 1µF,t MIN to t MAX unless otherwise noted.V IN , V FILTER , V OUT , CP, CM to GND..............–0.3V to 6V D0, D1, D2, FB to GND .................–0.3V to (V IN + 0.3V)V OUT Short-Circuit Duration.............................Indefinite I OUT ......................................................................................150mA Operating Temperature Range (Note 2)...–40°C to 85°C Storage Temperature Range.................–65°C to 150°C Lead Temperature (Soldering, 10 sec)..................300°CORDER PART NUMBER MS PART MARKING T JMAX = 150°CθJA = 130°C/W (1 LAYER BOARD)θJA = 100°C/W (4 LAYER BOARD)Consult LTC Marketing for parts specified with wider operating temperature ranges.LTC3201EMS PARAMETER CONDITIONSMIN TYP MAX UNITSV IN Operating Voltage q2.74.5V V IN Operating Current I OUT = 0mAq 4 6.5mA V IN Shutdown Current D0, D1, D2 = 0V, V OUT = 0V q1µA Open-Loop Output Impedance I OUT = 100mA 8ΩInput Current Ripple I IN = 200mA30mA P-P Output Ripple I OUT = 100mA, C OUT = 1µF 30mV P-PV FB Regulation Voltage D0 = D1 = D2 = V INq 0.570.630.66V V FB DAC Step Size 90mV Switching Frequency Oscillator Free Running1.4 1.8MHzD0 to D2 Input Threshold q 0.4 1.1V D0 to D2 Input Current q–11µA V OUT Short-Circuit Current V OUT = 0V 150mA V OUT Turn-On TimeI OUT = 0mA1msLTVB12345V OUT CP FILTER CM GND109876FB V IN D2D1D0TOP VIEWMS PACKAGE10-LEAD PLASTIC MSOP Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.Note 2: The LTC3201E is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –40°C to 85°C operatingtemperature range are assured by design, characterization and correlation with statistical process controls./3 /4/LTC320153201fAPPLICATIO S I FOR ATIOW UUU Operation (Refer to Simplified Block Diagram)The LTC3201 is a switched capacitor boost charge pump especially designed to drive white LEDs in backlighting applications. The LTC3201’s internal regulation loop maintains constant LED output current by monitoring the voltage at the FB pin. The device has a novel internal filter that, along with an external 0.22µF capacitor, significantly reduces input current ripple. An internal 7-state DAC allows the user to lower the regulation voltage at the FB pin, thus lowering the LED current. To regulate the output current, the user places a sense resistor between FB and GND. The white LED is then placed between V OUT and FB.The value at the FB pin is then compared to the output of the DAC. The charge pump output voltage is then changed to equalize the DAC output and the FB pin. The value of the sense resistor determines the maximum value of the output current.When the charge pump is enabled, a two-phase nonoverlapping clock activates the charge pump switches.The flying capacitor is charged to V IN on phase one of the clock. On phase two of the clock, it is stacked in series with V IN and connected to V OUT . This sequence of charging and discharging the flying capacitor continues at a free run-ning frequency of 1.8MHz (typ) until the FB pin voltage reaches the value of the DAC.In shutdown mode all circuitry is turned off and the LTC3201 draws only leakage current (<1µA) from the V IN supply. Furthermore, V OUT is disconnected from V IN . The LTC3201 is in shutdown when a logic low is applied to all three D0:D2 pins. Note that if V OUT floats to >1.5V,shutdown current will increase to 10µA max. In normal operation, the quiescent supply current of the LTC3201will be slightly higher if any of the D0:D2 pins is driven high with a signal that is below V IN than if it is driven all the way to V IN . Since the D0:D2 pins are high impedance CMOS inputs, they should never be allowed to float.Input Current RippleThe LTC3201 is designed to minimize the current ripple at V IN . Typical charge pump boost converters draw large amounts of current from V IN during both phase 1 and phase 2 of the clocking. If there is a large nonoverlap time between the two phases, the current being drawn from V INcan go down to zero during this time. At the full load of 100mA at the output, this means that the input could potentially go from 200mA down to 0mA during the nonoverlap time. The LTC3201 mitigates this problem by minimizing the nonoverlap time, using a high (1.8MHz)frequency clock, and employing a novel noise FILTER network. The noise filter consists of internal circuitry plus external capacitors at the FILTER and V IN pins. The filter capacitor serves to cancel the higher frequency compo-nents of the noise, while the V IN capacitor cancels out the lower frequency components. The recommended values are 0.22µF for the FILTER capacitor and 1µF for the V IN capacitor. Note that these capacitors must be of the highest possible resonant frequencies. See Layout Considerations.3-Bit DAC for Output Current ControlDigital pins D0, D1, D2 are used to control the output current level. D0 = D1 = D2 = V IN allows the user to program an output LED current that is equal to 0.63V/R SENSE , where R SENSE is the resistor connected to any single LED and connected between FB and ground. Due to the finite transconductance of the regulation loop, for a given diode setting, the voltage at the FB Pin will decrease as output current increases. All LEDs subsequently connected in parallel should then have similar currents. The mismatch-ing of the LED V F and the mismatching of the sense resistors will cause a differential current error between LEDs connected to the same output. Once the sense resistor is selected, the user can then control the voltage applied across that resistor by changing the digital values at D0:D2. This in turn controls the current into the LED.Note that there are only 7 available current states. The 8th is reserved to shutdown. This is the all 0s code. Refer to Table below.D0D1D2FB HIGH HIGH HIGH 0.63V HIGH HIGH LOW 0.54V HIGH LOW HIGH 0.45V HIGH LOW LOW 0.36V LOW HIGH HIGH 0.27V LOW HIGH LOW 0.18V LOW LOW HIGH 0.09V LOWLOWLOWShutdown/LTC320163201fPower EfficiencyThe power efficiency (η) of the LTC3201 is similar to that of a linear regulator with an effective input voltage of twice the actual input voltage. This occurs because the input current for a voltage doubling charge pump is approxi-mately twice the output current. In an ideal regulator the power efficiency would be given by:η===P P V I V I V V OUT IN OUT OUT IN OUTOUTIN ••22At moderate to high output power the switching lossesand quiescent current of LTC3201 are relatively low. Due to the high clocking frequency, however, the current used for charging and discharging the switches starts to reduce efficiency. Furthermore, due to the low V F of the LEDs,power delivered will remain low.Short-Circuit/Thermal ProtectionThe LTC3201 has short-circuit current limiting as well as overtemperature protection. During short-circuit condi-tions, the output current is limited to typically 150mA.On-chip thermal shutdown circuitry disables the charge pump once the junction temperature exceeds approxi-mately 160°C and re-enables the charge pump once the junction temperature drops back to approximately 150°C.The LTC3201 will cycle in and out of thermal shutdown indefinitely without latchup or damage until the short-circuit on V OUT is removed.V OUT Capacitor SelectionThe style and value of capacitors used with the LTC3201determine several important parameters such as output ripple, charge pump strength and minimum start-up time.To reduce noise and ripple, it is recommended that low ESR (<0.1Ω) capacitors be used for C FILTER , C IN , C OUT .These capacitors should be ceramic.The value of C OUT controls the amount of output ripple.Increasing the size of C OUT to 10µF or greater will reduce the output ripple at the expense of higher turn-on times and start-up current. See the section Output Ripple. A 1µF C OUT is recommended.V IN , V FILTER Capacitor SelectionThe value and resonant frequency of C FILTER and C IN greatly determine the current noise profile at V IN . C FILTER should be a high frequency 0.22µF capacitor with a reso-nant frequency over 30MHz. Input capacitor C IN should be a 1µF ceramic capacitor with a resonant frequency over 1MHz. The X5R capacitor is a good choice for both. The values of C FILTER (0.22µF) and C IN (1µF) provide optimum high and low frequency input current filtering. A higher filter cap value will result in lower low frequency input current ripple, but with increased high frequency ripple.The key at the FILTER node is that the capacitor has to be very high frequency. If capacitor technology improves the bandwidth, then higher values should be used. Similarly,increasing the input capacitor value but decreasing its resonant frequency will not really help. Decreasing it will help the high frequency performance while increasing the low frequency current ripple.Direct Connection to BatteryDue to the ultra low input current ripple, it is possible to connect the LTC3201 directly to the battery without using regulators or high frequency chokes.Flying Capacitor SelectionWarning: A polarized capacitor such as tantalum or alumi-num should never be used for the flying capacitor since its voltage can reverse upon start-up. Low ESR ceramic capacitors should always be used for the flying capacitor.The flying capacitor controls the strength of the charge pump. In order to achieve the rated output current it is necessary to have at least 0.22µF of capacitance for the flying capacitor. Capacitors of different materials lose their capacitance with higher temperature and voltage at different rates. For example, a ceramic capacitor made of X7R material will retain most of its capacitance from –40°C to 85°C whereas a Z5U and Y5V style capacitor will lose considerable capacitance over that range. Z5U and Y5V capacitors may also have a very strong voltage coefficient causing them to lose 60% or more of their capacitance when the rated voltage is applied. Therefore,when comparing different capacitors it is often moreAPPLICATIO S I FOR ATIOW UUU /LTC320173201fappropriate to compare the achievable capacitance for a given case size rather than discussing the specified ca-pacitance value. For example, over the rated voltage and temperature, a 1µF, 10V, Y5V ceramic capacitor in an 0603case may not provide any more capacitance than a 0.22µF 10V X7R available in the same 0603 case. The capacitor manufacturer’s data sheet should be consulted to deter-mine what value of capacitor is needed to ensure 0.22µF at all temperatures and voltages.Below is a list of ceramic capacitor manufacturers and how to contact them:AVX (843) Kemet (864) Murata (770) Taiyo Yuden (800) Vishay(610) 644-1300Open-Loop Output ImpedanceThe theoretical minimum open-loop output impedance of a voltage doubling charge pump is given by:R V V I FCOUT MIN IN OUT OUT ()–==21where F if the switching frequency (1.8MHz typ) and C isthe value of the flying capacitor. (Using units of MHz and µF is convenient since they cancel each other). Note that the charge pump will typically be weaker than the theoreti-cal limit due to additional switch resistance. Under normal operation, however, with V OUT ≈ 4V, I OUT < 100mA,V IN > 3V, the output impedance is given by the closed-loop value of ~0.5Ω.Output RippleThe value of C OUT directly controls the amount of ripple for a given load current. Increasing the size of C OUT will reduce the output ripple at the expense of higher minimum turn-on time and higher start-up current. The peak-to-peak output ripple is approximated by the expression:V I F C RIPPLE P P OUT OUT()•−≅2 F is the switching frequency (1.8MHz typ).Loop StabilityBoth the style and the value of C OUT can affect the stability of the LTC3201. The device uses a closed loop to adjust the strength of the charge pump to match the required output current. The error signal of this loop is directly stored on the output capacitor. The output capacitor also serves to form the dominant pole of the loop. To prevent ringing or instability, it is important for the output capaci-tor to maintain at least 0.47µF over all ambient and operating conditions.Excessive ESR on the output capacitor will degrade the loop stability of the LTC3201. The closed loop DC imped-ance is nominally 0.5Ω. The output will thus change by 50mV with a 100mA load. Output capacitors with ESR of 0.3Ω or greater could cause instability or poor transient response. To avoid these problems, ceramic capacitors should be used. A tight board layout with good ground plane is also recommended.Soft-StartThe LTC3201 has built-in soft-start circuitry to prevent excessive input current flow at V IN during start-up. The soft-start time is programmed at approximately 30µyout ConsiderationsDue to the high switching frequency and large transient currents produced by the LTC3201, careful board layout is necessary. A true ground plane is a must. To minimize high frequency input noise ripple, it is especially important that the filter capacitor be placed with the shortest dis-tance to the LTC3201 (1/8 inch or less). The filter capacitor should have the highest possible resonant frequency.Conversely, the input capacitor does not need to be placed close to the pin. The input capacitor serves to cancel out the lower frequency input noise ripple. Extra inductance on the V IN line actually helps input current ripple. Note that if the V IN trace is lengthened to add parasitic inductance,it starts to look like an antenna and worsen the radiated noise. It is recommended that the filter capacitor be placed on the left hand side next to Pin 3. The flying capacitor can then be placed on the top of the device. It is also importantAPPLICATIO S I FOR ATIOW UUU Information furnished by Linear Technology Corporation is believed to be accurate and reliable.However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights./8Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 qFAX: (408) 434-0507 q © LINEAR TECHNOLOGY CORPORA TION 2001/分销商库存信息:LINEAR-TECHNOLOGYLTC3201EMS LTC3201EMS#PBF LTC3201EMS#TR LTC3201EMS#TRPBF。

常熟开关(塑壳断路器)

常熟开关(塑壳断路器)

7
断路器保护特性曲线 PROTECTI ON CHARAC TERISTIC C URVE OF M CCB
8
主要技术性能指标 MAIN TECHNICAL PERFORMANCE INDEX
12
外 形 尺寸 及安 装 尺寸 OUTLINE AND MOUNTING DIMENSIONS
18
断 路 器安 装安 全 间隙 MOUNTING SAFETY CLEARANCE
CMeeratsifuicreatmeeOntf CMoannfaogremmiteynFt oSrystems
公司简介 Introduction
常熟开关制造有限公司是国有资产参股的电器制造企业、“国家重点高新技术企
业”,占地约300亩,员工1500人。主要生产中低压电器元件、工控产品、太阳能光伏 逆变器、成套装置等,可以为您提供“智能配电系统三位一体完整的解决方案”。
塑 料外壳 式断路 器 智能 型塑 壳断路器 带剩 余电流 保护塑壳断 路器 塑料 外壳式断路器 塑料 外壳 式断路器 塑料 外壳式 断路 器 监测型断 路器
CA1系列自动 转换开关Байду номын сангаасCB级)
CA1B系列 小型化自动 转换开关(CB级)
CAP1系列自动 CAP2系列自动 转换开关(PC级) 转换开关 ( PC级)
Post - doctoral scientific research station, Province Enterprise Technique Center and Jiangsu Province Electrical Apparatus Control Engineering Research Center have been established and a multilevel professional technique team has been formed consisting of PHD candidates, postgraduates and university graduates. Engineers and technicians have covered 45% of all staffs.

芯片手册

芯片手册
3) 载波通信 ............................................................... 26
功能简述 ............................................................................ 26 编程指南 ............................................................................ 26 载波通信的工作步骤 .................................................................. 27 寄存器 .............................................................................. 28
9) ISO7816 功能 ........................................................... 41
功能简述 ............................................................................ 41 编程指南 ............................................................................ 41 寄存器 .............................................................................. 42
4) LCD/LED显示驱动 ........................................................ 32

MIC3201YME TR;MIC3201YME;中文规格书,Datasheet资料

MIC3201YME TR;MIC3201YME;中文规格书,Datasheet资料
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 •
February 2011
M9999-021011-B
Features
• • • • • • • • • • • • • 6.0V to 20V input voltage range High efficiency (>90%) ± 5% LED current accuracy High-side current sense Dedicated dimming control input Hysteretic control (no compensation!) 1A internal power switch Up to 1MHz switching frequency Adjustable constant LED current 5V on board regulator Over temperature protection –40°C to +125°C junction temperature range Available in an 8-Pin ePAD SOIC package
/
Micrel, Inc.
MIC3201
Ordering Information(1)
Part Number MIC3201YME
Note: 1. YME is a GREEN RoHS compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.

Protek 3201_3290N 中文说明书_东方嘉仪

Protek 3201_3290N 中文说明书_东方嘉仪

误动作时
U
U
虽然此仪器的电源可以开机,如有误动作(不正常工作或死机现象)时,请按照下述步骤安 全使用。
1) Protek 3201N/3290N接上电源(电源适配器AC Adapter)。 2) 按Reset 键。 (Reset 键在 Battery 装入口的底面) 3) 不正常工作时, 另外有一种方法是 通过系统菜单(Menu)的测试(TEST)组上选择
PC电脑连接(Connection for PC)……………………………………………………………64
自动电源Auto Power……………………………………………………………………………65
偏置Offset……………………………………………………………………………………66
菜单(Menu)…………………………………………………………………………………67
电 话 :(青 岛 )0532-86069117 (南京)025-52405707 (天津)022-60501825
9
3201N/3290N 用户手册
仪器仪表销售 注册品牌
存储 /读出Save/Load ………………………………………………………………………54
频率计数器(Frequency Counter)………………………………………………………58
RESET 键即可。
电池 (Battery)
U
此仪器使用Ni-MH Rechargeable Battery(镍-氢充电电池;以下称Ni-MH充电电池) 6个,可 以充电后使用。
1) Ni-MH充电电池为消耗品,随着使用时间的增加,Ni-MH充电电池的寿命会缩短。 2) Ni-MH 充电电池的实际使用时间,缩短为刚刚购买时的实际使用时间一半时请更换

川仪温度仪表选型手册2016版

川仪温度仪表选型手册2016版

目 录K□铠装热电偶电缆 (1)WR系列热电偶WRG□K铠装热电偶(冈崎结构非接线盒式) (5)WRG□K铠装热电偶(冈崎结构接线盒式) (11)WR□装配热电偶 (20)WR□K铠装芯装配式热电偶 (26)WZ系列热电阻WZGPK铠装热电阻(冈崎结构非接线盒式) (31)WZGPK铠装热电阻(冈崎结构接线盒式) (32)WZ□装配热电阻 (41)WZPK铠装芯装配式热电阻 (47)吹气型热电偶 (52)多点(支)热电偶(阻)WR□KS铠装多点热电偶 (53)WR□KM铠装多支热电偶 (55)WZPKM铠装多支铂热电阻 (57)耐磨(耐腐蚀)热电偶耐磨(耐腐蚀)热电偶(阻)‐通用式 (60)耐磨(耐腐蚀)热电偶(阻)‐卡套防内漏式 (61)耐磨(耐腐蚀)热电偶(阻)‐切断式 (63)高炉热风炉专用热电偶 (65)玻璃行业专用热电偶HO□K玻璃窑炉铂金套管铠装热电偶 (67)WR□‐GL玻璃窑炉刚玉保护管热电偶 (68)WR□‐GL玻璃窑炉铂金保护管热电偶 (70)WR□KT‐DR 刀刃型铠装热电偶 (71)核电站测温热电偶(阻)WR□H铠装热电偶 (74)WZPH铠装热电阻 (76)HWT□温度计专用套管 (78)HFT□温度计专用扩大管 (81)电站测温热电偶(阻)WR□KD铠装热电偶 (84)端面热电偶阻 (88)WR□T‐11锅炉壁温热电偶 (90)WZPKD铠装热电阻 (93)SBW□系列 一体化温度变送器 (98)WSS工业双金属温度计WSS通用型 (104)WSSX电接点型 (108)WSS□一体化型 (112)补偿导线 (118)标准部件B□保护管 (120)电站专用安装座 (124)扩大管 (125)接线(盒)装置 (127)保护管材质选用参考表 (129)②热电偶对数③螺栓类型5:固定法兰6:卡套法兰12:Ф1220:Ф2016:Ф1625:Ф25K、E、J、NTS、RB1:±1.5℃或±0.4%│t│℃1:±0.5℃或±0.4%│t│℃2:±2.5℃或±0.75%│t│℃2:±1.0℃或±0.75%│t│℃⑦铠装偶直径(mm)G:0Cr18Ni9TiB:GH3030H:316C:GH3039HL:316LP: 310S ⑨测量端型式1:露端型2:接壳型M:M20*1.5内螺纹G:G1/2"内螺纹N:NPT1/2"内螺纹Z:ZG1/2"内螺纹无标记:不提供D:不锈钢防水电缆接头E:铜镀镍隔爆电缆接头F:不锈钢隔爆电缆接头B1~B6: ExdIIBT1~BT6A:ExiaIICT6C1~C6: ExdIICT1~CT6T:ExtIII T120℃ Db IP65⑭A:304HC:哈氏C H:316HB:哈氏B HL:316LTT:Ti TA:钽ME:蒙乃尔⑯A:304ZA:20#⑱法兰配置WR□K系列铠装芯装配式热电偶-法兰安装① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯ ⑰ ⑱ ⑲WR□K□-□□□-□□□□□□□-□□□□-□□□种类①分度号K:K型 镍铬-镍硅S:S型 铂铑10-铂N:N型 镍铬硅-镍硅镁R:R型 铂铑13-铂E:E型 镍铬-铜镍(康铜)B:B型 铂铑30-铂铑6J:J型 铁-铜镍(康铜)T:T型 铜-铜镍(康铜)无标记:单支式2:双支式 型号7:活动法兰④接线盒类型3:防水型铸铝接线盒3A:防水型不锈钢接线盒5:防水型铸铝接线盒(弹簧压着式)5A:防水型不锈钢接线盒(弹簧压着式) 7:隔爆防水型铸铝接线盒(弹簧压着式)7A:隔爆防水型不锈钢接线盒(弹簧压着式) 9:JDY铸铝接线盒9A:JDY不锈钢接线盒⑤保护管外径(mm)注:其它尺寸标记方式为:(具体外径)例:Ф22 :(22)测温元件及接线盒⑥允差等级P:±3℃或±0.5%│t│℃P:±4℃或±0.5%│t│℃H:Ф5 (标准配置,推荐使用)注:其他直径标记方式为:J:Ф6、K:Ф8、F:Ф4⑧套管材质注:其它材质标记方式参见P?3:绝缘型⑩电气接口注:1.其它尺寸标记方式为:(具体尺寸);2.非隔爆接线盒电气接口非M20*1.5时,将增加螺纹转接头;3.隔爆螺纹电气接口非M20*1.5或NPT1/2时,将增加螺纹转接头。

3201中文说明书

3201中文说明书
Protek 3201
射频场强分析仪 2GHz
DžDž
显示描述

'VODUJPONPEF 功能模式
显示当前所选择模式 4QFDUSVN频谱 #BSHSBQI条线图 $PVOUFS计数器
见 页

4DBONPEF 扫描模式
显示所选的扫描模式有种可选模式见1、1为手动扫 描 1、1为搜索扫描,1、1为频道扫描。

3FDFQUJPO.PEF(接收模式) 调制方式需要接收的信号。
注 $8信号或除了窄带调频 /#'.
宽带调频 8#'.
调幅 ".
和单边带 44#
之 外的信号都能显示,但所选的接收模式有适当的带宽 QBHF

选择接收模式可按 ' 键。
4XFFQ.PEF 扫频模式
频率计数器
jjjjjjjjjjjjjjjjjjjjjjjjj
记录模式
jjjjjjjjjjjjjjjjjjjjjjjjjjj
电源
jjjjjjjjjjjjjjjjjjjjjjjjjjj
车载和 "$适配器
jjjjjjjjjjjjjjjjjjjjjjjj
电池更换
.BSLFS-FWFM 标记电平
显示当前信号电平的值。

$FOUFS'SFRVFODZBOE4QBO'SFRVFODZ 中心频率和间隔频率
:用于手动扫描
QBHF

4UFQ'SFRVFODZ 步进频率
扫描频率的增量值可由 ' 键设置 QBHF
dždž
目录
快捷主菜单设置向导 …………………………………………………………………………ǃ 快捷系统菜单设置向导 ………………………………………………………………………DŽ 功能键菜单向导 ……………………………………………………………………………Dž 显示描述……………………………………………………………………………………… dž

ARTISAN TECHNOLOGY GROUP 质量用途设备来源说明书

ARTISAN TECHNOLOGY GROUP 质量用途设备来源说明书

DL205PLC User Manual Volume1of2Manual Number:D2-USER-MNotesDL205 PLC USER MANUALNotesVolume One: Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iVolume Two: Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiChapter 1: Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2 The Purpose of this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2 Where to Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2 Supplemental Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–2 Conventions Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–3 Key Topics for Each Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–3 DL205 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–4 CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–4 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–4 I/O Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–4 I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–4 DL205 System Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–5 Programming Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–7 Direct SOFT Programming for Windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–7 Handheld Programmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–7 Direct LOGIC™ Part Numbering System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–8 Quick Start for PLC Validation and Programming . . . . . . . . . . . . . . . . . . . . . . . . .1–10 Steps to Designing a Successful System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–13Chapter 2: Installation, Wiring and Specifications . . . . . . . . . . . . . . .2–1 Safety Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–2Table of ContentsPlan for Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–2 Three Levels of Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–3 Emergency Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–3 Emergency Power Disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–4 Orderly System Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–4 Class 1, Division 2, Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–4Mounting Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–5 Base Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–5 Panel Mounting and Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–6 Enclosures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–7 Environmental Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–8 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–8 Marine Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–9 Agency Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–924 VDC Power Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–9Installing DL205 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–10 Choosing the Base Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–10 Mounting the Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–10 Using Mounting Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–11Installing Components in the Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–12Base Wiring Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–13 Base Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–13I/O Wiring Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–14 PLC Isolation Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–14 Powering I/O Circuits with the Auxiliary Supply . . . . . . . . . . . . . . . . . . . . . . . . . . .2–15 Powering I/O Circuits Using Separate Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . .2–16 Sinking / Sourcing Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–17 I/O “Common” Terminal Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–18 Connecting DC I/O to “Solid State” Field Devices . . . . . . . . . . . . . . . . . . . . . . . . .2–19 Solid State Input Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–19 Solid State Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–19 Relay Output Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–21 Surge Suppression For Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–21I/O Modules Position, Wiring, and Specification . . . . . . . . . . . . . . . . . . . . . . . . . .2–25 Slot Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–25 Module Placement Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–25Table of ContentsSpecial Placement Considerations for Analog Modules . . . . . . . . . . . . . . . . . . . . .2–26 Discrete Input Module Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–26 Color Coding of I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–26 Wiring the Different Module Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–27 I/O Wiring Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–28D2-08ND3, DC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–29D2-16ND3-2, DC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–29D2–32ND3, DC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–30D2–32ND3–2, DC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–31D2-08NA-1, AC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–32D2-08NA-2, AC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–33D2-16NA, AC Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–34F2-08SIM, Input Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–34D2-04TD1, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–35D2–08TD1, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–36D2–08TD2, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–36D2–16TD1–2, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–37D2–16TD2–2, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–37F2–16TD1(2)P, DC Output With Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . .2–38F2–16TD1P, DC Output With Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . .2–39F2–16TD2P, DC Output with Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–40D2–32TD1, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–41D2–32TD2, DC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–41F2–08TA, AC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–42D2–08TA, AC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–42D2–12TA, AC Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–43D2–04TRS, Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–44D2–08TR, Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–45F2–08TR, Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–46F2–08TRS, Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–47D2–12TR, Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–48 D2–08CDR 4 pt., DC Input / 4pt., Relay Output . . . . . . . . . . . . . . . . . . . . . . . . . .2–49 Glossary of Specification Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–50Chapter 3: CPU Specifications and Operations . . . . . . . . . . . . . . . . . .3–1 CPU Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–2 General CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–2 DL230 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–2 DL240 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–2 DL250–1 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–3 DL260 CPU Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–3CPU General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–4 CPU Base Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–5 CPU Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–6 Communication Port Pinout Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–6 Port 1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–7 Port 2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–8 Selecting the Program Storage Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–9 Built-in EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–9 EEPROM Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–9 EEPROM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–9 Installing the CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–10 Connecting the Programming Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–10 CPU Setup Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–11 Status Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–12 Mode Switch Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–12 Changing Modes in the DL205 PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–13 Mode of Operation at Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–13Using Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–14 DL230 and DL240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–14 DL250-1 and DL260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–14 Battery Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–14 Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–15 Clearing an Existing Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–16 Initializing System Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–16Setting the Clock and Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–16 Setting the CPU Network Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–17 Setting Retentive Memory Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–17 Using a Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–18 Setting the Analog Potentiometer Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–19 CPU Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–21 CPU Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–21 Program Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–22 Run Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–22 Read Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–23 Read Inputs from Specialty and Remote I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–23 Service Peripherals and Force I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–23 CPU Bus Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–24 Update Clock, Special Relays and Special Registers . . . . . . . . . . . . . . . . . . . . . . . .3–24 Solve Application Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–25 Solve PID Loop Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–25 Write Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–25 Write Outputs to Specialty and Remote I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–26 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–26 I/O Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–27 Is Timing Important for Your Application? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–27 Normal Minimum I/O Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–27 Normal Maximum I/O Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–27 Improving Response Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–28 CPU Scan Time Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–29 Initialization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–30 Reading Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–30 Reading Inputs from Specialty I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–31 Service Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–31 CPU Bus Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–32 Update Clock/Calendar, Special Relays, Special Registers . . . . . . . . . . . . . . . . . . . .3–32 Writing Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–32 Writing Outputs to Specialty I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–33 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–33 Application Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–34 PLC Numbering Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–35PLC Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–35 V–Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–36 Binary-Coded Decimal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–36 Hexadecimal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–36Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–37 Octal Numbering System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–37 Discrete and Word Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–37 V–Memory Locations for Discrete Memory Areas . . . . . . . . . . . . . . . . . . . . . . . . . .3–37 Input Points (X Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–38 Output Points (Y Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–38 Control Relays (C Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–38 Timers and Timer Status Bits (T Data type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–38 Timer Current Values (V Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–39 Counters and Counter Status Bits (CT Data type) . . . . . . . . . . . . . . . . . . . . . . . . .3–39 Counter Current Values (V Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–39 Word Memory (V Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–39 Stages (S Data type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–40 Special Relays (SP Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–40 Remote I/O Points (GX Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–40DL230 System V-memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–41DL240 System V-memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–43DL250–1 System V-memory (DL250 also) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–46DL260 System V-memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–49DL205 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–52DL230 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–53DL240 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–54DL250–1 Memory Map (DL250 also) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–55DL260 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–56X Input/Y Output Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–57Control Relay Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–59Stage Control/Status Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–63Timer and Counter Status Bit Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–65Remote I/O Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–66Chapter 4: System Design and Configuration . . . . . . . . . . . . . . . . . . .4–1DL205 System Design Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–2 I/O System Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–2 Networking Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–2Module Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–3 Slot Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–3 Module Placement Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–3 Automatic I/O Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–4 Manual I/O Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–4 Removing a Manual Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–5 Power–On I/O Configuration Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–5 I/O Points Required for Each Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–6Calculating the Power Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–7 Managing your Power Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–7 CPU Power Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–7 Module Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–7 Power Budget Calculation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–9 Power Budget Calculation Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–10 Local Expansion I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–11 D2–CM Local Expansion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–11 D2–EM Local Expansion Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–12 D2–EXCBL–1 Local Expansion Cable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–12 DL260 Local Expansion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–13 DL250–1 Local Expansion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–14 Expansion Base Output Hold Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–15 Enabling I/O Configuration Check using Direct SOFT . . . . . . . . . . . . . . . . . . . . . . .4–16 Expanding DL205 I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–17 I/O Expansion Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–17 Ethernet Remote Master, H2-ERM(-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–17 Ethernet Remote Master Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . .4–18 Installing the ERM Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–19 Ethernet Base Controller, H2-EBC(100)(-F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–22 Install the EBC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–23 Set the Module ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–23 Insert the EBC Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–23 Network Cabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–2410BaseFL Network Cabling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–25 Maximum Cable Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–25 Add a Serial Remote I/O Master/Slave Module . . . . . . . . . . . . . . . . . . . . . . . . . . .4–26 Configuring the CPU’s Remote I/O Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–27 Configure Remote I/O Slaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–29 Configuring the Remote I/O Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–29 Remote I/O Setup Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–30 Remote I/O Test Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–31 Network Connections to Modbus and Direct Net . . . . . . . . . . . . . . . . . . . . . . . . . .4–32 Configuring Port 2 For Direct Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–32 Configuring Port 2 For Modbus RTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–32 Modbus Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–33 Direct NET Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–34 Network Slave Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–35 Modbus Function Codes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–35 Determining the Modbus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–35 If Your Host Software Requires the Data Type and Address . . . . . . . . . . . . . . . . . .4–35 If Your Modbus Host Software Requires an Address ONLY . . . . . . . . . . . . . . . . . . .4–38 Example 1: V2100 584/984 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–40 Example 2: Y20 584/984 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–40 Example 3: T10 Current Value 484 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–40 Example 4: C54 584/984 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–40 Determining the Direct NET Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–40 Network Master Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–41 Communications from a Ladder Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–44 Multiple Read and Write Interlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–44 Network Modbus RTU Master Operation (DL260 only) . . . . . . . . . . . . . . . . . . . .4–45 Modbus Function Codes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–45 Modbus Port Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–46 RS–485 Network (Modbus only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–47 RS–232 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–47 Modbus Read from Network (MRX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–48 MRX Slave Memory Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–49 MRX Master Memory Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–49 MRX Number of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–49 MRX Exception Response Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–49 Modbus Write to Network (MWX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–50。

浙江华星电气科技有限公司2011年产品选型手册-1

浙江华星电气科技有限公司2011年产品选型手册-1

注:由于受篇幅限制,所以不能针对公司所有产品一一进行选型指导,敬请谅解! 如需更多选型指导,请访问公司网站()或垂询公司销售部(0577-62781455)。
02 HUAXING ELECTRIC TECHNOLOGY
RPC □ □ □ □ - - □
无功功率补偿控制器型号命名规则
特点 详细请见第 13 页
· 128*64 点阵液晶显示屏 · 具有无功混合补偿功能 · 具有谐波分析功能 · 具有通讯功能 (2 通道 ) · 具有电能计量功能 · 具有历史数据记录功能 · 具有手动运行模式 · 配套后台分析软件 · 主要用配电监测
特点 详细请见第 13 页
· 240*120 点阵液晶显示屏 · 具有无功混合补偿功能 · 具有谐波分析功能 · 具有通讯功能 · 具有电能计量功能 · 具有历史数据记录功能 · 具有手动运行模式 · 配套后台分析软件 · 主要用配电监测
ंࢇց‫׋‬
ၚᆌ ้क़
?2t-ব‫ۅ‬๼‫؜‬
223nn!ġ223nn 24:nn!ġ24:nn 24:nn!ġ24:nn
24:nn!ġ24:nn
24:nn!ġ24:nn
?2t-ంସ๼‫؜‬
223nn!ġ223nn 223nn!ġ223nn
ļ31nt-ᆶᇸ๼‫؜‬
24:nn!ġ24:nn
ļ211nt-ᆶᇸ๼‫؜‬
本系列产品将在 2012 年全面停产
主要参数
电 源 380V 与电压信号共用 信号取样 3 相 4 线 最大回路 16 回路 最短延时 有源 0.1 秒 ; 节点 2 秒 有源输出 RPC3CD-BxTV2-12
RPC3CD-BxTV2-16 节点输出 RPC3CM-BxTV2-12
RPC3CM-BxTV2-16 开孔尺寸 112mm×112mm

SDSD

SDSD
3059
3060
教练 高头力 Riki Takato
3061 牧绅一 Shinichi Maki 4 PG 184 195
3062 神宗一郎 Soichiro Jin 6 SG 189 200
3063 青田信长 Nobunaga Kiyota 10 SF 178 189
3102 岸本实理 Minori Kishimoto 5 PF 188 199
3103 板仓大二郎 Daijirou Itakura 6 PG 183 194
3104 矢崤京平 Kyouhei Yajima 7 SG 184 195
3105 岩田三秋 Mitsuaki Iwata 8 C 190 201
3139
3140
教练 原田 Harada
3141 内藤铁也 Tetsuya Naitou 9 PF 196 207
3142 村雨健吾 Kengo Murasame 4 SF 186 197
3143 荒木一雄 Kazuo Araki 5 PG 187 198
3155
3156
3157
3158
3159
3160
教练 藤田治也 Osamuya Fujita
3161 神奈今村 Imamura Kamina 6 SF 185 196
3162 山田良平 Ryouhei Yamada 4 SF 176 187
3012 佐佐冈智 Satoru Sasaoka 13 F 172 183
3013
3014
3015 姓在后
3016
3017
3018
3019
3020
教练 田冈茂一 Kantoku Taoka

半导体传感器ADUM3201ARZ中文规格书

半导体传感器ADUM3201ARZ中文规格书

Data SheetADuM1400/ADuM1401/ADuM1402 Rev. L | Page 5 of 31Parameter SymbolMin Typ Max Unit Test Conditions Pulse Width Distortion, |t PLH − t PHL |5 PWD40 ns C L = 15 pF, CMOS signal levels Change vs. Temperature11 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew 6 t PSK50 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching 7 t PSKCD /t PSKOD50 ns C L = 15 pF, CMOS signal levels ADuM1400BRW /ADuM1401BRW /ADuM1402BRWMinimum Pulse Width 3 PW100 ns C L = 15 pF, CMOS signal levels Maximum Data Rate 410 Mbps C L = 15 pF, CMOS signal levels Propagation Delay 5 t PHL , t PLH20 32 50 ns C L = 15 pF, CMOS signal levels Pulse Width Distortion, |t PLH − t PHL |5 PWD3 ns C L = 15 pF, CMOS signal levels Change vs. Temperature5 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew6 t PSK15 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Codirectional Channels 7 t PSKCD3 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Opposing-Directional Channels 7 t PSKOD6 ns C L = 15 pF, CMOS signal levels ADuM1400CRW /ADuM1401CRW /ADuM1402CRWMinimum Pulse Width 3 PW8.3 11.1 ns C L = 15 pF, CMOS signal levels Maximum Data Rate 490 120 Mbps C L = 15 pF, CMOS signal levels Propagation Delay 5 t PHL , t PLH18 27 32 ns C L = 15 pF, CMOS signal levels Pulse Width Distortion, |t PLH − t PHL |5 PWD0.5 2 ns C L = 15 pF, CMOS signal levels Change vs. Temperature3 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew 6 t PSK10 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Codirectional Channels 7 t PSKCD2 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching, Opposing-Directional Channels 7 t PSKOD5 ns C L = 15 pF, CMOS signal levels For All ModelsOutput Disable Propagation Delay (High/Low to High Impedance) t PHZ , t PLH6 8 ns C L = 15 pF, CMOS signal levels Output Enable Propagation Delay (High Impedance to High/Low) t PZH , t PZL6 8 ns C L = 15 pF, CMOS signal levels Output Rise/Fall Time (10% to 90%) t R /t F2.5 ns C L = 15 pF, CMOS signal levels Common-Mode Transient Immunity at Logic High Output 8 |CM H |25 35 kV/µs V Ix = V DD1 or V DD2, V CM = 1000 V, transient magnitude = 800 V Common-Mode Transient Immunity at Logic Low Output 8 |CM L |25 35 kV/µs V Ix = 0 V, V CM = 1000 V, transient magnitude = 800 V Refresh Rate f r1.2 Mbps Input Dynamic Supply Current per Channel 9 I DDI (D)0.19 mA/Mbps Output Dynamic Supply Current per Channel 9I DDO (D) 0.05 mA/Mbps 1All voltages are relative to their respective ground. 2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section. See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through Figure 15 for total V DD1 and V DD2 supply currents as a function of data rate for ADuM1400/ADuM1401/ADuM1402 channel configurations.3 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.4 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.5 t PHL propagation delay is measured from the 50% level of the falling edge of the V Ix signal to the 50% level of the falling edge of the V Ox signal. t PLH propagation delay is measured from the 50% level of the rising edge of the V Ix signal to the 50% level of the rising edge of the V Ox signal.6 t PSK is the magnitude of the worst-case difference in t PHL or t PLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.8 CM H is the maximum common-mode voltage slew rate that can be sustained while maintaining V O > 0.8 V DD2. CM L is the maximum common-mode voltage slew rate that can be sustained while maintaining V O < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.ADuM1400/ADuM1401/ADuM1402Data SheetRev. L | Page 6 of 31 ELECTRICAL CHARACTERISTICS—3 V, 105°C OPERATION 1 2.7 V ≤ V DD1 ≤ 3.6 V , 2.7 V ≤ V DD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at T A = 25°C, V DD1 = V DD2 = 3.0 V . These specifications do not apply to ADuM1400W , ADuM1401W , and ADuM1402W automotive grade versions. Table 2.ParameterSymbol Min Typ Max Unit Test Conditions DC SPECIFICATIONSInput Supply Current per Channel, QuiescentI DDI (Q) 0.26 0.31 mA Output Supply Current per Channel, QuiescentI DDO (Q) 0.11 0.14 mA ADuM1400 Total Supply Current, Four Channels 2DC to 2 MbpsV DD1 Supply CurrentI DD1 (Q) 1.2 1.9 mA DC to 1 MHz logic signal freq. V DD2 Supply CurrentI DD2 (Q) 0.5 0.9 mA DC to 1 MHz logic signal freq. 10 Mbps (BRW and CRW Grades Only)V DD1 Supply CurrentI DD1 (10) 4.5 6.5 mA 5 MHz logic signal freq. V DD2 Supply CurrentI DD2 (10) 1.4 2.0 mA 5 MHz logic signal freq. 90 Mbps (CRW Grade Only)V DD1 Supply CurrentI DD1 (90) 37 65 mA 45 MHz logic signal freq. V DD2 Supply CurrentI DD2 (90) 11 15 mA 45 MHz logic signal freq. ADuM1401 Total Supply Current, Four Channels 2DC to 2 MbpsV DD1 Supply CurrentI DD1 (Q) 1.0 1.6 mA DC to 1 MHz logic signal freq. V DD2 Supply CurrentI DD2 (Q) 0.7 1.2 mA DC to 1 MHz logic signal freq. 10 Mbps (BRW and CRW Grades Only)V DD1 Supply CurrentI DD1 (10) 3.7 5.4 mA 5 MHz logic signal freq. V DD2 Supply CurrentI DD2 (10) 2.2 3.0 mA 5 MHz logic signal freq. 90 Mbps (CRW Grade Only)V DD1 Supply CurrentI DD1 (90) 30 52 mA 45 MHz logic signal freq. V DD2 Supply CurrentI DD2 (90) 18 27 mA 45 MHz logic signal freq. ADuM1402 Total Supply Current, Four Channels 2DC to 2 MbpsV DD1 or V DD2 Supply CurrentI DD1 (Q), I DD2 (Q) 0.9 1.5 mA DC to 1 MHz logic signal freq. 10 Mbps (BRW and CRW Grades Only)V DD1 or V DD2 Supply CurrentI DD1 (10), I DD2 (10) 3.0 4.2 mA 5 MHz logic signal freq. 90 Mbps (CRW Grade Only)V DD1 or V DD2 Supply CurrentI DD1 (90), I DD2 (90) 24 39 mA 45 MHz logic signal freq. For All ModelsInput CurrentsI IA , I IB , I IC , I ID , I E1, I E2 −10 +0.01 +10µA 0 V ≤ V IA , V IB , V IC , V ID ≤ V DD1 or V DD2, 0 V ≤ V E1, V E2 ≤ V DD1 or V DD2 Logic High Input ThresholdV IH , V EH 1.6 V Logic Low Input ThresholdV IL , V EL 0.4 V Logic High Output VoltagesV OAH , V OBH , V OCH , V ODH (V DD1 or V DD2) − 0.1 3.0 V I Ox = −20 µA, V Ix = V IxH (V DD1 or V DD2) − 0.4 2.8 V I Ox = −3.2 mA, V Ix = V IxH Logic Low Output Voltages V OAL , V OBL , V OCL , V ODL 0.0 0.1 VI Ox = 20 µA, V Ix = V IxL 0.04 0.1 VI Ox = 400 µA, V Ix = V IxL0.2 0.4 V I Ox = 3.2 mA, V Ix = V IxLSWITCHING SPECIFICATIONSADuM1400ARW /ADuM1401ARW /ADuM1402ARWMinimum Pulse Width 3PW 1000 ns C L = 15 pF, CMOS signal levels Maximum Data Rate 41 Mbps C L = 15 pF, CMOS signal levels Propagation Delay 5t PHL , t PLH 50 75 100 ns C L = 15 pF, CMOS signal levels Pulse Width Distortion, |t PLH − t PHL |5PWD 40 ns C L = 15 pF, CMOS signal levels Change vs. Temperature11 ps/°C C L = 15 pF, CMOS signal levels Propagation Delay Skew 6t PSK50 ns C L = 15 pF, CMOS signal levels Channel-to-Channel Matching 7 t PSKCD /t PSKOD50 ns C L = 15 pF, CMOS signal levels。

SI-3201S中文资料

SI-3201S中文资料

Featuresq Output current of 3A (Ta = 25ºC, V IN = 8 to 18V)q High efficiency of 82% (V IN = 14V, I O = 2A)q Requires 5 external components only q Built-in reference oscillator (60kHz)q Phase internally correctedq Output voltage internally correctedq Built-in overcurrent and thermal protection circuits q Built-in soft start circuitExternal Dimensions (unit: mm)Standard Circuit DiagramNotes:*1. Efficiency is calculated by the following equation:5. SS(Forming No. 1101)18V C 1: 1000µFC 2: 1000µFL 1: 250µHD 1: RK46 (Sanken)Oa: Internal power supply b: Thermal protection c: Reference oscillator d: Resete: Latch & driverf : Comparatorg: Overcurrent protection h: Error amplifier i : Reference voltageCautions:(1) A high-ripple current flows through C 1 and C 2. Use high-ripple type 1000µF or higher capacitors with low internal resistance. Refer to the respective data books for more information on reliability and electrical characteristics of the capacitor.(2) C 3 is a capacitor used for soft start.(3) L 1 should be a choke coil with a low core loss for switching power supplies.(4) Use a Schottky barrier diode for D 1 and make sure that the reverse voltage applied to the 2nd terminal (SQ terminal) is within the maximum ratings (–1V). If you use a fast-recovery diode, the recovery voltage and the ON forward voltage may cause a reversed-bias voltage exceeding the maximum ratings to be applied to the 2nd terminal (SQ terminal). Applying a reversed-bias voltage exceeding the maximum rating to the 2nd terminal (SQ terminal) may damage the IC.00.5 1.0 1.5 2.0 2.5 3.04.854.904.955.005.055.1051015202530354050607080900.51.01.52.02.53.06543216543210065421 1.0 2.0 3.0 4.05.0–4004080120160100515202519Output current I O (A)s Line RegulationO u t p u t v o l t a g e V O (V )O u t p u t v o l t a g e V O (V )O u t p u t v o l t a g e V O (V )O u t p u t v o l t a g e V O (V )Input voltage V IN (V)Input voltage V IN (V)s Load Regulations Rise Characteristicss Overcurrent Protection CharacteristicsOutput current I O (A)O u t p u t v o l t a g e V O (V )s Overcurrent Protection Temperature Characteristicss Efficiency CurveOutput current I O (A)Output current I O (A)Operating temperature Ta (ºC)P o w e r D i s s i p a t i o n P D (W )s Ta—P D CharacteristicsE f f i c i e n c y (%)。

LT-CG-S T-005-A0021-12-V1.2空气温湿度二合一变送器产品使用手册说明书

LT-CG-S T-005-A0021-12-V1.2空气温湿度二合一变送器产品使用手册说明书

1空气温度、湿度二合一变送器产品使用手册1概述LT-CG-S/T-005-A0021-12-V1.2空气温湿度传感器探头选用专用MEMS 芯片,并由单片机线性化调理,产品测量精度高,互换性好,免标定。

作为现场采集从站,按照标准MODBUS-RTU 通信协议RS485数字信号输出,适合远距离组网传输。

可选配液晶屏现场显示测量数据,还可选配1路继电器报警输出。

完全兼容组态王等多种上位机组态软件,易与第三方设备配套。

可广泛用于农业大棚、智能养殖、智能家居、智能交通、工厂商厦等物联网环境监测领域。

2外形规格3产品技术指标2规格型号:LT-CG-S/T-005-A0021-12-V1.2(包含液晶屏)LT-CG-S/T-005-A0020-12-V1.2(不含液晶屏)LT-CG-S/T-005-A0021-DO-12-V1.2(包含液晶屏、1路报警)空气温度测量范围:-40~80度空气温度测量精度:±0.5度空气温度分辨率:0.1度空气温度重复性:±0.2度空气温度漂移:<±0.1度/年空气湿度测量范围:0~100RH%空气湿度测量精度:±3RH%空气湿度分辨率:0.1%RH空气湿度重复性:±1%RH空气湿度漂移:<±0.5%RH/年工作环境:-20~55度,0~95%RH存储环境:-25~60度供电电压:DC7~24V最大功耗:400mW显示方式:LCD液晶屏(选项)液晶屏规格:08022行显示,每行8个字符报警(控制)输出(选配):1路继电器,触点容量(阻性):3A/AC220V、DC24V通信接口:RS485通信速率:2400、4800、9600、19200、38400、115200。

默认9600bps.通信协议:MODBUS-RTU数据格式:1、8、1、9600、N(1位起始位、8位数据位、1位停止位、无校验、9600bps波特率)终端类别:从站节点地址:001~255节点数量:31传输距离:500米(RS485通信专用电缆)变送器出厂前经过三防处理,确保高温高湿特殊环境下长期使用。

KIC3201S-30中文资料

KIC3201S-30中文资料

G
1
Pin Configuration
KIC3201S-XX
C L
Lot No.
No.
Type Name
1 2 3
Symbol GND VIN VOUT
Description Ground Power input Output (VIN)
J
1. VOUT 2. GND 3. VIN
1 2 3
GND
VIN
Line up
SOT-89 VOUT(V) ITEM 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 KIC3201S-36 KIC3201S-37 KIC3201S-38 KIC3201S-39 KIC3201S-40 KIC3201S-41 KIC3201S-42 KIC3201S-43 KIC3201S-44 KIC3201S-45 KIC3201S-46 KIC3201S-47 KIC3201S-48 KIC3201S-49 KIC3201S-50 KIC3201S-51 KIC3201S-52 KIC3201S-53 KIC3201S-54 KIC3201S-55 KIC3201S-56 KIC3201S-57 KIC3201S-58 KIC3201S-59 KIC3201S-60 Marking C6 C7 C8 C9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 ITEM KIC3201T-36 KIC3201T-37 KIC3201T-38 KIC3201T-39 KIC3201T-40 KIC3201T-41 KIC3201T-42 KIC3201T-43 KIC3201T-44 KIC3201T-45 KIC3201T-46 KIC3201T-47 KIC3201T-48 KIC3201T-49 KIC3201T-50 KIC3201T-51 KIC3201T-52 KIC3201T-53 KIC3201T-54 KIC3201T-55 KIC3201T56 KIC3201T-57 KIC3201T-58 KIC3201T-59 KIC3201T-60 Marking D6C D7C D8C D9C E0C E1C E2C E3C E4C E5C E6C E7C E8C E9C F0C F1C F2C F3C F4C F5C F6C F7C F8C F9C G0C TSM

MU03-3201中文资料

MU03-3201中文资料

De s c ription of Pa rt NumberS t a n l e y ’s MU series of super-bright LED light bar modules can be selected from a wide variety of configurations and colors to suit a broad range ofre q u i rements. By using front mask patterns, including letters, numbers and even graphics, this series is usable for a myriad of display applications.C h a r a c t e ristics by ColorC h a r a c t e ristics by Shap ePa ckage Dimensionsunit : mmT olerance : ±0.25mmfig.1fig.2Ch ara c teristics by Shap ePa ckage Dimensions unit : mm T olerance : ±0.25mm fig.3fig.4fig.5fig.6fig.7MU04-2101MU04-2105MU04-3101MU04-3105MU04-4101MU04-4105MU04-5101MU04-5102MU04-5105MU07-2101MU07-4101MU07-5101MU08-2201MU08-3201MU08-4201MU08-5201MU08-9301UnitsMU07-31014206x19(7x20)202020202020202020202020202020202020mA3232161632321620164020402040204020121215158815158108201020102010201088mcd180180190190225225190225190300320375320240250300250240250mW3333333335555444444pcsRedMilky WhiteOrangeMilky WhiteYellowMilky WhiteGreenGreenMilky WhiteYellowGreenRedOrangeYellowGreenGreenmmRedOrangeYellowPure GreenGreenPure GreenRedOrangeRedPure GreenY ellowPure GreenRedOrangeY ellowPure GreenRedOrange6x29(7x30)14x16(15x17)567 Shape Part No.EmittedColorResinColorLightEmittingSurface(Outer Size)N o.o fC h i p sAbsolute Max. RatingPower DissipationPdElectro-Optical CharacteristicsLuminous Intensity IvMIN.TYP.I Ffig.T a=25°CCh a r a cte ristics by ShapePa ckage Dimensionsunit : mmfig.8fig.9fig.10fig.11Absolute Max. Rating Power DissipationPdElectro-Optical Characteristics Luminous Intensity Iv MIN.TYP .I F fig.ShapePart No.Emitted Color Resin ColorLight Emitting Surface (Outer Size)No.of Chips MU09-9101MU09-9102MU09-9103MU11-2201MU11-3201MU11-4201MU11-5201MU13-9102Units820φ6.4(φ7)20202020202020202020202020202020202086812882010201012141240161612121644464410510567620886686012560150601251201251501256031060375120120125125150mW1212122222151522222pcsMilky WhiteMilky WhiteMilky WhiteRed Orange Yellow Milky WhiteRed Milky White Orange Milky White mmRed Orange Y ellow Pure GreenRed YellowPure GreenPure GreenRed Yellow RedOrangeGreen Milky White4.6x 9.5(5.6x 10.5)4x 12(5x 13)101112MU17-2101MU17-2105MU17-3101MU17-3105MU17-4101MU17-4105MU17-5101MU17-5105MU16-2101MU16-2105MU16-3101MU16-3105MU16-4101MU16-4105MU16-5101MU16-5105YellowPure GreenRedOrangeMU13-9101Red Pure GreenRed Yellow Red Orange Yellow Milky White Green Milky WhiteRed Milky White Orange Milky White Y ellow Milky White Green Milky White9x 9(10.1x 10.1)4x 19(5x 20)2333333332215012512518018019019022522519019084412129912125516882424181824241010mcdmA20202020202020202020209Ta=25°CT olerance : ±0.25mmCh a r act e ristics by ShapePa ckage Dimensionsunit : mmT olerance : ±0.25mmfig.12fig.13fig.14fig.15fig.16Absolute Max. Rating Power DissipationPdElectro-Optical Characteristics Luminous Intensity Iv MIN.TYP .I F fig.ShapePart No.Emitted ColorResin Color Light Emitting Surface (Outer Size)No.of Chips MU20-2101MU20-2105MU20-3101MU20-3105MU20-4101MU20-4105MU20-5101MU20-5105MU91-2001MU91-3001MU91-5001MU92-2001MU92-3001MU92-4001MU92-5001MU93-2001MU93-300113205x 9(6x 10)20202020202020202020202020202020202020886688446662.46662.4888443344223331.23331.2444606062.5062.50757562.5062.5060757575607575756075757511111111111111111111Red Milky White Orange Milky WhiteYellow Milky White Green Milky WhiteRed Green Red Orange Y ellow Green mm RedOrangeY ellowPure GreenRed Orange Y ellow Pure GreenOrange Y ellow 6x 6(6x 6)9x 5(9x 5)141516mApcsmW1.5310x 10(10x 10)Red Orange Yellow GreenUnitsRed Orange Y ellow Pure GreenRed Orange Y ellow Pure GreenMU93-4001MU93-5001MU91-4001mcdTa=25°C。

SFH 3201;SFH 3201-23-Z;中文规格书,Datasheet资料

SFH 3201;SFH 3201-23-Z;中文规格书,Datasheet资料

SFH 3201NPN-Silizium-Fototransistor im SMT-Gehäuse Silicon NPN Phototransistor in SMT PackageLead (Pb) Free Product - RoHS Compliant 2007-03-301Wesentliche Merkmale•Speziell geeignet für Anwendungen im Bereich von 460 nm bis 1080 nm •Hohe Linearität•Nur gegurtet lieferbar Anwendungen•Umgebungslicht-Detektor•Lichtschranken für Gleich- und Wechsel-lichtbetrieb •Industrieelektronik•…Messen/Steuern/Regeln“Typ Type Bestellnummer Ordering Code SFH 3201Q65110A1207SFH 3201-2/3Q65110A2479Features•Especially suitable for applications from 460 nm to 1080 nm •High linearity•Available only on tape and reel Applications •Ambient light detector •Photointerrupters •Industrial electronics•For control and drive circuitsGrenzwerte Maximum RatingsBezeichnung Parameter SymbolSymbolWertValueEinheitUnitBetriebs- und Lagertemperatur Operating and storage temperature range Top; T stg– 40 … + 100°CKollektor-Emitterspannung Collector-emitter voltage VCE20VKollektor-Emitterspannung, t < 120 s Collector-emitter voltage VCE70VKollektorstrom Collector current IC50mAKollektorspitzenstrom, τ < 10 μs Collector surge current ICS100mAEmitter-Kollektorspannung Emitter-collector voltage VEC7VVerlustleistung, T A = 25 °C Total power dissipation Ptot120mWWärmewiderstand für Montage auf PC-Board Thermal resistance for mounting on pcb RthJA500K/W2007-03-302Kennwerte (T A = 25 °C) CharacteristicsBezeichnung Parameter SymbolSymbolWertValueEinheitUnitWellenlänge der max. FotoempfindlichkeitWavelength of max. sensitivityλS max850nmSpektraler Bereich der FotoempfindlichkeitS = 10% von SmaxSpectral range of sensitivityS = 10% of Smaxλ460 … 1080nmBestrahlungsempfindliche FlächeRadiant sensitive areaA0.55mm2Abmessung der Chipfläche Dimensions of chip area L×BL×W1 × 1mm × mmHalbwinkel Half angle ϕ± 60Graddeg.Kapazität, V CE = 0 V, f = 1 MHz, E = 0 Capacitance CCE15pFDunkelstrom Dark currentV CE = 20 V, E = 0ICEO3 (≤ 200)nA2007-03-3032007-03-304Directional Characteristics S= f (ϕ)Die Fototransistoren werden nach ihrer Fotoempfindlichkeit gruppiert und mit arabischen Ziffern gekennzeichnet.The phototransistors are grouped according to their spectral sensitivity and distinguished by arabian figures.Bezeichnung ParameterSymbol SymbolWert ValueEinheit Unit -1-2-3Fotostrom, λ = 950 nm PhotocurrentE e = 0.1 mW/cm 2, V CE = 5 V E v = 1000 Ix, Normlicht/ standard light A, V CE = 5 V I PCEI PCE63 … 125 1.65100 … 200 2.6160 … 320 4.2 μA mA Anstiegszeit/Abfallzeit Rise and fall timeI C = 1 mA, V CC = 5 V, R L = 1 k Ωt r , t f162434μsKollektor-Emitter- SättigungsspannungCollector-emitter saturation voltage I C = I PCEmin 1) × 0.3, E e = 0.1 mW/cm 2V CEsat170 (≤ 250)170 (≤ 250)170 (≤ 250)mV1)I PCEmin ist der minimale Fotostrom der jeweiligen Gruppe.1)I PCEmin is the min. photocurrent of the specified group.TA= 25 °C, λ = 950 nm Rel. Spectral Sensitivity, S= f (λ)Photocurrent I PCE = f (T A),PhotocurrentIPhotocurrentCollector-Emitter CapacitanceCCE= f (V CE), f = 1 MHzTotal Power DissipationICEO= f (T A), V CE = 10 V, E =02007-03-305MaßzeichnungPackage OutlinesMaße in mm (inch) / Dimensions in mm (inch).2007-03-306Empfohlenes Lötpaddesign Reflow Löten Recommended Solder Pad Reflow Soldering2007-03-307Lötbedingungen Vorbehandlung nach JEDEC Level 4 Soldering Conditions Preconditioning acc. to JEDEC Level 4 Reflow Lötprofil für bleifreies Löten(nach J-STD-020C)Wellenlöten (TTW)(nach CECC 00802)2007-03-308OSRAM Opto Semiconductors GmbHWernerwerkstrasse 2, D-93049 Regensburg© All Rights Reserved.The information describes the type of component and shall not be considered as assured characteristics.Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.PackingPlease use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components 1 , may only be used in life-support devices or systems 2 with the express written approval of OSRAM OS.1 A critical component is a component usedin a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintainand sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered.2007-03-309分销商库存信息:OSRAMSFH 3201SFH 3201-2/3-Z。

卡萨帝冰箱 BCD-321WDSA说明书

卡萨帝冰箱 BCD-321WDSA说明书

4006 399 699
a.卡萨帝服务:/serviceSupport/PS/ABS 玻璃/ABS/PS/铝合金等
HDPE/ABS喷漆/PMMA 超导盘/冷冻铝盘4806.14806.74806.1/GB 4806.74806.94806.1/GB 4806.74806.94806.1/GB 4806.74806.10
4806.1/GB 4806.94806.10
4806.1/GB 4806.7
4806.1/GB 4806.74806.14806.74806.14806.74806.14806.74806.14806.9ABS/PS 蒸发器(丝管、吹胀)/管路等系统部件铝合金+环氧树脂/铜管/铝管阻燃PS/PS/PA
PS/ABS/PP/铝合金
1.根据国家标准GB/T 8059的要求,气候类型为SN.N.ST 型时,冰箱使用环境温度为10 ~ 38℃;气
2.冰箱容积是根据国家标准GB/T 8059,将间室内所有抽屉、滑轨及瓶座等附件全部取出的条件下测
3.所标注的年耗电量为按照国家标准GB/T 8059要求的方法,分别在32℃和16℃环境温度下,模拟用备注:在以上测试中,冷藏室控制在4℃,变温室控制在2℃,冷冻室控制在-18℃。

5. 所标注的“噪声(声功率级)”是在国家标准GB/T 8059规定的消声室内,环境温度为23℃,将冰。

JEDEC JESD51-1热性能测试标准中文版解读

JEDEC JESD51-1热性能测试标准中文版解读

JEDEC JESD51-1 标准解读JEDEC 固态技术协会是固态及半导体工业界的一个标准化组织,制定固态电子方面的工业标准。

JEDEC 曾经是电子工业联盟(EIA)的一部分:联合电子设备工程委员会(Joint Electron DeviceEngineering Council,JEDEC)。

1999 年,JEDEC 独立成为行业协会,抛弃了原来名称中缩写的含义,目前的名称为JEDEC 固态技术协会(JEDEC Solid State Technology Association)。

JESD51-1 标准规范了集成电路热测量方法,即电气测试方法。

本文摘取JESD51-1 标准中比较重点的内容,做适当的分析。

如有不准确的地方,还请多多指教。

JESD51-1 第2 章节:测量基础测量基础章节:本章节主要对热阻和热敏参数做了公式化的定义。

半导体器件的热阻通常定义为:RΘJX:器件的结到指定环境的热阻(也可以用ΘJX 表示),单位为℃/W。

T J :稳态测试条件下器件的结温,单位为℃。

T X :指定环境的参考温度,单位为℃。

P H :器件的功耗,单位为W。

在电气测试方法中,使用热敏参数(TSP)来测量被测物(DUT)在加热过程中结温的变化。

T J =K ×∆TSPTSP:热敏参数值,单位为mV。

K:定义结温T J 和TSP关系的常数,单位为℃/mV。

本章节中的重点是定义了两种电气测试方法。

第一种方法被称为静态测试方法,对被测物持续加热的同时,通过测量热敏参数来监控结温。

第二种方法被称为动态测试方法,从测量热敏参数的状态,切换到加热状态,对被测物加热一段时间后,再切换到测量状态。

对于LED 之类只有两个引脚的DUT,首先需要明确的一点是LED 在不同大小的测试电流(I M)下所测得的K 系数是不同的。

试想,如果采用静态测试方法对LED 做测试的话,标定K 系数的时候通过LED 的电流是测试电流(I M);而在加热过程中,通过LED 的电流时测试电流和加热电流的总和,这个时候采集到的TSP (即电压值)显然不能用前面得到的K 系数去推算温度。

KIC X5 炉温测试仪产品说明

KIC X5 炉温测试仪产品说明

隔热套数据表
仪器隔热套数据表

指定温度下的最大耐热性,以分钟表示
配置
尺寸(mm):长 *宽*高
150 200 ℃ ℃
250 300 ℃ ℃ 7.7
350 400 ℃ ℃ 6.5
防烫不锈钢隔热套,7 通道 •
302.0*75.0*23. 17.5 12.0 9.0 0
防烫不锈钢隔热套,9 通道
防烫不锈钢隔热套,12 通道
KIC X5 炉温测试仪产品介绍
KIC X5炉温测试仪产品说明
1
产品简介
2
软件功能
产品参数
3
4
隔热套数据表
5
注意事项
2
KIC X5 产品简介
• KIC X5炉温测试仪
• • • • • • • • • • • 硬件性能 1.支持全部windows软件平台,USB-Key加密功能。 2.全新双供模式:7号(AAA)电池,USB供电 (备注:插入电脑USB端,即可供电)。 3.KIC第5代技术,2012年上市 4.24个月的硬件保质期 5自动热电偶位置设置导入 6.温度曲线评定自动化 7.仪器过热或电池电量过低时会自动停止温度曲线测试 8.自动检索能保证温度曲线数据的完整性 9.制作过程稳定自动确认.
312.0*90.0*23. 18.1 13.1 10. 0 1
323.0*113.0*2 3.0 17.7 12.0 8.9
8.4
7.4
6.7
6.1
注意事项
1. 首先要检查电池电量是否充足,如果低于20%就得先充电,其次如果仪器表面温度高于45℃ 不要充电,尽量常温充电。 2. 建立通信联系时所产生的问题的典型原因:A通信线未完全插入——确认使用了正确插孔 B通信线或接头损坏——检查有无断路或其他损坏。必要时更换通C电池未充电— —充电 并确保充电LED亮起。 3. 隔热箱最多能在280℃条件下耐温9分钟,请务必超过此范围,确保仪器内部温度不超过85℃ 4. 长时间不使用请观察数据指示灯有没有每隔5秒左右闪烁,如果有闪烁请同时按住“开始” 结束键5秒左右,直到指示灯突然闪烁一下,然后观察直到没有灯闪烁为止。 5. 过炉的时候请务必盖好隔热箱,听到“咔”的一声为好 6. 每次只能将一个炉温测试仪记录器连接到电脑。不能同时将多个记录器连接到电脑上的 同USB端口再选用其中之一。 7. 过完一次炉子再次过炉,等隔热箱冷却后再使用 KIC X5产品参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E K B
DIM A B
G
2 C 3 D E F G H I J K L I H J
MILLIMETERS _ 2.9 + 0.2 1.6+0.2/-0.1 _ 0.70 + 0.05 _ 0.4 + 0.1
2.8+0.2/-0.3 _ 1.9 + 0.2 0.95 _ 0.16 + 0.05 0.00-0.10 0.25+0.25/-0.15 0.60 0.55
1
2 3
2006. 12. 11
Revision No : 6
1/6
元器件交易网
KIC3201S/T-12 ~ KIC3201S/T-60
Line up
SOT-89 VOUT(V) ITEM 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 KIC3201S-12 KIC3201S-13 KIC3201S-14 KIC3201S-15 KIC3201S-16 KIC3201S-17 KIC3201S-18 KIC3201S-19 KIC3201S-20 KIC3201S-21 KIC3201S-22 KIC3201S-23 KIC3201S-24 KIC3201S-25 KIC3201S-26 KIC3201S-27 KIC3201S-28 KIC3201S-29 KIC3201S-30 KIC3201S-31 KIC3201S-32 KIC3201S-33 KIC3201S-34 KIC3201S-35 Marking A2 A3 A4 A5 A6 A7 A8 A9 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 C0 C1 C2 C3 C4 C5 ITEM KIC3201T-12 KIC3201T-13 KIC3201T-14 KIC3201T-15 KIC3201T-16 KIC3201T-17 KIC3201T-18 KIC3201T-19 KIC3201T-20 KIC3201T-21 KIC3201T-22 KIC3201T-23 KIC3201T-24 KIC3201T-25 KIC3201T-26 KIC3201T-27 KIC3201T-28 KIC3201T-29 KIC3201T-30 KIC3201T-31 KIC3201T-32 KIC3201T-33 KIC3201T-34 KIC3201T-35 Marking B2C B3C B4C B5C B6C B7C B8C B9C C0C C1C C2C C3C C4C C5C C6C C7C C8C C9C D0C D1C D2C D3C D4C D5C TSM
IOUT(MAX) VOUT=2.5V~2.9V VOUT=3.0V~6.0V
400 VOUT 0.93 VIN=VOUT+1V VOUT 0.96 VIN=VOUT+1V -40 IOUT=40mA TOPR 85 -
-
-
mA
Load Regulation
Reg Load
1mA IOUT 200mA VIN=VOUT+1V VOUT =1.8~2.4V, IOUT = 100mA
* Other Voltages available, Selectable in 0.05V steps Contact KEC for details
2006. 12. 11
Revision No : 6
3/6
元器件交易网
KIC3201S/T-12 ~ KIC3201S/T-60
G
1
Pin Configuration
KIC3201S-XX
C L
Lot No.
No.
Type Name
1 2 3
Symbol GND VIN VOUT
Description Ground Power input Output (VIN)
J
1. VOUT 2. GND 3. VIN
1 2 3
GND
VIN
1 GND 2 VIN 3 VOUT
Heat Sink is common to 2 (VIN)
SOT-89
A
F
D
Applications Battery Powered Equipment Reference Voltage Sources Digital Cameras, Camcoders Palmtop Computers Portable Audio Video Equipment
元器件交易网
SEMICONDUCTOR
TECHNICAL DATA
Large Current Positive Voltage Regulator
The KIC3201S/T series are highly precise, low power consumption, positive voltage regulators manufactured using CMOS and laser trimming technologies. The series provides large currents with a significantly small dropout voltage. The KIC3201S/T consists of a driver transistor, a precision reference voltage and an error amplifier. Output voltage is selectable in 0.05V steps between a voltage of 1.2V and 6.0V.
VOUT
SOT-89 (TOP VIEW)
Heat Sink is common to
KIC3201T-XX
3
TSM
Lot No. Type Name No. 1 Symbol VOUT GND VIN Description Output Ground Power input
2 TSM (TOP VIEW)
40 200 170 150 100 400 320 300 200 8 0.2 100
100 300 250
mV
VD1
VOUT =2.5~2.9V, IOUT = 100mA VOUT =3.0~4.9V, IOUT = 100mA VOUT =5.0~6.0V, IOUT = 100mA
mV 220 180 600 500 mV 420 320 16 0.3 10 %/V V ppm/
Dropout Voltage VOUT =1.8~2.4V, IOUT = 200mA VD2 VOUT =2.5~2.9V, IOUT = 200mA VOUT =3.0~4.9V, IOUT = 200mA VOUT =5.0~6.0V, IOUT = 200mA Supply Current Line Regulations Input Voltage Output Voltage Temperature Characteristics Short Circuit Current IDD Reg Line VIN VOUT TOPR VOUT ISC VIN=VOUT(T)+1V VOUT +1.0V VIN 8V IOUT=40mA
1
2
3
DIM A B C D E F G H J K
MI.20 1.70 MAX 0.45+0.15/-0.10 4.25 MAX _ 1.50 + 0.10 0.40 TYP 1.75 MAX 0.75 MIN 0.5+0.10/-0.05
A H
KIC3201S/T-12 ~ KIC3201S/T-60
CMOS Linear Integrated Circuit
C
G
J B E
D K
D
F
F
Features Maximum Output Current : 400mA Dropout Voltage : 150mV @100mA, 300mV @200mA for VOUT=3.0V Maximum Operating Voltage : 10V Output Voltage Range : 1.2V ~ 6.0V (selectable in 0.05V steps) Highly Accurate : 2% Low Power Consumption : Typ. 8.0uA Operational Temperature Range : -40 ~ 85 Low ESR Capacitor : Ceramic compatible or Tantalum
Absolute Maximum Ratings
Characteristics Input Voltage Output Current Output Voltage Power Dissipation(Note) Operating Temperature Storage Temperature Symbol VIN IOUT VOUT PD (SOT-89) PD (TSM) TOPR TSTG 0.8 Rating 12 500 VSS-0.3 ~ VIN+0.3 900 -40 ~ 85 -65 ~ 150 ) Units V mA V mW
Line up
SOT-89 VOUT(V) ITEM 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 KIC3201S-36 KIC3201S-37 KIC3201S-38 KIC3201S-39 KIC3201S-40 KIC3201S-41 KIC3201S-42 KIC3201S-43 KIC3201S-44 KIC3201S-45 KIC3201S-46 KIC3201S-47 KIC3201S-48 KIC3201S-49 KIC3201S-50 KIC3201S-51 KIC3201S-52 KIC3201S-53 KIC3201S-54 KIC3201S-55 KIC3201S-56 KIC3201S-57 KIC3201S-58 KIC3201S-59 KIC3201S-60 Marking C6 C7 C8 C9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 F0 ITEM KIC3201T-36 KIC3201T-37 KIC3201T-38 KIC3201T-39 KIC3201T-40 KIC3201T-41 KIC3201T-42 KIC3201T-43 KIC3201T-44 KIC3201T-45 KIC3201T-46 KIC3201T-47 KIC3201T-48 KIC3201T-49 KIC3201T-50 KIC3201T-51 KIC3201T-52 KIC3201T-53 KIC3201T-54 KIC3201T-55 KIC3201T56 KIC3201T-57 KIC3201T-58 KIC3201T-59 KIC3201T-60 Marking D6C D7C D8C D9C E0C E1C E2C E3C E4C E5C E6C E7C E8C E9C F0C F1C F2C F3C F4C F5C F6C F7C F8C F9C G0C TSM
相关文档
最新文档