2018届高考数学理科二轮复习跟踪强化训练:9(含解析)
2018届高三理科数学二轮复习跟踪强化训练19 含解析 精
跟踪强化训练(十九)1.(2017·沈阳质检)已知数列{a n }是公差不为0的等差数列,首项a 1=1,且a 1,a 2,a 4成等比数列.(1)求数列{a n }的通项公式; (2)设数列{b n }满足b n =a n +,求数列{b n }的前n 项和T n .[解] (1)设数列{a n }的公差为d ,由已知得,a 22=a 1a 4,即(1+d )2=1+3d ,解得d =0或d =1. 又d ≠0,∴d =1,可得a n =n . (2)由(1)得b n =n +2n ,∴T n =(1+21)+(2+22)+(3+23)+…+(n +2n ) =(1+2+3+…+n )+(2+22+23+…+2n ) =n (n +1)2+2n +1-2.[解](1)由题意得,⎩⎪⎨⎪⎧S 1=a 2-2,a 1+a 2=2a 3-6,a 1+a 2+a 3=9,解得⎩⎪⎨⎪⎧a 1=1,a 2=3,a 3=5,当n ≥2时,S n -1=(n -1)a n -(n -1)n , 所以a n =na n +1-n (n +1)-(n -1)a n +(n -1)n , 即a n +1-a n =2.又a 2-a 1=2,因而数列{a n }是首项为1,公差为2的等差数列,从而a n =2n -1.T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n , 2T n =1×22+3×23+5×24+…+(2n -3)×2n +(2n -1)×2n +1. 两式相减得-T n =1×21+2×22+2×23+…+2×2n -(2n -1)×2n +1 =-2+2×(21+22+23+…+2n )-(2n -1)×2n +1 =-2+2×2×(1-2n )1-2-(2n -1)×2n +1=-2+2n +2-4-(2n -1)×2n +1=-6-(2n -3)×2n +1. 所以T n =6+(2n -3)×2n +1.3.数列{a n }的前n 项和为S n ,且首项a 1≠3,a n +1=S n +3n (n ∈N *).(1)求证:{S n -3n }是等比数列;(2)若{a n }为递增数列,求a 1的取值范围. [解] (1)证明:∵a n +1=S n +3n ,(n ∈N *) ∴S n +1=2S n +3n ,∴S n +1-3n +1=2(S n -3n ),∵a 1≠3. ∴S n +1-3n +1S n -3n=2,∴数列{S n -3n }是公比为2,首项为a 1-3的等比数列. (2)由(1)得S n -3n =(a 1-3)×2n -1,∴S n =(a 1-3)×2n -1+3n , ∴当n ≥2时,a n =S n -S n -1=(a 1-3)×2n -2+2×3n -1,∵{a n }为递增数列,∴n ≥2时,(a 1-3)×2n -1+2×3n >(a 1-3)×2n -2+2×3n -1,∴n ≥2时,2n -2⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫32n -2+a 1-3>0, 可得n ≥2时,a 1>3-12×⎝ ⎛⎭⎪⎫32n -2,又当n =2时,3-12×⎝ ⎛⎭⎪⎫32n -2有最大值为-9,∴a 1>-9,又a 2=a 1+3满足a 2>a 1, ∴a 1的取值范围是(-9,+∞).4.(2017·昆明模拟)设数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n =2a n S n -2S 2n .(1)求数列{a n }的通项公式;(2)是否存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立?若存在,求k 的取值范围;若不存在,请说明理由.[解] (1)∵当n ≥2时,a n =S n -S n -1,a n =2a n S n -2S 2n ,∴S n -S n -1=2(S n -S n -1)S n -2S 2n .∴S n -1-S n =2S n S n -1. ∴1S n-1S n -1=2.∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列, 即1S n=1+(n -1)×2=2n -1.∴S n =12n -1.当n ≥2时,a n =S n -S n -1=12n -1-12(n -1)-1=-2(2n -1)(2n -3).∴数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,-2(2n -1)(2n -3),n ≥2.(2)设b n =(1+S 1)(1+S 2)…(1+S n )2n +1,则b n +1=(1+S 1)(1+S 2)…(1+S n )(1+S n +1)2n +3.由(1)知S n =12n -1,S n +1=12n +1,∴b n +1b n =(1+S n +1)2n +12n +3=2n +2(2n +1)(2n +3)=4n 2+8n +44n 2+8n +3>1.又b n >0,∴数列{b n }是单调递增数列. 由(1+S 1)(1+S 2)…(1+S n )≥k 2n +1,得b n ≥k . ∴k ≤b 1=23=233.∴存在正数k ,使(1+S 1)(1+S 2)…(1+S n )≥k 2n +1对一切正整数n 都成立,且k 的取值范围为⎝ ⎛⎦⎥⎤0,233.。
2018届高三理科数学二轮复习跟踪强化训练15 含解析 精
跟踪强化训练(十五)一、选择题1.(2017·昆明模拟)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A.13a +512b B .13a -1312b C .-13a -512b D .-13a +1312b[解析]DE →=DC →+CE → =13BC →+34CA → =13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512b ,故选C. [答案] C2.(2017·吉林白城模拟)已知向量a =(2,3),b =(-1,2),若m a+n b 与a -2b 共线,则mn =( )A.12 B .2 C .-12 D .-2[解析] 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n-1,所以m n =-12,故选C.[答案] C3.(2017·广东深圳第二次调研)如图,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A.43 B .53 C.158 D .2[解析] 因为M 是BC 的中点,所以BM →=12BC →,所以AC →=λAM →+μBD →=λ(AB →+BM →)+μ(AD →-AB →) =λ⎝ ⎛⎭⎪⎪⎫AB →+12BC →+μ(BC →-AB →)=(λ-μ)AB →+⎝⎛⎭⎪⎫12λ+μBC →=AB →+BC →,即⎩⎨⎧λ-μ=1,12λ+μ=1,解得⎩⎪⎨⎪⎧λ=43,μ=13,所以λ+μ=53.[答案] B4.(2017·陕西省宝鸡市高三一检)已知向量a =(-2,-1),b =(λ,1),若a 与b 的夹角为钝角,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B .(2,+∞) C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,-12 [解析] 依题意,当a 与b 的夹角为钝角时,a ·b =-2λ-1<0,解得λ>-12.而当a 与b 共线时,有-2×1=-λ,解得λ=2,即当λ=2时,a =-b ,a 与b 反向共线,a 与b 的夹角为π,不是钝角,因此,当a 与b 的夹角为钝角时,λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞),选A.[答案] A5.(2017·云南省高三调研考试)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |等于( )A .13+6 2B .2 5 C.30 D.34[解析] 依题意得a 2=2,a ·b =2×2×cos45°=2,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2=18+12+4=34,选D. [答案] D6.(2017·西安模拟)在△ABC 中,A =120°,AB →·AC →=-1,则|BC →|的最小值是( )A. 2 B .2 C. 6 D .6[解析] 因为AB →·AC →=-1,所以bc cos120°=-1,即bc =2,在△ABC 中,由余弦定理得:a 2=b 2+c 2-2bc cos120°=b 2+c 2+bc ≥3bc =6,所以a ≥6,即|BC →|的最小值是 6.[答案] C7.(2017·西安质量检测)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论正确的是( )A .|b |=1B .a ⊥bC .a ·b =1D .(4a +b )⊥BC →[解析] 由题意,BC →=AC →-AB →=(2a +b )-2a =b ,则|b |=2,故A 错误;|2a |=2|a |=2,所以|a |=1,又AB →·AC →=2a ·(2a +b )=4|a |2+2a ·b =2×2cos60°=2,所以a ·b =-1,故B ,C 错误.故应选D.[答案] D8.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C 、D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A.⎝⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫0,13 C.⎝⎛⎭⎪⎫-12,0 D.⎝⎛⎭⎪⎫-13,0 [解析] 依题意,设BO →=λBC →,其中1<λ<43,则有 AO →=AB →+BO →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →.又AO →=xAB →+(1-x )AC →,且AB →,AC →不共线,于是有x =1-λ,由λ∈⎝⎛⎭⎪⎫1,43,知x ∈⎝ ⎛⎭⎪⎫-13,0,即x 的取值范围是⎝ ⎛⎭⎪⎫-13,0. [答案] D 9.如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点M ,若OC →=mOA →+nOB →(m >0,n >0),m +n =2,则∠AOB 的最小值为( )A.π6 B .π3 C.π2 D .2π3[解析] 解法一:由题意mn ≤⎝ ⎛⎭⎪⎫m +n 22=1,将OC →=mOA →+nOB →平方得1=m 2+n 2+2mn cos ∠AOB ,cos ∠AOB=1-m 2-n 22mn =1-(m +n )2+2mn 2mn =-32mn +1≤-12(当且仅当m =n =1时等号成立),∵0<∠AOB <π,∴∠AOB 的最小值为2π3.解法二:已知AB 与OC 的交点为M ,设λOM →=OC →=mOA →+nOB →,A ,B ,M 三点共线,则λ=m +n =2,说明M 是OC 的中点,在同一圆中相等弦所对的圆心角相等,且较短弦所对的圆心角也较小,可知AB ⊥OC 且互相平分,由平行四边形法则,四边形OACB 是菱形,且∠AOB =2π3,故选D.[答案] D10.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.22[解析] 解法一:设a =(1,0),b =(0,1),c =(x ,y ),则(a -c )·(b -c )=0,即(1-x ,-y )·(-x,1-y )=0,整理得⎝⎛⎭⎪⎫x -122+⎝⎛⎭⎪⎫y -122=12,这是一个圆心坐标为⎝⎛⎭⎪⎫12,12,半径为22的圆,所求的值等价于这个圆上的点到坐标原点的最大距离.根据图形可知,这个最大距离是2,即所求的最大值为 2.解法二:直接把(a -c )·(b -c )=0按照数量积的运算法则展开,利用|a |=|b |=1,a ·b =0化简后解决.∵|a |=|b |=1,a ·b =0,∴由(a -c )·(b -c )=0可得|c |2=c ·(a +b ),由于a ,b 是平面内两个互相垂直的单位向量,故|a +b |= 2.设a +b 与c 的夹角为θ,则|c |2=c ·(a +b )=|c |·|a +b |cos θ,即|c |=|a +b |cos θ=2cos θ≤2,所以|c |的最大值是 2. [答案] C11.(2017·郑州适应性测试)已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是( )A.2+1B.7+1C.2-1D.7-1[解析] 设点M 的坐标为(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,即x 2+(y +2)2=1,∴动点M 的轨迹是以C 为圆心,1为半径的圆,∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,其几何意义为动点M (x ,y )与点N (-1,-1)之间的距离,即圆C 上的点与点N (-1,-1)的距离,∵点N (-1,-1)在圆C 外部,∴|OA →+OB →+OM →|的最大值是|CN →|+1=(0+1)2+(-2+1)2+1=2+1,故选A. [答案] A12.已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC →|AC →|,则PB →·PC →的最大值等于( )A .13B .15C .19D .21[解析] 依题意,以点A 为坐标原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立如图所示的平面直角坐标系,如图.因为AP →=AB →|AB →|+4AC→|AC →|,所以点P (1,4),B ⎝ ⎛⎭⎪⎫1t ,0,C (0,t ).所以PB →·PC →=⎝⎛⎭⎪⎫1t -1,-4·(-1,t -4)=⎝⎛⎭⎪⎫1t -1×(-1)-4×(t -4)=17-1t -4t .因为1t +4t ≥21t ·4t =4⎝⎛当且仅当1t =4t ,即t =12 )时取等号,所以17-1t -4t ≤17-4=13,所以PB →·PC →的最大值为13,故选A.[答案] A 二、填空题13.(2017·全国卷Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________.[解析] 由题意知a ·b =|a |·|b |cos60°=2×1×12=1,则|a +2b |2=(a +2b )2=|a |2+4|b |2+4a ·b =4+4+4=12.所以|a +2b |=2 3. [答案] 2 314.(2017·南昌一模)在△ABC 中,AB →=(2,3),AC →=(1,2),则△ABC 的面积为________.[解析] ∵|AB →|=5,|AC →|=3,AB →·AC →=2+6, ∴cos ∠BAC =AB →·AC→|AB →|·|AC →|=2+615.∴sin ∠BAC =1-⎝⎛⎭⎪⎫2+6152= 7-4315=2-315.∴S △ABC =12|AB →|·|AC →|·sin ∠BAC =12×5×3×2-315=2-32.[答案] 2-3215.(2017·西宁模拟)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.[解析] ∵AP →=AD →+14AB →,BP →=AD →-34AB →,∴AP →·BP →=AD →2-12AB →·AD →-316AB →2=2,又AB =8,AD =5,解得AB →·AD →=22.[答案] 2216.(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.[解析]如图,由BD →=2DC →得AD →=13AB →+23AC →,所以AD →·AE →=⎝ ⎛⎭⎪⎪⎫13AB →+23AC →·(λAC →-AB →)=13λAB →·AC →-13AB →2+23λAC →2-23AB →·AC →,又AB →·AC →=3×2×cos60°=3,AB →2=9,AC →2=4,所以AD →·AE→=λ-3+83λ-2=113λ-5=-4,解得λ=311.解法二:以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,如图,因为AB =3,AC =2,∠A =60°,所以B (3,0),C (1,3),又BD →=2DC →,所以D ⎝ ⎛⎭⎪⎫53,233,所以AD →=⎝ ⎛⎭⎪⎫53,233,而AE →=λAC →-AB →=λ(1,3)-(3,0)=(λ-3,3λ),因此AD →·AE →=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311. [答案]311。
2018届高三理科数学二轮复习跟踪强化训练:32 Word版含解析
跟踪强化训练(三十二)1.(2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[解] (1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0. (2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2- 32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1,所以△C 2MN 的面积为12.2.已知直线l :⎩⎨⎧x =1+12t ,y =32t(t 为参数),曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)设直线l 与曲线C 1相交于A ,B 两点,求|AB |;(2)若把曲线C 1上各点的横坐标缩短为原来的12,纵坐标缩短为原来的32,得到曲线C 2,设点P 是曲线C 2上的一个动点,求点P 到直线l 的距离的最小值.[解] (1)直线l 的普通方程为y =3(x -1),曲线C 1的普通方程为x 2+y 2=1.联立得⎩⎪⎨⎪⎧y =3(x -1),x 2+y 2=1,得直线l 与曲线C 1的交点为(1,0),⎝ ⎛⎭⎪⎫12,-32,则|AB |=1.(2)曲线C 2的参数方程为⎩⎨⎧x =12cos θ,y =32sin θ(θ为参数),设点P 的坐标是⎝ ⎛⎭⎪⎫12cos θ,32sin θ,从而点P 到直线l 的距离为d=⎪⎪⎪⎪⎪⎪32cos θ-32sin θ-32=34⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫θ-π4+2,当sin ⎝ ⎛⎭⎪⎫θ-π4=-1时,d 取得最小值,且最小值为23-64. 3.(2017·沧州二模)在平面直角坐标系中,曲线C 的参数方程为⎩⎨⎧x =55cos α,y =sin α(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ+π4= 2.l 与C 交于A ,B 两点.(1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)设点P (0,-2),求|P A |+|PB |的值.[解](1)曲线C 的参数方程为⎩⎨⎧x =55cos α,y =sin α(α为参数),普通方程为C :5x 2+y 2=1;直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=2,即ρcos θ-ρsin θ=2,l :y =x -2.(2)点P (0,-2)在l 上,l 的参数方程为⎩⎨⎧x =22t ,y =-2+22t(t 为参数),代入5x 2+y 2=1整理得,3t 2-22t +3=0,由题意可得|P A |+|PB |=|t 1|+|t 2|=|t 1+t 2|=223.4.(2017·陕西咸阳一模)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=-4cos θ.(1)求曲线C 1与C 2的交点的极坐标;(2)A ,B 两点分别为曲线C 1与C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).[解] (1)由⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ得⎩⎪⎨⎪⎧x =2cos θ,y -2=2sin θ,两式平方相加,得 x 2+(y -2)2=4,即x 2+y 2-4y =0.① 由ρ=-4cos θ,得ρ2=-4ρcos θ,即x 2+y 2=-4x .②①-②得x +y =0,代入①得交点为(0,0),(-2,2).其极坐标为(0,0),⎝⎛⎭⎪⎫22,3π4.(2)如图.由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB |最大,此时|AB |=22+4,点O 到AB 的距离为 2.∴△OAB 的面积为S =12×(22+4)×2=2+2 2.。
2018届高考理科数学二轮复习课时跟踪检测试卷及答案(26份)
课时跟踪检测(一)集合、常用逻辑用语1.(2017·全国卷Ⅱ)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( ) A.{1,-3} B.{1,0}C.{1,3} D.{1,5}解析:选C 因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m =3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.2.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.(2017·合肥模拟)已知命题q:∀x∈R,x2>0,则( )A.命题綈q:∀x∈R,x2≤0为假命题B.命题綈q:∀x∈R,x2≤0为真命题C.命题綈q:∃x0∈R,x20≤0为假命题D.命题綈q:∃x0∈R,x20≤0为真命题解析:选D 全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x=0时,x2≤0成立,所以綈q为真命题.4.(2018届高三·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c解析:选A 命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a≤b,则a+c≤b+c”,故选A.5.(2017·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A 由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.6.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:选D 因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.7.(2017·唐山模拟)已知集合A={x|x2-5x-6<0},B={x|2x<1},则图中阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}解析:选C 由x 2-5x -6<0,解得-1<x <6,所以A ={x |-1<x <6}.由2x<1,解得x <0,所以B ={x |x <0}.又图中阴影部分表示的集合为(∁U B )∩A ,因为∁U B ={x |x ≥0},所以(∁U B )∩A ={x |0≤x <6}.8.(2018届高三·河北五校联考)已知命题p :∃x 0∈(-∞,0),2x 0<3x0;命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,tan x >sin x ,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )解析:选C 根据指数函数的图象与性质知命题p 是假命题,綈p 是真命题;∵x ∈⎝⎛⎭⎪⎫0,π2,且tan x =sin xcos x, ∴0<cos x <1,tan x >sin x , ∴q 为真命题,选C.9.(2017·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 根据祖暅原理,“A ,B 在等高处的截面积恒相等”是“A ,B 的体积相等”的充分不必要条件,即綈q 是綈p 的充分不必要条件,即命题“若綈q ,则綈p ”为真,逆命题为假,故逆否命题“若p ,则q ”为真,否命题“若q ,则p ”为假,即p 是q 的充分不必要条件,选A.10.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={x |log 2x <1},Q ={x ||x -2|<1},则P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}.11.(2018届高三·广西五校联考)命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”,命题q :“关于x 的方程2x-m =0有正实数解”,若“p 或q ”为真,“p 且q ”为假,则实数m 的取值范围是( )A .[1,10]B .(-∞,-2)∪(1,10]C .[-2,10]D .(-∞,-2]∪(0,10]解析:选B 若命题p :“∃x 0∈R ,使得x 20+mx 0+2m +5<0”为真命题,则Δ=m 2-8m -20>0,∴m <-2或m >10;若命题q 为真命题,则关于x 的方程m =2x有正实数解,因为当x >0时,2x>1,所以m >1.因为“p 或q ”为真,“p 且q ”为假,故p 真q 假或p 假q真,所以⎩⎪⎨⎪⎧m <-2或m >10,m ≤1或⎩⎪⎨⎪⎧-2≤m ≤10,m >1,所以m <-2或1<m ≤10.12.(2017·石家庄模拟)下列选项中,说法正确的是( ) A .若a >b >0,则ln a <ln bB .向量a =(1,m )与b =(m,2m -1)(m ∈R)垂直的充要条件是m =1C .命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∀n ∈N *,3n ≥(n +2)·2n -1”D .已知函数f (x )在区间[a ,b ]上的图象是连续不断的,则命题“若f (a )·f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题解析:选D A 中,因为函数y =ln x (x >0)是增函数,所以若a >b >0,则ln a >ln b ,故A 错; B 中,若a ⊥b ,则m +m (2m -1)=0, 解得m =0,故B 错;C 中,命题“∀n ∈N *,3n>(n +2)·2n -1”的否定是“∃n 0∈N *,3n 0≤(n 0+2)·2n 0-1”,故C 错;D 中,原命题的逆命题是“若f (x )在区间(a ,b )内至少有一个零点,则f (a )·f (b )<0”,是假命题,如函数f (x )=x 2-2x -3在区间[-2,4]上的图象是连续不断的,且在区间(-2,4)内有两个零点,但f (-2)·f (4)>0,故D 正确.13.(2018届高三·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1814.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3,即m >2. 答案:(2,+∞)15.(2017·广东中山一中模拟)已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}.(2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)3216.(2017·张掖模拟)下列说法中不正确的是________.(填序号) ①若a ∈R ,则“1a<1”是“a >1”的必要不充分条件;②“p ∧q 为真命题”是“p ∨q 为真命题”的必要不充分条件; ③若命题p :“∀x ∈R ,sin x +cos x ≤2”,则p 是真命题;④命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3>0”.解析:由1a <1,得a <0或a >1,反之,由a >1,得1a <1,∴“1a<1”是“a >1”的必要不充分条件,故①正确;由p ∧q 为真命题,知p ,q 均为真命题,所以p ∨q 为真命题,反之,由p ∨q 为真命题,得p ,q 至少有一个为真命题,所以p ∧q 不一定为真命题,所以“p ∧q 为真命题”是“p ∨q 为真命题”的充分不必要条件,故②不正确;∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4≤2, ∴命题p 为真命题,③正确;命题“∃x 0∈R ,x 20+2x 0+3<0”的否定是“∀x ∈R ,x 2+2x +3≥0”,故④不正确. 答案:②④课时跟踪检测(二) 平面向量与复数1.(2017·全国卷Ⅲ)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C z =i(-2+i)=-2i +i 2=-1-2i ,故复平面内表示复数z =i(-2+i)的点位于第三象限.2.(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z |=( ) A.12 B.22 C. 2 D .2解析:选C 因为z =2i1+i =-+-=i(1-i)=1+i ,所以|z |= 2.3.(2017·沈阳模拟)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 的值为( ) A .-23 B.23 C.38 D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38.4.(2018届高三·西安摸底)已知非零单位向量a ,b 满足|a +b |=|a -b |,则a 与b -a 的夹角是( )A.π6 B.π3 C.π4 D.3π4解析:选D 由|a +b |=|a -b |可得(a +b )2=(a -b )2,即a ·b =0,而a ·(b -a )=a ·b -a 2=-|a |2<0,即a 与b -a 的夹角为钝角,结合选项知选D.5.(2017·湘中模拟)已知向量a =(x ,3),b =(x ,-3),若(2a +b )⊥b ,则|a |=( ) A .1 B. 2 C. 3 D .2解析:选D 因为(2a +b )⊥b ,所以(2a +b )·b =0,即(3x ,3)·(x ,-3)=3x 2-3=0,解得x =±1,所以a =(±1,3),|a |=2+32=2.6.(2017·广西五校联考)设D 是△ABC 所在平面内一点,AB ―→=2DC ―→,则( ) A .BD ―→=AC ―→-32AB ―→B .BD ―→=32AC ―→-AB ―→C .BD ―→=12AC ―→-AB ―→D .BD ―→=AC ―→-12AB ―→解析:选A BD ―→=BC ―→+CD ―→=BC ―→-DC ―→=AC ―→-AB ―→-12AB ―→=AC ―→-32AB ―→.7.(2018届高三·云南调研)在▱ABCD 中,|AB ―→|=8,|AD ―→|=6,N 为DC 的中点,BM ―→=2MC ―→,则AM ―→·NM ―→=( )A .48B .36C .24D .12解析:选C AM ―→·NM ―→=(AB ―→+BM ―→)·(NC ―→+CM ―→)=⎝ ⎛⎭⎪⎫AB ―→+23 AD ―→ ·⎝ ⎛⎭⎪⎫12 AB ―→-13 AD ―→ =12AB―→2-29AD ―→2=12×82-29×62=24. 8.(2018届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i=+2+-=i.9.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→ 在BA ―→方向上的投影是( ) A .-3 5 B .-322 C .3 5 D.322解析:选 A 依题意得,BA ―→=(-2,-1),CD ―→=(5,5),BA ―→ ·CD ―→=(-2,-1)·(5,5)=-15,|BA ―→|=5,因此向量CD ―→在BA ―→方向上的投影是BA ―→·CD ―→|BA ―→|=-155=-3 5.10.(2018届高三·湖南五校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C 法一:设向量a ,b 的夹角为θ,BC ―→=AC ―→-AB ―→=2a +b -2a =b ,∴|BC ―→|=|b |=2,|AB ―→|=2|a |=2,∴|a |=1,AC ―→2=(2a +b )2=4a 2+4a ·b +b 2=8+8cos θ=4,∴cos θ=-12,θ=120°.法二:BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.11.(2017·长春模拟)在△ABC 中,D 为△ABC 所在平面内一点,且AD ―→=13AB ―→+12AC ―→,则S △BCD S △ABD=( )A.16B.13C.12D.23解析:选B 如图,由已知得,点D 在△ABC 中与AB 平行的中位线上,且在靠⎝ ⎛⎭⎪⎫1-12-13S近BC 边的三等分点处,从而有S △ABD =12S △ABC ,S △ACD =13S △ABC ,S △BCD =△ABC=16S △ABC ,所以S △BCD S △ABD =13. 12.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5 D .2 解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为222+12=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝ ⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.13.(2017·成都模拟)若复数z =a i1+i (其中a ∈R ,i 为虚数单位)的虚部为-1,则a =________.解析:因为z =a i1+i=a-+-=a 2+a 2i 的虚部为-1,所以a2=-1,解得a =-2. 答案:-214.(2017·兰州诊断)已知向量OA ―→=(3,1),OB ―→=(-1,3),OC ―→=m OA ―→-n OB ―→(m >0,n >0),若m +n =1,则|OC ―→|的最小值为________.解析:由OA ―→=(3,1),OB ―→=(-1,3),得OC ―→=m OA ―→-n OB ―→=(3m +n ,m -3n ),因为m +n =1(m >0,n >0),所以n =1-m 且0<m <1,所以OC ―→=(1+2m,4m -3),则|OC ―→|=+2m2+m -2=20m 2-20m +10=20⎝ ⎛⎭⎪⎫m -122+5(0<m <1),所以当m =12时,|OC ―→|min = 5.答案: 515.(2018届高三·石家庄调研)非零向量m ,n 的夹角为π3,且满足|n |=λ|m |(λ>0),向量组x 1,x 2,x 3由一个m 和两个n 排列而成,向量组y 1,y 2,y 3由两个m 和一个n 排列而成,若x 1·y 1+x 2·y 2+x 3·y 3所有可能值中的最小值为4m 2,则λ=________.解析:由题意:x 1·y 1+x 2·y 2+x 3·y 3的运算结果有以下两种可能:①m 2+m ·n +n 2=m 2+λ|m ||m |cos π3+λ2m 2=⎝ ⎛⎭⎪⎫λ2+λ2+1m 2;②m ·n +m ·n +m ·n =3λ|m ||m |cos π3=3λ2m 2.又λ2+λ2+1-3λ2=λ2-λ+1=⎝ ⎛⎭⎪⎫λ-122+34>0,所以3λ2m 2=4m 2,即3λ2=4,解得λ=83.答案:8316.如图所示,已知正方形ABCD 的边长为1,点E 从点D 出发,按字母顺序D →A →B →C 沿线段DA ,AB ,BC 运动到点C ,在此过程中DE ―→·CD ―→的取值范围为________.解析:以BC ,BA 所在的直线为x 轴,y 轴,建立平面直角坐标系如图所示,可得A (0,1),B (0,0),C (1,0),D (1,1).当E 在DA 上时,设E (x,1),其中0≤x ≤1,∵DE ―→=(x -1,0),CD ―→=(0,1), ∴DE ―→·CD ―→=0;当E 在AB 上时,设E (0,y ), 其中0≤y ≤1,∵DE ―→=(-1,y -1),CD ―→=(0,1),∴DE ―→·CD ―→=y -1(0≤y ≤1),此时DE ―→·CD ―→的取值范围为[-1,0]; 当E 在BC 上时,设E (x,0),其中0≤x ≤1, ∵DE ―→=(x -1,-1),CD ―→=(0,1),∴DE ―→·CD ―→=-1.综上所述,DE ―→·CD ―→的取值范围为[-1,0]. 答案:[-1,0]课时跟踪检测(三) 不等式1.(2018届高三·湖南四校联考)已知不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,则m-n =( )A.12 B .-52C.52D .-1解析:选B 由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m (m <0),解得m =-1,n =32,所以m -n =-52.2.已知直线ax +by =1经过点(1,2),则2a +4b的最小值为( ) A. 2 B .2 2 C .4D .4 2解析:选B ∵直线ax +by =1经过点(1,2),∴a +2b =1,则2a+4b≥22a·22b=22a +2b=22,当且仅当2a =22b,即a =12,b =14时取等号.3.(2017·兰州模拟)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值是( )A .5B .7C .8D .23解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示,作出直线2x +3y =0,对该直线进行平移,可以发现经过⎩⎪⎨⎪⎧x +y =3,2x -y =3的交点A (2,1)时,目标函数z =2x +3y 取得最小值7.4.(2017·贵阳一模)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3B .4C.92D.112解析:选B 由题意得x +2y =8-x ·2y ≥8-⎝⎛⎭⎪⎫x +2y 22,当且仅当x =2y 时,等号成立,整理得(x+2y )2+4(x +2y )-32≥0,即(x +2y -4)(x +2y +8)≥0,又x +2y >0,所以x +2y ≥4,即x +2y 的最小值为4.5.(2017·云南模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≥1,21-x-2,x <1,则不等式f (x -1)≤0的解集为( )A .{x |0≤x ≤2}B .{x |0≤x ≤3}C .{x |1≤x ≤2}D .{x |1≤x ≤3}解析:选D 由题意,得f (x -1)=⎩⎪⎨⎪⎧2x -2-2,x ≥2,22-x-2,x <2.当x ≥2时,由2x -2-2≤0,解得2≤x ≤3; 当x <2时,由22-x-2≤0,解得1≤x <2.综上所述,不等式f (x -1)≤0的解集为{x |1≤x ≤3}.6.(2017·武汉调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:选B 根据约束条件画出可行域如图①中阴影部分所示.可知可行域为开口向上的V 字型.在顶点A 处z有最小值,联立方程⎩⎪⎨⎪⎧x +y =a ,x -y =-1,得⎩⎪⎨⎪⎧x =a -12,y =a +12,即A ⎝⎛⎭⎪⎫a -12,a +12,则a -12+a ×a +12=7,解得a =3或a =-5. 当a =-5时,如图②,虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.7.(2017·合肥二模)若关于x 的不等式x 2+ax -2<0在区间[1,4]上有解,则实数a 的取值范围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)解析:选A 法一:因为x ∈[1,4],则不等式x 2+ax -2<0可化为a <2-x 2x =2x -x ,设f (x )=2x-x ,x ∈[1,4],由题意得只需a <f (x )max ,因为函数f (x )为区间[1,4]上的减函数,所以f (x )max =f (1)=1,故a <1.法二:设g (x )=x 2+ax -2,函数g (x )的图象是开口向上的抛物线,过定点(0,-2),因为g (x )<0在区间[1,4]上有解,所以g (1)<0,解得a <1.8.(2017·太原一模)已知实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,则z =x 2+y 2的取值范围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:选C 画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max=|OA |2=13,故选C.9.(2017·衡水二模)若关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+a x 1x 2的最小值是( )A.63 B.233 C.433D.263解析:选C ∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号. ∴x 1+x 2+a x 1x 2的最小值是433. 10.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50解析:选B 设黄瓜、韭菜的种植面积分别为x 亩,y 亩,则总利润z =4×0.55x +6×0.3y -1.2x-0.9y =x +0.9y .此时x ,y 满足条件⎩⎪⎨⎪⎧x +y ≤50,1.2x +0.9y ≤54,x ≥0,y ≥0.画出可行域如图,得最优解为A (30,20).故黄瓜和韭菜的种植面积分别为30亩、20亩时,种植总利润最大.11.已知点M 是△ABC 内的一点,且AB ―→·AC ―→=23,∠BAC =π6,若△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,则4x +yxy的最小值为( )A .16B .18C .20D .27解析:选D 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . ∵AB ―→·AC ―→=23,∠BAC =π6,∴|AB ―→|·|AC ―→|cos π6=23,∴bc =4,∴S △ABC =12bc sin π6=14bc =1.∵△MBC ,△MCA ,△MAB 的面积分别为23,x ,y ,∴23+x +y =1,即x +y =13, ∴4x +yxy=1x +4y =3(x +y )⎝ ⎛⎭⎪⎫1x +4y=3⎝ ⎛⎭⎪⎫1+4+y x+4x y ≥3⎝⎛⎭⎪⎫5+2y x ·4x y =27, 当且仅当y =2x =29时取等号,故4x +yxy的最小值为27.12.(2017·安徽二校联考)当x ,y 满足不等式组⎩⎪⎨⎪⎧x +2y ≤2,y -4≤x ,x -7y ≤2时,-2≤kx -y ≤2恒成立,则实数k 的取值范围是( )A .[-1,1]B .[-2,0]C.⎣⎢⎡⎦⎥⎤-15,35D.⎣⎢⎡⎦⎥⎤-15,0解析:选 D 作出不等式组表示的可行域如图中阴影部分所示,设z =kx -y ,由⎩⎪⎨⎪⎧x +2y =2,y -4=x得⎩⎪⎨⎪⎧ x =-2,y =2,即B (-2,2);由⎩⎪⎨⎪⎧x +2y =2,x -7y =2得⎩⎪⎨⎪⎧x =2,y =0,即C (2,0);由⎩⎪⎨⎪⎧y -4=x ,x -7y =2得⎩⎪⎨⎪⎧x =-5,y =-1,即A (-5,-1).要使不等式-2≤kx -y ≤2恒成立,则⎩⎪⎨⎪⎧-2≤-2k -2≤2,-2≤2k ≤2,-2≤-5k +1≤2,即⎩⎪⎨⎪⎧-2≤k ≤0,-1≤k ≤1,-15≤k ≤35,所以-15≤k ≤0.13.(2018届高三·池州摸底)已知a >b >1,且2log a b +3log b a =7,则a +1b 2-1的最小值为________.解析:令log a b =t ,由a >b >1得0<t <1,2log a b +3log b a =2t +3t =7,得t =12,即log a b =12,a=b 2,所以a +1b 2-1=a -1+1a -1+1≥2a -1a -1+1=3,当且仅当a =2时取等号.故a +1b 2-1的最小值为3. 答案:314.(2017·石家庄模拟)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,则z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,则有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125.答案:-12515.(2017·成都二诊)若关于x 的不等式ax 2-|x |+2a <0的解集为空集,则实数a 的取值范围为________.解析:ax 2-|x |+2a <0⇒a <|x |x 2+2,当x ≠0时,|x |x 2+2≤|x |2x 2×2=24(当且仅当x =±2时取等号),当x =0时,|x |x 2+2=0<24,因此要使关于x 的不等式ax 2-|x |+2a <0的解集为空集,只需a ≥24,即实数a 的取值范围为⎣⎢⎡⎭⎪⎫24,+∞. 答案:⎣⎢⎡⎭⎪⎫24,+∞ 16.(2018届高三·福州调研)不等式组⎩⎪⎨⎪⎧2x -y +1≥0,x -2y +2≤0,x +y -4≤0的解集记作D ,实数x ,y 满足如下两个条件:①∀(x ,y )∈D ,y ≥ax ;②∃(x ,y )∈D ,x -y ≤a . 则实数a 的取值范围为________.解析:由题意知,不等式组所表示的可行域D 如图中阴影部分(△ABC 及其内部)所示,由⎩⎪⎨⎪⎧x -2y +2=0,x +y -4=0,得⎩⎪⎨⎪⎧ x =2,y =2,所以点B 的坐标为(2,2).由⎩⎪⎨⎪⎧2x -y +1=0,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3,所以点C 的坐标为(1,3).因为∀(x ,y )∈D ,y ≥ax , 由图可知,a ≤k OB ,所以a ≤1.由∃(x ,y )∈D ,x -y ≤a ,设z =x -y ,则a ≥z min .当目标函数z =x -y 过点C (1,3)时,z =x -y 取得最小值,此时z min =1-3=-2,所以a ≥-2. 综上可知,实数a 的取值范围为[-2,1]. 答案:[-2,1]课时跟踪检测(四) 函数的图象与性质[A 级——“12+4”保分小题提速练]1.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝ ⎛⎭⎪⎫x +19,x >0的图象如图所示,则a +b +c =( )A.43 B.73 C .4D.133解析:选D 将点(0,2)代入y =log c ⎝ ⎛⎭⎪⎫x +19,得2=log c 19,解得c =13.再将点(0,2)和(-1,0)分别代入y =ax +b ,解得a =2,b =2,∴a +b +c =133.2.(2018届高三·武汉调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( )A .f (x )=2-x22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:选D A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x >0,x →0时,f (x )<0,与题图不符,故不成立.选D.3.下列函数中,既是奇函数又是减函数的是( ) A .f (x )=x 3,x ∈(-3,3) B .f (x )=tan x C .f (x )=x |x |D .f (x )=ln 2e e --x x解析:选D 选项A 、B 、C 、D 对应的函数都是奇函数,但选项A 、B 、C 对应的函数在其定义域内都不是减函数,故排除A 、B 、C ;对于选项D ,因为f (x )=ln 2e e --x x,所以f (x )=(e -x -e x)ln 2,由于函数g (x )=e -x与函数h (x )=-e x 都是减函数,又ln 2>0,所以函数f (x )=(e -x-e x)ln 2是减函数,故选D.4.函数f (x )= -x 2+9x +10-2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10]. 5.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln(2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称解析:选 C 由题易知,f (x )=ln x +ln(2-x )的定义域为(0,2),f (x )=ln[x (2-x )]=ln[-(x-1)2+1],由复合函数的单调性知,函数f (x )=ln x +ln(2-x )在(0,1)单调递增,在(1,2)单调递减,所以排除A 、B ;又f ⎝ ⎛⎭⎪⎫12=ln 12+ln ⎝ ⎛⎭⎪⎫2-12=ln 34,f ⎝ ⎛⎭⎪⎫32=ln 32+ln ⎝⎛⎭⎪⎫2-32=ln 34,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32=ln 34,所以排除D.故选C. 6.函数f (x )=x x2的图象大致是( )解析:选 A 由题意知,函数f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=-πx-x2=x x2=f (x ),∴f (x )为偶函数,排除C 、D ; 当x =1时,f (1)=cos π1=-1<0,排除B ,故选A. 7.(2018届高三·衡阳八中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称.又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 8.(2017·甘肃会宁一中摸底)已知函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是( )A.⎣⎢⎡⎭⎪⎫-1,12B.⎝⎛⎭⎪⎫-1,12C .(-∞,-1]D.⎝ ⎛⎭⎪⎫0,12 解析:选A 法一:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.法二:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A.9.(2018届高三·辽宁实验中学摸底)已知函数f (x )=(x -a )(x -b )(其中a >b ),若f (x )的图象如图所示,则函数g (x )=a x +b 的图象大致为( )解析:选A 由一元二次方程的解法易得(x -a )(x -b )=0的两根为a ,b ,根据函数零点与方程的根的关系,可得f (x )=(x -a )(x -b )的零点就是a ,b ,即函数f (x )的图象与x 轴交点的横坐标为a ,b .观察f (x )=(x -a )·(x -b )的图象,可得其与x 轴的两个交点分别在区间(-2,-1)与(0,1)上,又由a >b ,可得-2<b <-1,0<a <1.函数g (x )=a x+b ,由0<a <1可知其是减函数,又由-2<b <-1可知其图象与y 轴的交点在x 轴的下方,分析选项可得A 符合这两点,B 、C 、D 均不满足,故选A.10.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在(-1,3)上的解集为( )A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)解析:选C 作出函数f (x )的图象如图所示.当x ∈(-1,0)时,由xf (x )>0得x ∈(-1,0); 当x ∈(0,1)时,由xf (x )>0得x ∈∅; 当x ∈(1,3)时,由xf (x )>0得x ∈(1,3). 故x ∈(-1,0)∪(1,3).11.(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z),值域为[0,1],则满足条件的整数对(a ,b )共有( )A .6个B .7个C .8个D .9个解析:选B 函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.12.已知函数f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析:选C 作出函数g (x )=1-x 2和函数|f (x )|=|2x-1|的图象如图①所示,得到函数h (x )的图象如图②所示,由图象得函数h (x )有最小值-1,无最大值.13.若函数f (x )=a -12x+1为奇函数,则a =________. 解析:由题意知f (0)=0,即a -12+1=0,解得a =12.答案:1214.已知f (x )=ax 3+bx +1(ab ≠0),若f (2 017)=k ,则f (-2 017)=________.解析:由f (2 017)=k 可得,a ×2 0173+b ×2 017+1=k ,∴2 0173a +2 017b =k -1,∴f (-2 017)=-a ×2 0173-b ×2 017+1=2-k .答案:2-k15.(2017·安徽二校联考)已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x,则f (log 49)=______.解析:因为log 49=log 23>0,又f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-22log 3-=-221log 3-=-13.答案:-1316.已知y =f (x )是偶函数,当x >0时,f (x )=x +4x,且当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立,则m -n 的最小值是________.解析:∵当x ∈[-3,-1]时,n ≤f (x )≤m 恒成立, ∴n ≤f (x )min 且m ≥f (x )max ,∴m -n 的最小值是f (x )max -f (x )min , 由偶函数的图象关于y 轴对称知,当x ∈[-3,-1]时,函数的最值与x ∈[1,3]时的最值相同,又当x >0时,f (x )=x +4x,在[1,2]上递减,在[2,3]上递增,且f (1)>f (3), ∴f (x )max -f (x )min =f (1)-f (2)=5-4=1. 故m -n 的最小值是1. 答案:1[B 级——中档小题强化练]1.函数f (x )=1+ln ⎝ ⎛⎭⎪⎫x 2+2e 的图象大致是( )解析:选D 因为f (0)=ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D. 2.(2018届高三·东北三校联考)已知函数f (x )=ln(|x |+1)+x 2+1,则使得f (x )>f (2x -1)成立的x 的取值范围是 ( )A.⎝ ⎛⎭⎪⎫13,1 B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎪⎫-∞,13 解析:选A 易知函数f (x )为偶函数,且当x ≥0时,f (x )=ln(x +1)+x 2+1 是增函数, ∴使得f (x )>f (2x -1)成立的x 满足|2x -1|<|x |, 解得13<x <1.3.(2017·潍坊一模)设函数f (x )为偶函数,且∀x ∈R ,f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( )A .|x +4|B .|2-x |C .2+|x +1|D .3-|x +1|解析:选D 因为f ⎝ ⎛⎭⎪⎫x -32=f ⎝ ⎛⎭⎪⎫x +12, 所以f (x )=f (x +2),得f (x )的周期为2. 因为当x ∈[2,3]时,f (x )=x , 所以当x ∈[0,1]时,x +2∈[2,3],f (x )=f (x +2)=x +2.又f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1],f (x )=f (-x )=-x +2,当x ∈[-2,-1]时,x +2∈[0,1],f (x )=f (x +2)=x +4,所以当x ∈[-2,0]时,f (x )=3-|x +1|.4.(2017·安庆二模)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 沿l 1以1 m/s 的速度匀速竖直向上移动,且在t =0时,圆O 与l 2相切于点A ,圆O 被直线l 2所截得到的两段圆弧中,位于l 2上方的圆弧的长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )解析:选B 法一:如图所示,cosx2=设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,|OA ||OM |=1-t ,∴y =cos x =2cos 2x 2-1=2(t -1)2-1(0≤t ≤1).故其对应的大致图象应为B.法二:由题意可知,当t =1时,圆O 在直线l 2上方的部分为半圆,所对应的弧长为π×1=π,所以cos π=-1,排除A 、D ;当t =12时,如图所示,易知∠BOC =2π3,所以cos 2π3=-12<0,排除C ,故选B.5.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x ).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-126.(2017·张掖模拟)已知定义在R 上的函数f (x ),对任意的实数x ,均有f (x +3)≤f (x )+3,f (x +2)≥f (x )+2且f (1)=2,则f (2 017)的值为________.解析:∵f (x +3)≤f (x )+3,f (x +2)≥f (x )+2, ∴f (x +1)+2≤f (x +3)≤f (x )+3, ∴f (x +1)≤f (x )+1,又f (x )+3+f (x +2)≥f (x +3)+f (x )+2, 即f (x +2)+1≥f (x +3),∴f (x +1)+1≥f (x +2)≥f (x )+2, ∴f (x +1)≥f (x )+1,∴f (x +1)=f (x )+1,利用叠加法,得f (2 017)=2 018.答案:2 018[C 级——压轴小题突破练]1.设m ∈Z ,对于给定的实数x ,若x ∈⎝ ⎛⎦⎥⎤m -12,m +12,则我们就把整数m 叫做距实数x 最近的整数,并把它记为{x },现有关于函数f (x )=x -{x }的四个命题:①f ⎝ ⎛⎭⎪⎫-12=-12;②函数f (x )的值域是⎝ ⎛⎦⎥⎤-12,12;③函数f (x )是奇函数;④函数f (x )是周期函数,其最小正周期为1. 其中,真命题的个数为( ) A .1 B .2 C .3D .4解析:选B ①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝ ⎛⎭⎪⎫-12=-12-⎩⎨⎧⎭⎬⎫-12=-12+1=12, 所以①是假命题;②令x =m +a ,m ∈Z ,a ∈⎝ ⎛⎦⎥⎤-12,12,则f (x )=x -{x }=a ,∴f (x )∈⎝ ⎛⎦⎥⎤-12,12,所以②是真命题; ③∵f ⎝ ⎛⎭⎪⎫12=12-0=12,f ⎝ ⎛⎭⎪⎫-12=12≠-f ⎝ ⎛⎭⎪⎫12, ∴函数f (x )不是奇函数,故③是假命题; ④∵f (x +1)=(x +1)-{x +1}=x -{x }=f (x ), ∴函数f (x )的最小正周期为1,故④是真命题. 综上,真命题的个数为2,故选B.2.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P 以 1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为S =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,CQ =8-2t ,则S =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24; 当4<t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,CQ =2t -8,则S=f (t )=12QC ×45t =12(2t -8)×45t =45(t 2-4t );当6<t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC =2t -8,则S =f (t )=12QC ×CP sin∠ACB =12(2t -8)(14-t )×35=35(t -4)(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A. 3.(2017·河北邯郸一中月考)已知函数f 1(x )=|x -1|,f 2(x )=13x +1,g (x )=f 1x +f 2x2+|f 1x-f 2x2,若a ,b ∈[-1,5],且当x 1,x 2∈[a ,b ]时,g x 1-g x 2x 1-x 2>0恒成立,则b-a 的最大值为________.解析:当f 1(x )≥f 2(x )时,g (x )=f 1x +f 2x2+f 1x -f 2x2=f 1(x );当f 1(x )<f 2(x )时,g (x )=f 1x +f 2x2+f 2x -f 1x2=f 2(x ).综上,g (x )=⎩⎪⎨⎪⎧f 1x ,f 1xf 2x ,f 2x ,f 1x <f 2x ,即g (x )是f 1(x ),f 2(x )两者中的较大者.在同一平面直角坐标系中分别画出函数f 1(x )与f 2(x )的图象,如图所示,则g (x )的图象如图中实线部分所示.由图可知g (x )在[0,+∞)上单调递增,又g (x )在[a ,b ]上单调递增,故a ,b ∈[0,5],所以b -a 的最大值为5.答案:54.(2017·湘中名校联考)定义在R 上的函数f (x )在(-∞,-2)上单调递增,且f (x -2)是偶函数,若对一切实数x ,不等式f (2sin x -2)>f (sin x -1-m )恒成立,则实数m 的取值范围为________.解析:因为f (x -2)是偶函数, 所以函数f (x )的图象关于x =-2对称. 又f (x )在(-∞,-2)上为增函数, 则f (x )在(-2,+∞)上为减函数,所以不等式f (2sin x -2)>f (sin x -1-m )恒成立等价于|2sin x -2+2|<|sin x -1-m +2|, 即|2sin x |<|sin x +1-m |,两边同时平方, 得3sin 2x -2(1-m )sin x -(1-m )2<0, 即(3sin x +1-m )(sin x -1+m )<0,即⎩⎪⎨⎪⎧3sin x +1-m >0,sin x -1+m <0或⎩⎪⎨⎪⎧3sin x +1-m <0,sin x -1+m >0,即⎩⎪⎨⎪⎧3sin x >m -1,sin x <1-m 或⎩⎪⎨⎪⎧3sin x <m -1,sin x >1-m ,即⎩⎪⎨⎪⎧m -1<-3,1-m >1或⎩⎪⎨⎪⎧m -1>3,1-m <-1,即m <-2或m >4,故m 的取值范围为(-∞,-2)∪(4,+∞). 答案:(-∞,-2)∪(4,+∞)课时跟踪检测(五) 基本初等函数、函数与方程[A 级——“12+4”保分小题提速练]1.若f (x )是幂函数,且满足f f=2,则f ⎝ ⎛⎭⎪⎫19=( ) A.12 B.14 C .2D .4解析:选B 设f (x )=x α,由ff=9α3α=3α=2,得α=log 32,∴f ⎝ ⎛⎭⎪⎫19=⎝ ⎛⎭⎪⎫19log 32=14. 2.(2017·云南模拟)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:选D 因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b . 3.函数f (x )=|log 2x |+x -2的零点个数为( ) A .1 B .2 C .3D .4解析:选B 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,画出两函数的图象,如图. 由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的解的个数为2.4.(2017·河南适应性测试)函数y =a x-a (a >0,a ≠1)的图象可能是( )解析:选C 由函数y =a x-a (a >0,a ≠1)的图象过点(1,0),得选项A 、B 、D 一定不可能;C 中0<a <1,有可能,故选C.5.已知奇函数y =⎩⎪⎨⎪⎧fx ,x >0,g x ,x <0.若f (x )=a x(a >0,a ≠1)对应的图象如图所示,则g (x )=( )A.⎝ ⎛⎭⎪⎫12-xB .-⎝ ⎛⎭⎪⎫12xC .2-xD .-2x解析:选D 由图象可知,当x >0时,函数f (x )单调递减,则0<a <1,∵f (1)=12,∴a =12,即函数f (x )=⎝ ⎛⎭⎪⎫12x ,当x <0时,-x >0,则f (-x )=⎝ ⎛⎭⎪⎫12-x =-g (x ),即g (x )=-⎝ ⎛⎭⎪⎫12-x =-2x,故g (x )=-2x,x <0,选D.6.已知f (x )=a x和g (x )=b x是指数函数,则“f (2)>g (2)”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 由题可得,a >0,b >0且a ≠1,b ≠1. 充分性:f (2)=a 2,g (2)=b 2, 由f (2)>g (2)知,a 2>b 2,再结合y =x 2在(0,+∞)上单调递增, 可知a >b ,故充分性成立; 必要性:由题可知a >b >0,构造函数h (x )=f x g x =a x b x =⎝ ⎛⎭⎪⎫a b x ,显然ab>1,所以h (x )单调递增,故h (2)=a 2b2>h (0)=1,所以a 2>b 2,故必要性成立.7.函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析:选C 法一:∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函数f (x )=e x+x -2的零点所在的一个区间是(0,1),选C.法二:函数f (x )=e x+x -2的零点,即函数y =e x的图象与y =-x+2的图象的交点的横坐标,作出函数y =e x与直线y =-x +2的图象如图所示,由图可知选C.8.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =( ) A .0 B .2 C .5D .7解析:选 C ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上为单调递增函数,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.9.(2018届高三·湖南四校联考)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g ⎝ ⎛⎭⎪⎫-14的值为( )A .-14B.14 C .-2D .2解析:选D 法一:当x >0时,f (x )=log 2x , ∵f (x )为奇函数,∴当x <0时,f (x )=-log 2(-x ), 即g (x )=-log 2(-x ), ∴g ⎝ ⎛⎭⎪⎫-14=-log 214=2. 法二:g ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫-14=-f ⎝ ⎛⎭⎪⎫14=-log 214=-log 22-2=2.10.(2017·杭州二模)已知直线x =m (m >1)与函数f (x )=log a x (a >0且a ≠1),g (x )=log b x (b >0且b ≠1)的图象及x 轴分别交于A ,B ,C 三点,若AB ―→=2BC ―→,则( )A .b =a 2B .a =b 2C .b =a 3D .a =b 3。
2018届高三理科数学二轮复习跟踪强化训练12 含解析 精品
跟踪强化训练(十二)1.已知函数f (x )=1x +a ln x (a ≠0,a ∈R ). (1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,求实数a 的取值范围.[解] (1)当a =1时, f ′(x )=-1x 2+1x =x -1x 2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),由f ′(x )<0得0<x <1,由f ′(x )>0得x >1,所以当x =1时,f (x )有极小值1,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)f ′(x )=-1x 2+a x =ax -1x 2,且a ≠0,令f ′(x )=0,得到x =1a ,若在区间(0,e]上存在一点x 0,使得f (x 0)<0成立,即f (x )在区间(0,e]上的最小值小于0.当1a <0,即a <0时,f ′(x )<0在(0,e]上恒成立,即f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a ,由1e +a <0,得a <-1e ,即a ∈⎝⎛⎭⎪⎫-∞,-1e .当1a >0,即a >0时,①若e ≤1a ,则f ′(x )≤0对x ∈(0,e]成立,所以f (x )在区间(0,e]上单调递减,则f (x )在区间(0,e]上的最小值为f (e)=1e +a lne =1e +a >0, 显然f (x )在区间(0,e]上的最小值小于0不成立. ②若0<1a <e ,即a >1e 时,则所以f (x )在区间(0,e]上的最小值为f ⎝ ⎛⎭⎪⎫1a =a +a ln a , 由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a =a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞).综上可知,a ∈⎝ ⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).2.(2017·北京西城区模拟)已知函数f (x )=2ln x -x 2+ax (a ∈R ). (1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m的取值范围.[解] (1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x -2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.因为x ∈⎣⎢⎡⎦⎥⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0.所以g (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减. 故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0, 则g (e)<g ⎝ ⎛⎭⎪⎫1e ,所以g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎨⎧g (1)=m -1>0g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2,所以实数m 的取值范围是⎝ ⎛⎦⎥⎤1,2+1e 2.3.已知函数f (x )=a ln x +1(a >0). (1)当x >0时,求证:f (x )-1≥a ⎝ ⎛⎭⎪⎫1-1x ;(2)在区间(1,e)上f (x )>x 恒成立,求实数a 的取值范围. [解] (1)证明:设φ(x )=f (x )-1-a ⎝ ⎛⎭⎪⎫1-1x =a ln x -a ⎝ ⎛⎭⎪⎫1-1x (x >0),则φ′(x )=a x -ax 2.令φ′(x )=0,则x =1,当0<x <1时,φ′(x )<0,所以φ(x )在(0,1)上单调递减;当x >1时,φ′(x )>0,所以φ(x )在(1,+∞)上单调递增,故φ(x )在x =1处取到极小值也是最小值,故φ(x )≥φ(1)=0,即f (x )-1≥a ⎝⎛⎭⎪⎫1-1x .(2)由f (x )>x ,x ∈(1,e),得a ln x +1>x ,即a >x -1ln x . 令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x(ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x 2>0, 故h (x )在区间(1,e)上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在区间(1,e)上单调递增, 则g (x )<g (e)=e -1,即x -1ln x <e -1, 所以a 的取值范围为[e -1,+∞). 4.(2017·陕西西安三模)已知函数f (x )=e xx . (1)求曲线y =f (x )在点P ⎝ ⎛⎭⎪⎫2,e 22处的切线方程;(2)证明:f (x )>2(x -ln x ).[解] (1)因为f (x )=e xx ,所以f ′(x )=e x·x -e xx 2=e x(x -1)x 2, f ′(2)=e 24,又切点为⎝ ⎛⎭⎪⎫2,e 22,所以切线方程为y -e 22=e 24(x -2),即e 2x -4y =0.(2)设函数g (x )=f (x )-2(x -ln x )=e xx -2x +2ln x ,x ∈(0,+∞),则g ′(x )=e x (x -1)x 2-2+2x =(e x-2x )(x -1)x 2,x ∈(0,+∞). 设h (x )=e x -2x ,x ∈(0,+∞),则h ′(x )=e x -2,令h ′(x )=0,则x =ln2.当x ∈(0,ln2)时,h ′(x )<0;当x ∈(ln2,+∞)时,h ′(x )>0. 所以h (x )min =h (ln2)=2-2ln2>0,故h (x )=e x -2x >0. 令g ′(x )=(e x -2x )(x -1)x 2=0,则x =1. 当x ∈(0,1)时,g ′(x )<0;当x ∈(1,+∞)时,g ′(x )>0. 所以g (x )min =g (1)=e -2>0,故g (x )=f (x )-2(x -ln x )>0,从而有f (x )>2(x -ln x ).。
2018届高三理科数学二轮复习跟踪强化训练9 含解析 精品
跟踪强化训练(九)一、选择题1.(2017·湖南怀化调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln1-⎝ ⎛⎭⎪⎫12-1=ln1-2<0,f (2)=ln2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C. [答案] C2.(2017·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析]依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.[答案] C3.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,2x ,x ≤0,则函数y =|f (x )|-g (x )的零点的个数为( )A .3B .4C .5D .6[解析] 函数y =|f (x )|-g (x )的零点的个数,即|f (x )|-g (x )=0的根的个数,可得|f (x )|=g (x ),画出函数|f (x )|,g (x )的图象如图所示,观察函数的图象,则它们的交点为5个,即函数的零点个数为5,选C.[答案] C4.函数f (x )=2sinπx -x +1的零点个数为( ) A .4 B .5 C .6 D .7[解析] 令2sinπx -x +1=0,得2sinπx =x -1,令h (x )=2sinπx ,g (x )=x -1,则f (x )=2sinπx -x +1的零点个数问题就转化为函数h (x )与g (x )的图象的交点个数问题.h (x )=2sinπx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝ ⎛⎭⎪⎫52>g ⎝ ⎛⎭⎪⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点共5个,所以f (x )=2sinπx -x +1的零点个数为5.[答案] B5.(2016·全国卷Ⅲ)已知a =2 43 ,b =425,c =25 13 ,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b[解析] 因为a =2 43 =16 13 ,b =425=16 15 ,c =25 13 ,且幂函数y =x 13在R 上单调递增,∴c >a ,指数函数y =16x 在R 上单调递增,∴a >b ,所以b <a <c .[答案] A6.(2017·河北石家庄一模)已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( )A .(0,2) B.⎝ ⎛⎭⎪⎫0,e 24 C .(0,e) D .(0,+∞)[解析] 由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e x x -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e xx 2,则函数g (x )=e xx 2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e xx 3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值为g (2)=e 24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24,故选B.[答案] B 二、填空题7.(2017·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x -4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 40509.(2016·泰安模拟)已知f (x )=⎩⎪⎨⎪⎧e -x ,x ≤0x ,x >0,g (x )=f (x )-12x -b 有且仅有一个零点时,b 的取值范围是________.[解析] 要使函数g (x )=f (x )-x2-b 有且仅有一个零点,只需要函数f (x )的图象与函数y =x2+b 的图象有且仅有一个交点,通过在同一坐标系中同时画出两个函数的图象并观察得,要符合题意须满足b ≥1或b =12或b ≤0.[答案] b ≥1或b =12或b ≤0 三、解答题10.(2017·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x = ⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.11.(2017·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大?[解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x+250,其中⎩⎪⎨⎪⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5. (2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2017·威海模拟)已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数.(1)求k 的值.(2)设g (x )=log 4⎝ ⎛⎭⎪⎫a ·2x-43a ,若方程f (x )=g (x )有且仅有一解,求实数a 的取值范围.[解] (1)由函数f (x )是偶函数可知,f (x )=f (-x ),所以log 4(4x +1)+kx =log 4(4-x +1)-kx ,所以log 44x +14-x +1=-2kx ,即x =-2kx对一切x ∈R 恒成立,所以k =-12. (2)由已知f (x )=g (x ),有且仅有一解,即方程log 4(4x +1)-12x =log 4(a ·2x -43a )有且只有一个实根,即方程2x +12x =a ·2x -43a 有且只有一个实根.令t =2x>0,则方程(a -1)t 2-43at -1=0有且只有一个正根.①当a =1时,则t =-34不合题意;②当a ≠1时,若方程有两个相等的根,Δ=0,解得a =34或-3. 若a =34,则t =-2,不合题意; 若a =-3,则t =12;③因为0不是方程的根,若方程有一个正根与一个负根,即-1a -1<0,解得a >1.综上所述,实数a 的取值范围是{-3}∪(1,+∞).。
2018届高三理科数学二轮复习跟踪强化训练:18 Word版含解析
跟踪强化训练(十八)一、选择题1.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N 都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115[解析] 解法一:令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.解法二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2.当n ≥3时,a 1·a 2·a 3·…·a n-1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,∴a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.[答案] A2.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是a n =( )A .n B.⎝ ⎛⎭⎪⎫n +1n n -1C .n 2D .2n -1[解析] 由a n =n (a n +1-a n ),得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,所以a n n =a n -1n -1=…=a 11=1,所以a n =n ,故选A.[答案] A3.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a1·a2·a3·…·a2017=()A.-6 B.6 C.-2 D.2[解析]∵a1=2,a n+1=1+a n1-a n,∴a2=1+21-2=-3,同理,a3=-12,a4=13,a5=2,…,∴a n+4=a n,a1a2a3a4=1,∴a1·a2·a3·…·a2017=(a1a2a3a4)504×a1=1×2=2.故选D.[答案] D4.(2017·衡水中学二调)已知S n是数列{a n}的前n项和,a1=1,a2=2,a3=3,数列{a n+a n+1+a n+2}是公差为2的等差数列,则S25=()A.232 B.233 C.234 D.235[解析]∵数列{a n+a n+1+a n+2}是公差为2的等差数列,∴a n+3-a n=(a n+1+a n+2+a n+3)-(a n+a n+1+a n+2)=2,∴a1,a4,a7,…是首项为1,公差为2的等差数列,a2,a5,a8,…是首项为2,公差为2的等差数列,a3,a6,a9,…是首项为3,公差为2的等差数列,∴S25=(a1+a4+a7+…+a25)+(a2+a5+a8+…+a23)+(a3+a6+a9+…+a24)=9×1+9×8×22+8×2+8×7×22+8×3+8×7×22=233,故选B.[答案] B5.(2017·郑州模拟)已知等比数列{a n}的前n项和为S n,则下列一定成立的是()A.若a3>0,则a2013<0B.若a4>0,则a2014<0C.若a3>0,则S2013>0D.若a4>0,则S2014>0[解析] 根据等比数列的通项公式得a 2013=a 1·q 2012=a 3q 2010,a 2014=a 1q 2013=a 4q 2010,易知A ,B 错误.对于选项C ,因为a 3=a 1q 2>0,所以a 1>0,当q >0时,任意a n >0,故有S 2013>0;当q <0时,仍然有S 2013=a 1(1-q 2013)1-q >0,C 正确.对于选项D ,可列举公比q =-1的等比数列-1,1,-1,1,…,显然满足a 4>0,但S 2014=0,故D 错误.故选C.[答案] C6.(2017·山西大同模拟)已知数列{a n }的通项公式为a n =(-1)n (2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120[解析] 由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k-1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =8, ∴S 60=8×15=120. [答案] D 二、填空题7.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1(n∈N *),则a n =________.[解析] 由已知可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ,因为n =1时不满足a n =2n,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.[答案] ⎩⎪⎨⎪⎧3,n =1,2n ,n ≥28.(2017·河南新乡三模)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =________.[解析] ∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12. [答案] 3n -1+129.(2017·安徽省淮北一中高三最后一卷改编)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“调和数列”,且b 1+b 2+…+b 2019=20190,则b 2b 2018的最大值是________.[解析] 因为数列⎩⎨⎧⎭⎬⎫1b n 是“调和数列”,所以b n +1-b n =d ,即数列{b n }是等差数列,所以b 1+b 2+…+b 2019=2019(b 1+b 2019)2=2019(b 2+b 2018)2=20190,所以b 2+b 2018=20.又1b n >0,所以b 2>0,b 2018>0,所以b 2+b 2018=20≥2b 2b 2018,即b 2b 2018≤100(当且仅当b 2=b 2018时等号成立),因此b 2b 2018的最大值为100.[答案] 100 三、解答题10.(2017·郑州质检)已知数列{a n }的首项a 1=1,前n 项和S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n . [解] (1)由已知条件得S nn =1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=S 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)n a n =(-1)n (4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n , 当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,(n =2k ,k ∈N *)-2n +1,(n =2k -1,k ∈N *).11.(2017·北京海淀模拟)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .[解] (1)∵S n =2a n -a 1, ∴当n ≥2时,S n -1=2a n -1-a 1,∴a n =2a n -2a n -1,化为a n =2a n -1.由a 1,a 2+1,a 3成等差数列得,2(a 2+1)=a 1+a 3, ∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是等比数列,首项为2,公比为2. ∴a n =2n .(2)∵a n +1=2n +1,∴S n =2(2n -1)2-1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1(2n +1-2)(2n +2-2)=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12n +1-1. 12.(2017·山东卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .[解] (1)设数列{x n }的公比为q ,由已知知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0,所以q =2,x 1=1. 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.。
教育最新K12通用版2018年高考数学二轮复习课时跟踪检测九理
课时跟踪检测(九)A组——12+4提速练一、选择题1.如图为一个几何体的侧视图和俯视图,则它的正视图为( )解析:选B 根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),结合选项知,它的正视图为B.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16解析:选B 由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为+×2=12,故选B.23.(2017·合肥质检)若平面α截三棱锥所得截面为平行四边形,则该三棱锥中与平面α平行的棱有( )A.0条 B.1条 C.2条 D.0条或2条解析:选 C 因为平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形,所以该三棱锥中与平面α平行的棱有2条,故选C.4.(2017·成都模拟)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m,n可能平行,也可能异面;②若α∩β=l,且m⊥l,n⊥l,则α⊥β;③若α∩β=l ,且m ⊥l ,m ⊥n ,则α⊥β. 其中真命题的个数是( ) A .0B .1C .2D .3解析:选B 对于①,直线m ,n 可能平行,也可能异面,故①是真命题;对于②,直线m ,n 同时垂直于公共棱,不能推出两个平面垂直,故②是假命题;对于③,当直线n ∥l 时,不能推出两个平面垂直,故③是假命题.故真命题的个数为1.故选B.5.(2017·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 解析:选A 由几何体的三视图可得,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长为2的等腰直角三角形,高为3的三棱锥的组合体,故该几何体的体积V =13×12π×12×3+13×12×2×2×3=π2+1.6.(2017·郑州质检)某几何体的三视图如图所示,则该几何体的体积为( )A .80B .160C .240D .480解析:选B 如图所示,题中的几何体是从直三棱柱ABC A ′B ′C ′中截去一个三棱锥A A ′B ′C ′后所剩余的部分,其中底面△ABC 是直角三角形,AC ⊥AB ,AC =6,AB =8,BB ′=10.因此题中的几何体的体积为⎝ ⎛⎭⎪⎫12×6×8×10-13×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12×6×8×10=23×⎝ ⎛⎭⎪⎫12×6×8×10=160,故选B.7.(2017·合肥质检)一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A .72+6πB .72+4πC .48+6πD .48+4π解析:选 A 由三视图知,该几何体由一个正方体的34部分与一个圆柱的14部分组合而成(如图所示),其表面积为16×2+(16-4+π)×2+4×2×2+14×2π×2×4=72+6π,故选A.8.某几何体的三视图如图所示,则其体积为( )A .207B .216-9π2C .216-36πD .216-18π解析:选B 由三视图知,该几何体是一个棱长为6的正方体挖去14个底面半径为3,高为6的圆锥而得到的,所以该几何体的体积V =63-14×13×π×32×6=216-9π2,故选B.9.(2017·贵阳检测)三棱锥P ABC 的四个顶点都在体积为500π3的球的表面上,底面ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( )A .4B .6C .8D .10解析:选C 依题意,设题中球的球心为O ,半径为R ,△ABC 的外接圆半径为r ,则4πR33=500π3,解得R =5,由πr 2=16π,解得r =4,又球心O 到平面ABC 的距离为R 2-r 2=3,因此三棱锥P ABC 的高的最大值为5+3=8,故选C.10.(2017·洛阳统考)已知三棱锥P ABC 的四个顶点均在某球面上,PC 为该球的直径,△ABC 是边长为4的等边三角形,三棱锥P ABC 的体积为163,则此三棱锥的外接球的表面积为( )A.16π3B.40π3 C.64π3 D.80π3解析:选D 依题意,记三棱锥P ABC 的外接球的球心为O ,半径为R ,点P 到平面ABC 的距离为h ,则由V P ABC =13S △ABC h =13×⎝ ⎛⎭⎪⎫34×42×h =163得h =433.又PC 为球O 的直径,因此球心O 到平面ABC 的距离等于12h =233.又正△ABC 的外接圆半径为r =AB 2sin 60°=433,因此R 2=r 2+⎝⎛⎭⎪⎫2332=203,所以三棱锥P ABC 的外接球的表面积为4πR 2=80π3,故选D. 11.某几何体的三视图如图所示,则该几何体的体积为( )A.15π2 B .8π C.17π2D .9π解析:选B 依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,故选B.12.(2018届高三·湘中名校联考)已知某几何体的三视图如图所示,则该几何体的体积为( )A.1603 B .32 C.323D .3523解析:选A 由三视图可知, 该几何体是由底面为等腰直角三角形(腰长为4)、高为8的直三棱柱截去一个等底且高为4的三棱锥而得到的,所以该几何体的体积V =12×4×4×8-13×12×4×4×4=1603,故选A. 二、填空题13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为________.解析:设圆柱高为h ,底面圆半径为r ,周长为c ,圆锥母线长为l .由图得r =2,h =4,则c =2πr =4π,由勾股定理得:l =22+32=4,则S 表=πr 2+ch +12cl =4π+16π+8π=28π.答案:28π14.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为________.解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15.答案:1515.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的________.解析:由侧视图、俯视图知该几何体是高为2、底面积为 12×2×(2+4)=6的四棱锥,其体积为13×6×2=4.而直三棱柱的体积为12×2×2×4=8,则该几何体的体积是原直三棱柱的体积的12.答案:1216.(2017·兰州诊断考试)已知在三棱锥P ABC 中,V P ABC =433,∠APC =π4,∠BPC =π3,PA ⊥AC ,PB ⊥BC ,且平面PAC ⊥平面PBC ,那么三棱锥PABC 外接球的体积为________.解析:如图,取PC 的中点O ,连接AO ,BO ,设PC =2R ,则OA =OB=OC =OP =R ,∴O 是三棱锥P ABC 外接球的球心,易知,PB =R ,BC =3R ,∵∠APC =π4,PA ⊥AC ,O 为PC 的中点,∴AO ⊥PC ,又平面PAC ⊥平面PBC ,且平面PAC ∩平面PBC =PC ,∴AO ⊥平面PBC ,∴V P ABC =V A PBC =13×12×PB ×BC ×AO =13×12×R ×3R ×R =433,解得R =2,∴三棱锥P ABC 外接球的体积V =43πR3=32π3.答案:32π3B 组——能力小题保分练1.(2017·石家庄质检)某几何体的三视图如图所示,则该几何体的体积是( )A .16B .20C .52D .60解析:选B 由三视图知,该几何体由一个底面为直角三角形(直角边分别为3,4),高为6的三棱柱截去两个等体积的四棱锥所得,且四棱锥的底面是矩形(边长分别为2,4),高为3,如图所示,所以该几何体的体积V =12×3×4×6-2×13×2×4×3=20,故选B.2.(2017·成都模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥外接球的表面积为( )A .136πB .34πC .25πD .18π解析:选B 由三视图知,该四棱锥的底面是边长为3的正方形,高为4,且有一条侧棱垂直于底面,所以可将该四棱锥补形为长、宽、高分别为3,3,4的长方体,该长方体外接球的半径R 即为该四棱锥外接球的半径,所以2R =32+32+42,解得R =342,所以该四棱锥外接球的表面积为4πR 2=34π,故选B.3.(2018届高三·湖南五市十校联考)如图,小方格是边长为1的正方形,一个几何体的三视图如图所示,则该几何体的表面积为( )A .45π+96B .(25+6)π+96C .(45+4)π+64D .(45+4)π+96解析:选D 由三视图可知,该几何体为一个圆锥和一个正方体的组合体,正方体的棱长为4,圆锥的高为4,底面半径为2,所以该几何体的表面积为S =6×42+π×22+π×2×42+22=(45+4)π+96.4.(2017·石家庄质检)四棱锥P ABCD 的底面ABCD 是边长为6的正方形,且PA =PB =PC =PD ,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高为( )A .6B .5C.92D.94解析:选D 过点P 作PH ⊥平面ABCD 于点H .由题知,四棱锥P ABCD是正四棱锥,内切球的球心O 应在四棱锥的高PH 上.过正四棱锥的高作组合体的轴截面如图,其中PE ,PF 是斜高,M 为球面与侧面的一个切点.设PH =h ,易知Rt △PMO ∽Rt △PHF ,所以OM FH =PO PF ,即13=h -1h 2+32,解得h =94,故选D.5.(2018届高三·西安市八校联考)在菱形ABCD 中,A =60°,AB =3,将△ABD 折起到△PBD 的位置,若二面角P BD C 的大小为2π3,则三棱锥P BCD 外接球的体积为( )A.4π3B.3π2C.77π6D.77π2解析:选C 依题意,△PBD 、△BCD 均是边长为3的等边三角形.取BD 的中点E ,连接PE ,CE ,则有PE ⊥BD ,CE ⊥BD ,∠PEC 是二面角P BD C 的平面角,即∠PEC =120°.记三棱锥P BCD 的外接球的球心为O ,半径是R ,△PBD ,△BCD 的中心分别为M ,N ,连接OM ,ON ,MN ,OE ,则由OP =OB =OD=OC 得,球心O 在平面PBD ,平面BCD 上的射影分别是△PBD ,△BCD 的中心,即有OM ⊥平面PBD ,OM ⊥PE ,OM ⊥BD ,ON ⊥平面BCD ,ON ⊥NE ,ON ⊥BD ,因此BD ⊥平面OMN .又易证BD ⊥平面OCE ,所以平面OMN ∥平面OCE .又平面OMN 与平面OCE 有公共点O ,因此平面OMN 与平面OCE 重合.在四边形OMEN 中,∠OME =∠ONE =90°,ME =NE =13×⎝ ⎛⎭⎪⎫32×3=12,∠MOE =30°,OE 是四边形OMEN 的外接圆的直径,OE =MEsin ∠MOE =1,ON 2=OE 2-NE 2=12-⎝ ⎛⎭⎪⎫122=34.在Rt △OBN 中,OB 2=ON 2+BN 2=ON 2+BE 2+NE 2=34+⎝⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=74,即R =74=72,因此三棱锥P BCD 的外接球的体积为43πR 3=77π6,故选C.6.(2017·武昌调研)在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直. 其中正确结论的序号是________.解析:①假设AC 与BD 垂直,过点A 作AE ⊥BD 于点E ,连接CE ,如图所示,则AE ⊥BD ,BD ⊥AC .又AE ∩AC =A ,所以BD ⊥平面AEC ,从而有BD ⊥CE ,而在平面BCD 中,CE 与BD 不垂直,故假设不成立,①错误.②假设AB ⊥CD ,∵AB ⊥AD ,AD ∩CD =D ,∴AB ⊥平面ACD ,∴AB ⊥AC ,由AB <BC 可知,存在这样的直角三角形BAC ,使AB ⊥CD ,故假设成立,②正确.③假设AD ⊥BC ,∵DC ⊥BC ,AD ∩DC =D ,∴BC ⊥平面ADC ,∴BC ⊥AC ,即△ABC 为直角三角形,且AB 为斜边,而AB <BC ,故矛盾,假设不成立,③错误.答案:②。
2018届高三理科数学二轮复习跟踪强化训练:3Word版含解析
=4 3;
4 23 1
83
当长、宽分别为 4 和 6 时,体积 V=3× 3 ×2×6= 3 .
83 综上所述,所求体积为 4 3或 3 .
83 [ 答案 ] 4 3或 3
9.(2017 ·深圳模拟 )若函数 f(x)=mx2-x+ln x 存在单调递减区间,
则实数 m 的取值范围是 ________.
GN,LE1,KE,H1F,共 5 条;与直线 CB1 平行的有 F1M,FL ,HK, NH1,GE1,共 5 条.分别取 CB1,B1D1,CD 1 的中点如图,连接 CO, D1P,B1T,与直线 CO 平行的有 GH1,FE1,共 2 条;与直线 D1P 平 行的有 H1L,NF,共 2 条;与直线 B1T 平行的有 E1N,GL,共 2 条.故 与平面 CB1D1 平行的直线共有 5+5+5+2+2+2=21 条.
|k-0+ 4- 3k|
3
由
k2+1 =2,得 k=4.
此时直线方程为 y-4=34(x-3),即 3x-4y+7=0.
综上所述,所求切线的方程为 x=3 或 3x-4y+7=0.
[ 答案 ] x=3 或 3x-4y+7=0 8.正三棱柱的侧面展开图是边长分别为 6 和 4 的矩形,则它的 体积为 ________. [ 解析 ] 当矩形长、宽分别为 6 和 4 时,体积 V=2× 3×21×4
跟踪强化训练 (三)
一、选择题
1.(2017 ·武汉二模 )设函数 f(x)=
1 2
x-7,x<0,
x, x≥0,
若 f(a)<1,则
实数 a 的取值范围是 ( )
A .(-∞,- 3)
B.(1,+∞ )
C. (-3,1)
2018届高三理科数学二轮复习跟踪强化训练全集及答案(共33份)
跟踪强化训练(一)一、选择题1.(2017·银川模拟)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13,若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-94[解析] ∵n ⊥(t m +n ),∴n ·(t m +n )=0, 即t m ·n +|n |2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0. 又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.故选B. [答案] B2.(2017·沈阳模拟)等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8[解析] 解法一:由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项a 1=13可推知数列{a n }递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.故选C.解法二:设{a n }的公差为d ,由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大.故选C.解法三:根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和先是单调递增然后单调递减,根据公差不为零的等差数列的前n 项和是关于n的二次函数,以及二次函数图象的对称性,得只有当n=3+112=7时,S n取得最大值.故选C.[答案] C3.(2017·武汉市武昌区高三调研考试)已知函数f(x)=2ax-a+3,若∃x0∈(-1,1),使得f(x0)=0,则实数a的取值范围是( ) A.(-∞,-3)∪(1,+∞) B.(-∞,-3)C.(-3,1) D.(1,+∞)[解析] 依题意可得f(-1)·f(1)<0,即(-2a-a+3)(2a-a+3)<0,解得a<-3或a>1,故选A.[答案] A4.(2017·济南一模)方程m+1-x=x有解,则m的最大值为( ) A.1 B.0 C.-1 D.-2[解析] 由原式得m=x-1-x,设1-x=t(t≥0),则m=1-t2-t=54-⎝⎛⎭⎪⎫t+122,∵m=54-⎝⎛⎭⎪⎫t+122在[0,+∞)上是减函数.∴t=0时,m的最大值为1,故选A.[答案] A5.(2017·辽宁省沈阳市高三教学质量监测)已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是( )A.(-∞,1) B.(-∞,0)∪(0,1)C.(-1,1) D.(-1,0)∪(0,1)[解析] 因为g(x)=x2f(x),所以g′(x)=x2f′(x)+2xf(x)=x[xf′(x)+2f (x )],由题意知,当x >0时,xf ′(x )+2f (x )>0,所以g ′(x )>0,所以g (x )在(0,+∞)上单调递增,又f (x )为偶函数,则g (x )也是偶函数,所以g (x )=g (|x |),由g (x )<g (1)得g (|x |)<g (1),所以⎩⎪⎨⎪⎧|x |<1,x ≠0,则x ∈(-1,0)∪(0,1).故选D.[答案] D6.(2017·杭州质检)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1 [解析] 如图所示,设P (x 0,y 0)(y 0>0),则y 20=2px 0,即x 0=y 22p.设M (x ′,y ′),由PM →=2MF →,得⎩⎪⎨⎪⎧x ′-x 0=2⎝ ⎛⎭⎪⎫p 2-x ′,y ′-y 0=-y ,化简可得⎩⎪⎨⎪⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率为k =y 03p +x 03=y 0p +y 202p =2p 2p 2y 0+y 0≤2p 22p2=22(当且仅当y 0=2p 时取等号).[答案] C 二、填空题7.(2017·厦门一中月考)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a 等于________.[解析] y ′=x --x +x -2=-2x -2,将x =3代入,得曲线y=x +1x -1在点(3,2)处的切线斜率k =-12,故与切线垂直的直线的斜率为2,即-a =2,得a =-2.[答案] -28.(2017·南昌模拟)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.[解析] 利用双曲线的性质建立关于a ,b ,c 的等式求解.如图,由题意知|AB |=2b 2a,|BC |=2c .又2|AB |=3|BC |,∴2×2b 2a=3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理,得2e 2-3e -2=0,解得e =2(负值舍去).[答案] 29.(2017·衡水中学检测)已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________.[解析] 如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h .则其侧棱长为l =⎝ ⎛⎭⎪⎪⎫2a 22+h 2=16h+h 2.令f (h )=16h+h 2,则f ′(h )=-16h 2+2h =2h 3-16h2, 令f ′(h )=0,解得h =2.显然当h ∈(0,2)时,f ′(h )<0,f (h )单调递减; 当h ∈(2,+∞)时,f ′(h )>0,f (h )单调递增. 所以当h =2时,f (h )取得最小值f (2)=162+22=12, 故其侧棱长的最小值l =12=2 3. [答案] 2 3 三、解答题10.(2017·湖南湘中联考)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. [解] (1)∵a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,∵sin A ≠0, ∴sin B =12,又△ABC 为锐角三角形,∴B =π6.(2)∵B =π6,∴cos A +sin C =cos A +sin ⎝ ⎛⎭⎪⎫π-π6-A=cos A +sin ⎝ ⎛⎭⎪⎫π6+A=cos A +12cos A +32sin A =3sin ⎝⎛⎭⎪⎫A +π3.由△ABC 为锐角三角形知,A +B >π2,∴π3<A <π2,∴2π3<A +π3<5π6, ∴12<sin ⎝ ⎛⎭⎪⎫A +π3<32,∴32<3sin ⎝⎛⎭⎪⎫A +π3<32,∴cos A +sin C 的取值范围为⎝ ⎛⎭⎪⎪⎫32,32. 11.(2017·合肥模拟)设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. [解] (1)由a 1=9,a 2为整数可知,等差数列{a n }的公差d 为整数. 又S n ≤S 5,∴a 5≥0,a 6≤0, 于是9+4d ≥0,9+5d ≤0, 解得-94≤d ≤-95.∵d 为整数,∴d =-2. 故{a n }的通项公式为a n =11-2n . (2)证明:由(1),得1a n a n +1=1-2n-2n=12⎝⎛⎭⎪⎫19-2n -111-2n ,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫17-19+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫19-2n -111-2n =12⎝⎛⎭⎪⎫19-2n -19. 令b n =19-2n ,由函数f (x )=19-2x 的图象关于点(4.5,0)对称及其单调性,知0<b 1<b 2<b 3<b 4,b 5<b 6<b 7<…<0,∴b n ≤b 4=1.∴T n ≤12×⎝⎛⎭⎪⎫1-19=49.12.(2017·长沙模拟)已知椭圆E 的中心在原点,焦点F 1,F 2在y 轴上,离心率等于223,P 是椭圆E 上的点.以线段PF 1为直径的圆经过F 2,且9PF 1→·PF 2→=1.(1)求椭圆E 的方程;(2)作直线l 与椭圆E 交于两个不同的点M ,N .如果线段MN 被直线2x +1=0平分,求直线l 的倾斜角的取值范围.[解] (1)依题意,设椭圆E 的方程为y 2a 2+x 2b2=1(a >b >0),半焦距为c .∵椭圆E 的离心率等于223,∴c =223a ,b 2=a 2-c 2=a 29.∵以线段PF 1为直径的圆经过F 2, ∴PF 2⊥F 1F 2.∴|PF 2|=b 2a.∵9PF 1→·PF 2→=1,∴9|PF 2→|2=9b4a2=1.由⎩⎪⎨⎪⎧b 2=a 29,9b 4a 2=1得⎩⎪⎨⎪⎧a 2=9,b 2=1,∴椭圆E 的方程为y 29+x 2=1. (2)∵直线2x +1=0与x 轴垂直,且由已知得直线l 与直线x =-12相交,∴直线l 不可能与x 轴垂直,∴设直线l 的方程为y =kx +m .由⎩⎪⎨⎪⎧y =kx +m ,9x 2+y 2=9,得(k 2+9)x 2+2kmx +(m 2-9)=0.∵直线l 与椭圆E 交于两个不同的点M ,N , ∴Δ=4k 2m 2-4(k 2+9)(m 2-9)>0,即m 2-k 2-9<0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2km k 2+9.∵线段MN 被直线2x +1=0平分, ∴2×x 1+x 22+1=0,即-2kmk 2+9+1=0. 即⎩⎪⎨⎪⎧m 2-k 2-9<0,-2kmk 2+9+1=0,得⎝⎛⎭⎪⎫k 2+92k 2-(k 2+9)<0. ∵k 2+9>0,∴k 2+94k2-1<0,∴k 2>3,解得k >3或k <- 3.∴直线l 的倾斜角的取值范围为⎝ ⎛⎭⎪⎫π3,π2∪⎝ ⎛⎭⎪⎫π2,2π3.跟踪强化训练(二)一、选择题1.(2017·沈阳质检)方程sinπx =x4的解的个数是( )A .5B .6C .7D .8[解析] 在同一平面直角坐标系中画出y 1=sinπx 和y 2=x4的图象,如右图:观察图象可知y 1=sinπx 和y 2=x4的图象在第一象限有3个交点,根据对称性可知,在第三象限也有3个交点,再加上原点,共7个交点,所以方程sinπx =x4有7个解,故选C.[答案] C2.(2017·郑州模拟)若实数x ,y 满足等式x 2+y 2=1,那么yx -2的最大值为( )A.12B.33C.32D. 3[解析] 设k =yx -2,如图所示,k PB =tan ∠OPB =122-12=33,k PA =-tan ∠OPA =-33,且k PA ≤k ≤k PB ,∴k max =33,故选B.[答案] B3.(2017·宝鸡质检)若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)[解析] 令y 1=x +k ,y 2=1-x 2,则x 2+y 2=1(y ≥0).作出图象如图:而y 1=x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与上述半圆只有一个公共点⇔k =2或-1≤k <1,故选D.[答案] D4.(2016·广州检测)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2) D .(2,+∞)[解析] 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为⎝ ⎛⎭⎪⎫12,1,故选B.[答案] B5.(2017·西安二模)若方程x 2+(1+a )x +1+a +b =0的两根分别为椭圆、双曲线的离心率,则ba的取值范围是( )A .(-2,-1)B .(-∞,-2)∪(-1,+∞)C.⎝⎛⎭⎪⎫-2,-12D .(-∞,-2)∪⎝ ⎛⎭⎪⎫-12,+∞[解析] 由题意可知,方程的一个根位于(0,1)之间,另一个根大于1.设f (x )=x 2+(1+a )x +1+a +b ,则⎩⎪⎨⎪⎧f,f,即⎩⎪⎨⎪⎧1+a +b >0,2a +b +3<0.作出可行域如图中阴影部分所示.ba可以看作可行域内的点(a ,b )与原点O (0,0)连线的斜率,由⎩⎪⎨⎪⎧2a +b +3=0,a +b +1=0可解得A (-2,1),过点A 、O 作l 1,过点O 作平行于直线2a +b +3=0的直线l 2,易知kl 2<b a <kl 1,又kl 1=-12,kl 2=-2,∴-2<b a<-12.故选C. [答案] C6.(2017·南宁一模)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1][解析] 设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又∵OA →+OB →+OD →=(x -1,y +3), ∴|OA →+OB →+OD →| =x -2+y +32.∴|OA →+OB →+OD →|的几何意义是点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离(如图),由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1,故选D.[答案] D 二、填空题7.(2017·青岛二模)已知奇函数f (x )的定义域是{x |x ≠0,x ∈R },且在(0,+∞)上单调递增,若f (1)=0,则满足x ·f (x )<0的x 的取值范围是________.[解析] 作出符合条件的一个函数图象草图即可,由图可知x ·f (x )<0的x 的取值范围是(-1,0)∪(0,1).[答案] (-1,0)∪(0,1)8.(2017·合肥质检)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是________.[解析] 画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点,只需y =f (x )与y =k 的图象有两个不同的交点,由图象易知k ∈⎝ ⎛⎭⎪⎫34,1.[答案] ⎝ ⎛⎭⎪⎫34,19.(2017·山西四校模拟)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为________.[解析]由题意可得⎩⎪⎨⎪⎧4a 1+4×32d ≥10,5a 1+5×42d ≤15,即⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.又a 4=a 1+3d ,故此题可转化为线性规划问题.画出可行域如图所示.作出直线a 1+3d =0,经平移可知当直线a 4=a 1+3d 过可行域内点A (1,1)时,截距最大,此时a 4取最大值4.[答案] 4 三、解答题10.(2017·海口模拟)设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实数α、β.(1)求实数a 的取值范围; (2)求α+β的值.[解] (1)原方程可化为sin ⎝ ⎛⎭⎪⎫θ+π3=-a2,作出函数y =sin ⎝⎛⎭⎪⎫x +π3(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1,-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝⎛⎭⎪⎪⎫-1,32时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象交于C 、D 两点,它们中点的横坐标为7π6,所以α+β2=7π6, 所以α+β=7π3.当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎪⎫32,1时,直线y =-a 2与三角函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象有两交点A 、B ,由对称性知,α+β2=π6,所以α+β=π3, 综上所述,α+β=π3或7π3.11.(2017·福州质检)已知圆C 的方程为(x -2)2+y 2=4,圆M 的方程为(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ).过圆M 上任意一点P 作圆C 的两条切线PE 、PF ,切点分别为E 、F ,求PE →·PF →的最小值.[解] 由题意,可知圆心M 的坐标为(2+5cos θ,5sin θ),由此可知圆心M 的轨迹方程为(x -2)2+y 2=25,如图,经分析可知,只有当P 在线段MC 上时,才能够使PE →·PF →最小,此时PC =4,又Rt △PEC 中,EC =2,则PE =23,∠EPC =30°,∴PF =PE =23,∠EPF =2∠EPC =2×30°=60°,故(PE →·PF →)min =(23)2×cos60°=6.12.右面的图形无限向内延续,最外面的正方形的边长是2,从外到内,第n 个正方形与其内切圆之间的深色图形面积记为S n (n ∈N *).(1)证明:S n =2S n +1(n ∈N *); (2)证明:S 1+S 2+…+S n <8-2π.[证明] (1)设第n (n ∈N *)个正方形的边长为a n ,则其内切圆半径为a n2,第n +1个正方形的边长为22a n ,其内切圆半径为24a n ,所以S n =a 2n -π⎝ ⎛⎭⎪⎫a n 22=a 2n ⎝⎛⎭⎪⎫1-π4(n ∈N *),S n +1=⎝ ⎛⎭⎪⎪⎫22a n 2-π⎝ ⎛⎭⎪⎪⎫24a n 2=a 2n ⎝ ⎛⎭⎪⎫12-π8=12S n(n ∈N *).所以S n =2S n +1(n ∈N *).(2)由(1)可知,S 1=22×⎝ ⎛⎭⎪⎫1-π4=4-π,S 2=2-π2,…,S n =(4-π)⎝ ⎛⎭⎪⎫12n -1,所以T n =S 1+S 2+…+S n =(4-π)×⎝ ⎛⎭⎪⎫1+12+122+…+12n -1=(4-π)×1-⎝ ⎛⎭⎪⎫12n1-12=(8-2π)⎝⎛⎭⎪⎫1-12n<8-2π.跟踪强化训练(三)一、选择题1.(2017·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)[解析] 解法一:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.解法二:取a =0, f (0)=0<1,符合题意,排除A ,B ,D. [答案] C2.(2017·大同二模)已知函数f (x )=mx 2+mx +1的定义域是实数集R ,则实数m 的取值范围是( )A .(0,4)B .[0,4]C .(0,4]D .[0,4)[解析] 因为函数f (x )=mx 2+mx +1的定义域是实数集R ,所以m ≥0,当m =0时,函数f (x )=1,其定义域是实数集R ;当m >0时,则Δ=m 2-4m ≤0,解得0<m ≤4.综上所述,实数m 的取值范围是0≤m ≤4.[答案] B3.(2017·太原模拟)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用1名大学生的情况有( )A .24种B .36种C .48种D .60种[解析] 每家企业至少录用一名大学生的情况有两类:一类是每家企业都录用一名,有C 34A 33=24(种);一类是其中一家企业录用了2名,有C 24A 33=36(种),所以一共有24+36=60(种),故选D.[答案] D4.以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为π3,则该双曲线的离心率为( )A .2或 3B .2或233C.233D .2[解析] 当双曲线的焦点在x 轴上时,双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,所以b a =tan π3=3,故双曲线的离心率e =ca=1+b 2a2=1+3=2;当双曲线的焦点在y 轴上时,双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),渐近线方程为y =±a b x ,所以a b =tan π3=3,则b a =33,所以双曲线的离心率e =ca= 1+b 2a2= 1+⎝ ⎛⎭⎪⎪⎫332=233.故选B. [答案] B5.(2016·浙江卷)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0D .(b -1)(b -a )>0[解析] ∵a ,b >0且a ≠1,b ≠1,∴当a >1,即a -1>0时,不等式log a b >1可化为a log a b >a 1,即b >a >1,∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0.当0<a <1,即a -1<0时,不等式log a b >1可化为a log a b <a 1,即0<b <a <1, ∴(a -1)(a -b )<0,(b -1)(a -1)>0,(b -1)(b -a )>0. 综上可知,选D. [答案] D6.如图,过正方体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面CB 1D 1平行的直线有( )A .18条B .20条C.21条D.22条[解析] 设各边的中点如图所示,其中与直线D1B1平行的有F1G1,E1H1,FG,EH,NL,共5条;与直线CD1平行的有G1M,GN,LE1,KE,H1F,共5条;与直线CB1平行的有F1M,FL,HK,NH1,GE1,共5条.分别取CB1,B1D1,CD1的中点如图,连接CO,D1P,B1T,与直线CO平行的有GH1,FE1,共2条;与直线D1P 平行的有H1L,NF,共2条;与直线B1T平行的有E1N,GL,共2条.故与平面CB1D1平行的直线共有5+5+5+2+2+2=21条.[答案] C二、填空题7.(2017·郑州模拟)过点P(3,4)与圆x2-2x+y2-3=0相切的直线方程为______________.[解析] 圆的标准方程为(x-1)2+y2=4.当直线的斜率不存在时,直线x=3适合;当直线的斜率存在时,不妨设直线的方程为y-4=k(x-3),即kx-y+4-3k=0.由|k-0+4-3k|k2+1=2,得k=34.此时直线方程为y-4=34(x-3),即3x-4y+7=0.综上所述,所求切线的方程为x =3或3x -4y +7=0. [答案] x =3或3x -4y +7=08.正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为________.[解析] 当矩形长、宽分别为6和4时,体积V =2×3×12×4=43;当长、宽分别为4和6时,体积V =43×233×12×6=833.综上所述,所求体积为43或833.[答案] 43或8339.(2017·深圳模拟)若函数f (x )=mx 2-x +ln x 存在单调递减区间,则实数m 的取值范围是________.[解析] f ′(x )=2mx -1+1x =2mx 2-x +1x,即2mx 2-x +1<0在(0,+∞)上有解. 当m ≤0时显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m>0,故需且只需Δ>0,即1-8m >0,故0<m <18.综上所述,m <18,故实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,18.[答案] ⎝⎛⎭⎪⎫-∞,18三、解答题10.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n}的通项公式;(2)记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+800?若存在,求n的最小值;若不存在,说明理由.[解] (1)设数列{a n}的公差为d,依题意,2,2+d,2+4d成等比数列,故有(2+d)2=2(2+4d),化简得d2-4d=0,解得d=0或d=4.当d=0时,a n=2;当d=4时,a n=2+(n-1)·4=4n-2,从而得数列{a n}的通项公式为a n=2或a n=4n-2.(2)当a n=2时,S n=2n.显然2n<60n+800,此时不存在正整数n,使得S n>60n+800成立.当a n=4n-2时,S n=n[2+n-2=2n2.令2n2>60n+800,即n2-30n-400>0,解得n>40或n<-10(舍去),此时存在正整数n,使得S n>60n+800成立,n的最小值为41.综上,当a n=2时,不存在满足题意的n;当a n=4n-2时,存在满足题意的n,其最小值为41.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.(1)证明:A=2B;(2)若△ABC的面积S=a24,求角A的大小.[解] (1)证明:由正弦定理得sin B+sin C=2sin A cos B,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故-π<A -B <π,所以,B =π-(A -B )或B =A -B ,因此A =π(舍去)或A =2B , 所以A =2B .(2)由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin2B =sin B cos B ,因为sin B ≠0,所以sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.12.(2017·唐山模拟)已知函数f (x )=ax+ln x -2,a ∈R .(1)若曲线y =f (x )在点P (2,m )处的切线平行于直线y =-32x +1,求函数f (x )的单调区间;(2)是否存在实数a ,使函数f (x )在(0,e 2]上有最小值2?若存在,求出a 的值,若不存在,请说明理由.[解] (1)∵f (x )=a x+ln x -2(x >0),∴f ′(x )=-a x 2+1x(x >0),又曲线y =f (x )在点P (2,m )处的切线平行于直线 y =-32x +1,∴f ′(2)=-14a +12=-32⇒a =8.∴f ′(x )=-8x 2+1x =x -8x2(x >0),令f ′(x )>0,得x >8,f (x )在(8,+∞)上单调递增; 令f ′(x )<0,得0<x <8, f (x )在(0,8)上单调递减.∴f (x )的单调递增区间为(8,+∞),单调递减区间为(0,8). (2)由(1)知f ′(x )=-a x 2+1x =x -a x2(x >0).(ⅰ)当a ≤0时, f ′(x )>0恒成立,即f (x )在(0,e 2]上单调递增,无最小值,不满足题意.(ⅱ)当a >0时,令f ′(x )=0,得x =a ,所以当f ′(x )>0时,x >a ,当f ′(x )<0时,0<x <a ,此时函数f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减. 若a >e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (e 2)=ae2+lne 2-2=a e 2,由ae2=2,得a =2e 2,满足a >e 2,符合题意; 若a ≤e 2,则函数f (x )在(0,e 2]上的最小值f (x )min =f (a )=aa+ln a -2=ln a -1,由ln a -1=2,得a =e 3,不满足a ≤e 2,不符合题意,舍去.综上可知,存在实数a =2e 2,使函数f (x )在(0,e 2]上有最小值2.跟踪强化训练(四)一、选择题1.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.(2017·沈阳质监)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tanA2tan C2的值为( ) A.15 B.14 C.12 D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C2=1,由tan A =43,得tan A 2=12.∴tan A 2·tan C 2=12·1=12,选C.[答案] C3.(2017·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A .6B .7C .8D .9[解析] 设双曲线的左、右焦点分别为F 1、F 2,则其分别为已知两圆的圆心,由已知|PF1|-|PF2|=2×3=6.要使|PM|-|PN|最大,需PM,PN分别过F1、F2点即可.∴(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=9.故选D.[答案] D4.(2017·保定模拟)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[解析] 设g(x)=xf(x),则g′(x)=xf′(x)+f(x).∵当x<0时,xf′(x)+f(x)>0,∴当x<0时,g′(x)>0,∴函数g(x)=xf(x)在(-∞,0)上为增函数,∵函数f(x)是奇函数,∴g(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x)=g(x)(x∈R),∴函数g(x)在R上为偶函数,由f(1)=0,得g(1)=0,函数g(x)的图象大致如图所示,∵f(x)<0,∴x≠0,g xx<0,∴⎩⎪⎨⎪⎧x <0,g x 或⎩⎪⎨⎪⎧x >0,g x ,由函数图象知,-1<x <0或x >1.∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B. [答案] B5.(2017·南昌调研)某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B.[答案] B6.(2017·江南十校联考)若α、β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0,∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,在⎣⎢⎡⎦⎥⎤-π2,0上为减函数.∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒α2>β2,故选D.[答案] D二、填空题7.(2017·安徽省合肥市高三二检)已知集合A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________. [解析]因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝ ⎛⎭⎪⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127.[答案]1279.(2017·赣中南五校联考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +PA 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°,在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +PA 1的最小值为5 2. [答案] 5 2 三、解答题10.(2017·广西南宁月考)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f x ,x >0,-fx ,x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧x +2,x >0,-x +2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x-x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k x -,得(k 2+1)x 2-2k 2x +k 2-4=0,所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k x 1-x 1-t +k x 2-x 2-t=0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒k 2-k 2+1-2k 2t +k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.12.已知函数f (x )=ln x -(x +1). (1)求函数f (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *).[解] (1)∵f (x )=ln x -(x +1), ∴f ′(x )=1x-1(x >0).令f ′(x )>0,解得0<x <1; 令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1),取t =1n(n ∈N *)时,则1n>ln ⎝⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n>ln ⎝ ⎛⎭⎪⎫2·32·43·…·n +1n =ln(n +1). 即1+12+13+…+1n>ln(n +1).跟踪强化训练(五)1.[直接法](2017·济南二模)某班有6位学生与班主任老师毕业前夕留影,要求班主任站在正中间且女生甲、乙不相邻,则排法的种数为( )A .96B .432C .480D .528[解析] 当甲、乙在班主任两侧时,甲、乙两人有3×3×2种排法,共有3×3×2×24种排法;当甲乙在班主任同侧时,有4×24种排法,因此共有排法3×3×2×24+4×24=528(种).[答案] D2.[直接法](原创题)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的“欧拉线”.在△ABC 中,AB =AC =5,点B (-1,3),C (3,-1),且其“欧拉线”与圆x 2+(y -2)2=r 2相切,则该圆的面积为( )A .π B.2π C.4π D.5π[解析] 依题意,△ABC 的外心、重心、垂心均在边BC 的垂直平分线上,BC 的中点为M (1,1),直线BC 的斜率为-1,因此△ABC 的“欧拉线”方程是y-1=x -1,即x -y =0.圆心(0,2)到直线x -y =0的距离d =r =22=2,则该圆的面积为πr 2=2π.[答案] B3.[特例法]计算tan ⎝ ⎛⎭⎪⎫π4+αcos2α2cos 2⎝ ⎛⎭⎪⎫π4-α=( )A .-2B .2C .-1D .1[解析] 取α=π12,则原式=tan ⎝ ⎛⎭⎪⎫π4+π12cosπ62cos2⎝ ⎛⎭⎪⎫π4-π12=3×322×34=1.故选D.[答案] D4.[特例法]已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C .1 D.12[解析] 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点,AO →=23AD →,则有13AB →+13AC →=2m ·AO →,∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32.故选A. [答案] A5.[排除法](2017·重庆一诊)若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是( )A .(-2,1)B .(-1,2)C .(-∞,0)D .(-∞,-2)∪(1,+∞)[解析] 当a =0时,P (1,1),Q (3,0),因为k PQ =0-13-1=-12<0,此时过点P (1,1),Q (3,0)的直线的倾斜角为钝角,排除C ,D ;当a =1时,P (0,2),Q (3,2),因为k PQ =0,不符合题意,排除B ,选A.[答案] A6.[排除法](2017·武汉汉中二检)函数f (x )=sin2x +e ln|x |图象的大致形状是( )[解析] 因为f (x )=sin2x +e ln|x |,所以f (-x )=-sin2x +e ln|x |. 显然f (-x )≠f (x )且f (-x )≠-f (x ),所以函数f (x )为非奇非偶函数,可排除A ,C.由f ⎝ ⎛⎭⎪⎫-π4=-1+π4<0,可排除D.选B.[答案] B7.[图解法]已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( )A .60°B .90°C .120°D .150°[解析] 如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°.[答案] B8.[图解法](2017·东北三校联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx (-2≤x ≤4)的所有零点之和等于( )A .2B .4C .6D .8[解析] 由f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cosπx =0,得⎝ ⎛⎭⎪⎫12|x -1|=-2cosπx ,令g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4),h (x )=-2cosπx (-2≤x ≤4),又因为g (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,1≤x ≤4,2x -1,-2≤x <1.在同一坐标系中分别作出函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的图象(如图),由图象可知,函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|关于x =1对称,又x =1也是函数h (x )=-2cosπx (-2≤x ≤4)的对称轴,所以函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cosπx (-2≤x ≤4)的交点也关于x =1对称,且两函数共有6个交点,所以所有零点之和为6.[答案] C9.[估算法]图中阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的大致图象是( )[解析] 由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.[答案] B10.[估算法]已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积是( )A.36B.26C.23D.22 [解析] 容易得到△ABC 的面积为34,而三棱锥的高一定小于球的直径2,所以V <13×34×2=36,立即排除A 、C 、D ,答案选B.[答案] B11.[概念辨析法](2017·南昌一模)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] 若α=2π+π6,β=π6,α>β,但sin α=sin β,若α=π3,β=2π+π6,sin α>sin β,但此时α>β不成立,因而“α>β”是“sin α>sin β”的既不充分也不必要条件.[答案] D12.[概念辨析法](2017·襄阳调研)非空集合A 中的元素个数用(A )表示,定义(A -B )=⎩⎪⎨⎪⎧A -B ,A B ,B -A ,AB若A ={-1,0},B ={x ||x 2-2x -3|=a },且(A -B )≤1,则实数a 的所有可能取值为( )A .{a |a ≥4}B .{a |a >4或a =0}C .{a |0≤a ≤4}D .{a |a ≥4或a =0}[解析] 因为A ={-1,0},所以集合A 中有2个元素,即(A )=2.因为B ={x ||x 2-2x -3|=a },所以(B )就是函数f (x )=|x 2-2x -3|的图象与直线y =a 的交点个数,作出函数f (x )的图象如图所示.由图可知,(B )=0或(B )=2或(B )=3或(B )=4.①当(A )≥(B )时,又(A -B )≤1,则(B )≥(A )-1,所以(B )≥1,又(A )≥(B ),所以1≤(B )≤2,所以(B )=2,由图可知,a =0或a >4;②当(A )<(B )时,又(A -B )≤1,则(B )≤(A )+1,即(B )≤3,又(A )<(B ),所以2<(B )≤3,所以(B )=3,由图可知,a =4.综上所述,a =0或a ≥4,故选D. [答案] D跟踪强化训练(六)1.[直接法]对于锐角α,若sin ⎝ ⎛⎭⎪⎫α-π12=35,则cos ⎝⎛⎭⎪⎫2α+π3=________.[解析] 由α为锐角,且sin ⎝ ⎛⎭⎪⎫α-π12=35,可得cos ⎝⎛⎭⎪⎫α-π12=45,则cos ⎝ ⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π12+π4=cos ⎝ ⎛⎭⎪⎫α-π12cos π4-sin ⎝ ⎛⎭⎪⎫α-π12sin π4=45×22-35×22=210,于是cos ⎝ ⎛⎭⎪⎫2α+π3=2cos 2⎝ ⎛⎭⎪⎫α+π6-1=2×⎝ ⎛⎭⎪⎪⎫2102-1=-2425. [答案] -24252.[直接法]已知(1-2x )5(1+ax )4的展开式中x 的系数为2,则实数a 的值为________.[解析] 因为(1-2x )5的展开式中的常数项为1,x 的系数为C 15×(-2)=-10;(1+ax )4的展开式中的常数项为1,x 的系数为C 14a =4a ,所以(1-2x )5(1+ax )4的展开式中x 的系数为1×4a +1×(-10)=2,所以a =3.[答案] 33.[特例法]已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.[解析] 令a n=n,则a1+a3+a9a2+a4+a10=1+3+92+4+10=1316.[答案] 13 164.[特例法]如图,在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为________.[解析] 要满足各个截面使分得的两个三棱锥体积相等,则需满足与截面对应的交点E,F,G分别为中点即可.故可以将三条棱长分别取为OA=6,OB =4,OC=2,如图,则可计算S1=35,S2=210,S3=13,故S3<S2<S1.[答案] S3<S2<S15.[图解法]设方程1x+1=|lg x|的两个根为x1,x2,则x1·x2的取值范围________.[解析] 分别作出函数y=1x+1和y=|lg x|的图象如图,不妨设0<x 1<1<x 2,则|lg x 1|>|lg x 2|, ∴-lg x 1>lg x 2,即lg x 1+lg x 2<0,∴0<x 1x 2<1. [答案] (0,1)6.[图解法]不等式4-x 2-kx +1≤0的解集非空,则k 的取值范围为________.[解析] 由4-x 2-kx +1≤0,得4-x 2≤kx -1,设f (x )=4-x 2,g (x )=kx -1,其中-2≤x ≤2.如图,作出函数f (x ),g (x )的图象,不等式的解集非空,即直线l 和半圆有公共点.由图可知k AC =0---2-0=-12,k BC =0--2-0=12. 所以k 的取值范围为⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞.[答案] ⎝ ⎛⎦⎥⎤-∞,-12∪⎣⎢⎡⎭⎪⎫12,+∞7.[构造法]如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.[解析] 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR 33=6π.[答案]6π8.[构造法]已知数列{a n }满足a 1=1,a n +1=3a n +1,则{a n }的通项公式为________.[解析] 由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12,所以数列⎩⎨⎧⎭⎬⎫a n +12是以32为首项,3为公比的等比数列,所以a n +12=32·3n -1,故a n =3n-12.[答案] a n =3n -129.[归纳推理法](2017·辽宁丹东联考)已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为________.[解析] 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).[答案] (4,9)10.[归纳推理法]若直角三角形的两直角边为a 、b ,斜边c 上的高为h ,则1h 2=1a 2+1b2.类比以上结论,如图,在正方体的一角上截取三棱锥P -ABC ,PO为该棱锥的高,记M =1PO 2,N =1PA 2+1PB 2+1PC 2,那么M ,N 的大小关系是M ________N .(填>,<或=)[解析] 由题意得⎩⎪⎨⎪⎧S 2△ABC =S 2△ABP +S 2△PBC +S 2△APC ,S △ABC ·PO =12·PA ·PB ·PC ,所以M =1PO 2=S 2△ABCS 2△ABCPO 2=S 2△ABP +S 2△PBC +S 2△APC14PA 2·PB 2·PC 2=1PA 2+1PB 2+1PC 2=N .即M =N .[答案] =11.[正反互推法]给出以下命题:①双曲线y 22-x 2=1的渐近线方程为y =±2x ;②命题p :“∀x ∈R +,sin x +1sin x≥2”是真命题;③已知线性回归方程为y ^=3+2x ,当变量x 增加2个单位,其预报值平均增加4个单位;④设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=0.2,则p (-1<ξ<0)=0.6.则正确命题的序号为________(写出所有正确命题的序号).[解析] ①由y 22-x 2=0可以解得双曲线的渐近线方程为y =±2x ,正确.②命题不能保证sin x ,1sin x 为正,故错误;③根据线性回归方程的含义正确; ④P (ξ>1)=0.2, 可得P (ξ<-1)=0.2,所以P (-1<ξ<0)=12P (-1<ξ<1)=0.3,故错误.。
2018届高三理科数学二轮复习跟踪强化训练:30Word版含解析
两人说的是真话, 另外两人说的是假话, 且这四人中只有一人是罪犯,
由此可判断罪犯是 ( )
A .甲
B.乙
C.丙
D.丁
[ 解析 ] 由题可知,乙、丁两人的观点一致,即同真同假,假设
乙、丁说的是真话,那么甲、丙两人说的是假话,由乙说的是真话, 推出丙是罪犯,由甲说假话,推出乙、丙、丁三人不是罪犯,显然两 个结论相互矛盾,所以乙、丁两人说的是假话,而甲、丙两人说的是 真话,由甲、丙供述可得,乙是罪犯.
推断 f(x)=ccosx 为奇函数
B .由 a1=1, an= 3n- 1,求出 S1,S2, S3,猜出数列 { an} 的前 n
项和的表达式
C.由圆
x2+ y2= 1 的面积
S=πr 2,推断:椭圆
x2 y2 a2+b2= 1 的面积
S= πab
D .由平面三角形的性质推测空间四面体的性质
[ 解析 ] 由特殊到一般的推理过程,符合归纳推理的定义;由特
m+2i
3+2i |3+2i|
-m=0 且 3m+ 1≠0,得 m=3,故复数 1-i 的模为 1-i = |1- i|
32+22
26
= 12+ - 1 2= 2 ,故选 D.
[ 答案 ] D
3.(2017 ·大连模拟 )下列推理是演绎推理的是 ( )
A .由于 f(x)=ccosx 满足 f(-x)=- f(x)对任意的 x∈R 都成立,
跟踪强化训练 (三十 )
一、选择题
1.若复数 z 满足 z(2-i) =11+7i(i 为虚数单位 ),则 z 的共轭复
- 数 z =( )
A .3+5i
B.3-5i
C.- 3+5i
D.- 3-5i
2018届高3理科数学二轮复习跟踪强化训练:4 Word版含解析
跟踪强化训练(四)一、选择题1.函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A .3,-1 B .3,-2 C .2,-1D .2,-2[解析] y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2,所以最大值为2,最小值为-2.[答案] D2.(2019·沈阳质监)在△ABC 中,三边长a ,b ,c 满足a +c =3b ,则tan A 2tan C2的值为( )A.15B.14C.12D.23[解析] 令a =4,c =5,b =3,则符合题意. 则由∠C =90°,得tan C 2=1,由tan A =43,得tan A 2=12. ∴tan A 2·tan C 2=12·1=12,选C. [答案] C3.(2019·山西四校联考)P 为双曲线x 29-y 216=1的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和圆(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为()A.6 B.7 C.8 D.9[解析]设双曲线的左、右焦点分别为F1、F2,则其分别为已知两圆的圆心,由已知|PF1|-|PF2|=2×3=6.要使|PM|-|PN|最大,需PM,PN分别过F1、F2点即可.∴(|PM|-|PN|)max=(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=9.故选D.[答案] D4.(2019·保定模拟)函数f′(x)是奇函数f(x)(x∈R)的导函数,f(1)=0,当x<0时,xf′(x)+f(x)>0,则使得f(x)<0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)[解析]设g(x)=xf(x),则g′(x)=xf′(x)+f(x).∵当x<0时,xf′(x)+f(x)>0,∴当x<0时,g′(x)>0,∴函数g(x)=xf(x)在(-∞,0)上为增函数,∵函数f(x)是奇函数,∴g(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x)=g(x)(x∈R),∴函数g(x)在R上为偶函数,由f (1)=0,得g (1)=0, 函数g (x )的图象大致如图所示, ∵f (x )<0,∴x ≠0,g (x )x <0,∴⎩⎪⎨⎪⎧ x <0,g (x )>0或⎩⎪⎨⎪⎧x >0,g (x )<0,由函数图象知,-1<x <0或x >1. ∴使得f (x )<0成立的x 的取值范围为(-1,0)∪(1,+∞).故选B.[答案] B5.(2019·南昌调研)某重点中学在一次高三诊断考试中要安排8位老师监考某一考场的语文、数学、理综、英语考试,要求每堂安排两位老师且每位老师仅监考一堂,则其中甲、乙老师不监考同一堂的概率是( )A.314B.67C.37D.17[解析] 利用间接法,安排8位老师监考某一考场的方法共有C 28C 26C 24C 22种,而安排甲、乙两位老师监考同一堂的方法有C 14C 26C 24C 22,所以甲、乙两位老师不监考同一堂的概率为1-C 14C 26C 24C 22C 28C 26C 24C 22=1-17=67,故选B.[答案] B6.(2019·江南十校联考)若α、β∈⎣⎢⎡⎦⎥⎤-π2,π2,且αsin α-βsin β>0,则下面结论正确的是( )A .α>βB .α+β>0C .α<βD .α2>β2[解析] 令f (x )=x sin x ,则f ′(x )=sin x +x ·cos x .∵x ∈⎣⎢⎡⎦⎥⎤-π2,π2,f (x )为偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f ′(x )≥0, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上为增函数,在⎣⎢⎡⎦⎥⎤-π2,0上为减函数. ∴αsin α-βsin β>0⇔f (|α|)>f (|β|)⇒|α|>|β|⇒ α2>β2,故选D. [答案] D 二、填空题7.(2019·安徽省合肥市高三二检)已知集合A =[1,+∞),B =⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是________.[解析]因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1.[答案] [1,+∞)8.如图,已知在△ABC 中,∠BAC =120°,且|AB →|=2,|AC →|=3,若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.[解析] 因为AP →·BC →=(λAB →+AC →)·(AC →-AB →)=(λ-1)×AB →·AC →-4λ+9=0,AB →·AC →=2×3×⎝⎛⎭⎪⎫-12=-3,所以-3(λ-1)-4λ+9=0,得λ=127.[答案] 1279.(2019·赣中南五校联考)如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90°,AC =6,BC =CC 1=2,P 是BC 1上一动点,则CP +P A 1的最小值为________.[解析] 连接A 1B ,沿BC 1将△CBC 1展开,使与△A 1BC 1在同一个平面内,如图所示,连接A 1C .则A 1C 的长度就是所求的最小值.易知∠A 1C 1B =90°,∠BC 1C =45°,所以∠A 1C 1C =135°, 在△A 1C 1C 中,由余弦定理可得A 1C =5 2.故CP +P A 1的最小值为5 2.[答案] 5 2 三、解答题10.(2019·广西南宁月考)已知函数f (x )=ax 2+bx +c (a >0,b ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1的区间(0,1]上恒成立,试求b 的取值范围.[解] (1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8. (2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].11.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)如图,过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.[解] (1)设圆心C (a,0)⎝ ⎛⎭⎪⎫a >-52,则|4a +10|5=2⇒a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t =0⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t =0⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4,所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.12.已知函数f (x )=ln x -(x +1).(1)求函数f (x )的极大值;(2)求证:1+12+13+…+1n >ln(n +1)(n ∈N *). [解] (1)∵f (x )=ln x -(x +1), ∴f ′(x )=1x -1(x >0). 令f ′(x )>0,解得0<x <1; 令f ′(x )<0,解得x >1.∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f (x )极大值=f (1)=-2.(2)证明:由(1)知x =1是函数f (x )的极大值点,也是最大值点, ∴f (x )≤f (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1), 取t =1n (n ∈N *)时,则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝⎛⎭⎪⎫n +1n , 叠加得1+12+13+…+1n>ln ⎝ ⎛⎭⎪⎫2·32·43·…·n +1n =ln(n +1). 即1+12+13+…+1n >ln(n +1).。
2018年高三数学(理科)二轮复习完整版
专题限时集训 (一)A
基础演练
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
1.设 U= {1 , 2, 3, 4, 5} , A= {1 , 5} , B={2 , 4} ,则 B∩ (?UA)= ( )
A . {2 , 3, 4}
B . { 2}
C. {2 , 4}
专题限时集训 (一 )B
[ 第 1 讲 集合与常用逻辑用语 ] (时间: 5 分钟+ 30 分钟 )
基础演练
1.已知全集 U= R ,A= { x|x≤ 0} ,B= { x|x≥ 1} ,则集合 ?U(A∪ B) =( )
A . { x|x≥ 0}
B . { x|x≤ 1}
C. { x|0≤ x≤ 1}
A .充分不必要条件 B .必要不充分条件
C .充要条件 D .既不充分也不必要条件
4.已知集合 M = { x|- 2≤ x<2} ,N={ x|y= log 2(x- 1)} ,则 M ∩ N= ( )
A . { x|- 2≤ x<0}
B . { x|- 1< x<0}
C. { x|1<x<2}
形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度 适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排:
1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段, 月 30 日。
时间为 3 月 10—— 4
2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为
7.试卷讲评随意,对答案式的讲评。对答案式的讲评是影响讲评课效益的大敌。评讲的较好 做法应该为,讲评前认真阅卷,讲评时将归类、纠错、变式、辩论等方式相结合,抓错误点、 失分点、模糊点,剖析根源,彻底矫正。 四、在第二轮复习过程中,我们安排如下: 1. 继续抓好集体备课。 每周一次的集体备课必须抓落实, 发挥集体智慧的力量研究数学高考 的动向,学习与研究《考试大纲》 ,注意哪些内容降低要求,哪些内容成为新的高考热点,每 周一次研究课。 2.安排好复习内容。 3.精选试题,命题审核。 4.测试评讲,滚动训练。 5.精讲精练:以中等题为主。
2018届高三理科数学二轮复习跟踪强化训练18 含解析 精
跟踪强化训练(十八)一、选择题1.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N 都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115[解析] 解法一:令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.解法二:当n ≥2时,a 1·a 2·a 3·…·a n =n 2.当n ≥3时,a 1·a 2·a 3·…·a n-1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,∴a 3=94,a 5=2516,∴a 3+a 5=6116,故选A.[答案] A2.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是a n =( )A .n B.⎝⎛⎭⎪⎫n +1n n -1C .n 2D .2n -1[解析] 由a n =n (a n +1-a n ),得a n +1n +1=a n n ,所以数列⎩⎨⎧⎭⎬⎫a n n 为常数列,所以a n n =a n -1n -1=…=a 11=1,所以a n =n ,故选A.[答案] A3.已知数列{a n }满足a 1=2,a n +1=1+a n1-a n(n ∈N *),则a 1·a 2·a 3·…·a 2017=( )A .-6B .6C .-2D .2[解析] ∵a 1=2,a n +1=1+a n 1-a n ,∴a 2=1+21-2=-3,同理,a 3=-12,a 4=13,a 5=2,…,∴a n +4=a n ,a 1a 2a 3a 4=1,∴a 1·a 2·a 3·…·a 2017=(a 1a 2a 3a 4)504×a 1=1×2=2.故选D.[答案] D4.(2017·衡水中学二调)已知S n 是数列{a n }的前n 项和,a 1=1,a 2=2,a 3=3,数列{a n +a n +1+a n +2}是公差为2的等差数列,则S 25=( )A .232B .233C .234D .235[解析] ∵数列{a n +a n +1+a n +2}是公差为2的等差数列,∴a n +3-a n =(a n +1+a n +2+a n +3)-(a n +a n +1+a n +2)=2,∴a 1,a 4,a 7,…是首项为1,公差为2的等差数列,a 2,a 5,a 8,…是首项为2,公差为2的等差数列,a 3,a 6,a 9,…是首项为3,公差为2的等差数列,∴S 25=(a 1+a 4+a 7+…+a 25)+(a 2+a 5+a 8+…+a 23)+(a 3+a 6+a 9+…+a 24)=9×1+9×8×22+8×2+8×7×22+8×3+8×7×22=233,故选B.[答案] B5.(2017·郑州模拟)已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( )A .若a 3>0,则a 2013<0B .若a 4>0,则a 2014<0C .若a 3>0,则S 2013>0D .若a 4>0,则S 2014>0[解析] 根据等比数列的通项公式得a 2013=a 1·q 2012=a 3q 2010,a 2014=a 1q 2013=a 4q 2010,易知A ,B 错误.对于选项C ,因为a 3=a 1q 2>0,所以a 1>0,当q >0时,任意a n >0,故有S 2013>0;当q <0时,仍然有S 2013=a 1(1-q 2013)1-q >0,C 正确.对于选项D ,可列举公比q =-1的等比数列-1,1,-1,1,…,显然满足a 4>0,但S 2014=0,故D 错误.故选C.[答案] C6.(2017·山西大同模拟)已知数列{a n }的通项公式为a n =(-1)n (2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120[解析] 由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k-1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =8, ∴S 60=8×15=120. [答案] D 二、填空题7.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1(n∈N *),则a n =________.[解析] 由已知可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3,当n ≥2时,a n =S n -S n -1=2n +1-1-2n +1=2n ,因为n =1时不满足a n =2n,故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.[答案] ⎩⎪⎨⎪⎧3,n =1,2n ,n ≥28.(2017·河南新乡三模)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =________.[解析] ∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12. [答案] 3n -1+129.(2017·安徽省淮北一中高三最后一卷改编)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为“调和数列”,已知正项数列⎩⎨⎧⎭⎬⎫1b n 为“调和数列”,且b 1+b 2+…+b 2019=20190,则b 2b 2018的最大值是________.[解析] 因为数列⎩⎨⎧⎭⎬⎫1b n 是“调和数列”,所以b n +1-b n =d ,即数列{b n }是等差数列,所以b 1+b 2+…+b 2019=2019(b 1+b 2019)2=2019(b 2+b 2018)2=20190,所以b 2+b 2018=20.又1b n >0,所以b 2>0,b 2018>0,所以b 2+b 2018=20≥2b 2b 2018,即b 2b 2018≤100(当且仅当b 2=b 2018时等号成立),因此b 2b 2018的最大值为100.[答案] 100 三、解答题10.(2017·郑州质检)已知数列{a n }的首项a 1=1,前n 项和S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n ,求数列{b n }的前n 项和T n . [解] (1)由已知条件得S nn =1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=S 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)n a n =(-1)n (4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n , 当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,(n =2k ,k ∈N *)-2n +1,(n =2k -1,k ∈N *).11.(2017·北京海淀模拟)数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .[解] (1)∵S n =2a n -a 1, ∴当n ≥2时,S n -1=2a n -1-a 1, ∴a n =2a n -2a n -1,化为a n =2a n -1.由a 1,a 2+1,a 3成等差数列得,2(a 2+1)=a 1+a 3, ∴2(2a 1+1)=a 1+4a 1,解得a 1=2.∴数列{a n }是等比数列,首项为2,公比为2. ∴a n =2n .(2)∵a n +1=2n +1,∴S n =2(2n -1)2-1=2n +1-2,S n +1=2n +2-2.∴b n =a n +1S n S n +1=2n +1(2n +1-2)(2n +2-2)=12⎝ ⎛⎭⎪⎫12n -1-12n +1-1. ∴数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=12⎝ ⎛⎭⎪⎫1-12+-1. 12.(2017·山东卷)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .[解] (1)设数列{x n }的公比为q ,由已知知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0,所以q =2,x 1=1. 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.②①-②得 -T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.。
2018-2019年最新最新高考总复习数学(理)二轮复习模拟试题及答案解析
高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.765.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=211.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.16.曲线+=1与两坐标轴所围成图形的面积是.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.63520.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数代数形式的乘除运算化简得答案.解答:解:∵=,又复数z与的对应点关于虚轴对称,则z=2﹣i.故选:B.点评:本题考查了复数的代数表示法及其几何意义,考查了复数代数形式的乘除运算,是基础题.3.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.C.﹣D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:由通项公式和求和公式可得a1和d的方程组,解方程组可得.}的公差为d,解答:解:设等差数列{an∵a7=8,前7项和S7=42,∴a1+6d=8,7a1+d=42,解得a1=4,d=故选:D点评:本题考查等差数列的通项公式和求和公式,属基础题.4.执行如图的程序框图,若输入的a=209,b=76,则输出的a 是()A.19 B.3 C.57 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c 的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:A.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.5.设a=log3π,b=logπ3,c=cos3,则()A.b>a>c B.c>b>a C.a>c>b D.a>b>c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数与指数函数、三角函数的单调性即可得出.解答:解:∵a=log3π>1,0<b=logπ3<1,c=cos3<0,∴a>b>c.故选:D.点评:本题考查了对数函数与指数函数、三角函数的单调性,属于基础题.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣ B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.解答:解:作出不等式组对应的平面区域如图:z=的几何意义为区域内的点到定点D(﹣1,0)的斜率,由图象知AD的斜率最大,BD的斜率最小,由,解得,即A(,),此时z==,由,解得,即B(),此时z==,故z=的取值范围是[,],故选:B.点评:本题主要考查线性规划的应用,利用目标函数的几何意义以及直线斜率公式是解决本题的关键.8.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.考点:由三视图求面积、体积.专题:计算题;作图题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱柱与三棱锥的组合体.解答:解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分,已知甲球队已赛4场,积4分,在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A.7种B.13种C.18种D.19种考点:计数原理的应用.专题:应用题;排列组合.分析:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,即可得出结论.解答:解:由题意4=1+1+2+0=2+2+0+0=1+1+1+1,所以球队胜、平、负(包括顺序)的情况共有++1=19种,故选:D.点评:本题考查计数原理的运用,考查学生的计算能力,比较基础.10.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.11.已知函数f(x)=﹣,g(x)=xcosx﹣sinx,当x∈[﹣3π,3π]时,方程f(x)=g(x)根的个数是()A.8 B.6 C.4 D.2考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用;导数的综合应用.分析:先对两个函数分析可知,函数f(x)与g(x)都是奇函数,且f(x)是反比例函数,g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;从而作出函数的图象,由图象求方程的根的个数即可.解答:解:由题意知,函数f(x)=﹣在[﹣3π,3π]是奇函数且是反比例函数,g(x)=xcosx﹣sinx在[﹣3π,3π]是奇函数;g′(x)=cosx﹣xsinx﹣cosx=﹣xsinx;故g(x)在[0,π]上是减函数,在[π,2π]上是增函数,在[2π,3π]上是减函数,且g(0)=0,g(π)=﹣π;g(2π)=2π;g(3π)=﹣3π;故作函数f(x)与g(x)在[﹣3π,3π]上的图象如下,结合图象可知,有6个交点;故选:B.点评:本题考查了导数的综合应用及函数的图象的性质应用,同时考查了函数的零点与方程的根的关系应用,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A,B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣3,3] C.[﹣,] D.[﹣5,5]考点:椭圆的简单性质.专题:平面向量及应用.分析:通过确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:如图,连结OM交圆于点D.∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA=AB≤2,又∵MD≤MA,OD=1,∴OM≤3,即点M到原点距离小于等于3,∴t2+4≤9,∴≤t≤,故选:C.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分)13.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.14.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.15.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.16.曲线+=1与两坐标轴所围成图形的面积是.考点:定积分.专题:导数的概念及应用.分析:首先由题意,画出图象,然后利用定积分表示面积解答:解:曲线+=1,即y=(1﹣)2即图象与两坐标轴围成的图形如图阴影部分其面积为(1﹣)2dx=(1﹣2+x)dx=(+x)|=;故答案为:点评:本题考查了利用定积分求曲边梯形的面积;关键是正确利用定积分表示面积,然后计算.三、解答题(本大题共70分,其中17-21题为必考题,22-24题为选考题,解答应写出文字说明、证明过程或演算步骤)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,侧面PAD是等边三角形,平面PAD⊥平面ABCD,M,N分别是棱PC,AB的中点,且MN⊥CD.(Ⅰ)求证:AD⊥CD;(Ⅱ)若AB=AD,求直线MN与平面PBD所成角的正弦值.考点:直线与平面所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(Ⅰ)取PD边中点E,连接AE,EM,根据MN⊥CD 容易得到CD⊥AE,而根据已知条件可以说明PO⊥平面ABCD,从而得到CD⊥PO,这样CD就垂直于平面PAD内两条相交直线,由线面垂直的判定定理从而得到AD⊥CD;(Ⅱ)取BC中点F,连接OF,由(Ⅰ)便可知道OA,OF,OP三条直线两两垂直,从而可分别以这三条直线为x,y,z轴,可设AB=2,这样即可求得图形中一些点的坐标.从而求出向量的坐标,这时候设平面PBD的法向量为,根据即可求出的坐标,若设MN和平面PBD所成角为θ,从而根据sinθ=即可求得答案.解答:解:(Ⅰ)证明:如图,取PD中点E,连AE,EM,则EM∥AN,且EM=AN;∴四边形ANME是平行四边形,MN∥AE;∵MN⊥CD,∴AE⊥CD,即CD⊥AE;取AD中点O,连PO,△PAD是等边三角形,则PO⊥AD;又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD;∴PO⊥平面ABCD,PO⊥CD,即CD⊥PO;故CD⊥平面PAD,AD⊂平面PAD;∴CD⊥AD,即AD⊥CD;(Ⅱ)由AB=AD,AD⊥CD,得▱ABCD是正方形;取BC边的中点F,连接OF,则分别以OA,OF,OP所在直线为x,y,z轴建立如图所示空间直角坐标系;设AB=2,则A(1,0,0),B(1,2,0),D(﹣1,0,0),P(0,0,),E(﹣,0,);=(2,2,0),=(1,0,);设平面PBD的法向量,则:;∴;∴,取z=1,∴;==(,0,﹣);设直线MN与平面PBD所成的角为θ,则:sinθ=|cos<,>|==.点评:考查面面垂直的性质定理,线面垂直的判定定理,以及建立空间直角坐标系,利用向量解决直线和平面所成角的问题,能求空间点的坐标,注意线面角和直线和平面法向量所成角的关系,以及向量夹角余弦的坐标公式.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如下表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出12家,然后从这12家中选出9家进行奖励,分别奖励中、小企业每家50万元、10万元,记9家企业所获奖金总数为X万元,求X的分布列和期望.附:K2=P(K2≥k0)0.050 0.025 0.010k0 3.841 5.024 6.635考点:独立性检验的应用.专题:应用题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)按分层抽样得到的12家中,中小企业分别为3家和9家.X 的可能取值为90,130,170,210,求出相应的概率,即可求出X的分布列和期望.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中小企业家数之比为1:3,按分层抽样得到的12家中,中小企业分别为3家和9家.设9家获得奖励的企业中,中小企业分别为m家和n家,则(m,n)可能为(0,9),(1,8),(2,7),(3,6).与之对应,X的可能取值为90,130,170,210.…(6分)P(X=90)=,P(X=130)=,P(X=170)=,P(X=210)=,…(10分)分布列表如下:X 90 130 170 210P期望EX=90×+130×+170×+210×=180.…(12分)点评:本题考查独立性检验的应用,考查X的分布列和期望,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m、n是过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D.(Ⅰ)求m的斜率k的取值范围;(Ⅱ)是否存在常数λ,使得|AC|•|AD|=λ|AB|2?若存在,求λ的值;若不存在,说明理由.考点:抛物线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),代入直线方程,由条件结合二次方程的韦达定理,再由判别式为0,即可判断.解答:解:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x ﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0(1),x2+4kx﹣4ka+4=0(2),由△1=0得k2﹣ka﹣1=0,>0得k2+ka﹣1>0,由△2故有2k2﹣2>0,得k2>1,即k<﹣1,或k>1.(Ⅱ)假设存在常数λ,使得|AC|•|AD|=λ|AB|2,设B(x0,y0),C(x1,y1),D(x2,y2),则(y1+1)(y2+1)=λ(y0+1)2.将y1+1=﹣k(x1﹣a),y2+1=﹣k(x2﹣a),y0+1=k(x0﹣a)代入上式,得(x1﹣a)(x2﹣a)=λ(x0﹣a)2,即x1x2﹣a(x1+x2)+a2=λ(x0﹣a)2.由(2)得x1+x2=﹣4k,x1x2=﹣4ka+4,由(1)得x0=2k,代入上式,得4+a2=λ(4k2﹣4ka+a2).又△1=0得k2﹣ka﹣1=0,即4k2﹣4ka=4,因此4+a2=λ(4+a2),λ=1.故存在常数λ=1,使得|AC|•|AD|=λ|AB|2.点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式和韦达定理,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,g(x)=x++(﹣x)lnx,其中a∈R.(Ⅰ)证明:g(x)=g(),并求g(x)的最大值;(Ⅱ)记f(x)的最小值为h(a),证明:函数y=h(a)有两个互为相反数的零点.考点:利用导数求闭区间上函数的最值;函数零点的判定定理;利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)利用已知函数g(x)的解析式,分别计算g(),g(x),可得两者相等;再利用g′(x)求得最大值;(Ⅱ)利用f′(x)可得f(x)的最小值h(a)=t++(﹣t)lnt=g(t),由(Ⅰ)可知g()<0,g(1)>0,利用函数零点的判定定理即得结论.解答:解:(Ⅰ)∵g()=+x+(x﹣)ln=x++(﹣x)lnx,∴g(x)=g(),则g′(x)=﹣(1+)lnx,当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+∞)时,g′(x)<0,g(x)单调递减.所以g(x)的最大值为g(1)==2.(Ⅱ)∵f(x)=x++alnx,∴f′(x)=1﹣+=.令f′(x)=0,即x2+ax﹣1=0,则△=a2+4>0,不妨取t=>0,由此得:t2+at﹣1=0或写为:a=﹣t.当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.从而f(x)的最小值为f(t)=t++alnt=t++(﹣t)lnt,即h(a)=t++(﹣t)lnt=g(t)(或h(a)=+aln).由(Ⅰ)可知g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(0,1)和d∈(1,+∞),使得g(c)=g (d)=0,且cd=1,因为a=﹣t(t>0)是t的减函数,所以y=h(a)有两个零点a1=﹣d和a2=﹣c,又﹣d+﹣c=﹣(c+d)=0,所以y=h(a)有两个零点且互为相反数.点评:本题考查利用导数判断函数的单调性及零点判定定理,考查转化与化归思想、运算求解能力、数据处理能力和推理论证能力.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分【选修4-1:几何证明选讲】22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.【选修4-4:极坐标与参数方程】23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacos θ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跟踪强化训练(九)一、选择题1.(2017·湖南怀化调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[解析] ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)上是增函数,又f (1)=ln1-⎝ ⎛⎭⎪⎫12-1=ln1-2<0,f (2)=ln2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3),故选C. [答案] C2.(2017·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析] 依题意并结合函数f (x )的图象可知,⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0,解得14<m <12.[答案] C3.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 2(x +1),x >0,2x ,x ≤0,则函数y =|f (x )|-g (x )的零点的个数为( )A .3B .4C .5D .6[解析] 函数y =|f (x )|-g (x )的零点的个数,即|f (x )|-g (x )=0的根的个数,可得|f (x )|=g (x ),画出函数|f (x )|,g (x )的图象如图所示,观察函数的图象,则它们的交点为5个,即函数的零点个数为5,选C.[答案] C4.函数f (x )=2sinπx -x +1的零点个数为( ) A .4 B .5 C .6 D .7[解析] 令2sinπx -x +1=0,得2sinπx =x -1,令h (x )=2sinπx ,g (x )=x -1,则f (x )=2sinπx -x +1的零点个数问题就转化为函数h (x )与g (x )的图象的交点个数问题.h (x )=2sinπx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h ⎝ ⎛⎭⎪⎫52>g ⎝ ⎛⎭⎪⎫52,g (4)=3>2,g (-1)=-2,所以两个函数图象的交点共5个,所以f (x )=2sinπx -x +1的零点个数为5.[答案] B5.(2016·全国卷Ⅲ)已知a =2 43 ,b =425,c =25 13 ,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b[解析] 因为a =2 43 =16 13 ,b =425 =16 15 ,c =25 13,且幂函数y =x 13在R 上单调递增,∴c >a ,指数函数y =16x 在R 上单调递增,∴a >b ,所以b <a <c .[答案] A6.(2017·河北石家庄一模)已知函数f (x )=e xx -kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是( )A .(0,2) B.⎝ ⎛⎭⎪⎫0,e 24 C .(0,e) D .(0,+∞)[解析] 由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e x x -kx =0只有一个根,即方程e x x 2=k 只有一个根,设g (x )=e xx 2,则函数g (x )=e xx 2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)e xx 3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值为g (2)=e 24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e 24,故选B.[答案] B 二、填空题7.(2017·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝ ⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x -4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 40509.(2016·泰安模拟)已知f (x )=⎩⎪⎨⎪⎧e -x ,x ≤0x ,x >0,g (x )=f (x )-12x -b 有且仅有一个零点时,b 的取值范围是________.[解析] 要使函数g (x )=f (x )-x2-b 有且仅有一个零点,只需要函数f (x )的图象与函数y =x2+b 的图象有且仅有一个交点,通过在同一坐标系中同时画出两个函数的图象并观察得,要符合题意须满足b ≥1或b =12或b ≤0.[答案] b ≥1或b =12或b ≤0 三、解答题10.(2017·贵州调研)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. [解] (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x = ⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个不相等的正根.11.(2017·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大?[解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x+250,其中⎩⎪⎨⎪⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5. (2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2017·威海模拟)已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数.(1)求k 的值.(2)设g (x )=log 4⎝⎛⎭⎪⎫a ·2x -43a ,若方程f (x )=g (x )有且仅有一解,求实数a 的取值范围.[解] (1)由函数f (x )是偶函数可知,f (x )=f (-x ),所以log 4(4x +1)+kx =log 4(4-x +1)-kx ,所以log 44x +14-x +1=-2kx ,即x =-2kx对一切x ∈R 恒成立,所以k =-12. (2)由已知f (x )=g (x ),有且仅有一解,即方程log 4(4x +1)-12x =log 4(a ·2x -43a )有且只有一个实根,即方程2x+12x =a ·2x-43a 有且只有一个实根.令t =2x>0,则方程(a -1)t 2-43at -1=0有且只有一个正根.①当a =1时,则t =-34不合题意;②当a ≠1时,若方程有两个相等的根,Δ=0,解得a =34或-3. 若a =34,则t =-2,不合题意; 若a =-3,则t =12;③因为0不是方程的根,若方程有一个正根与一个负根,即-1a -1<0,解得a >1.综上所述,实数a 的取值范围是{-3}∪(1,+∞).。