3.1圆教学设计

合集下载

青岛版七下数学13.3.1圆的初步认识教学设计

青岛版七下数学13.3.1圆的初步认识教学设计

青岛版七下数学13.3.1圆的初步认识教学设计一. 教材分析《青岛版七下数学13.3.1圆的初步认识》这一节主要让学生了解圆的定义、圆心和半径等基本概念,掌握用圆规和直尺画圆的方法,以及理解圆的性质。

教材通过生活中的实例引入圆的概念,让学生感受圆的特点和应用。

二. 学情分析七年级的学生已经学习了线段、射线、直线等基本几何概念,对几何图形有了一定的认识。

但是,他们对于圆的概念和性质可能还比较陌生,需要通过实例和实践活动来加深理解。

三. 教学目标1.了解圆的定义,掌握圆心和半径的概念。

2.学会用圆规和直尺画圆。

3.理解圆的性质,能够运用圆的性质解决实际问题。

四. 教学重难点1.圆的概念和性质的理解。

2.用圆规和直尺画圆的方法。

五. 教学方法采用问题驱动法、实例分析法、小组合作法、实践活动法等,引导学生从实际生活中发现圆的特点,通过实践操作加深对圆的认识。

六. 教学准备1.圆规、直尺、铅笔、橡皮等学习工具。

2.圆形物品,如硬币、瓶盖等。

3.教学课件或黑板。

七. 教学过程1.导入(5分钟)利用生活中的实例,如硬币、车轮等,引导学生观察这些物品的共同特点,引出圆的概念。

提问:什么是圆?圆有哪些特点?2.呈现(10分钟)通过展示圆形物品,让学生直观地感受圆的特点。

同时,引导学生思考:如何用几何工具画出一个圆?3.操练(10分钟)让学生分组,每组使用圆规和直尺尝试画出一个圆。

在画圆的过程中,引导学生注意圆心和半径的概念,以及圆的性质。

4.巩固(10分钟)通过一些练习题,让学生运用圆的性质解决问题。

如:已知圆的半径,求圆的周长和面积。

5.拓展(10分钟)引导学生思考:圆在生活中的应用有哪些?如何运用圆的性质解决实际问题?6.小结(5分钟)对本节课的内容进行总结,强调圆的定义、圆心和半径的概念,以及圆的性质。

7.家庭作业(5分钟)布置一些有关圆的练习题,让学生课后巩固所学知识。

8.板书(5分钟)板书本节课的主要内容,包括圆的定义、圆心和半径的概念,以及圆的性质。

九年级数学上册 3.1 圆教案 (新版)浙教版

九年级数学上册 3.1 圆教案 (新版)浙教版

3.1圆课题 3.1圆教学目的知识点1.理解圆、弧、弦等有关概念.2.学会圆、弧、弦等的表示方法.3.掌握点和圆的位置关系及其判定方法.能力点进一步培养学生分析问题和解决问题的能力.德育点用生活和生产中的实例激发学生学习兴趣从而唤起学生尊重知识尊重科学,更加热爱生活重点弦和弧的概念、弧的表示方法和点与圆的位置关系.难点点和圆的位置关系及判定.教法操作、讨论、归纳、巩固学法通过日常生活在生产中的实例引导学生对学习圆的兴趣教具画圆工具教学设计进程教师活动学生活动设计意图达到效果一复习引入二新课讲述1.展示幻灯片,教师指出,日常生活和生产中的许多问题都与圆有关.如(1)一个破残的轮片(课本P62图),怎样测出它的直径?如何补全?(2)圆弧形拱桥(课本P63图),设计时桥拱圈(»AB)的半径该怎样计算?(3)如何躲避圆弧形暗礁区(课本P60、P74图),不使船触礁?(4)自行车轮胎为什么做成圆的而不做成方的?2.上述这些问题都与圆的问题有关,在小学我们已经认识过圆,回会用圆规画圆,问:圆上的点有什么特性吗?圆、圆心、圆的半径、圆的直径各是怎样定义的?这节课我们用另一种方法来定义圆的有关概念。

(板书)3.1 圆1.师生一起用圆规画圆:取一根绳子,把一端固定在画板上,另一端缚在粉笔上,然后拉紧绳子,并使它绕固定的一端旋转一周,即得一个圆(课本图3—1、3-2).归纳:在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆.定点O就是圆心,线段OP就是圆的半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.如图所示.2圆的有关概念(如图3-3)(1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,图中的AB。

直径等于半径的2倍.(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用学生观察讨论回答定圆心半径三点确定一个圆垂径定理利用圆周角半径定长重心稳定学生口答学生观察并比较熟记圆的有关概念通过设问,目的是唤起对学习圆的兴趣通过比较回答,引起对圆的有关概念的认识。

浙教版数学九年级上册3.1《圆》教学设计1

浙教版数学九年级上册3.1《圆》教学设计1

浙教版数学九年级上册3.1《圆》教学设计1一. 教材分析《圆》是浙教版数学九年级上册3.1节的内容,主要包括圆的定义、圆的性质、圆的周长和圆的面积等。

这部分内容是学生对平面几何学习的进一步拓展,也是初中数学的重要内容之一。

通过学习圆的相关知识,学生可以更好地理解几何图形之间的关系,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形的性质和关系有一定的了解。

但同时,圆的概念和性质相对抽象,需要学生通过实际操作和深入思考来理解和掌握。

因此,在教学过程中,要注重培养学生的动手能力、观察能力和逻辑思维能力。

三. 教学目标1.知识与技能:使学生理解圆的定义,掌握圆的性质,能运用圆的周长和面积公式解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的动手能力、观察能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受数学在生活中的应用。

四. 教学重难点1.重点:圆的定义、性质,圆的周长和面积公式的推导及应用。

2.难点:圆的性质的理解和应用,圆的周长和面积公式的记忆和运用。

五. 教学方法1.情境教学法:通过生活实例引入圆的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生主动探究圆的性质,培养学生的思考能力。

3.合作学习法:分组讨论,共同解决问题,培养学生的团队合作精神。

4.动手操作法:让学生亲自动手,通过实际操作来理解和掌握圆的相关知识。

六. 教学准备1.教具:圆规、直尺、橡皮泥等。

2.教学多媒体:课件、视频等。

3.学具:每个学生准备一套圆规、直尺、橡皮泥等。

七. 教学过程1.导入(5分钟)利用生活实例,如自行车轮、地球等,引导学生思考圆的特点,引出圆的概念。

2.呈现(10分钟)展示圆的性质,如圆的对称性、圆的周长和面积公式等,引导学生观察和思考。

3.操练(10分钟)学生分组讨论,共同探究圆的性质,通过实际操作来验证圆的性质。

3.1圆教学设计

3.1圆教学设计

3.1 圆(教学设计)一、教学目标(一) 知识与技能:1.理解圆的概念.2.理解点与圆的位置关系.(二)过程与方法:1.经历形成圆的概念的过程,经历探索点和圆位置关系的过程。

2.会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系.(三)情感与价值观:在学习中体会圆的实际应用,感受数学与现实生活的密切联系,增强学生的数学应用意识.二、教学重点:点和圆的三种位置关系.教学难点:能根据条件画出符合条件的点或图形,用集合的观点研究圆的概念.三、教学方法:指导探索法.四、教具准备:圆规、三角板五、教学过程Ⅰ.创设现实情境,引入新课[师] 请欣赏图片---圆的世界Ⅱ.讲授新课(1)、下面我们看一个游戏队形.[师]一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每个人都公平吗?你认为他们应当排成什么样的队形?[生甲]排成方形的.[生乙]你的说法不对,排成方形的,顶点处的同学还是吃亏,我觉得应当竖着排成一行.[生丙]我觉得今天学的是圆,应当排成圆形或圆弧形较合适.[师]大家讨论得很好,每个人都说出了各自的想法.就这个问题,如果单纯从队形来考虑,排成圆形或圆弧形比较公平.因为每个同学离要投的目标一样远近.[师]这节课来学习圆(2)、[生]自主学习读书填空(1) 圆:上,到等于的所有点的组成的图形叫做圆,其中,称为圆心,称为半径的长(通常也称为半径),以点O为圆心的圆记作,读作“圆0”。

(2)连接圆上任意两点的线段叫做______,经过圆心的弦叫做______.(3)圆上任意两点间的部分叫做______,简称____, 直径将圆分成两条弧,每一条弧都叫______,小于半圆的弧叫_____,如记作_____.大于半圆的弧叫_____,如记作_____.(4)能够重合的两个圆叫做_____.在_____________中,能够互相重合的弧叫做______。

[生甲]回答以上问题[师]这样我们就得到了圆的定义:平面上到定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(centre of a circle),定长称为半径(radius)的长(通常也称为半径).以点O为圆心的圆记作⊙O,读作“圆O”.注意: 1、从圆的定义可知:圆是指圆周而不是圆面。

北师大版九年级数学下册:3.1《圆》教学设计

北师大版九年级数学下册:3.1《圆》教学设计

北师大版九年级数学下册:3.1《圆》教学设计一. 教材分析《圆》是北师大版九年级数学下册第三章的第一节内容。

本节主要介绍圆的定义、圆心和半径的概念,以及圆的性质。

教材通过生活中的实例引入圆的概念,让学生体会圆在实际生活中的应用。

本节内容是后续学习圆的方程、圆与直线的关系等知识的基础,对于学生形成完整的圆的概念,培养空间想象力具有重要意义。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

但圆作为一个特殊的几何图形,其性质和特点与其它图形有很大不同,需要学生重新认识和理解。

学生的空间想象力各不相同,对于生活中的圆形物体,有的学生可能比较熟悉,有的学生则可能较为陌生。

因此,在教学过程中,需要引导学生将实际生活中的圆形物体与数学中的圆概念相联系,帮助学生建立起圆的概念。

三. 教学目标1.了解圆的定义,掌握圆心和半径的概念。

2.掌握圆的性质,能够运用圆的性质解决实际问题。

3.培养学生的空间想象力,提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.圆的定义和性质。

2.圆心和半径的概念。

3.运用圆的性质解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论,自主发现圆的性质。

2.利用多媒体教学,展示生活中的圆形物体,帮助学生建立圆的概念。

3.运用实例讲解,让学生在实际问题中体会圆的性质和应用。

4.采用分组讨论、合作交流的方式,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.圆形物体实物或图片。

3.圆规、直尺等学具。

4.练习题和课后作业。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如地球、太阳、硬币等,引导学生关注圆形的特征。

提问:这些物体有什么共同的特点?学生回答后,教师总结:这些物体都是圆形的,今天我们来学习圆的相关知识。

2.呈现(10分钟)教师简要介绍圆的定义,圆心和半径的概念。

通过圆规和直尺演示如何画圆,并引导学生思考圆的性质。

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。

本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。

但是,对于圆的概念和性质,部分学生可能还比较模糊。

因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。

同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。

三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:圆的定义、性质和方程。

2.难点:圆的性质的理解和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。

2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。

六. 教学准备1.教具:圆的模型、图片、PPT等。

2.学具:学生分组准备,每组一份圆的模型、图纸等。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。

然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。

2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。

浙教版数学九年级上册3.1《圆》教案2

浙教版数学九年级上册3.1《圆》教案2

浙教版数学九年级上册3.1《圆》教案2一. 教材分析《圆》是浙教版数学九年级上册3.1节的内容,本节课主要让学生掌握圆的定义、圆心和半径的概念,以及圆的性质。

通过学习,学生能够理解圆的基本特征,并能运用圆的性质解决实际问题。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。

但是,对于圆这一概念,学生可能在生活中有所接触,但对其严谨的数学定义和性质可能还不够清晰。

因此,在教学过程中,需要注重引导学生从实际生活中抽象出圆的数学定义,并通过实例让学生感受圆的性质。

三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径的概念,了解圆的性质,并能运用圆的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.圆的定义及其性质2.圆心和半径的概念3.运用圆的性质解决实际问题五. 教学方法1.情境教学法:通过生活实例引入圆的概念,让学生感受圆的存在。

2.启发式教学法:引导学生观察、思考、交流,发现圆的性质。

3.实践操作法:让学生动手操作,加深对圆的理解。

六. 教学准备1.教学课件:制作课件,展示圆的图片、实例和动画。

2.教学素材:准备一些圆形的物品,如硬币、圆桌等。

3.教学工具:准备黑板、粉笔、直尺、圆规等。

七. 教学过程导入(5分钟)1.展示一些圆形的物品,如硬币、圆桌等,让学生观察并说出它们的共同特点。

2.引导学生思考:如何用数学语言来定义圆?呈现(10分钟)1.介绍圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。

2.讲解圆心和半径的概念:圆心是圆的中心点,半径是圆心到圆上任意一点的距离。

3.展示圆的性质:圆是对称图形,直径所在的直线是圆的对称轴;圆周率π表示圆的周长与直径的比值。

浙教版数学九年级上册3.1《圆》教案3

浙教版数学九年级上册3.1《圆》教案3

浙教版数学九年级上册3.1《圆》教案3一. 教材分析《圆》是浙教版数学九年级上册3.1章节的内容,本节课主要让学生掌握圆的定义、圆的性质以及圆的标准方程。

通过对圆的学习,培养学生观察、思考、解决问题的能力。

教材内容由浅入深,循序渐进,符合学生的认知规律。

二. 学情分析九年级的学生已经学习了平面几何的基础知识,对图形的性质和方程有所了解。

但圆的概念和性质较为抽象,对学生空间想象能力和思维能力有一定要求。

学生在学习过程中可能对圆的定义和方程的推导存在困难,因此需要教师耐心引导,让学生逐步理解和掌握。

三. 教学目标1.了解圆的定义及其相关性质;2.掌握圆的标准方程及其推导过程;3.培养学生观察、思考、解决问题的能力;4.培养学生的空间想象能力和思维能力。

四. 教学重难点1.圆的定义及其性质;2.圆的标准方程的推导和应用。

五. 教学方法1.采用问题驱动法,引导学生主动探究圆的性质;2.利用几何画板软件,直观展示圆的定义和性质;3.运用类比法,让学生理解圆与之前学习过的图形的异同;4.采用小组讨论法,培养学生的合作能力和沟通能力。

六. 教学准备1.准备几何画板软件,用于展示圆的性质;2.准备相关例题和练习题,用于巩固所学知识;3.准备PPT课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的圆形物体,如地球、篮球等,引导学生关注圆形的特征。

提问:你们对这些圆形物体有什么了解?从而引出本节课的主题——圆。

2.呈现(10分钟)利用几何画板软件,动态展示圆的定义和性质。

首先,画出一个圆,让学生观察并描述圆的特征。

然后,逐步揭示圆的性质,如半径、直径、圆心等。

在这个过程中,引导学生思考圆与之前学习过的图形的异同。

3.操练(10分钟)根据圆的性质,设计一些练习题,让学生独立完成。

如:判断题、选择题、填空题等。

通过练习,巩固所学知识。

4.巩固(10分钟)利用PPT课件,展示一些与圆相关的实际问题,让学生运用所学知识解决。

北师大版数学九年级下册3.1《圆》教案

北师大版数学九年级下册3.1《圆》教案

北师大版数学九年级下册3.1《圆》教案一. 教材分析《圆》这一节主要介绍了圆的定义、圆的性质、以及圆的方程。

这是九年级学生继学习直线、三角形、四边形之后,首次接触到的平面几何中的基本图形。

通过学习圆的相关知识,为学生以后学习圆锥、圆柱等立体几何图形打下基础。

此节内容在教材中的地位和作用非常重要。

二. 学情分析九年级的学生已经具备了一定的几何知识,对平面几何图形有了一定的认识。

但是,圆作为一个新的几何图形,其特殊的性质和方程的求解对于学生来说是一个挑战。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握圆的相关知识。

三. 教学目标1.让学生了解圆的定义和性质,能够运用圆的性质解决一些简单的问题。

2.让学生掌握圆的方程的求解方法,能够运用圆的方程解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的性质的理解和运用。

2.圆的方程的求解方法和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过思考和讨论来理解和掌握圆的相关知识。

2.采用实例教学法,通过具体的实例来引导学生理解和运用圆的性质和方程。

3.采用分组合作学习的方式,让学生在合作中思考,在思考中学习。

六. 教学准备1.准备相关的教学PPT,包括圆的定义、性质、方程等内容。

2.准备一些实际的例子,用于引导学生理解和运用圆的相关知识。

3.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一些实际生活中的例子,如自行车轮子、地球等,引导学生对圆有一个直观的认识,激发学生的学习兴趣。

2.呈现(10分钟)介绍圆的定义和性质,让学生理解圆的基本特征,并通过PPT展示一些相关的定理和推论。

3.操练(10分钟)让学生分组讨论,每组选择一个实际的例子,运用所学的圆的性质来解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)让学生独立完成一些练习题,巩固对圆的性质的理解和运用。

5.拓展(5分钟)介绍圆的方程的求解方法,让学生了解如何通过圆的方程来解决实际问题。

北师大版九年级数学下册:3.1《圆》教学设计

北师大版九年级数学下册:3.1《圆》教学设计

北师大版九年级数学下册:3.1《圆》教学设计一. 教材分析《圆》是北师大版九年级数学下册第3章的第1节内容,本节主要让学生掌握圆的定义、圆的性质及圆的标准方程。

通过本节的学习,为学生后续学习圆的相关的几何问题打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和方程有一定的了解。

但圆作为一个特殊的几何图形,其定义和性质与直线、射线有很大的不同,需要学生进行一定的转换和理解。

同时,圆的标准方程涉及到根号下的表达式,对学生来说也是一个挑战。

三. 教学目标1.理解圆的定义,能描述圆的基本性质。

2.掌握圆的标准方程,并能进行简单的应用。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的定义及其性质的理解。

2.圆的标准方程的推导和应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过自主学习、合作探讨,掌握圆的相关知识。

六. 教学准备1.PPT课件2.圆的模型或实物3.数学笔记本七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,如点、线、面的性质,为学习圆的定义和性质做铺垫。

2.呈现(10分钟)利用PPT课件展示圆的模型或实物,引导学生观察和描述圆的特点,从而引出圆的定义。

接着,通过PPT呈现圆的性质,如圆的直径、半径、圆心等,让学生理解并能够运用这些性质解决实际问题。

3.操练(10分钟)让学生分组讨论,每组选取一个圆,尝试推导出圆的标准方程。

讨论结束后,各组汇报推导过程,教师进行点评和指导。

4.巩固(10分钟)布置一些有关圆的练习题,让学生独立完成,检验学生对圆的定义和性质的掌握程度。

教师在过程中进行个别辅导,帮助学生解决问题。

5.拓展(10分钟)引导学生思考圆在实际生活中的应用,如车轮、圆桌等,让学生举例说明圆的性质和方程在实际问题中的作用。

6.小结(5分钟)教师引导学生总结本节课所学内容,让学生复述圆的定义、性质和标准方程,检查学生的学习效果。

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。

本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。

但是,圆的概念比较抽象,学生可能难以理解。

因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。

同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。

三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。

2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.圆的定义和性质。

2.圆的周长和面积的计算。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。

六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。

2.准备圆的模型或图片,用于讲解圆的性质。

3.准备圆的周长和面积的计算公式,用于讲解和练习。

七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。

展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。

3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。

通过实际操作,让学生加深对圆的概念的理解。

4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。

(完整版)九年级数学下册3.1圆教案(新版)北师大版

(完整版)九年级数学下册3.1圆教案(新版)北师大版

一、教学目标1理解圆的描述定义,了解圆的集合定义•2、经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系二、教学重点和难点重点:点与圆的位置关系难点:用集合的观点研究圆的概念三、教学过程(一)情境引入:一些学生正在做投圈游戏,他们呈“一”字排开•思考:这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?(二)探究新知:【探究一】圆的定义及相关概念1. 请大家用自己的方式在学案上画一个圆2.尝试给圆下一个准确的定义,写下来定义1:当一条线段绕着在平面内旋转一周时,它的另一个端点所形成的图形就是- 一个圆。

定义:圆可以看成是到的距离等于的所有点组成的图形。

就是圆心, 就是半径,以0为圆心的圆记作,读作3•相关概念:弦、弧、直径、半径、半圆、等圆的相关概念半径:•连接圆心和圆上的的线段叫做半径,例如上图中的弦:连接圆上的线段叫做弦,例如上图中的直径:经过的叫做直径,例如上图中的弧: 圆上叫做圆弧,简称弧」及其所对的 组成的图形叫做弓形的两个圆叫做等圆同心圆: 的两个圆叫做同心圆等弧:在中,的弧叫做等弧【探究二】点和圆的位置关系O O 是一个半径为r 的圆,在圆内、圆上、圆外分别取一点,(1) 在平面内任意取一点 P,点与圆有几种位置关系?分别是什么?答:有 ____________ 种,分别是 _____________________ —___ __________ (2) 若0 O 的半径为r ,点P 到圆心0的距离为d ,那么:已知线段PQ=2cm 画图说明满足下列要求的图形: ⑴到点P 的距离等于1cm 的所有点组成的图形; ⑵到点Q 的距离等于1.5cm 的所有点组成的图形 ⑶到点P 、Q 的距离都等于1cm 的所有点组成的图形 ⑷到点P 、Q 的距离都等于1.5cm 的所有点组成的图形 ⑸到点P 、Q 的距离都小于1.5cm 的所有点组成的图形⑹到点P 的距离小于2cm,且到点Q 的距离大于2cm 的所有点组成的图形P ------------------- ■ Q P --------------------- - QP ------------------- h QP --------------------1 Q P ------------------- 1 Q(四)巩固训练1、小明和小华正在练习投铅球,小明投了5.2m ,小华投了6.7m ,他们投的球分别落在下图中哪个区域内?上图中的 弓形:由 等点P 在圆 d r点P 在圆 d r点P 在圆_ d r (三)尝试与交流2、已知O 0的面积为25 no(1 )若PO=5.5,则点P 在_ _;(2 )若PO=4则点P在_ _;(3)若PO= _ _,则点P在O 0上。

浙教版数学九年级上册《3.1 圆》教学设计3

浙教版数学九年级上册《3.1 圆》教学设计3

浙教版数学九年级上册《3.1 圆》教学设计3一. 教材分析浙教版数学九年级上册《3.1 圆》是整个初中数学的重要内容,主要让学生了解圆的定义、圆的性质、以及圆的方程。

这一章节为后续学习圆的周长、面积、弧、扇形等知识打下基础。

本节课的内容主要包括圆的定义、圆心和半径、圆的性质等。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。

但是,对于圆这一概念,学生可能在生活中有所接触,但对其严格定义和性质的理解还有待提高。

此外,学生对于圆的方程的学习可能存在一定的困难,需要教师在教学中给予引导和帮助。

三. 教学目标1.理解圆的定义,掌握圆心和半径的概念。

2.掌握圆的性质,包括圆的对称性、唯一性等。

3.会用圆的方程表示圆,并理解其意义。

4.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的定义和性质的理解。

2.圆的方程的推导和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探索和发现圆的性质。

2.使用多媒体课件,生动展示圆的图形,帮助学生直观理解圆的性质。

3.采用合作学习的方式,让学生在小组讨论中共同解决问题,提高学生的沟通能力。

4.注重学生数学思维的培养,引导学生从直观到抽象的思维过程。

六. 教学准备1.多媒体课件和教学素材。

2.圆规、直尺等绘图工具。

3.练习题和测试题。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾之前学过的几何图形,如三角形、四边形等,然后提出问题:“有没有一种图形,它的所有边都相等,并且对折后可以重合?”让学生思考并尝试描述这种图形。

呈现(10分钟)教师通过多媒体课件呈现圆的图形,让学生直观地感受圆的特点。

然后,教师给出圆的定义:“圆是平面上所有到定点距离相等的点的集合。

”同时,介绍圆心和半径的概念。

操练(15分钟)教师引导学生使用圆规和直尺绘制圆,并测量圆的直径、半径等。

学生通过实际操作,加深对圆的理解。

巩固(10分钟)教师提出一系列问题,如:“圆心和半径对圆的性质有什么影响?”“圆的直径和半径有什么关系?”让学生在小组内讨论并回答问题。

浙教版数学九年级上册3.1《圆》教学设计3

浙教版数学九年级上册3.1《圆》教学设计3

浙教版数学九年级上册3.1《圆》教学设计3一. 教材分析浙教版数学九年级上册3.1《圆》是本册教材中的重要内容,主要让学生掌握圆的定义、圆的性质、圆的方程等基本知识。

本节课的内容是在学生已经学习了平面几何的基础上进行学习的,对于学生来说,具有一定的挑战性。

教材通过实例引入圆的概念,引导学生探究圆的性质,并通过实际问题解决让学生感受圆的应用价值。

二. 学情分析九年级的学生已经具备了一定的几何知识,对于平面几何中的线段、角度等概念有一定的了解。

但是,对于圆的概念和性质,大部分学生可能是初次接触,需要通过实例和探究活动来理解和掌握。

另外,学生可能对于圆的方程感到陌生,需要通过具体的例子和操作来理解。

三. 教学目标1.理解圆的定义和性质,能够运用圆的知识解决实际问题。

2.掌握圆的方程,能够运用圆的方程解决几何问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.圆的定义和性质的理解。

2.圆的方程的掌握和运用。

五. 教学方法1.实例引入:通过具体的实例引入圆的概念,让学生感受圆的存在和应用。

2.探究活动:学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。

3.讲解示范:教师通过讲解和示范,让学生掌握圆的方程的推导和运用。

4.练习巩固:通过布置相关的练习题,让学生巩固所学知识,并及时给予反馈和指导。

六. 教学准备1.教学课件:制作相关的教学课件,展示圆的性质和方程的推导过程。

2.练习题:准备相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过具体的实例,如车轮、地球等,引入圆的概念,引导学生思考圆的特点和应用。

2.呈现(10分钟)展示圆的性质,如圆的直径、半径、圆心等,并通过实物或图片进行说明。

引导学生观察和理解圆的性质。

3.操练(15分钟)学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。

可以给出一些实际问题,让学生运用圆的性质来解决。

浙教版数学九年级上册《3.1 圆》教案2

浙教版数学九年级上册《3.1 圆》教案2

浙教版数学九年级上册《3.1 圆》教案2一. 教材分析《浙教版数学九年级上册》第三单元《圆》是整个初中数学的重要内容,也是九年级上学期的重点和难点。

本节内容主要介绍了圆的定义、性质、圆的方程以及圆与直线的关系等。

通过本节的学习,使学生掌握圆的基本概念和性质,能够解决一些与圆有关的问题,为高中数学打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,如平面几何图形的性质、三角形、四边形等。

但是,对于圆的概念和性质,部分学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,由浅入深,循序渐进地进行教学。

三. 教学目标1.知识与技能:使学生掌握圆的定义、性质、圆的方程以及圆与直线的关系等基本知识。

2.过程与方法:通过观察、思考、讨论等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:圆的定义、性质、圆的方程以及圆与直线的关系。

2.难点:圆的性质和圆与直线的关系的运用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识圆,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:分组讨论,共同解决问题,培养学生的团队合作精神。

4.练习法:通过课堂练习和课后作业,巩固所学知识。

六. 教学准备1.教具:黑板、粉笔、多媒体设备等。

2.学具:笔记本、尺子、圆规等。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如地球、篮球等,引导学生认识圆,并提出问题:“什么是圆?圆有哪些特点?”2.呈现(10分钟)讲解圆的定义、性质和圆的方程,通过示例和练习,使学生掌握圆的基本知识。

3.操练(10分钟)分组讨论:如何用圆规画一个圆?并互相展示成果。

课堂练习:求解一些与圆有关的问题,如圆的周长、面积等。

4.巩固(10分钟)讲解圆与直线的关系,如相切、相交等,并通过示例和练习,使学生掌握圆与直线的关系。

浙教版数学九年级上册3.1《圆》教学设计2

浙教版数学九年级上册3.1《圆》教学设计2

浙教版数学九年级上册3.1《圆》教学设计2一. 教材分析《圆》是浙教版数学九年级上册3.1节的内容,主要包括圆的概念、圆的性质、圆的周长和圆的面积等。

这部分内容是学生对平面几何学习的进一步拓展,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。

但是,对于圆的概念和性质,以及圆的周长和面积的计算,还需要进一步的引导和培养。

因此,在教学过程中,需要结合学生的实际情况,逐步引导学生理解和掌握圆的相关知识。

三. 教学目标1.知识与技能:使学生理解和掌握圆的概念、性质,以及圆的周长和面积的计算方法。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:圆的概念、性质,以及圆的周长和面积的计算方法。

2.难点:圆的性质的证明,以及圆的周长和面积的计算方法的推导。

五. 教学方法1.情境教学法:通过现实生活中的实例,引导学生理解圆的概念和性质。

2.问题驱动法:通过设置问题,引导学生思考和探索圆的性质,以及圆的周长和面积的计算方法。

3.合作学习法:引导学生分组讨论,培养学生的团队合作意识和交流能力。

六. 教学准备1.准备相关的实例和图片,用于引导学生理解圆的概念和性质。

2.准备圆的模型或图片,用于帮助学生直观地理解圆的性质。

3.准备圆的周长和面积的计算练习题,用于巩固学生的计算能力。

七. 教学过程1.导入(5分钟)通过展示生活中的实例,如自行车轮子、地球等,引导学生思考和讨论这些实例与圆的关系,从而引出圆的概念和性质。

2.呈现(10分钟)利用圆的模型或图片,向学生直观地展示圆的性质,如圆的对称性、圆的周长和面积的计算方法等。

同时,引导学生通过观察和操作,发现圆的性质和规律。

3.操练(10分钟)让学生分组讨论,每组选择一个圆,通过测量和计算,验证圆的周长和面积的计算方法。

3.1圆教案

3.1圆教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现学生们对圆的概念和性质有了基本的掌握,但在周长和面积公式的推导和应用方面还存在一些困难。这让我意识到,在今后的教学中,我需要更加注重以下几个方面:
2.通过圆的周长和面积计算,提高学生运用数学公式解决实际问题的能力,强化数学运算和数据分析素养。
3.探讨圆的对称性质,激发学生对几何美的感知,增强审美素养和创造力。
4.结合实际应用,培养学生的模型观念和跨学科整合能力,使其能够将数学知识应用于日常生活和其他学科中。
5.在合作探究中,加强学生的团队协作能力和表达能力,促进交流与分享,提升综合素质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与一个固定点(圆心)距离相等的点的集合。它在日常生活和各个学科领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以车轮为例,探讨圆在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调圆心、半径、直径和圆的周长与面积公式这两个重点。对于难点部分,如周长和面积公式的推导,我会通过举例和比较来帮助大家理解。
-通过具体的艺术作品或建筑设计,让学生观察和创造对称图形,加深对圆的对称性的理解。
-使用图形和角度的结合,让学生通过实际测量和计算,理解扇形面积与角度的关系,如一个圆的1/4扇形面积为90度角的扇形面积。
四、教学流程
(一)导入新课(用时5分钟)

3.1圆(教案)

3.1圆(教案)

3.1圆 教案学习目标:1.理解圆、弧、弦等有关概念.2.学会圆、弧、弦等的表示方法.3.掌握点和圆的位置关系及其判定方法.学习重点:弦和弧的概念、弧的表示方法和点与圆的位置关系学习难点:点和圆的位置关系及判定一、课内预习:看书P66-67完成以下问题。

1、圆是一种平面上的曲线图形,圆的中心点叫做 ,连接圆心和圆上任意一点的线段叫做 ,通过圆心并且两端都在圆上的线段叫做 。

2、在同一平面内,线段OP 绕它固定的一个端点O 旋转一周,另一个端点P 所经过 的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 。

3、连接圆上任意两点的 叫做弦,经过 的弦叫做直径。

4、圆上任意两点间的部分叫做圆弧,简称 ,圆的任意一条 的两个端点分圆成两条弧,每一条弧都叫做半圆,小于半圆的弧叫做 ,大于半圆的弧叫做 。

5、 相等的两个圆叫做等圆;能够 的圆弧叫做等弧。

是同心圆。

6、如果P 是圆所在平面内一点,d 表示P 到圆心的距离,r 表示圆的半径,那么就有: d>r P 在圆 ; 点P 在圆上; 点P 在圆内。

二、试一试:1、如图,在⊙O 中,用字母表示:直径: 半径 、 、 弦 、 劣弧 、 优弧 、 。

2、在直角三角形ABC 中,∠C =Rt ∠,AC =1cm,AB =2cm.若以点C 为圆心,画一个半径为1cm 的圆,试判断点A ,点B 与⊙C 的位置关系。

三、议一议(同桌合作弄清概念)1、 圆在你心目中是怎样一种图形?画一个圆需要知道那些条件?2、 怎样用符号准确的表示圆、弦、弧,特别是优弧?注意什么?3、 怎样来判别点与圆的位置关系?关键是判别什么?四、想一想(例题学习)。

P671、 这个例题让我们求什么?2、 要解决这个问题其本质是我们数学中的什么问题?3、 我们要知道那些量?C五、理一理回顾学习目标,本节课的内容你都清楚了吗?还有什么疑惑的地方吗?六、练一练1.判断(1)圆是一条封闭曲线,它上面的任何一点到某个定点的距离都等于定长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
3.1圆(1)教学设计
航埠镇初中
聂秀宾
.教学目标:
1•知识点:理解圆、弧、弦等有关概念•学会圆、弧、弦等的表示方法•掌握点和圆的
位置关系及其判定方法。

2•能力点:进一步培养学生分析问题和解决问题的能力。

3.德育点:用实例激发学生学习兴趣从而唤起学生尊重知识尊重科学,
更加热爱生活。

.教学重难点:
重点:圆、弦和弧的概念,弧的表示方法和点与圆的位置关系。

难点:点与圆的位置关系。

三.教学过程:
(一)情境引入。

1. 图片展示生活中常见的圆。

2. 情境一:篮球课上,几位同学在进行投篮比赛, 他们的站位如
图1所示。

问题:(1)你觉得比赛公平吗?为什么?
(2) 为使比赛公平,你会给体育老师提出 什么建议?
在学生回答应站成圆形之后,给出问题(
3)
(3) 你能帮体育老师画出这个圆吗?
教师板演,课件展示。

(本环节从学生感兴趣的篮球比赛出发, 激发学生的学习兴趣, 同时通过学生对原比
赛站位的更改,让学生体会到圆上的点到圆心距离相等 )
(二) 学习新知。

1. 圆的定义:在同一平面内,线段0P 绕它固定的一个端点 0旋转 一端
点P 所经过的封闭曲线叫做圆。

定点0叫做圆心,线段0P 叫做半径。

表示:以0为圆心的圆,记做“O 0”,读做“圆0”
从圆的定义我们可以知道,圆上任意一点到圆心的距离相等(等于半 径)。

(通过画圆的动态演示,是学生对圆概念的理解更为简单、深刻)
2. 弦,弧。

继续前面的投篮问题。

如图3,若A 同学想把篮球给 B 同学
⑴A 直传球给B 。

得出弦的定义:连结圆上任意两点之间的线段。

特别地,经过圆心的弦叫做直径。

⑵A 沿着圈上同学传给 B 。

得出弧的定义:圆上任意两点间的部
O 篮筐
3m o ~oo o ~~o
分。

问题:你认为图3中A,B两点间的部分还有吗?(引出弧的分类)
劣弧:小于半圆的弧。

表示方法:如AB BA
优弧:大于半圆的弧。

表示方法:如ACB BCA.
练习:①请找出图3中剩余的劣弧和优弧。

②判断:直径相等的圆是等圆()
半径是弦()
一个圆只有一条直径()
优弧所对的弦大于劣弧所对的弦()
圆上任意两点都能将圆分成一段劣弧和一段优弧()
(通过这几个题目的练习,让学生加深对弦、弧概念的理解,理清了在一个圆中弦与弧
的对应关系)
3•等圆,同心圆。

问题:想要确定一个圆(位置,大小),你觉得要知道哪些条件?
圆心:确定圆的位置半径:确定圆的大小
若圆心不确定,半径确定_________ 等圆
若圆心确定,半径不确定--------- 同心圆(图片展示)
4•点与圆的位置关系。

0篮筐
再看刚才的投篮问题。

如图4,在投篮比赛过程中,有几个同学站在了圆内投,有几个同学站在了圆外投。

问题:
①你能从图中得出几种点与圆的位置关系?
②你愿意站在哪里投?为什么?
生:在红点(园内)投,因为距离篮筐近。

师:是和谁相比较的呢?
生:站在圆上的人。

师:若规定点到圆心的距离为d,圆的半径为r,那么在圆内的点的d与r有怎么样的大小关系呢?
生:d v r.
③小组讨论:你能得出点在圆上和点在圆内对应的d与r的关系吗?请总结。

(本环节情境的设置使点与圆的位置关系生活化,更能激发学生的学习积极性,同时问
B
题②的设置能让学生主动的投入到情境中, 让学生对点与圆的位置与 d 与r 的对应关系
点与圆心的距离为 d 圆的半径为r 点在圆内 "d v r.
点在圆上 d=r.
点在圆外^d > r.
能更好的理解) 学生小结归纳:
练习:
1. 已知O O的半径为5cm,点P到点O的距离为d o
(1)若d=5.5,则点P在 ________ o
(2)若点p在圆内,贝U d—5o
(3)若d= ____ ,则点P在圆上。

2. 如图5,在RT"ABC中,/B=RT / , D是AC的中点. 以点B为圆心作圆.
(1)若O B 的半径为2cm, AB=4cm,BC=3cm,问点A,C,D
与O B的位置关系。

(2)若O B 的半径为2cm, AB=4cm,BC=3cm,要使A,C,D
三点都在圆外,O B的半径应控制在什么范围?
例题:若BC=60m , AB=80m , A处为一民房,C出有一
变电设施,D处是一古建筑,现在B处进行一次爆破。

(1)要使三处都不受影响,问爆破影响面的半径应控制在什么范围内?
(2)若AC为一公路,爆破时也不能影响到公路,问爆破影响面的半径应控制在什么范围内?
(本环节的设置层层递进,由易到难,符合学生的认知发展规律,让学生巩固基础的同时,也突破了难点)
三、小结。

让学生谈谈自己的收获。

四、作业布置。

必做题:课内练习2
作业题A组2,3
作业本
选做题:作业题B组6
B。

相关文档
最新文档