马后炮化工论坛-hcl的吸收_electro - 副本.bkp

合集下载

马后炮化工论坛-第7章 Hysys在石油化工领域中的应用

马后炮化工论坛-第7章 Hysys在石油化工领域中的应用

Hysys油品表征
总体性质

质量密度质:29 API60
Hysys油品表征
3)输入物性曲线 Hysys 接受不同类型物性曲线: 摩尔分子量曲线 密度曲线 粘度曲线 一般使用以下两种报告之一: 独立分析基准: 物性曲线与精馏曲线并不使用一套共用 的化验分析分数 相关分析基准: 物性曲线与精馏曲线使用一套共用的化 验分析分数
恩氏蒸馏(ASTM) 本质 测定 条件
实沸点蒸馏(TBP)
平衡气化(EFV)
简单蒸馏
规格化的仪器和在规 定的实验条件下
间歇压力、温度下 理论板)中和规定条件 下 分离效果好,可大体 反映各组分沸点的变 化 受气液相平衡限制,分 离效果差,仅相当于一 块塔板的分离能力

(NBP, SPGR) if no data available MW : based on correlation
表征系统参数结构
Hysys油品表征
所需最少信息: 实验室精馏曲线(任意一种,至少有5点) · 实沸点(TBP)· ASTM D86 · D1160 精馏 · D86_D1160 · ASTM D2887 · 平衡闪蒸汽化(EFV) · 色谱分析 轻组分(Light End)组成分析数据(一般C2 ~n-C5 ) 物性曲线 总体性质(2/3) 分子量、密度、特性因子K

Taking into account the available "lightends" analysis : light components (C1 to butanes and pentanes have relatively few isomers and are easily separated from each other and from the crude)

马后炮化工技术论坛_精馏讲义

马后炮化工技术论坛_精馏讲义

本文由bingxuerui贡献 ppt文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

一、蒸馏基本原理 1、蒸馏概述 2、拉乌尔定律 二、精馏 1、精馏概述 2、精馏原理 3、精馏过程 4、物料衡算 5、板式塔 1、蒸馏概述 、 (1) 蒸馏的原理 利用混合物在一定压力下各组分相对挥发度 (沸点 沸点)的不同进行分离的一种单元操作。

 沸点 易挥发组分——低沸点组分 难挥发组分——高沸点组分 (2)蒸馏及精馏的分离依据 ) 液体均具有挥发成蒸汽的能力,但各种液体的挥发性各不相同。

习 惯上,将液体混合物中的易挥发组分A称为轻组分,难挥发组分B则称为 重组分。

将液体混合物加热至泡点以上沸腾使之部分汽化必有yA>xA; 反之将混合蒸汽冷却到露点以下使之部分冷凝必有xB>yB。

上述两种情 况所得到的气液组成均满足: yA xA > y B xB 部分汽化及部分冷凝均可使混合物得到一定程度的分离,它们均是 籍混合物中各组分挥发性的差异而达到分离的目的,这就是蒸馏及精馏 分离的依据。

蒸馏及精馏的分离依据 原料液 加 热 器 减 压 阀 塔顶产品 yA Q xA 闪 蒸 罐 y A > xA 或 yA xA > y B xB 塔底产品 (3)蒸馏的分类 ) 简单蒸馏 平衡蒸馏 (闪蒸) 按蒸馏方式 较易分离的物系或对 分离要求不高的物系 难分离的物系 恒沸蒸馏 特殊精馏 萃取蒸馏 水蒸汽蒸馏 很 难 分离 的 物系 或 用 普 通方 法 难以 分 离的物系 精馏 常压 按操作压强 加压 一般情况下多用常压 常压下不能分离或达不到分离要求 减压 双组分 混合物中组分 多组分 间歇 按操作方式 连续 2、两组分理想物系的汽液平衡-拉乌尔定 、两组分理想物系的汽液平衡 拉乌尔定 律 1、汽液相平衡关系式拉乌尔定律 、汽液相平衡关系式 拉乌尔定律 pA = o pAxA = 0 pAx o 0 pB = pB xB = pB (1? x) o o pA , pB 手册中查 平衡温度下纯组分的饱和蒸汽压力 X溶液中组分的摩尔分数 当溶液沸腾时,溶液上方的总压等于各组分的蒸气压之和 o P = pA + pB = po x + pB (1? x) A o P? P B Po ? Po A B ∴x = pA po ——由拉乌尔定律表示的气液平衡关系 A 由拉乌尔定律表示的气液平衡关系 y= = x P P 二、精馏 1、精馏概述 、 平衡蒸馏以及简单蒸馏只能使混合液得到部分分离。

马后炮化工论坛-Introduction to Aspen Plus-2012

马后炮化工论坛-Introduction to Aspen Plus-2012

• Extractive Distillation
Entrainer feed (FE) NT = 41 NFE = 7 NFF = 35 IPA-water feed (FF) P = 3 atm T = 25oC F = 100 kmol/hr X IPA =0.5 X WATER =0.5
D2 XIPA=0.999 NFE NT = 24 Extractive distillation column NF2 = 9 F2 NFF NF2
• Process simulation
– pump, compressor, valve, tank, heat exchanger, CSTR, PFR, distillation column, extraction column, absorber, filter, crystallizer…etc 5
21
Specification
To do this Find components in the databanks Define a custom component that is not in a databank Generate electrolyte components and reactions from components you entered Reorder the components you have specified Click this button Find User Defined Elec Wizard Reorder
Ref: /products/aspen-plus.cfm
3
What Aspen Plus provides
• Physical Property Models

马后炮化工论坛-第六章

马后炮化工论坛-第六章

6-1 阐述分离序列综合基本概念:简单塔、顺序表、分离子群、分离子问题等。

简单塔:①指一个进料分成两个产品;②每一个组分只出现在一个产品中,即锐分离;③塔顶设全凝器以及塔底设再沸器。

顺序表:将分离所涉及的各组分按关键物性数据大小排列形成的表。

分离子群:分离过程中产生的流股。

分离子问题:所有分离序列中不重样的分离问题。

6-2 分离序列综合有序直观推断规则有哪些?说明其含义?规则(1)在所有其分离方法中,优先采用能量分离剂分离方法(例如精馏), 避免用质量分离剂分离方法(例如萃取)。

当关键组分间的相对挥发度小于1.05-1.10时,应该采用质量分离剂分离方法(例如萃取),此时质量分离剂应在下步立即分离。

规则(2)精馏分离过程尽量避免真空和制冷操作。

如需采用真空操作,则可考虑用萃取方案代替;如需采用制冷操作,则可考虑采用吸收方案代替。

由于真空和制冷操作能耗较大,有时即使在较高温度和压力下操作也会有利。

规则(3)当产品集中包括多个多元产品时,倾向于选择得到最少产品种类的分离序列。

相同的产品不要在几处分出。

因为产品集合越小,相应分离序列中的分离单元就越少,所以费用可能较低。

规则(4)首先安排除去腐蚀性组分和有毒有害组分,从而避免对后继设备苛刻要求,提高安全操作保证,减少环境污染。

规则(5)最后处理难分离或分离要求高的组分,特别是当关键组分间的相对挥发度接近1时,应当在没有非关键组分存在的情况下进行分离,这时分离净功耗可以保持较低水平。

规则(6)进料中含量最多的组分应该首先分离出去,这样可以避免含量最多的组分在后续塔中多次气化与冷凝,降低了后续塔的负荷。

规则(7)如果组分间的性质差异以及组分的组成变化范围不大,则倾向于塔顶和塔底产品量等摩尔分离。

精馏塔冷凝器负荷与再沸器负荷不能独立调节,塔顶和塔底产品量等摩尔分离时,精馏段回流比与提馏段蒸发比可以得到较好的平衡。

6-3 采用渐进调优进行分离序列综合时,调优规则与策略有哪些?其作用是什么?调优法则就是指产生与当前分离序列相容结构的变化机制① 相邻层次切分点序列位置变换可行分离序列就是历经各个切分点的某种切分顺序。

马后炮化工论坛-马后炮化工技术论坛_Aspen_Plus_Model_for_Moving_Bed_Coal_Gasifier

马后炮化工论坛-马后炮化工技术论坛_Aspen_Plus_Model_for_Moving_Bed_Coal_Gasifier
Aspen Plus
Model for Moving Bed Coal 10-2012 by Aspen Technology, Inc. All rights reserved. Aspen Plus, the aspen leaf logo and Plantelligence and Enterprise Optimization are trademarks or registered trademarks of Aspen Technology, Inc., Burlington, MA. All other brand and product names are trademarks or registered trademarks of their respective companies. This document is intended as a guide to using AspenTech's software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of the software and the application of the results obtained. Although AspenTech has tested the software and reviewed the documentation, the sole warranty for the software may be found in the applicable license agreement between AspenTech and the user. ASPENTECH MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENTATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Aspen Technology, Inc. 200 Wheeler Road Burlington, MA 01803-5501 USA Phone: (1) (781) 221-6400 Toll Free: (1) (888) 996-7100 URL:

马后炮化工论坛-第1章 物料 能量平衡

马后炮化工论坛-第1章 物料 能量平衡

(2)衡算基准: 298K ,1mol萘 (3)热量衡算: 298K下的化学反应热 C10H10(g)+4.5O2=C8H4O3(g)+2CO2 +2H2O (g)
o o o H = [M H ] [M H - ∆ R,298 ∑ i ∆ F,产物 ∑ i ∆ F,反应物 ]
=[(-373.34)×1+(-339.51) ×2+(-241.81) ×2]-[87.3] =-1623.28 kJ/mol萘 原料带入热量 ∆H1=∆H1,萘+∆H1,空气 =0.26×(473-298)+[0.03×21%+0.03×79%] ×50.1×(303-298) =45.5 kJ+7.52 kJ=53.02 kJ
能量平衡(显热、潜热、反应热、功等) (经常:物料衡算+能量衡算)
例6 采用100oC的气体HCl和25oC的水生产25oC、HCl 质量百分含量为 25% 的 HCl 水溶液,产量为 1000kg/h 。 求生产过程的热效应。
解:(1)基础数据
比热容:kJ/kg·oC 100oC HCl(g) 0.815 25oC H2O(l) 4.184 25oC 25% HCl溶液 2.863 25% HCl溶液的溶解热为:65.23kJ/mol HCl
(2)未知数设定 结晶出的NaHCO3 o x kg 20 为 , C的NaHCO3饱和溶液量为y kg
11
(3)溶解度单位换算(g/100gH2O→wt%) NaHCO3饱和溶液组成计算
9.6 o = 8.76%; H 2O = 1 - 8.76% = 91.24% 20 C : NaHCO3 = 9.6 + 100 60o C : NaHCO = 16.4 = 14.10%; H O = 1 - 14.10% = 85.90% 3 2 16.4 + 100

马后炮化工论坛-第7章 化工工艺设计 习题及答案

马后炮化工论坛-第7章 化工工艺设计 习题及答案

答案: (1) (2) (3)应优先考虑板式塔。 7-13 下述情况选用卧式列管式换热器,其管、壳程走的流体哪些是不合理 的?(多选题) (1)用作氨冷器:液氨在壳程,被冷却介质在管程; (2)腐蚀性较强的流体走壳程; (3)较易结垢的介质在壳程; (4)压力较高的介质在管程,压力较低的介质在壳程。 答案: (2) (3)该介质应走管程。 7-14 下列换热器中,哪个不属于管壳式换热器?(多选题) (2)噴淋管式; (4)蓄热式。 (1)浮头式; (3)填料函式; 答案: (2) (4)不属于管壳式。 7-15 在蒸汽冷凝给热中,下述措施不利于传热的是( (2)加大蒸汽流速; (4)蒸汽和液膜逆向流动。 ) 。 (1)蒸汽和液膜同向流动; (3)提高蒸汽压力; 答案: (4) 7-16 有一台往复式煤气压缩机,进气压力为0.102MPa,其温度为35 ℃, 要求压缩机出口压力为7.22MPa,在设备投资省、耗功小的前提下,该压缩机① 应设几级压缩;②各级压力以多少为好。请在下述选择最合适的是( ) 。 (1)3级,各级出口压力:0.422MPa、1.746MPa、7.22MPa; (2)4级,各级出口压力:0.296MPa、0.858MPa、2.49MPa、7.22MPa; (3)4级,各级出口压力:1.88MPa、3.66MPa、5.44MPa、7.22MPa; (4) 5级, 各级出口压力: 0.239MPa、 0.56MPa、 1.31MPa、 3.08MPa、 7.22MPa。 答案: (2) 提示:一般往复式多段压缩机为省功,每段压缩比应相似,煤气压缩机的压 缩比在 2.5~3 为宜,故答案(2)是正确的。同时,采用 4 段压缩机,缸体可以 对称布置,有利于提高压缩机转速,有利于降低设备价格。 7-17 在下述的工况下选用合适的泵,下列哪个是全选对的? 工况:甲——输送有剧毒液体; 乙——输送高扬程、低流量要求的泵; 丙——输送较高粘度液体的泵; 丁——输送低扬程、高流量要求的泵。

马后炮化工技术论坛版

马后炮化工技术论坛版

方法分类
理想物性方法
逸度系数物性方法
专用系统物性方法
常用推荐方法
推荐的物性方法
马后炮化工技术论坛
第10页

物性方法选择指南
马后炮化工技术论坛
第11页

ASPEN PLUS模拟的流程
建立模型
建立流程图 组分数据 物性方法
•QTVEC 热负荷控制器 •MEASUREMENT测量器
•CYCLONE 旋风分离器 •RSP静电除尘器 •FABFL纤维过滤器 •VSCRUB文丘里涤气器 •CRUSH破碎机 •SCREEN筛选机 •HYCYC水力旋风分离器 •FILTER转鼓过滤器 •CFUGE离心过滤器 •SWASH 固体洗涤器 •CCD 逆流倾析器 •CRYSTALLIZER 结晶器 •DRYER 干燥器
马后炮化工技术论坛
第17页

ASPEN PLUS的优势
具有最先进的计算方法
Aspen Plus具有最先进的流程收敛方法
Aspen Plus具有最先进的数值计算方法,能使循环物流和设计规定迅 速而准确地收敛。这些方法包括直接迭代法(Wegstein)、正割法(Secant) 、拟牛顿法、Broyden法等。这些方法均经AspenTech进行了修正。例如 ,修正后Secant法可以处理非单调的设计规定。Aspen Plus可以同时收敛 多股撕裂(Tear)物流、多个设计规定,甚至收敛有设计规定的撕裂物 流。这些特点对解决高度交互影响的问题时特别重要。 Aspen Plus可以进行过程优化计算
Aspen Plus培训讲义
马后炮化工技术论坛
1
主要内容
ASPEN PLUS简介 ASPEN PLUS 安装方法及界面介绍
通过实例介绍如何建立模拟模型

马后炮化工论坛-Aspen Plus 1

马后炮化工论坛-Aspen Plus 1

Seoul National UniversityChemical Process Modeling & Simulation Process Modeling Using Aspen Plus (User Interface & Basic Inputs)TA : Ikhyun Kim Instructor : En Sup Y oon Spring Semester, 2012•What is flowsheet simulation?–Use of a computer program to quantitatively model thecharacteristic equations of a chemical process•Uses underlying physical relationships–Mass and energy balance–Equilibrium relationships–Rate correlations (reaction and mass/heat transfer)•Predicts–Stream flowrates, compositions, and properties–Operating conditionsFlowsheet SimulationSeoul National University Chemical Process Modeling & Simulation (3/39)•Build large flowsheets a few blocks at a time –This facilitates troubleshooting if error occur•Not necessarily a one-to-one correspondence between pieces of equipment in the plant and Aspen plus blocks •Ensure flowsheet inputs are reasonable•Check that result are consistent and realistic Good Flowsheeting Practice•Rigorous electrolyte simulation•Solid handing•Petroleum handling•Data regression•Data fit•Optimization•User routinesSome Important Features of Aspen+Seoul National University Chemical Process Modeling & Simulation (5/39)The User Interface (Flowsheet)Next button Detherminternet NIST/TDE Pure propertyProcessFlowDiagramSelectModeButton Model Library Tabs ModelLibraryStatusAreaThe User Interface (Data browser)DatabrowserSpecification& Resultdata menu treeSub-specificationtab StatusAreaDescriptionSeoul National UniversityChemical Process Modeling & Simulation (7/39)The User Interface (Run control panel)RunControlPanel Summaryof errorsCalculationSequenceDescription ofsequential calculationStatusAreaGraphic Flowsheet Operations -Blocks•To place a block on the flowsheet:1.Click a model category tab in the Model Library2.Select a unit operation model; click the drop-down arrow toselect an icon for the model3.Click the model and then click the flowsheet to place the block;you can also click the model icon and drag it onto the flowsheet4.Click the right mouse button to stop placing blocksSeoul National University Chemical Process Modeling & Simulation (9/39)Graphic Flowsheet Operations -Streams •To place a stream on the flowsheet:1.Click the STREAMS icon in the Model Library2.If you want to select a different stream type (Material, Heat or Work), click the down arrow next to the icon and choose a different type3.Click a highlighted port to make the connection4.Repeat step 3 to connect the other end of the stream5.To place one end of the stream as either a process flowsheet feed or product, click a blank part of the Process Flowsheet6.Click the right mouse button to stop creating streamsAutomatic Naming of Streams and Blocks •Stream and block names can be assignedautomatically by Aspen Plus or entered by the user when the object is created•To modify the naming options:1.Select Options from the Tools menu2.Click the Flowsheet tab3.Check or uncheck the naming options desired •Stream and block names can be displayed or hidden1.Select object, right-click, and choose Hide from the menuSeoul National University Chemical Process Modeling & Simulation (11/39)Modifying Blocks and Streams •To display Input and Results forms in the Data Browser:1.Double-click the object of interest, orSelect the block or stream, right-click, and select Input… from the menu•To change the appearance of a block or stream:1.Select object by clicking it with the left mouse button2.Click the right mouse button while the pointer is over the selected object icon to bring up the menu for that object3.Choose appropriate menu itemBreaking and Splicing Streams •To break a stream on the Process Flowsheet:1.Select the stream on the flowsheet and right mouse click2.Select “Break Stream” for the stream menu3.If results exist, you will be asked if you want to reconcile the stream4.Enter the name of the new product stream created•To splice two streams:1.Select the two streams to be spliced (using the Shift or Ctrl key)2.Right mouse click on one of the streams, select “Splice Streams”bined stream will have the name of the former feed streamSeoul National University Chemical Process Modeling & Simulation (13/39)Inserting Blocks•To insert a block on the Process Flowsheet:1.Select the stream where you want to insert the block2.Right-click and select “Insert Block”3.If results exist, you will be asked if you want to reconcile the stream4.Select the new block ID and type5.The old stream is connected to the first inlet and outlet port for the new block6.Additional streams may need to be added to complete flowsheet connectivity depending on the modelUsing the Mouse Buttons•Left-click❝Selects a block, stream, object ID, or annotation •Right-click ❝Brings up menu for the selected stream, block, or flowsheet❝Cancels placement of streams or blocks on the flowsheet•Double-left-click ❝Opens the Data Browser to the stream or block Input form, or Results form for intermediate streams❝Edits textSeoul National University Chemical Process Modeling & Simulation (15/39)Saving an Aspen Plus Simulation •To save a file:1.Select Save As from the File menu2.Choose a File name3.Choose an appropriate Save As TypeFile TypeExtension Format Description Document*.apw Binary File containing simulation input, results and intermediate convergence information Backup*.bkp ASCII Archive file containing simulation input and results Compound *.apwz Binary Compressed file which contains the model (theBKP or APW file) and external files referenced bythe model. You can add additional files such assupporting documentation to the APWZ file.See Maintaining Aspen Plus Simulations section for information on other file formats Functionality of Forms•When you click the left mouse button to select a field on a form, the Description area gives you information about that field. Use this content to help with data entry •Click the drop-down arrow in a field to bring up a list of possible input values for that field–Typing a letter will bring up the next selection on the list that begins with that letter•The Tab key will take you to the next field on a form •In tables, Aspen Plus always adds a single row below the last entrySeoul National University Chemical Process Modeling & Simulation (17/39)Help•Help Topics–Select Help Topics from the Help menu to launch online help:•Contents : Browse through the documentation, including User Guides and Reference Manuals•Index : Search for help on a specific topic using the index entries •Search : Search for a help on a topic that includes any word or words•“What’s This?” Help–Click the “What’s This?” toolbar button and then click any area to get help for that item•F1 Help–With the cursor in the desired field, press the <F1> function key to bring up help for field and/or sheet•The minimum required inputs to run a simulation are:–Setup –Components –Properties –Streams –Blocks•Enter data on the input forms in the above order by clicking the Next Button•Or, these input folders can be located quickly using the Data menu or the Data Browser toolbar buttons Basic InputSeoul National University Chemical Process Modeling & Simulation (19/39)•Colors and shapes are used to describe the current status of input and results:Status IndicatorsSymbol StatusInput for the form is incompleteInput for the form is completeNo input for the form has been entered. It is optional .Results for the form existResults for the form exist, but there were calculation errors.Results for the form exist, but there were calculation warnings .Results for the form exist, but input has changed since theresults were generated.Cumene Flowsheet DefinitionRStoicModel Heater Model REACTORFEED RECYCLEREAC-OUT COOLCOOL-OUT Flash2ModelSEP PRODUCT •Which Aspen Plus block would you use for each unit?Seoul National UniversityChemical Process Modeling & Simulation(21/39)•Most of the commonly used Setup information is entered on the Setup Specifications Global sheet–Flowsheet title to be used on reports –Run type–Input and output units–Valid phases (i.e., vapor-liquid or vapor-liquid-liquid)–Ambient pressure•Stream report options are located on the Setup Report Options Stream sheetSetupSetup Specification FormSeoul National UniversityChemical Process Modeling & Simulation(23/39)Flowsheet Standard Aspen Plus flowsheet run . Flowsheet runs can contain property estimation, assay data analysis, and/or property analysis calculationsAssay Data Analysis A standalone Assay Data Analysis and pseudocomponent generation run . Use Assay Data Analysis to analyze assay data when you do not want to perform a flowsheet simulation in the same runDataRegressionA standalone Data Regression run . Use Data Regression to fit physical propertymodel parameters required by Aspen Plus to measure pure component, VLE, LLE, and other mixture data. Data Regression can contain property estimation and property analysis calculations. Aspen Plus cannot perform data regression in a flowsheet run Properties PlusProperties Plus setup run . Use Properties Plus to prepare a property package for use with Aspen Custom Modeler or Aspen Pinch, with third-party commercial engineering programs, or with your company's in-house programs. You must be licensed to use Properties PlusProperty Analysis A standalone Property Analysis run . Use Property Analysis to generate property tables, PT-envelopes, residue curve maps, and other property reports when you do not want to perform a flowsheet simulation in the same run. Property Analysis can contain property estimation and assay data analysis calculat ionsProperty EstimationStandalone Property Constant Estimation run . Use Property Estimation to estimate property parameters when you do not want to perform a flowsheet simulation in the same runSetup Run T ype•Units in Aspen Plus can be defined at three different levels:–Global Level (“Input Data” and “Output Results” fields on the Setup Specifications Global sheet)–Object level (“Units” field in the tip of any input form of an object such as a block or stream)–Field level•Users can create their own units sets using the Setup Units-Sets Object Manager . Units can be copied from an existing set and then modified.Setup UnitsSeoul National UniversityChemical Process Modeling & Simulation(25/39)•Use the Components Specifications form to specify all the components required for the simulation•If available, physical property parameters for each component are retrieved from databanks•Pure component databanks contain parameters such as molecular weight, critical properties, etc. The databank search order is specified on the Databanks sheet•The Find button can be used to search for components •The Electrolyte Wizard can be used to set up an electrolyte simulationComponentsComponentsSeoul National UniversityChemical Process Modeling & Simulation(27/39)•Use the Properties Specifications form to specify the physical property methods to be used in the simulation•Property methods are a collection of models and methods used to describe pure component and mixture behavior•Choosing the correct physical properties is critical for obtaining reliable simulation results•Selecting a Process Type will narrow the number of methods availablePropertiesLiquid Mole Fraction METHANOLV a p o r M o l e F r a c t i o n M E T H A N O LLiquid Mole Fraction METHANOLV a p o r M o l e F r a c t i o n M E T H A N O LLiquid Mole Fraction METHANOLV a p o r M o l e F r a c t i o n M E T H A N O LRaoult’s LawRK-SoaveNRTLPropertiesSeoul National UniversityChemical Process Modeling & Simulation(29/39)•Use Stream Input forms to specify feed stream conditions, including two of the following:–Temperature –Pressure–Vapor Fraction•Plus, for stream composition either:–Total stream flow and component fractions –Individual component flows•Specifications for streams that are not feeds to the flowsheet are used as estimatesStreamsStreams Input FormSeoul National UniversityChemical Process Modeling & Simulation(31/39)•Each Block Input or Block Setup form specifies operating conditions and equipment specifications for the unit operation model •Some unit operation models require additional specification forms•All unit operation models have optional information forms (e.g., Block Options form)BlocksBlocks FormSeoul National UniversityChemical Process Modeling & Simulation(33/39)•Select Control Panel from the View menu or press the Next button to be prompted–Execute the simulation when all required forms are complete. If you are unsure, use the Next button to take you to any incomplete formsStarting the Run•The Control Panel consists of a:–Message window showing the progress of the simulation by displaying the most recent messages from the calculations–Status area showing the hierarchy and order of simulation blocks and convergence loops executed–Toolbar that you can use to control the simulationControl PanelRun Start or continue calculationsStep Step through the flowsheet one block at a time Stop Pause simulation calculations Reinitialize Purge simulation results ResultsCheck simulation resultsSeoul National UniversityChemical Process Modeling & Simulation(35/39)•History file or Control Panel Messages–Contains any generated errors or warnings (Select History or Control Panel on the View menu to display the History file or the Control Panel)•Stream Results–Contains stream conditions and compositions (For all streams, click Results Summary/Streams; for individual streams, click the stream name in the Streams folder, then select the Results form)•Block Results–Contains calculated block operating conditions (In the Blocks folder, click the block, then select the Result form)Reviewing ResultsCumene Production ConditionsSeoul National UniversityChemical Process Modeling & Simulation(37/39)•Objective : Add the process and feed stream conditions to a flowsheetExercise) Benzene Workshop•Results–What is the heat duty of the COOLER block? ___________–What is the temperature in the FL2 block? ___________Exercise) Benzene WorkshopSeoul National UniversityChemical Process Modeling & Simulation(39/39)(Exercise) Benzene Workshop ResultsFEED COOL VAP1LIQ1VAP2LIQ2Temperature, F 100020010010099.899.8Pressure, psi 55055050050014.714.7Vapor Frac10.8691010Mole Flow, lbmol/hr 600600501.72498.276 2.76295.514Mass Flow, lb/hr 10221.9910221.992628.6687593.32471.7867521.538Volume Flow, cuft/hr 17271.526905.6336098.248143.3541123.627140.415Enthalpy, MMBtu/hr 7.3610.17-2.776 2.015-0.0232.037Mole Flow, lbmol/hr HYDROGEN 405405404.2390.7610.7540.007METHANE 959593.477 1.523 1.3980.125BENZENE 9595 3.93591.0650.690.464TOLUENE550.0734.9270.014.917COOL heat duty-7.19 MMBtu/hrFL2 outlet temperature 99.83ºF。

马后炮化工论坛-第5章 传质过程 题解

马后炮化工论坛-第5章 传质过程 题解

解5-28
亨利系数 溶解度系数 1 1 1 K G kG Hk L 1 1 1 K G 2.665 10 3 kmol.m 2 hr 1kPa 1 5.197 10 3 kmol.m 3 kPa 1 0.42 m.hr 1 K G 1.2 10 3 kmol.m 2 hr 1kPa 1 E mP 102 104 .8kPa 1.069 10 4 kPa 1000 kg .m 3 3 3 1 H 5 . 197 10 kmol . m kPa EM S 1.069 10 4 kPa 18 kg .kmol 1
即此值低于与液相出口 组成相平衡的气相浓度 ,




塔顶 对于液相
0.0015 0.012 X X e X 0.012 0.125 0.01 塔底 X 0.02 Xe 0.08 X X e X 0.08 0.02 0.06 0.125 0.012 0.06 0.0298 对数平均推动力 X m 0.012 ln 0.06 NA 0.0000757 N A K L X m KL 0.00254 kmol.m 2 s 1 X m 0.0298 塔顶 X 0 Xe
5-9(多选题) 简单精馏(间歇精馏)计算中,当已知料液的初始组成、物料量、最终组成,求釜 液的残存量时,可列微分方程求解,求解时应当满足的条件是 (1) 恒温操作 (2) 恒摩尔流 (3) 任一时刻汽液组成达到平衡 (4) 相对挥发度视为常数 5-10 精馏理论中,理论板概念提出的充分必要条件是 (1) 塔板无泄漏 (2) 塔板效率为 100% (3) 离开塔板的两相达到平衡 (4) 板上传质推动力最大 5-11(多选题) 二元连续精馏计算中,进料热状态 q 的变化将引起 x-y 图上变化的线有 (1) 平衡线 (2)对角线 (3) 操作线 (4 ) q 线 5-12 关于精馏中最小回流比的说明中正确的是 (1) 是经济效果最好的回流比 (2) 是保证精馏操作所需塔板数最少的回 流比 (3) 是保证精馏分离效率最高的回流 (4) 是需要无穷多塔板才能达到分离要求 比 的回流比

马后炮化工论坛-第5章 传质过程 题解

马后炮化工论坛-第5章 传质过程 题解

• 5-26
• 在逆流操作的填料吸收塔中,用清水吸 收混合气中溶质组分A。进塔气体组成为 0.03(摩尔比),吸收率为99%,出塔液 相组成为 0.013 (摩尔比)。操作压强为 101.33kPa 、温度为 27℃,操作条件下相 平衡关系为 Y=2X ( XY 为摩尔比)。已 知单位塔截面上惰性气体流量为 54[kmol.m-2h-1] ,气相体积吸收总系数为 0.95[kmol.m-3h-1kPa-1] ,试求所需的填料 高度。
5-13 对一定分离程度而言,精馏塔所需最小理论板数对应为何种操作 (1) 全回流 (2)50%回流 (3) 25%回流 (4) 无法判定 5-14(多选题) 下列设备中能起到一块理论板分离作用的是 (1) 再沸器 (2)全凝器 (3) 分凝器 (4) 气化器 5-15 用精馏方法分离某二元理想溶液,产品组成为 xD,xW,当进料组成为 xF1 时,相应的 最小回流比为 Rm1;当进料组成为 xF2 时,相应的最小回流比为 Rm2。若 xF1<xF2,且 进料热状态相同,则 (1) Rm1<Rm2 (2) Rm1=Rm2 (3) Rm1> Rm2 (4) 无法确定 5-16 减压操作精馏塔内自上至下真空度及其相应露点的变化为 (1) 真空度及露点均提高 (2)真空度及露点均降低 (3) 真空度提高,露点降低 (4) 真空度降低,露点提高
解5-28
亨利系数 溶解度系数 1 1 1 K G kG Hk L 1 1 1 K G 2.665 10 3 kmol.m 2 hr 1kPa 1 5.197 10 3 kmol.m 3 kPa 1 0.42 m.hr 1 K G 1.2 10 3 kmol.m 2 hr 1kPa 1 E mP 102 104 .8kPa 1.069 10 4 kPa 1000 kg .m 3 3 3 1 H 5 . 197 10 kmol . m kPa EM S 1.069 10 4 kPa 18 kg .kmol 1

HCL吸收

HCL吸收

原装置HCL气体由顶部进入吸收器,被循环吸收液吸收,尾气进入尾气吸收塔,被工艺水吸收,生成溶液进入吸收塔与HCL气体接触吸收,成品酸采入盐酸储槽,部分盐酸,由泵打入吸收塔进行循环吸收。

新装置HCL气体由塔底部进入吸收塔,工艺水顶部进入,吸收后的部分盐酸由泵经冷却器打入吸收塔循环吸收,同时部分成品酸塔底采出,经冷却后进入盐酸储槽。

可以看出,两套吸收装置气液两相流动方式不同:新HCL吸收装置为逆流方式,HCL气体由塔底进入,吸收自上而下进行吸收,尾气由塔顶排出;而原HCL吸收装置为并流方式HCL气体自塔顶进入,由塔底排出尾气进入尾气吸收器,尾气吸收器为逆流方式。

根据气体吸收理论,在同等条件下,逆流方式可以获得较大的平均推动力,因而能够有效的提高吸收过程的速率。

从另一方面讲,逆流时,降到塔底的溶液恰好于刚刚进入塔的HCL气体混合,有利于提高采出酸的浓度,从而减小吸收剂的耗用量;同时,升到塔顶的HCL气体恰恰与刚进塔的工艺水接触,有利于降低尾气的浓度,提高了HCL气体的吸收率。

在实际生产过程中,证明了新装置比原装置具有优越性:新装置生产出的盐酸浓度高达30%以上。

高负荷时,无喷酸现象。

原装置生产出的盐酸浓度为28%,而且高负荷生产时,经常出现喷酸现象。

HCL吸收为非等温吸收,在吸收过程中,液体温度升高较多。

根据大连理工大学开发的微型机化工物性数据库(MCEDB),HCL气体溶质的积分溶解热的数学模型公式:HS=-a(100*-S)/(100*-b*S)Kcal/MolHS—Kcal/MolS—溶液中溶质质量浓度%a=17.87 b=0.5736其中a,b为常数30%质量浓度的盐酸积分溶解热HS=-17.87(100*-30%)/(100*-0.5736*30%) =31.15Kcal/Mol由此可见,HCL吸收过程应设置边吸收边冷却的吸收装置,原HCL吸收装置采用管壳式换热器形式的吸收设备,使吸收过程在管内进行的同时,不断的向壳方通入冷却水,来移走大量热量。

马后炮科技化工技术交流论坛ASPEN学习经验

马后炮科技化工技术交流论坛ASPEN学习经验

马后炮科技化工技术交流论坛ASPEN学习经验概述入门是初学aspen plus软件最重要也是最难的一关。

读过手册的人都明白,Aspen plus的手册和资料有专门多,初学者面对如此之多的资料可能不知如何开始,我认为其中比较重要而且必读的是《用户指南》(《user guide》)、《单元操作模型》(《Unit Operation Models》)、《物性方法和模型》(《Physical Property Methods and Models》)、《物性数据》等,假如有一定的英文基础,最好是读英文的,这些在关心文件中都有。

事实上一旦入了门,流程模拟软件学习起来就专门简单了,专门多功能触类旁通专门容易就明白了,比如说,假如明白了sensitivity, 那么optimizaiton、desian spec就专门容易了。

大体来说,初学aspen plus 需要把握如下三个方面:1)aspen plus能做什么?2)Aspen plus需要什么?3)aspen plus的界面及功能。

2. aspen plus的界面及功能和学习所有软件一样,第一需要了解软件的环境,也确实是界面。

我个人认为界面差不多上能够分为两种:一是流程图窗口(process flowsheet window),另外是数据扫瞄窗口(data browser window)。

实际上还应该再加一个操纵面板(control panel)窗口,那个窗口也专门重要,但那个窗口只是在流程调试使用,同时涉及的内容初级入门者也不必花太多时刻去看,先忽略。

流程图窗口专门简单,只要你在工厂干过,看过PFD流程图同时是windows 的用户,就没有什么难得地点,读一下《user guide》明白各菜单及快捷键的功能,专门快就能搞定。

数据扫瞄窗口是aspen plus最重要的部分。

这也是aspen plus区别于画图软件的地点。

你需要在那个窗口中输入所有的已知条件,同时运行后观看运行结果。

马后炮化工技术论坛中石化技术人员aspen培训课件--资料

马后炮化工技术论坛中石化技术人员aspen培训课件--资料
立方程模拟程序。
-所有的方程均同时求解。 • 组合方法
-Aspen Dynamics (以前是 DynaPLUS) 使用 Aspen Plus
序贯模块方法去初始化稳态模拟并使用 Aspen Custom Modeler (以前是 SPEEDUP) 联立方程法求解动态模拟 。
October 25, 2019
Slide 25
©1997 AspenTech. All rights reserved.
设置
大多数常用的设置信息是在Setup Specifications Global 表 中输入:
• 运行类型 • 输入和输出单位 • 有效的相态 (例如:汽-液或汽-液-液) • 环境压力
®
Introduction to Aspen Plus
Slide 10
©1997 AspenTech. All rights reserved.
Aspen Plus 的重要功能
• 严格的电解质模拟 • 固体处理 • 石油处理 • 数据回归 • 数据拟合 • 优化 • 用户子程序
October 25, 2019
©1997 AspenTech. All rights reserved.
图形化流程操作(续)
• 在流程中放置一个物流:
1. 在模型库中的 STREAMS 图标上单击 2. 如果你想选择一个不同的物流类型 (物料,热或功), 单击靠
近图标的下箭头,然后选择不同的类型 3. 选择一个高亮显示的出口做连接 4. 重复第 3 步连接物流的另一端 5. 若把一个物流的末端作为工艺物流的进料,或者作为产品
October 25, 2019
®
Introduction to Aspen Plus

马后炮化工论坛-dynamic

马后炮化工论坛-dynamic

2013年10月25日星期五
Introduction to Aspen Dynamics
• 利用热量计的结果可以预估动力学参数 • Simulation Access eXtensions (SAX)
– 可以利用外部程序接口访问和控制模拟过程
• Windows OLE Automation
Note: Estimation, and SAX 不包括在本课程 内
2013年10月25日星期五 Introduction to Aspen Dynamics 13
2013年10月25日星期五 Introduction to Aspen Dynamics 21
用户界面
Title bar
Menu bar
Tool bars
Simulation Explorer
Flowsheet Window
Status bar
2013年10月25日星期五
Simulation Messages Window
2.创建一个动态模拟过程
练习 - 加动态数据
3.运行一个动态模拟过程
练习 - 动态模拟
2013年10月25日星期五 Introduction to Aspen Dynamics 3
4.
建模要点
练习 - RPlug Thermal Inertia 练习 - Overfilled Vessel
2013年10月25日星期五
Vapor fraction 0.5 Pressure drop 0.0 atm Vertical Vessel Length 3.0 m Diameter 2.0 m Constant duty heat transfer Initial liquid fillage fraction 0.5

马后炮化工论坛-第7章 Hysys在石油化工领域中的应用

马后炮化工论坛-第7章 Hysys在石油化工领域中的应用

Hysys油品表征

定义石油步骤: 定义化验分析 提供的信息越多,石油表征越精确 提供任何或者所有的总体分子量、总体密度、总体特 性因子K 都将增加虚拟组分性质的精确度 还可提供分子量、密度和/或粘度的实验室曲线,那会 更精确 生成虚拟组分 在流程中安装石油
Hysys油品表征
定义化验分析 定义Oil具体步骤:

提供的关于样品的信息越多,表征得越精确。
油品表征步骤
例1. 原油表征
•原油TBP分析数据(Liquid Volume) • 轻端分析数据
•主体性质 Standard Density
29 API Gravity
例1. 原油表征

原油名称:Raw Crude 油品切割时:选 User Ranges. 切割温度分布: 到 425°C (800°F),取 20点 到 620°C (1150°F),取5点 到 720°C (1328°F),取2点

轻端组分
必须在流体包中定义这些轻端组分,才可以在这里使用
Hysys油品表征
2)输入总体性质 (如果提供了样品的精馏曲线或色谱分析数据,总体性 质可选) 摩尔分子量:样品总体摩尔分子量。该值必须大于16 质量密度质:量密度必须在250 和2000kg/m3之间 特性因子K(UOP)必须在8和15 之间 总体粘度: 两个参照温度下,典型值37.78℃和98.89℃(100℉和 210℉) 密度:单位可以是质量密度,API,或规定重度 特性因子K:直链烷烃含量的大概指数。 K=(平均沸点)1/3/(sp gr 60F/60F水)
分离 效果
基本无精馏作用,不 能显示各组分的沸点
用途
用于计算其它物性参 数

马后炮化工技术论坛_ASPENPLUS软件模拟烟气氨法脱硫

马后炮化工技术论坛_ASPENPLUS软件模拟烟气氨法脱硫
迄今为止 ,烟气脱硫技术种类多达数百种 ,从 吸收剂种类来看 ,主要有石灰石法脱硫工艺 、氨法 脱硫技术 、镁法脱硫技术 、双碱法脱硫技术 、海水脱 硫技术等 。其中氨法脱硫技术以其占地少 、操作费 用经济 、副产品价值高 、无二次污染等为优势 ,在脱 硫行业中占有一定的市场分额 [ 3 - 5 ] 。
第 22卷 第 1期 2 0 0 9年 2月
污染防治技术 POLLUTION CONTROL TECHNOLOGY
Vol. 22, No. 1 Feb . , 2 0 0 9
ASPEN PLUS软件模拟烟气氨法脱硫
陈茂兵 , 孙克勤 , 徐海涛 , 周长城 , 于爱华 (江苏苏源环保工程有限公司 , 江苏 南京 211102)
温度 / ℃
压力 / kPa
pH 值
焓 / ( kJ·kg - 1 )
熵 / [ J· (mol - K) - 1 ]
密度 / ( kg·m - 3 )
x (H2O)
x ( SO2 ) x (H3O + )
x (O2 )
x ( (N2 )
x (NH3 )
x ( CO2 )
x ( SO24 - )
x ( SO23 - )
( 2) CO2 + 2H2 O = H3 O + + HCO3( 3) HCO3- + H2 O = H3 O + + CO23 ( 4) NH3 + H2 O =NH4+ +OH ( 5) NH3 + HCO3- =NH2 COO - + H2 O ( 6) H2 SO4 + H2 O = H3 O + + HSO4( 7) H SO4- + H2 O = H3 O + + SO24 ( 8) SO2 + 2H2 O = H3 O + + HSO3( 9) H SO3- + H2 O = H3 O + + SO23 ( 10) SO23 - + 0. 5O2 →SO24 ( 11) HSO3- + 0. 5O2 + H2 O →SO24 - + H3 O +
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MM "25.0" FLAVOR "NO" VERSION "25.0" DATETIME "Sat Apr 13 13:28:58 2013" MACHINE "WIN-NT/VC" ;startlibraryversion1NumLibs = 3Built-InACM Built-InConceptual DesignNumCats = 10Mixers/SplittersactiveSeparatorsactiveHeat ExchangersactiveColumnsactiveReactorsactivePressure ChangersactiveManipulatorsactiveSolidsactiveUser ModelsactiveConceptual Designactiveendlibrary;1>VERSION 0B1RadFracBuilt-InRADFRAC? SETUP MAIN ? \ "RUN-CLASS" RUN-CLASS = FLOWSHEET \ \ SIMULATE INTERACTIVE= NO MOLEFLOW = MOLEFLOW MOLEFRAC = MOLEFRAC TFFFILE = "GEN_M" VISITED = 1 \ ? SETUP GLOBAL ? \ "IN-UNITS" INSET = "SI-CBAR" \ \ "STREAM-CLASS" SCLASS = CONVEN \ ? SETUP DIAGNOSTICS ? ? SETUP "SIM-OPTIONS" ? ; "METCBAR_MOLE" ; ? SETUP "UNITS-SET" METCBAR ? \ DESCRIPTION DESCRIPTION ="Metric Units with C, BAR, GCAL/HR, and CUM" \ \ MMLOCAL \ \ UNITSET BASESET = MET ( 3 3 3 3 3 3 3 3 3 3 3 7 18 3 3 5 3 3 3 5 3 4 3 3 3 3 1 3 3 34 3 7 3 3 3 1 1 4 4 3 3 3 3 3 3 3 3 3 3 3 3 14 3 3 3 3 3 3 3 3 3 3 4 3 3 3 33 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) \ ? SETUP "UNITS-SET" METCKGCM? \ DESCRIPTION DESCRIPTION = "Metric Units with C, KG/SQCM, GCAL/HR, and CUM" \ \ MMLOCAL \ \ UNITSET BASESET = MET ( 3 3 3 3 3 3 3 3 3 3 3 7 18 3 3 5 3 33 8 34 3 3 3 3 1 3 3 3 4 3 7 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 14 3 3 33 3 3 3 3 3 34 3 3 3 3 3 3 3 3 3 3 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ) \ ? SETUP "UNITS-SET" "SI-CBAR" ? \ DESCRIPTION DESCRIPTION ="International System Units with C, BAR, and /HR" \ \ MMLOCAL \ \ UNITSET BASESET = SI ( 1 1 1 1 1 1 1 1 1 3 3 7 1 1 1 1 1 1 1 5 1 4 1 1 1 1 1 1 1 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) \ ? SETUP "ACCOUNT-INFO" ? ? SETUP "RUN-CONTROL" ? ? SETUP DESCRIPTION ? \ DESCRIP DESCRIP = ("General Simulation with Metric Units :""C, bar, kg/hr, kmol/hr, Gcal/hr, cum/hr." " " "Property Method: None" " " "Flow basis for input: Mole" " " "Stream report composition: Mole flow" ) \ ? ODATABANKS ? \ ODATABANKS AUTO-PARAM = YES \ ? DATABANKS ? \ DATABANKSFILE-SYM-NAM = ( "APV73 ASPENPCD" "APV73 PURE24" "APV73 AQUEOUS" "APV73 SOLIDS" "APV73 INORGANIC" "APV73 PURE25" ) \ ? COMPONENTS MAIN ? \ COMPONENTS CID ="C3H6--01" ANAME = C3H6-2 OUTNAME = "C3H6--01" DBNAME1 = "PROPYLENE" ANAME1= "C3H6-2" / CID = "C3H5C-01" ANAME = C3H5CL OUTNAME = "C3H5C-01" DBNAME1= "ALLYL-CHLORIDE" ANAME1 = "C3H5CL" / CID = "C3H5C-02" ANAME = C3H5CL-D0 OUTNAME = "C3H5C-02" DBNAME1 = "2-CHLOROPROPENE" ANAME1 = "C3H5CL-D0" / CID= "C3H4C-01" ANAME = C3H4CL2-D1 OUTNAME = "C3H4C-01" DBNAME1 ="CIS-1,3-DICHLOROPROPENE" ANAME1 = "C3H4CL2-D1" / CID = HCL ANAME = HCL OUTNAME = HCL DBNAME1 = "HYDROGEN-CHLORIDE" ANAME1 = "HCL" / CID = H2O ANAME= H2O OUTNAME = H2O DBNAME1 = "WATER" ANAME1 = "H2O" / CID = "H3O+" ANAME= H3O+ OUTNAME = "H3O+" DBNAME1 = "H3O+" ANAME1 = "H3O+" / CID = "CL-" ANAME = CL- OUTNAME = "CL-" DBNAME1 = "CL-" ANAME1 = "CL-" \ ? COMPONENTS "COMP-LIST" GLOBAL ? ? SOLVE ? ? "DYN-OPTIONS" ? ? CHEMISTRY GLOBAL ? ;"SI-CBAR_MOLE" ; \ PARAM GAMMA-BASIS = UNSYMMETRIC \ \ STOIC REACNO = 1STOIC-CID = HCL COEF = -1 <0> <0> / REACNO = 1 STOIC-CID = H2O COEF = -1 <0><0> \ \ STOIC1 REACNO1 = 1 STOIC-CID1 = "CL-" COEF1 = 1 <0> <0> / REACNO1 =1 STOIC-CID1 = "H3O+" COEF1 = 1 <0> <0> \ \ K-STOIC K-S-REACNO = 1 \ \STOIC-DATA S-D-REACNO = 1 \ \ ALLREACT RXNID = "1" RXNSTRING ="HCL + H2O <--> CL- + H3O+" RXNTYPE = "Equilibrium" \ ? FLOWSHEET GLOBAL ? \ BLOCK BLKID = B1 BLKTYPE = RADFRAC MDLTYPE = "RadFrac" IN = ( H2OM0-1 FEED M0-1 ) OUT = ( 3 M0-1 4 M2-3 ) \ \ "DEF-STREAM" SCLASS = CONVEN \ ? PROPERTIES MAIN ? \ GPROPERTIES GBASEOPSET = ELECNRTL GOPSETNAME = ELECNRTL GCHEMISTRY = GLOBAL GTRUE-COMPS = YES PARCON = -2 \ ? PROPERTIES "OPTION-SETS" ELECNRTL ? \ PARAM BASE = ELECNRTL \ ? PROPERTIES "OPTION-SETS" "ENRTL-RK" ?\ PARAM BASE = "ENRTL-RK" \ ? PROPERTIES "OPTION-SETS" NRTL ? \ PARAM BASE =NRTL \ ? PROPERTIES "MOLEC-STRUCT" "C3H4C-01" ? ? PROPERTIES "MOLEC-STRUCT""C3H5C-01" ? ? PROPERTIES "MOLEC-STRUCT" "C3H5C-02" ? ? PROPERTIES"MOLEC-STRUCT" "C3H6--01" ? ? PROPERTIES "MOLEC-STRUCT" "CL-" ? ? PROPERTIES "MOLEC-STRUCT" H2O ? ? PROPERTIES "MOLEC-STRUCT" "H3O+" ? ? PROPERTIES "MOLEC-STRUCT" HCL ? ? PROPERTIES PARAMETERS BINARY SCALAR "HOCETA-1" ? ;"SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = HOCETA SETNO = 1 BDBANK = ("APV73 EOS-LIT" ) \ \ BPVAL PARAMNAME2 = HOCETA CID1 = HCL CID2 = H2O VALUE = "APV73 EOS-LIT" \ \ BPVAL PARAMNAME2 = HOCETA CID1 = H2O CID2 = H2O VALUE = "APV73 EOS-LIT" \ \ BPVAL PARAMNAME2 = HOCETA CID1 = H2O CID2 = HCL VALUE = "APV73 EOS-LIT" \ ? PROPERTIES PARAMETERS BINARY SCALAR "MLQKIJ-1" ? ;"SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = MLQKIJ SETNO = 1 \ ? PROPERTIES PARAMETERS BINARY SCALAR "RKTKIJ-1" ? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = RKTKIJ SETNO = 1 UNITROW = 0 \ ? PROPERTIES PARAMETERS BINARY SCALAR "VLQKIJ-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = VLQKIJ SETNO = 1 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "ANDKIJ-1" ? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = ANDKIJ SETNO = 1 UNITROW = 0 TUNITROW = 22 TUNITLABEL = F NEL = 2 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "ANDMIJ-1" ? ; "ENG_MOLE" ; \ PROP-LIST PARAMNAME = ANDMIJ SETNO = 1 UNITROW = 0 TUNITROW = 22 TUNITLABEL= F NEL = 2 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "HENRY-1" ? ;"SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = HENRY SETNO = 1 UNITROW = 20 UNITLABEL = bar TUNITROW = 22 TUNITLABEL = C BDBANK = ( "APV73 BINARY""APV73 HENRY-AP" ) NEL = 7 \ \ BPVAL PARAMNAME2 = HENRY CID1 = HCL CID2 = H2O UNITROW2 = 20 UNITLABEL2 = bar TUNITROW2 = 22 TUNITLABEL2 = C VAL1 ="APV73 HENRY-AP" VAL2 = "APV73 HENRY-AP" VAL3 = "APV73 HENRY-AP" VAL4 ="APV73 HENRY-AP" VAL5 = "APV73 HENRY-AP" VAL6 = "APV73 HENRY-AP" VAL7 ="APV73 HENRY-AP" \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "MUKIJ-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = MUKIJ SETNO = 1 UNITROW = 0 TUNITROW= 22 TUNITLABEL = C BDBANK = ( "APV73 PC-SAFT" ) NEL = 6 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "MULIJ-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = MULIJ SETNO = 1 UNITROW = 0 TUNITROW = 22 TUNITLABEL = C BDBANK= ( "APV73 PC-SAFT" ) NEL = 11 \ ? PROPERTIES PARAMETERS BINARY "T-DEPENDENT" "NRTL-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = NRTL SETNO = 1 UNITROW= 0 TUNITROW = 22 TUNITLABEL = C BDBANK = ( "APV73 VLE-IG" "APV73 LLE-ASPEN" "APV73 VLE-LIT" ) NEL = 12 \ \ BPVAL PARAMNAME2 = NRTL CID1 = "C3H5C-01" CID2= H2O UNITROW2 = 0 TUNITROW2 = 22 TUNITLABEL2 = C VAL1 = "APV73 VLE-IG" VAL2 = "APV73 VLE-IG" VAL3 = "APV73 VLE-IG" VAL4 = "APV73 VLE-IG" VAL5 ="APV73 VLE-IG" VAL6 = "APV73 VLE-IG" VAL7 = "APV73 VLE-IG" VAL8 ="APV73 VLE-IG" VAL9 = "APV73 VLE-IG" VAL10 = "APV73 VLE-IG" VAL11 ="APV73 VLE-IG" VAL12 = "APV73 VLE-IG" \ ? PROPERTIES PARAMETERS BINARY"T-DEPENDENT" "VLCLK-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = VLCLK SETNO = 1 UNITROW = 43 UNITLABEL = "cum/kmol" TUNITROW = 0 BDBANK = ("APV73 ENRTL-RK" ) NEL = 2 \ \ BPVAL PARAMNAME2 = VLCLK CID1 = "H3O+" CID2 = "CL-" UNITROW2 = 43 UNITLABEL2 = "cum/kmol" TUNITROW2 = 0 VAL1 ="APV73 ENRTL-RK" VAL2 = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR"GMELCC-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMELCC SETNO = 1 UNITROW = 0 BDBANK = ( "APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMELCC 1CID1A = HCL CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCC 2 CID1A = "H3O+" CID1B = "CL-" CID2A = HCL VALUE ="APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCC 3 CID1A = H2O CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCC 4 CID1A= "H3O+" CID1B = "CL-" CID2A = H2O VALUE = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMELCD-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMELCD SETNO = 1 UNITROW = 22 UNITLABEL = C BDBANK = ( "APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMELCD 1 CID1A = HCL CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCD 2 CID1A = "H3O+" CID1B = "CL-" CID2A = HCL VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCD 3 CID1A =H2O CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCD 4 CID1A = "H3O+" CID1B = "CL-" CID2A = H2O VALUE ="APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMELCE-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMELCE SETNO = 1 UNITROW = 0 BDBANK = ("APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMELCE 1 CID1A = HCL CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCE 2 CID1A= "H3O+" CID1B = "CL-" CID2A = HCL VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCE 3 CID1A = H2O CID2A = "H3O+" CID2B = "CL-" VALUE ="APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMELCE 4 CID1A = "H3O+" CID1B = "CL-" CID2A = H2O VALUE = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMELCN-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMELCN SETNO = 1 UNITROW = 0 BDBANK = ( "APV73 ENRTL-RK" ) \ ? PROPERTIES PARAMETERS PAIR "GMENCC-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMENCC SETNO = 1 UNITROW = 0 BDBANK= ( "APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMENCC 1 CID1A = H2O CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMENCC 2 CID1A = "H3O+" CID1B = "CL-" CID2A = H2O VALUE = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMENCD-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMENCD SETNO = 1 UNITROW = 22 UNITLABEL = C BDBANK = ("APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMENCD 1 CID1A = H2O CID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMENCD 2 CID1A= "H3O+" CID1B = "CL-" CID2A = H2O VALUE = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMENCE-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMENCE SETNO = 1 UNITROW = 0 BDBANK = ( "APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMENCE 1 CID1A = H2O CID2A = "H3O+" CID2B = "CL-" VALUE ="APV73 ENRTL-RK" \ \ PPVAL PARAMNAME2 = GMENCE 2 CID1A = "H3O+" CID1B = "CL-" CID2A = H2O VALUE = "APV73 ENRTL-RK" \ ? PROPERTIES PARAMETERS PAIR "GMENCN-1" ? ; "SI-CBAR_MOLE" ; \ PROP-LIST PARAMNAME = GMENCN SETNO = 1 UNITROW = 0 BDBANK = ( "APV73 ENRTL-RK" ) \ \ PPVAL PARAMNAME2 = GMENCN 1 CID1A = H2OCID2A = "H3O+" CID2B = "CL-" VALUE = "APV73 ENRTL-RK" \ ? "STREAM-NAMES" ? ? STREAM MATERIAL FEED ? ; "SI-CBAR_MOLE" ; \ SUBSTREAM SSID = MIXED TEMP = 10.<22> <4> PRES = 1.5 <20> <5> BASIS = "MOLE-FRAC" FLOWBASE = MOLE TOTFLOW = 20. <-89> <3> TOTAL = 1. <-4> <0> JUNK = 5 \ \ MOLE-FLOW SSID1 = MIXED CID ="C3H6--01" FLOW = 0.745 <-4> <0> / SSID1 = MIXED CID = "C3H5C-01" FLOW =0.01 <-4> <0> / SSID1 = MIXED CID = "C3H5C-02" FLOW = 0.01 <-4> <0> / SSID1 = MIXED CID = "C3H4C-01" FLOW = 0.01 <-4> <0> / SSID1 = MIXED CID = HCL FLOW = 0.225 <-4> <0> \ ? STREAM MATERIAL H2O ? ; "SI-CBAR_MOLE" ; \ SUBSTREAM SSID = MIXED TEMP = 25. <22> <4> PRES = 1.4 <20> <5> BASIS = "MOLE-FRAC" FLOWBASE = MOLE TOTFLOW = 30. <-89> <3> TOTAL = 1. <-89> <0> JUNK = 1 \ \ MOLE-FLOW SSID1 = MIXED CID = H2O FLOW = 1. <-4> <0> \ ? BLOCK RADFRAC B1 ? ; "SI-CBAR_MOLE" ; ; ABSBR1 ; \ PARAM NSTAGE = 5 ABSORBER = YES MAXOL = 200 OPT-PRES = "DP-COL" NSTAGEMAX = 6 \ \ "COL-CONFIG" CONDENSER = NONE REBOILER = NONE \ \ FEEDS FEED-SID = H2O FEED-STAGE = 1 / FEED-SID = FEED FEED-STAGE = 6 \ \ PRODUCTS PROD-STREAM = 3 PROD-STAGE = 1 PROD-PHASE = V P-S = N / PROD-STREAM = 4 PROD-STAGE = 5 PROD-PHASE = L P-S = N \ \"P-SPEC2" PRES1 = 1.36 <20> <5> \ \ "COL-SPECS" DP-COL = 0.04 <75> <5>BASIS-RDV = 1.0 <0> <0> \ \ "KLL-VECS" \ \ "TRSZ-VECS" \ \ "PCKSR-VECS" \ ? "DESIGN-SPEC" "DS-1" ? ; "SI-CBAR_MOLE" ; \ DEFINE FVN = YHCL FVN-VARTYPE = "MOLE-FRAC" FVN-STREAM = 3 FVN-SUBS = MIXED FVN-COMPONEN = HCL OPT-CATEG = STREAM \ \ SPEC EXPR1 = "YHCL" EXPR2 = "0" \ \ "TOL-SPEC" TOL = "0.0001" \ \ VARY VARY-VARTYPE = "STREAM-VAR" VARYSTREAM = H2O VARYSUBS = MIXED VARYVARIABLE = "MOLE-FLOW" \ \ LIMITS LOWER = "10" UPPER = "30" \ ?"EO-CONV-OPTI" ? \ DMO-PARAMS MODE = DEFAULT \ \ DMO-PARAMS MODE = SIMULATION \ \ DMO-PARAMS MODE = "PARAMETER-ESTIMATION" \ \ DMO-PARAMS MODE = RECONCILIATION \ \ DMO-PARAMS MODE = OPTIMIZATION \ \ LSSQP-PARAMS MODE-L = DEFAULT \ \ LSSQP-PARAMS MODE-L = SIMULATION \ \ LSSQP-PARAMS MODE-L = "PARAMETER-ESTIMATION" \ \ LSSQP-PARAMS MODE-L = RECONCILIATION \ \LSSQP-PARAMS MODE-L = OPTIMIZATION \ \ NSOLVE-PARAM NSOLVE-MODE = DEFAULT \ \ NSOLVE-PARAM NSOLVE-MODE = SIMULATION \ \ NSOLVE-PARAM NSOLVE-MODE = "PARAMETER-ESTIMATION" \ \ XSLP-PARAMS XSLP-MODE = DEFAULT \ \ XSLP-PARAMS XSLP-MODE = SIMULATION \ \ XSLP-PARAMS XSLP-MODE = "PARAMETER-ESTIMATION" \ \ XSLP-PARAMS XSLP-MODE = RECONCILIATION \ \ XSLP-PARAMS XSLP-MODE = OPTIMIZATION \ ? REPORT REPORT ? ? REPORT "BLOCK-REPORT" ? ? REPORT "STREAM-REPOR" ? \ OPTIONS MOLEFLOW = MOLEFLOW MOLEFRAC = MOLEFRAC \ ? REPORT "FLOWSHEET-RE" ? ? REPORT "PROPERTY-REP" ? ? REPORT "ADA-REPORT" ? ? REPORT "BATCH-OPERAT" ? ; "SI-CBAR_MOLE" ;GRAPHICS_BACKUPPFS V 5.00$CONFIGparamdata APV73 ENRTL-RKparamdata APV73 VLE-IGparamdata APV73 VLE-RKparamdata APV73 VLE-HOCparamdata APV73 LLE-LITparamdata APV73 LLE-ASPENparamdata APV73 VLE-LITparamdata APV73 BINARY paramdata APV73 EOS-LIT paramdata APV73 HENRY-AP paramdata APV73 SRK-ASPEN paramdata APV73 PC-SAFT paramdata APV73 POLYPCSF purebank APV73 PURE24 purebank APV73 AQUEOUS purebank APV73 SOLIDS purebank APV73 INORGANIC regdbank 1ftn_check 1autoblockid 1 autostreamid 1 showblockid 1 showstreamid 1 autoplacement 1grid 2gridresolution 0.100000 scale 0streamprefixblockprefix Blabelscale 1.000000 qwformat %.0ftempformat %.0f presformat %.0f flowformat %.0f strmqwformat %.0f vflowformat %.0f mflowformat %.0f vfracformat %.2f pseudobatch 0partial 1animation 1runanyway 0 tooldrawvisible 1 browserheight 7590 browserwidth 15495 browsertreewidth 7200 polyplusenabled 1 dynaplusenabled 1 bfracenabled 1rtfenabled 1rspenabled 1initializeicarus 0 pinchenabled 0linklimit 5000material_color 0material_style 983041 material_width 1heat_color 0heat_style 983042heat_width 1heat_termid Qwork_color 0work_style 983043work_width 1work_termid W connections_color 9 connections_style 983044 connections_width 1 measurements_color 4 measurements_style 983044 measurements_width 1 displayeoconn 0 displayeomeas 1 displayeomeastype 2 displayothermanipconn 0 showeoviews 0eoautosave 1allow_system_userprops 0 copy_estimation 1copy_retrieved 1purge_incomp_params 0set_default_biparams 0 set_default_dataset1 0 set_default_dataset0 1 bestinput 0autosmrun 0genallpropset 0 strmresformdefault 0 roottype 0exchangerfile 1 streamformat 1 runsettingfile 1 usermodelfile 1fortranfile 0allow_system_autoparam 1timeout 1000##PFSVData {A0DFFFE6-908E-11CE-A964-0000C08C668E} # of PFS Objects = 9SIZE -4.09655 1.69931 -1.40345 1.20621BLOCKID: DS-1Version: 1ICON: "BLOCK"Flag 0SectionAt 0.000000 0.000000Label At 0.000000 0.000000UnplacedScale 1.000000 Modifier 0BLOCKID: B1Version: 1ICON: "ABSBR1"Flag 0Section GLOBALAt -0.900000 -0.100000Label At -0.600000 0.700000Annotation At -0.225000 -0.775000Scale 1.000000 Modifier 0STREAMID: H2OVersion: 2Flag 0GLOBAL 117TYPE 0 TERMINAL 1At -4.096552 0.599310Label At 0.735776 0.000000ROUTE 0 0$ $ 0.0 0.0ROUTE 1 0r r -4.096552 0.599310 0x x -2.625000 0.599310 0y y -2.625000 0.356552 0x x -1.322759 0.356552 0t l -1.122759 0.356552 0$ D 0.002203 0.458090$ C 0.000000 0.0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0STREAMID: FEEDVersion: 2Flag 0GLOBAL 117TYPE 0 TERMINAL 1At -4.096552 -0.493103 Label At 0.735776 0.000000 ROUTE 0 0$ $ 0.0 0.0ROUTE 1 0r r -4.096552 -0.493103 0 x x -2.625000 -0.493103 0 y y -2.625000 -0.386897 0 x x -1.322759 -0.386897 0 t l -1.122759 -0.386897 0 $ D 0.002203 -0.285359 $ C 0.000000 0.0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0STREAMID: 3Version: 2Flag 0GLOBAL 117TYPE 0 TERMINAL 2At 1.001379 1.206207Label At -0.951709 0.000000 ROUTE 0 0r l 1.001379 1.206207 0x y -0.902038 1.206207 0y 0 -0.902038 0.776923 0t u -0.902038 0.576923 0 $ C 1.000000 0.0$ $ 0.0 0.0ROUTE 1 0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0STREAMID: 4Version: 2Flag 0GLOBAL 117TYPE 0 TERMINAL 2At 1.699310 -1.403448Label At -1.300674 0.000000 ROUTE 0 0r l 1.699310 -1.403448 0x y -0.902038 -1.403448 0 y 0 -0.902038 -0.970308 0 t d -0.902038 -0.770308 0 $ C 1.000000 0.0$ $ 0.0 0.0ROUTE 1 0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0STREAMID: DS-1.3Version: 2DisplayName: "DS-1"Flag 0UnplacedTYPE 0 TERMINAL 0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 0r r 0.000000 0.000000 0x x -0.300000 0.000000 0 x x 0.049670 1.006207 0t d 0.049670 1.094506 0 $ D 0.000000 -0.111701 $ C 0.000000 0.0$ $ 0.0 0.0ROUTE 1 0r r 0.000000 0.000000 0x r 0.200000 0.000000 0x x -0.650000 0.000000 0 t l -0.450000 0.000000 0 $ C 1.000000 0.0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0STREAMID: DS-1.H2OVersion: 2DisplayName: "DS-1"Flag 0UnplacedTYPE 0 TERMINAL 0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 0r l 0.000000 0.000000 0x l -0.200000 0.000000 0 x x 0.650000 0.000000 0t r 0.450000 0.000000 0 $ C 1.000000 0.0$ $ 0.0 0.0ROUTE 1 0r r 0.000000 0.000000 0x x 0.300000 0.000000 0x x -3.360776 0.799310 0 t u -3.360776 0.708849 0 $ D 0.000000 0.109539$ C 0.000000 0.0$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 1$ $ 0.0 0.0ROUTE 1 1$ $ 0.0 0.0At 0.000000 0.000000Label At 0.000000 0.000000 ROUTE 0 2$ $ 0.0 0.0ROUTE 1 2$ $ 0.0 0.0LEGENDVersion: 2Dim: -4.00552 -3.2 -2.80753 -3.7021Size: 0.0120518Font: 1 0 =Times New Roman# of PFS Objects = 0VIEWPORT -8.411611 6.014368 2.697392 -2.894633LAYOUTTableFormat 1Pages 1 1 1 1PAGESETUPPAPERSIZE 1PAPERSOURCE 1ORIENTATION 1PRINTPAGENO 1 1LEFTMARGIN 10mmRIGHTMARGIN 10mmTOPMARGIN 10mmBOTTOMMARGIN 10mmVISIBILITY 0.030000PFDFLAG 255 255PFDMODE 0SCALE 0.012052$_SUMMARY_FILEMMSUMMARY25.0 IDSET RUNID (PROPERTIES) (114 *5) IDSET IT (PROPERTIES) (117 *6 119 *6 115 *1) LSET RUNID (%RUNID) LSET IT (%IT) IDSET VERS (PROPERTIES) (345 *6 346 *6 347 *6 348 *6 355 *6) LSET VERS (%VERS) DSET RUN-STATUS VERS @VERS ( "25.0" "WIN32" "" "Xuwen" "XUWEN-THINK" ) IDSET STRNAM (PROPERTIES) (1233 *6) LSET STRNAM (%STRNAM) IDSET ID_STRPR (PROPERTIES) ( 454 *2 <119> 1236 *2 <125> 1237 *2 <29> 1238 *2 <55> 1239 *2 <55> 1083 *6 1084 *6 ) LSET L_STRPR (%ID_STRPR) DSET RUN-STATUS IT @IT ( "APRIL 13, 2013 1:28:33 P.M." "_2342ubf.inm" 0) DSET RUN-STATUS CURRENCY @CURRENCY ( "$" ) IDSET ID_NCC (COMPONENTS) (C3H6--01 C3H5C-01 C3H5C-02 C3H4C-01 HCL H2O "H3O+" CL-) IDSET ID_NCCNS (COMPONENTS) (C3H6--01 C3H5C-01 C3H5C-02 C3H4C-01 HCL H2O "H3O+" CL-) IDSET ALIAS (COMPONENTS) (1 *6) LSET ALIAS ( %ID_NCC & %ALIAS)DSET RUN-STATUS RUNID @RUNID ("_2342ubf") DSET RUN-STATUS RUNID @RUNID ("_2342ubf") IDSET STATUS (PROPERTIES) (125 *1 126 *1 127 *1 128 *1 129 *1 130 *1) LSET STATUS (%STATUS) IDSET PPSTAT (PROPERTIES) (272 *1) LSET PPSTAT (%PPSTAT) DSET RUN-STATUS PPSTAT @PPSTAT (2) IDSET IDRXBAL0 (PROPERTIES) ( 73 *2 <11> 74 *2 75 *2 <10> 76 *2 77 *2 <13> 78 *2) IDSET ID_RXBAL (PROPERTIES) ( 73 *2 <11> 358 *2 <11> 359 *2 <11> 74 *2 75 *2 <10> 360 *2 <10> 361 *2 <10> 76 *2 362 *2 <10> 363 *2 <10> 364 *2 <10> 365 *2 366 *2 <11> 367 *2 <11> 368 *2 <11> 369 *2 370 *2 <10> 371 *2 <10> 372 *2 <10> 373 *2 77 *2 <13> 374 *2 <13> 375 *2 <13> 78 *2 1266 *2 <10> 1267 *2 <10> 1262 *2 <10> 1263 *2 <10> 1264 *2 <10> ) IDSET ID_MOLE (PROPERTIES) ( 79 *2 <11> 80 *2) LSET FLWBAL ( %ID_NCCNS & %ID_MOLE %IDRXBAL0) IDSET ID_XY (PROPERTIES) (43 *2 36 *2 39 *2 40 *2) IDSET ID_XX (PROPERTIES) (43 *2 37 *2 38 *2 40 *2) IDSET ID_XXY (PROPERTIES) (43 *2 37 *2 38 *2 39 *2 41 *2 42 *2) LSET VLE ( %ID_XY & %ID_NCC) LSET LLE ( %ID_XX & %ID_NCC) LSET VLE3 ( %ID_XXY & %ID_NCC) IDSET ID_KODE (PROPERTIES) (44 *1) IDSET BLKIN (BLKIN) (STREAMID ?) LSET BLKIN (%BLKIN) IDSET BLKOUT (BLKOUT) (STREAMID ?) LSET BLKOUT (%BLKOUT) IDSET TYPIN (TYPIN) (STREAMID ?) LSET TYPIN (%TYPIN) IDSET TYPOUT (TYPOUT) (STREAMID ?) LSET TYPOUT (%TYPOUT) IDSET PORT_NO (PROPERTIES) (236 *1 237 *1 238 *1) IDSET IDS_0 (SUBSTREAM) ($TOTAL) IDSET IDS_1 (SUBSTREAM) (MIXED) IDSET BLKSTAT (PROPERTIES) (120 *1 121 *1) IDSET BLKMSG (PROPERTIES) (122 *6) LSET BLKSTAT (%BLKSTAT) LSET BLKMSG (%BLKMSG) IDSET DESC (PROPERTIES) (113 *6) LSET DESC (%DESC) IDSET IDPH_V (PHASE) (VAPOR) IDSET IDPH_L (PHASE) (LIQUID) IDSET IDPH_S (PHASE) (SOLID) IDSET IDPH_L1 (PHASE) (LIQUID_1)IDSET IDPH_T (PHASE) (TOTAL) IDSET IDPH_L2 (PHASE) (LIQUID_2) IDSET IDWET (BASIS) (WET) IDSET IDDRY (BASIS) (DRY) IDSET SP (PROPERTIES) (118 *6) LSET SP (%SP) IDSET SPSTAT (SPSTAT) (116 *1) LSET SPSTAT ( %SPSTAT) IDSET IDERR (PROPERTIES) (131 *1) DSET RUN-STATUS SP @SP ( "APRIL 13, 2013 1:28:33 P.M." ) IDSET FOR (PROPERTIES) (737 *1) LSET FOR (%FOR) IDSET FORSTAT (PROPERTIES) (738 *1) LSET FORSTAT (%FORSTAT) IDSET MW (PROPERTIES) (269 *2) LSET MW (%MW & %ID_NCCNS) DSET MW MW @MW (4.20806400D+01 7.65254000D+01 7.65254000D+01 1.10970160D+02 3.64606400D+01 1.80152800D+01 1.90226700D+01 3.54532500D+01) IDSET VST (PROPERTIES) (270 *2 <43> ) LSET VST (%VST & %ID_NCC) DSET VST VST @VST (8.08566020D-02 <1> 8.22108000D-02 <1> 8.58000000D-02 <1> 9.16700000D-02 <1> 5.35578000D-02 <1> 1.80499880D-02 <1> * <1> * <1> ) IDSET TB (PROPERTIES) (271 *2 <22> ) LSET TB (%TB & %ID_NCC) DSET TB TB @TB (-4.77500000D+01 <4> 4.51500000D+01 <4> 2.26500000D+01 <4> 1.04300000D+02 <4> -8.50500000D+01 <4> 1.00050000D+02 <4> 6.87500000D+01 <4> 6.87500000D+01 <4> ) IDSET CASN (PROPERTIES) (37100 *6) LSET CASN (%ID_NCC & %CASN) DSET CASN CASN @CASN ( "115-07-1" "107-05-1" "557-98-2" "10061-01-5" "7647-01-0" "7732-18-5" "538976288" "538976288" ) IDSET PAMB (PROPERTIES) (32 *2) LSET PAMB (%PAMB) DSET PAMB PAMB @PAMB (1.01325000D+05) IDSET PAMB2 (PROPERTIES) (32 *2 <20> ) LSET PAMB2 (%PAMB2) DSET RUN-STATUS PAMB @PAMB2 (1.01325000D+00 <5> ) IDSET ISODES (PROPERTIES) (123 *5 124 *5 132 *5) IDSET ISTRCV (PROPERTIES) (1251 *2) IDSET ID_WORK (PROPERTIES) (112 *2 <19> 195 *2 <28> ) LSET L_WORK (%ISODES %ID_WORK) IDSET ID_HEAT (PROPERTIES) (1 *2 <13> 815 *2 <22> 816 *2 <22> ) LSET L_HEAT (%ISODES %ID_HEAT) IDSET ID_LTVC (PROPERTIES) (817 *2 <22> )IDSET ID_TPQV (PROPERTIES) (1 *2 <13> 31 *2 <22> 32 *2 <20> 2 *2 3 *2) IDSET ID_QTP (PROPERTIES) (1 *2 <13> 31 *2 <22> 32 *2 <20> 3 *2) IDSET TOTAL (PROPERTIES) (524 *2 <10> 525 *2 <10> 526 *2 <10> ) IDSET ENERGY (PROPERTIES) (504 *2 <13> 505 *2 <13> 506 *2 <13> 1 *2 <13> ) IDSET TOTAX (PROPERTIES) (524 *2 <18> 525 *2 <18> 526 *2 <18> ) IDSET ENERGX (PROPERTIES) (504 *2 <5> 505 *2 <5> 506 *2 <5> 1 *2 <5> ) LSET BPSBAL3 ( %TOTAL %ENERGY) LSET BPBATCH ( %TOTAX %ENERGX) IDSET ID_1 (NPOINT) (#1) IDSET ID_2 (PROPERTIES) (259 *5 241 *2 255 *2 256 *2 260 *2 126 *6 258 *5) LSET L_1 (%ID_2 & %ID_1) DSET CONV-SUM SPEC-SUMMARY CNV_SPEC @L_1 ("DS-1" 3.64311444D-29 1.00000000D-04 3.64311444D-25 3.00000000D+01 "# UB" "$OLVER01" ) DSET CONV-SUM SPEC-SUMMARY COMPSTAT @L_1 (0) DSET DESIGN-SPEC DS-1 BLKSTAT @BLKSTAT (0 0) DSET DESIGN-SPEC DS-1 COMPSTAT @L_1 (0) IDSET ID_3 (NPOINT) (#2) IDSET ID_4 (PROPERTIES) (257 *6 106 *2 107 *2 262 *6) LSET L_2 ( %ID_4 & %ID_3) DSET DESIGN-SPEC DS-1 DEFV_SUM @L_2 ("MANIPULATED" 3.00000000D+01 3.00000000D+01 "KMOL/HR" "YHCL" 3.64311444D-29 3.64311444D-29 "" ) DSET RUN-STATUS FORSTAT @FORSTAT (2) IDSET ID_5 (PROPERTIES) (131 *6 265 *1 266 *1 ) LSET L_3 (%ID_5) DSET CONVERGENCE SECANT $OLVER01 OPT_STAT @L_3 ("OK" 1 * ) IDSET ID_6 (NPOINT) (#1) IDSET ID_7 (PROPERTIES) (257 *6 262 *6 260 *2 261 *2 256 *2 126 *6 850 *1 860 *6 ) LSET L_4 (%ID_7 & %ID_6) DSET CONVERGENCE SECANT $OLVER01 DSGN_PLT @L_4 ("TOTAL MOLEFLOW" "KMOL/HR"3.00000000D+01 3.00000000D+01 3.64311444D-25 "" 1 "H2O.MIXED" ) DSET CONVERGENCE SECANT $OLVER01 COMPSTAT @L_1 (0) DSET CONVERGENCE SECANT $OLVER01 BLKSTAT @BLKSTAT (0 0) IDSET ID_8 (SPECNAME) ("DS-1" ) IDSET ID_9 (NPOINT) (#1) IDSET ID_10 (PROPERTIES) (222 *1 260 *2 241 *2 256 *2 ) LSET L_5 ((%ID_10 & %ID_9) & %ID_8) DSET CONVERGENCE SECANT $OLVER01 CONV_HIS_DS @L_5 (1 3.00000000D+01 3.64311444D-29 3.64311444D-25 ) IDSET ID_11 (NPOINT) (#1) IDSET ID_12 (NCOL) (#1) IDSET ID_13 (PROPERTIES) (106 *6 107 *6 108 *6 109 *6 110 *6 111 *6 )。

相关文档
最新文档